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Descent representations for generalized
coinvariant algebras

Kyle P. Meyer

Abstract The coinvariant algebra Rn is a well-studied Sn-module that is a graded version
of the regular representation of Sn. Using a straightening algorithm on monomials and the
Garsia–Stanton basis, Adin, Brenti, and Roichman gave a description of the Frobenius image
of Rn, graded by partitions, in terms of descents of standard Young tableaux. Motivated by
the Delta Conjecture of Macdonald polynomials, Haglund, Rhoades, and Shimozono gave an
extension of the coinvariant algebra Rn,k and an extension of the Garsia–Stanton basis. Chan
and Rhoades further extend these results from Sn to the complex reflection group G(r, 1, n)
by defining a G(r, 1, n) module Sn,k that generalizes the coinvariant algebra for G(r, 1, n). We
extend the results of Adin, Brenti, and Roichman to Rn,k and Sn,k and connect the results for
Rn,k to skew ribbon tableaux and a crystal structure defined by Benkart et al.

1. Introduction
The classical coinvariant algebra Rn is constructed as follows: let the symmetric
group Sn act on the polynomial ring Q[x1, x2, . . . , xn] by permutation of the variables
x1, . . . , xn. The polynomials that are invariant under this action are called symmetric
polynomials, and we let In be the ideal generated by symmetric polynomials with
vanishing constant term. Then Rn is defined as the algebra obtained by quotienting
Q[x1, x2, . . . , xn] by In, that is

(1) Rn := Q[x1, x2, . . . , xn]
In

.

There are a number of sets of symmetric polynomials in x1, . . . , xn that alge-
braically generate all symmetric polynomials in the variables x1, . . . , xn with van-
ishing constant term. The set that is important for the generalization of Rn that we
are considering is the elementary symmetric functions

(2) ed :=
∑

16i1<i2<...<id6n

d∏
j=1

xij ,

for 1 6 d 6 n. We then have
(3) In = 〈e1, e2, . . . , en〉.

Since In is homogeneous and invariant under the action of Sn, the coinvariant
algebra is a graded Sn-module. Since the conjugacy classes of Sn are indexed by
partitions of n, the irreducible representations ofSn are also indexed by partitions of n
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(an explicit construction of irreducibles is given by Specht modules). We let Sλ denote
the irreducible representation corresponding to λ, and we let χλµ be the character of Sλ
evaluated at an element of type µ.

The following relies on some definitions that we will cover in Section 2. Given a
representation V of Sn, a natural question to ask is: “What is the multiplicity of Sλ
in V for each partition of n?”. All of this information can be contained in a single
symmetric function called the Frobenius image of V , which is denoted Frob(V ). The
Frobenius image has the following formula

(4) Frob(V ) =
∑
λ`n

cλsλ,

where cλ is the multiplicity of Sλ in V and sλ is the Schur function associated to λ. We
will take this formula as a definition. In the case of the classical coinvariant algebra
this problem was solved by Chevalley [6] who showed that the multiplicity of Sλ in Rn
is the number of standard Young tableaux of shape λ, that is that

(5) Frob(Rn) =
∑

T∈SYT(n)

ssh(T ).

If V is a graded representation of Sn with degree d component Vd, then we can
also consider the Frobenius image of Vd for all d. This data can be combined into a
single function called the graded Frobenius image, which is defined as follows:

(6) gr Frob(V ; q) =
∞∑
d=0

qd Frob(Vd).

Lusztig (unpublished) and Stanley [11] showed that for the classical coinvariant
algebra the multiplicity of Sλ in the degree d component of Rn is the number of
standard Young tableaux with major index equal to d. Stated in terms of the graded
Frobenius image,

(7) gr Frob(Rn; q) :=
∑

T∈SYT(n)

qmaj(T )sshape(T ).

A further refinement of Rn is given as follows: define

(8) PEµ := span{m ∈ Q[x1, . . . , xn] : λ(m) E µ},

and

(9) P/µ := span{m ∈ Q[x1, . . . , xn] : λ(m) / µ}

where m are monomials, λ(m) is the exponent partition of m, and / is the dominance
order on partitions. Then let QEµ and Q/µ be the projections of PEµ and P/µ onto Rn
respectively. Next define

(10) Rn,µ := QEµ/Q/µ.

This is a refinement of the grading since the degree d component of Rn is equal to

(11)
⊕
µ`d

Rn,µ.

Adin, Brenti, and Roichman [2] show that Rn,µ is zero unless µ is a partition with
at most n−1 parts such that the differences between consecutive parts are at most 1.
We call such partitions descent partitions. They also show that in the case that Rn,µ
is not zero, the multiplicity of Sλ in Rn,µ is given by the number of standard Young
tableaux of shape λ with descent set equal to the descent set of µ, where we define a
descent of a partition µ as a value i such that µi > µi+1. For example if n = 5, and
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Descent representations

µ = (3, 2, 2, 1), then the descents of µ are 1, 3, 4, and the multiplicity of S(2,2,1) is 1
since the only standard Young tableau of shape (2, 2, 1) with descent set {1, 3, 4} is

(12) 1 3
2 4
5

.

Motivated by the Delta Conjecture in the theory of Macdonald polynomials,
Haglund, Rhoades, and Shimozono [10] generalize this entire picture by defining the
ideal

(13) In,k := 〈xk1 , xk2 , . . . xkn, en, en−1, . . . , en−k+1〉,

for a positive integer k 6 n. They then define a generalized coinvariant algebra as

(14) Rn,k := Q[x1, . . . , xn]
In,k

.

This is a generalization since in the case n = k, we recover the classical coinvariant
algebra Rn, that is Rn,n = Rn. This is connected to the Delta Conjecture because
Haglund, Rhoades, and Shimozono show that

(15) (revq ◦ ω) gr Frob(Rn,k; q)

is equal to Risen,k(x; q, 0),Risen,k(x; 0, q), Valn,k(x; q, 0), and Valn,k(x; 0, q), where
Risen,k and Valn,k are combinatorially defined functions appearing in the Delta Con-
jecture, and ω is the standard involution on symmetric functions.

As in the classical case, Rn,k is a graded Sn-module and we can refine the grading
as follows.

Definition 1.1. Let µ be a partition with at most n parts. Next define SEµ and S/µ
to be the projections of PEµ and P/µ onto Rn,k. We then define

(16) Rn,k,µ := SEµ/S/µ.

This is a refinement of the grading since the degree d component of Rn,k is equal to

(17)
⊕
µ`d

Rn,k,µ.

Our primary goal is to determine the multiplicities of Sλ in Rn,k,µ which we do in
the following theorem, thus extending the results of Adin, Brenti, and Roichman on
Rn,µ to Rn,k,µ and refining the results of Haglund, Rhoades and Shimozono.

Theorem 1.2. The algebra Rn,k,ρ is zero unless ρ fits in an (n− 1)× k rectangle and
ρi − ρi+1 6 1 for i > n− k. In the case that Rn,k,ρ is not zero, the multiplicity of Sλ
in Rn,k,ρ is given by

(18) |{T ∈ SYT(λ) : Desn−k+1,n(ρ) ⊆ Des(T ) ⊆ Des(ρ)}|.

A key component of the methods in [2] is the use of a basis for Q[x1, . . . , xn] that
arises from the theory of Cohen–Macaulay rings and the fact that en, en−1, . . . , e1
form a regular sequence. We are not able to use these methods since the generators
of In,k do not form a regular sequence.

A different direction of generalization comes from considering the coinvariant al-
gebra for general complex reflection groups G(r, p, n), which reduce to Sn in the
case r = p = 1. These algebras are studied by Bagno and Biagioli in [3]. Chan and
Rhoades [5] give generalizations of these objects in the case p = 1 for a parameter
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k 6 n. If we let xrn denote the set of variables {xr1, xr2, . . . , xrn} then the ideal we are
interested in for this case is
(19) Jn,k := 〈xkr1 , xkr2 , . . . , xkrn , en(xrn), en−1(xrn), . . . , en−k+1(xrn)〉,
and the algebra is

(20) Sn,k := C[x1, x2, . . . , xn]
Jn,k

.

This is a graded G(r, 1, n)-module and we can again refine the grading by partitions
of size d as follows.

Definition 1.3. Let µ be a partition with at most n parts. Next define SEµ and S/µ
to be the projections of PEµ and P/µ onto Sn,k. We then define
(21) Sn,k,µ := SEµ/S/µ.

This refines the grading since the degree d component of Sn,k is equal to
(22)

⊕
µ`d

Sn,k,µ.

The following theorem gives the multiplicities of irreducible representations ap-
pearing in Sn,k,µ.

Theorem 1.4. The algebra Sn,k,ρ is zero unless ρ fits in an n × (kr) rectangle, ρi −
ρi+1 6 r for i > n−k, and ρn < r. In the case that Sn,k,ρ is not zero, the multiplicity
of Sλ in Sn,k,ρ is given by

(23) |{T ∈ SYT(λ) : Desrn−k+1,n(ρ) ⊆ Des(T ) ⊆ Desr(ρ), ci(T ) ≡ ρi(mod r)}|.

The paper is organized as follows: Section 2 will cover background material, Sec-
tion 3 will prove Theorem 1.2 and show a connection to crystals and skew ribbon
tableaux, in Section 4 we will give background for and prove Theorem 1.4, and in
Section 5 we will cover directions and methods for future work.

2. Definitions and background
2.1. Descents and monomials. An important component of the results of [2] on Rn
is the use of a certain monomial basis for Rn. We will recall this basis and the gen-
eralization of this basis given in [10] for Rn,k. This basis for Rn will be indexed
by permutations, and will be defined in terms of the descents of the corresponding
permutation.

Given a permutation σ ∈ Sn, i is a descent of σ if σ(i) > σ(i + 1). We denote by
Des(σ) the set of descents of σ. We denote by di(σ), the number of descents of σ that
are at least as large as i, that is
(24) di(σ) := |{i, i+ 1, . . . , n} ∩Des(σ)|.

Finally for two integers i, j such that 1 6 i 6 j 6 n we let Desi,j(σ) denote the set
of descents of σ that are between i and j inclusively, that is
(25) Desi,j(σ) := Des(σ) ∩ {i, i+ 1, . . . , j − 1, j}.

For example if σ = 31427865 ∈ S8, then
Des(σ) = {1, 3, 6, 7},(26)

(d1(σ), . . . , d8(σ)) = (4, 3, 3, 2, 2, 2, 1, 0),(27)
and

Des2,6(σ) = {3, 6}.(28)
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Descents are used to define a set of monomials which descend to a basis for Rn,
see [7, 9].

Definition 2.1. Given a permutation σ ∈ Sn, the Garsia–Stanton monomial or sim-
ply descent monomial associated to σ is

(29) gsσ :=
n∏
i=1

x
di(σ)
σ(i) .

These monomials descend to a basis for Rn.

For example, if σ = 31427865 ∈ S8, then
(30) gsσ = x4

3x
3
1x

3
4x

2
2x

2
7x

2
8x

1
6.

These monomials are generalized by Haglund, Rhoades, and Shimozono in [10] to
(n, k)-descent monomials that are indexed by ordered set partitions of n with k blocks.
Alternatively they can be indexed by pairs (π, I) consisting of a permutation π ∈ Sn

and a sequence i1, . . . , in−k such that
(31) k − des(π) > i1 > i2 > . . . > in−k > 0.

This is done as follows:

Definition 2.2. Given a permutation π ∈ Sn and a sequence I = (i1, i2, . . . , in−k)
such that
(32) k − des(π) > i1 > i2 > . . . > in−k > 0,
the (n, k)-descent monomial associated to (π, I) is

(33) gsπ,I := gsπx
i1
π(1)x

i2
π(2) . . . x

in−k
π(n−k).

These monomials descend to a basis for Rn,k.
As an example if σ = 31427865 ∈ S8, k = 6, and I = (1, 0), then

(34) gsσ,I = gsσ · x1
3x

0
1 = x5

3x
3
1x

3
4x

2
2x

2
7x

2
8x

1
6.

2.2. Permutations and partitions. The way that Adin, Brenti, and Roichman [2]
make use of the classical descent monomial basis is by using a basis for Q[x1, . . . , xn]
given by Garsia in [7]. This basis is the set {gsπeµ}, where π is an element of Sn, µ
is a partition with parts of size at most n, and
(35) eµ = eµ1eµ2 . . . eµ`(µ) .

In making use of this basis it is necessary to associate certain permutations and
partitions to monomials. Our results also use these, so we recall them here.

Definition 2.3. The index permutation of a monomial m =
∏n
i=1 x

pi
i is the unique

permutation π, such that the following hold:
(1) pπ(i) > pπ(i+1),
(2) pπ(i) = pπ(i+1) =⇒ π(i) < π(i+ 1).
We denote the index permutation of m as π(m).

Definition 2.4. The exponent partition of a monomial m =
∏n
i=1 x

pi
i is the parti-

tion (pπ(1), pπ(2), . . . , pπ(n)), where π = π(m). We denote the exponent partition of m
as λ(m).

We note that if λ is the exponent partition of a descent monomial, then λn = 0 and
λi − λi+1 6 1. We call a partition that satisfies these conditions a descent partition.
If λ is the exponent partition of an (n, k)-descent monomial, then λ has less than n
parts, and its parts are of size less than k. We call such partitions (n, k)-partitions.
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Definition 2.5. The complementary partition of a monomial m is the partition that
is conjugate to (λi − di(π))ni=1, where π = π(m) and λ = λ(m). We denote the
complementary partition of m as µ(m).

To clarify these definitions we present an example.

Example 2.6. Let n = 8, k = 5, I = (2, 2, 1) and let
(36) m = x6

1x2x3x
2
4x

4
6x7x

2
8 = x6

1x
4
6x

2
4x

2
8x2x3x7,

then
π(m) = 16482375,(37)
λ(m) = (6, 4, 2, 2, 1, 1, 1, 0),(38)

Des(π(m)) = {2, 4, 7},(39)
gsπ(m) = x3

1x
3
6x

2
4x

2
8x2x3x7,(40)

µ(m)′ = (3, 1),(41)
µ(m) = (2, 1, 1),(42)

and
gsπ(m),I = x5

1x
5
6x

3
4x

2
8x2x3x7.(43)

The final key component is a partial ordering on monomials of a given degree
together with a result on how multiplying monomials by elementary symmetric func-
tions interacts with this partial order. For a proof of Proposition 2.8 we refer the
reader to [2].

Definition 2.7. For m1,m2 monomials of the same total degree, m1 ≺ m2 if one of
the following holds:

(1) λ(m1) / λ(m2),
(2) λ(m1) = λ(m2) and inv(π(m1)) > inv(π(m2)),

where / is the strict dominance order on partitions and inv is the inversion statistic
on permutations.

This partial order is useful because of how it interacts with multiplication of mono-
mials and elementary symmetric functions. This interaction is encapsulated in the
following proposition:

Proposition 2.8. Let m be a monomial equal to xp1
1 . . . xpnn , then among the mono-

mials appearing in m · eµ, the monomial

(44)
n∏
i=1

x
p(π(i))+µ′i
π(i)

is the maximum with respect to ≺, where π is the index permutation of m.

Proof. We refer the reader to [2] for a proof of this theorem. �

2.3. Standard Young tableaux. Our main results come in the form of counting
certain standard Young tableaux.

A Ferrers diagram is a collection of unit boxes which, since we are using English
notation, are justified to the left and up. The lengths of the rows of a Ferrers dia-
gram form a partition which we call the shape of the Ferrers diagram. A semistandard
Young tableau of size n is a Ferrers diagram containing n boxes where each box is as-
signed a positive integer such that the integers increase weakly along rows and strictly
down columns. A standard Young tableau is a semistandard Young tableau containing
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exactly the integers 1, 2, . . . , n. We denote the set of standard [semistandard] Young
tableaux of size n by SYT(n) [SSYT(n)]. For a partition µ, we let SYT(µ) [SSYT(µ)]
denote the set of all standard [semistandard] Young tableaux of shape µ. The weight
of a semistandard Young tableau T is the vector wt(T ) where the ith entry of wt(T )
is the number of i’s in T . The Schur functions are then defined as

(45) sλ :=
∑

T∈SSYT(λ)

xwt(T ),

where here x denotes a countably infinite set of variables. The Schur functions form
a linear basis for symmetric functions, and there is a well known involution ω on the
space of symmetric functions that sends sλ to sλ′ where λ′ is the partition conjugate
to λ.

An integer i is a descent of a standard Young tableaux T if the box containing i+1
is strictly below the box containing i. We denote by Des(T ) the set of all descents
of T . Furthermore given two integers 1 6 i 6 j 6 n we define Desi,j to be the set of
descents of T that are between i and j inclusively, that is

(46) Desi,j(T ) := Des(T ) ∩ {i, i+ 1, . . . j − 1, j}.

As examples, consider the following Young tableaux:

T1 = 1 4 6 7
2 5 8
3

T2 = 1 3 4 7
2 5 6 8

T3 = 1 2 4 7 8
3 5 6

S1 = 1 1 2 4
2 3 3
3

S2 = 1 1 1 1
2 2 2 2

S3 = 1 2 3 4 5
2 3 4

T1, T2, T3 are standard Young tableaux, and S1, S2, S3 are semistandard Young
tableaux. The shape of T1 and S1 is (4, 3, 1), the shape of T2 and S2 is (4, 4), and the
shape of T3 and S3 is (5, 3). The descent sets of the standard Young tableaux are as
follows:

Des(T1) = {1, 2, 4, 7},(47)
Des(T2) = {1, 4, 7},(48)
Des(T3) = {2, 4}.(49)

Next, Des5,7(T1) = Des5,7(T2) = {7}, and Des5,7(T3) = ∅. The weight of the
semistandard Young tableaux are as follows:

wt(S1) = (2, 2, 3, 1, 0, 0, . . .),(50)
wt(S2) = (4, 4, 0, 0, 0, 0 . . .),(51)
wt(S3) = (1, 2, 2, 2, 1, 0, . . .).(52)

A skew Young tableau is a Young tableau that has had a Young tableau removed
from its upper left corner. The definitions of both semistandard Young tableaux and
Schur function extend to semistandard skew Young tableaux and skew Schur functions.
A connected skew Young tableau that does not contain any 2 × 2 boxes is called a
skew ribbon tableau. These two conditions make it so that the shape of a skew ribbon
tableau is uniquely determined by the lengths of its rows, so that we can specify
a skew-ribbon tableau shape by a sequence of positive integers. For example if we
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specify that a skew ribbon tableau has rows of lengths (4, 2, 1, 3), then the following
are two examples of semistandard skew Young tableaux with the only possible shape:

1 1 2 3
1 2
3

1 2 4

1 1 1 1
1 2
2

1 1 3

.

3. Descent representations of Rn,k

In the case of the classical coinvariant algebra, Adin, Brenti, and Roichman determine
the isomorphism type of Rn,ρ by comparing the graded traces of the actions of Sn

on Q[x1, . . . , xn] and on Rn. We will follow a similar path, but instead of considering
the action of Sn on Q[x1, . . . , xn], we will consider its action on the space
(53) Pn,k := spanQ{x

p1
1 x

p2
2 . . . xpnn : p1, p2, . . . , pn < k},

that is the space of rational polynomials in the variables x1, . . . , xn where the powers
of each xi are less than k.

We begin by giving a straightening lemma that is a similar to a lemma of Adin,
Brenti, and Roichman [2]. Our lemma differs from theirs in that we are considering
monomials in Pn,k instead of Q[x1, . . . , xn], we use (n, k)-descent monomials instead
of the classical descent monomials, and we consider elementary symmetric functions
corresponding to partitions with parts of size at least n−k+1 instead of all elementary
symmetric functions.

Lemma 3.1. If m =
∏n
i=1 x

pi
i is a monomial in Pn,k (that is pi < k for all i), then

(54) m = gsπ,Ieν +
∑

,

where π = π(m);
∑

is a sum of monomials m′ ≺ m; I is the length n − k sequence
defined by i` = µ′` − µ′n−k+1, where µ is the complementary partition of m; and ν is
the partition specified by:

(1) ν′` = µ′` for ` > n− k,
(2) ν′` = µ′n−k+1 for ` 6 n− k.
Furthermore ν consists of parts of size at least n− k + 1.

Proof. In order to show that gsπ,I is well defined we need to check that k− des(π) >
i1 > i2 > · · · > in−k > 0. By definition i1 = µ′1 − µ′n−k+1 6 µ′1 = pπ(1) − d1(π) and
then by assumption pπ(1) < k, and d1(π) = des(π), thus
(55) i1 6 pπ(1) − d1(π) < k − des(π).
We also note that I is a non-negative weakly-decreasing sequence since it consists of
the parts of a partition minus a constant that is at most as large as the smallest part
of the partition. Thus I satisfies the condition so gsπ,I is well defined.

Next we show that gsπ,I and m have the same index permutation, that is that
(56) π(gsπ,I) = π(m) = π.

To show this, we need to consider the sequence of the exponents of xπ(`) in gsπ,I .
This sequence is the sum of the sequences d`(π) and i` (where we take i` = 0 for
` > n−k). Since these are both weakly-decreasing sequences, their sum is also weakly-
decreasing. Furthermore if d`(π) + i` = d`+1(π) + i`+1, then d`(π) = d`+1(π), which
by the definition of d`(π) implies that ` is not a descent of π, that is that π(`) <
π(`+ 1), thus π satisfies the two conditions of being the index permutation, and thus
by uniqueness it is the index permutation.
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Now by Proposition 2.8, the maximum monomial in gsπ,Ieν will have the form∏n
`=1 x

q`
π(`) where q` is given by:

(1) q` = d`(π) + i` + ν′` for ` 6 n− k,
(2) q` = d`(π) + ν′` for ` > n− k.

By substitution, first using the definitions of i` and ν` and then the definition of
the complementary partition, we get
(57) q` = d`(π) + µ′` − µ′n−k+1 + µ′n−k+1 = d`(π) + µ′` = pπ(`)

for ` 6 n− k, and
(58) q` = d`(π)− µ′` = pπ(`)

for ` > n− k.
Finally, ν has parts of size at least n−k+1 because by definition, the first n−k+1

parts of ν′ are all the same size. �

This lemma gives rise to a basis for Pn,k which will be key to relating how Sn acts
on Pn,k to how it acts on Rn,k.
Proposition 3.2. The set Dn,k consisting of products gsπ,Ieν where ν is a partition
with parts of size at least n− k + 1 and (λ(gsπ,I) + ν′)1 < k form a basis for Pn,k.

Proof. The condition that (λ(gsπ,I)+ν′)1 < k along with Lemma 3.1 guarantees that
the maximum monomial in each element of Dn,k is contained in Pn,k. Then since the
partial order ≺ refines dominance order, all other monomials appearing in elements
in Dn,k are also contained in Pn,k. Therefore Dn,k is contained in Pn,k.

Iteratively applying Lemma 3.1 lets us express any monomial in Pn,k as a linear
combination of elements in Dn,k, thus Dn,k spans Pn,k. To show that this expansion
is unique (up to rearrangement) it is sufficient to show that if the maximal monomials
in gsπ,Ieν and gsφ,Jeρ are the same, then π = φ, I = J , and ν = ρ. To see this, we
note that as a corollary of the proof of Lemma 3.1, the index permutations of the
maximal monomials are the same, and they are π and φ respectively, and thus π = φ.
Then, by Proposition 2.8, the power of xπ(`) in each of these maximum monomials
will be d`(π) + i` + ν′` and d`(π) + j` + ρ′`. This immediately gives that ν′` = ρ′` for
` > n − k since i` = j` = 0 for ` > n − k. Then since the first n − k + 1 parts of ν′
are all equal and the first n− k+ 1 parts of ρ′ are equal and since ν′n−k+1 = ρ′n−k+1,
we have that ν′ = ρ′ which implies ν = ρ. This then implies that i` = j` for all `,
and therefore this expansion is unique. Therefore Dn,k is linearly independent and is
a basis. �

Proposition 3.3. Let p be the map projecting from Q[x1, . . . , xn] to Rn,k and let m
be a monomial in Pn,k. Then

(59) p(m) =
∑
π,I

απ,Igsπ,I ,

where απ,I are some constants, and the sum is over pairs (π, I) such that λ(gsπ,I) E
λ(m).

Proof. Since Dn,k is a basis, we can express m =
∑
π,I,ν απ,I,νgsπ,Ieν for some con-

stants απ,I,ν . By Lemma 3.1, απ,I,ν is zero if the leading monomial of gsπ,Ieν is not
weakly smaller than m under the partial order on monomials. But since the partial
order on monomials refines the dominance order on exponent partitions, for each non-
zero term the exponent partition of the leading monomial will be dominated by λ(m),
that is that
(60) (λ(gsπ,I) + ν′) E λ(m).
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Then when we project down to Rn,k, each term with ν 6= ∅ will vanish since eν is
in In,k, so that,

(61) p(m) =
∑
π,I

απ,I,∅gsπ,I ,

where the sum is over (π, I) such that λ(gsπ,I) E λ(m). �

This proposition is the reason that we have that the degree d component of Rn,k
is isomorphic to

(62)
⊕
µ`d

Rn,k,µ.

This proposition gives the following corollary:

Corollary 3.4.Rn,k,ρ is zero unless ρ is the exponent partition of an (n, k)-descent
monomial, which occurs precisely when ρ is an (n, k)-partition such that the last k
parts form a descent partition.

This basis allows us to express the trace of the action of τ ∈ Sn on Pn,k in terms
of the trace of its action on Rn,k in the basis of (n, k)-Garsia–Stanton monomials. To
do this, let gsπ,Ieν ∈ Dn,k and τ ∈ Sn. As in the proof of Proposition 3.3 we will
have that

(63) τ(gsπ,I) =
∑
φ,J,µ

αφ,J,µgsφ,Jeµ,

for some constants αφ,J,µ, where αφ,J,µ = 0 unless λ(gsπ,I) D λ(gsφ,J) + µ′. Then

(64) τ(gsπ,Ieν) = τ(gsπ,I)eν =
∑
φ,J,µ

αφ,J,µgsφ,Jeµeν .

The important thing for this equation is that for each αφ,J,µ that is non-zero,
gsφ,Jeµeν is an element in Dn,k since λ(gsφ,J) + µ′ + ν′ E λ(gsπ,I) + ν′. Thus the
coefficient of gsπ,Ieν in τ(gsπ,Ieν) is απ,I,∅. Next if we project τ(gsπ,I) onto Rn,k, we
get that in Rn,k

(65) τ(gsπ,I) =
∑
φ,J

αφ,J,∅gsφ,J ,

since every term with µ 6= ∅ vanishes when projected to Rn,k. Therefore the contri-
bution of gsπ,I to the trace of the action of τ on Rn,k is also απ,I,∅.

We now move to the lemmas that will allow us to prove our main result.

Lemma 3.5. Given an (n, k)-partition µ and an (n, k)-descent partition ν there exists
a (n, k)-partition ρ such that µ = ν + ρ if and only if Des(ν) ⊆ Des(µ). If it exists, ρ
is unique.

Proof. There is only one possible value for each part of ρ which is ρi = µi − νi, the
only thing to check is whether this gives a partition, specifically we need to check
whether ρi − ρi+1 = (µi − µi+1) − (νi − νi+1) > 0. Since ν is a descent partition,
(νi − νi+1) is 1 if i is a descent of ν and 0 if it is not. Similarly, (µi − µi+1) is at least
1 if i is a descent of µ and 0 otherwise. Thus in order for (µi − µi+1)− (νi − νi+1) to
be non-negative, it is necessary and sufficient that if i is a descent of ν, then i is also
a descent of µ. That is, ρ will be a partition if and only if Des(ν) ⊂ Des(µ). �
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Example 3.6. As an example of Lemma 3.5, let n = 8, k = 6 then let

µ = (5, 5, 3, 3, 1, 1, 1, 0),(66)
ν1 = (2, 2, 1, 1, 0, 0, 0, 0),(67)
ν2 = (3, 3, 2, 2, 1, 1, 0, 0).(68)

Then

Des(µ) = {2, 4, 7},(69)
Des(ν1) = {2, 4},(70)
Des(ν2) = {2, 4, 6, 8}.(71)

We then have that Des(ν1) ⊆ Des(µ), and that µ − ν1 = (3, 3, 2, 2, 1, 1, 1, 0) is a
partition. On the other hand, Des(ν2) 6⊆ Des(µ), and µ − ν2 = (2, 2, 1, 1, 0, 0, 1, 0) is
not a partition.

Lemma 3.7. Given an (n, k)-partition µ and a set S ⊆ Desn−k+1,n(µ), there is a
unique pair (ν, ρ) such that µ = ν + ρ and ν is the exponent partition of an (n, k)-
descent monomial with Desn−k+1,n(ν) = S, and ρ is an (n, k)-partition with ρ1 =
ρ2 = . . . = ρn−k+1, furthermore this means that Des1,n−k(µ) = Des1,n−k(ν).

Proof. The last k values of the exponent partition of a descent monomial form a
descent partition, so applying Lemma 3.5 to the partition determined by S determines
the last k values of ρ. Then since we need that the first n− k + 1 values of ρ are the
same, this determines what ρ must be, and by subtraction what ν must be. We just
need to check that ν is actually a partition, that is that νi−νi+1 > 0 for 1 6 i 6 n−k.
This is true since νi − νi+1 = µi − µi+1 > 0 because ρi = ρi+1 for i 6 n − k. The
condition that Des1,n−k(µ) = Des1,n−k(ν) follows from the fact that µ = ν + ρ and
that the first n− k + 1 parts of ρ are the same. �

We give an example of how Lemma 3.7 works.

Example 3.8. Let n = 8, k = 6, and let

(72) µ = (5, 5, 3, 3, 1, 1, 1, 0),

and let S = {4}, then

(73) ν = (3, 3, 1, 1, 0, 0, 0, 0),

and

(74) ρ = (2, 2, 2, 2, 1, 1, 1, 0).

We now give a proof of Theorem 1.2.

Proof of Theorem 1.2. The determination of when Rn,k,ρ is zero is from Corollary 3.4.
Next we define an inner product on polynomials by 〈m1,m2〉 = δm1m2 for two

monomials m1, m2, and then extending bilinearly. We then consider the graded trace
of the action of τ ∈ Sn on Pn,k defined for the monomial basis by

(75) TrPn,k(τ) :=
∑
m

〈τ(m),m〉 · q̄λ(m)

where qλ =
∏n
i=1 q

λi
i for any partition λ. Adin, Brenti, Roichman show that

(76) TrQ[x1,...,xn](τ) =
∑
λ`n

χλµ

∑
T∈SYT(λ)

∏n
i=1 q

di(T )
i∏n

i=1(1− q1q2 . . . qi)
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(where µ is the cycle type of τ). From this we can recover TrPn,k(τ) by restricting to
powers of q1 that are at most k − 1. Doing this gives

(77)
∑
λ`n

χλµ
∑

T∈SYT(λ),ν

q̄λDes(T ) q̄ν ,

where the ν’s are partitions such that (λDes(T ))1 + ν1 < k, and λDes(T ) is the descent
partition with descent set T .

Alternatively, we can calculate TrPn,k(τ) by using the basis from Proposition 3.2,
this gives

TrPn,k(τ) =
∑
σ,I,ν

〈τ(gsσ,Ieν), gsσ,Ieν〉q̄λ(gsσ,I)q̄ν
′

(78)

=
∑
σ,I,ν

〈τ(gsσ,I), gsσ,I〉q̄λ(gsσ,I)q̄ν
′

(79)

=
∑
λ,ν

TrRn,k(τ ; q̄λ)q̄λq̄ν
′

(80)

where the ν’s are partitions with parts of size at least n−k+1 such that (λ(gsσ,I))1 +
(ν′)1 < k, and TrRn,k(τ ; q̄λ) is the coefficient of q̄λ in the graded trace of the action
of τ on Rn,k.

We now consider the coefficient of q̄ρ for some partition ρ. Using the first calculation
and Lemma 3.5, the inner sum can be reduced to T such that Des(T ) ⊆ Des(ρ), so
that we get

(81)
∑
λ`n

χλµ|{T ∈ SYT(λ),Des(T ) ⊆ Des(ρ)}|.

Looking at the second calculation and using Lemma 3.7 gives

(82)
∑

S⊆Desn−k+1,n(ρ)

TrRn,k(τ ; q̄λS ),

where λS is the exponent partition of some (n, k)-descent monomial gsσ,I with S =
Desn−k+1,n(λ(gsσ,I)), and Des1,n−k(λ(gsσ,I)) = Des1,n−k(ρ). Together this gives that

(83)
∑
λ`n

χλµ|{T ∈ SYT(λ) : Des(T ) ⊆ Des(ρ)}| =
∑

S⊆Desn−k+1,n(ρ)

TrRn,k(τ ; q̄λS ).

We want to further refine this result by showing that

(84)
∑
λ`n

χλµ|{T ∈ SYT(λ) : S′ ⊆ Des(T ) ⊆ Des(λS′)}| = TrRn,k(τ ; q̄λS′ )

for any specific S′. What this refinement is saying is that out of all of the standard
Young tableaux being counted by the left-hand side, the ones that correspond to a
particular S′ from the right-hand side are those that satisfy Desn−k+1,n(T ) = S′. We
prove this refinement by induction on |λS′ |. The base case of λS′ = ∅ can be seen by
taking ρ = ∅. In this case, both sides reduce to the desired expressions. If we take
ρ = λS′ , then λS′ will appear in the sum since we can take the ν from Lemma 3.7 to
be 0, and all other λS ’s will be smaller since the corresponding ν’s will be non-empty.
Thus by the inductive hypothesis,

(85)
∑
λ`n

χλµ|{T ∈ SYT(λ) : S′ 6⊆ Des(T ) ⊆ Des(ρ)}| =
∑
S(S′

TrRn,k(τ ; q̄λS ).

In words, we are summing over all standard Young tableaux T that have a strict
subset of S′ as descents, thus if we subtract this from our result, the only terms
remaining are those with all of S′ as descents. This then proves the theorem since the
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exponent partition of any (n, k)-descent monomial gsσ,I , there will be a λS′ that is
equal to gsσ,I when we take ρ = λ(gsσ,I). �

Example 3.9. Let n = 8, k = 6, ρ = (5, 3, 2, 2, 1, 1, 1), λ = (4, 3, 1), then Des1,2(ρ) =
{1, 2}, and Des3,8 = {4, 7}.

The standard Young tableaux T of shape λ with {4, 7} ⊆ Des(T ) ⊆ {1, 2, 4, 7} are
as follows:

1 4 6 7
2 5 8
3

1 3 4 7
2 6 8
5

1 3 4 7
2 5 6
8

1 2 4 7
3 5 6
8

1 2 4 7
3 6 8
5

1 2 6 7
3 4 8
5

1 2 3 4
5 6 7
8

Therefore by Theorem 1.2, the coefficient of Sλ in Rn,k,ρ is 7.

Theorem 1.2 is related to the a crystal structure that defined by Benkart, Col-
menarejo, Harris, Orellana, Panova, Schilling, and Yip [4]. Like Rn,k, the crystal
structure that they define is motivated by the Delta Conjecture, and its graded char-
acter is equal to
(86) (revq ◦ω) gr Frob(Rn,k; q),
which, as we mentioned before, is equal to a special case of the combinatorial side of the
Delta Conjecture. This crystal is built up from crystal structures on ordered multiset
partitions in minimaj ordering with specificed descents sets, and the characters of
these smaller crystals is given in terms of skew ribbon tableaux. Since Rn,k is an
algebra that corresponds to the entire crystal structure, it is natural to wonder if
there are algebras that correspond to these smaller crystals. The algebras Rn,k,ρ are
these algebras.

In order to see this connection, we need to rewrite the Frobenius image of Rn,k,ρ
that we get from Theorem 1.2 to get an expression in terms of skew-ribbon tableaux.
Using the combinatorial definition of sλ and Theorem 1.2, we can write Frobenius
image of Rn,k,ρ as

(87) Frob(Rn,k,ρ) =
∑

(P,Q)

xwt(P )

where the sum is over pairs (P,Q) with the following conditions:
• P is a semistandard Young tableau of size n,
• Q is a standard Young tableau of size n,
• sh(P ) = sh(Q),
• Desn−k+1,n(ρ) ⊆ Des(Q) ⊆ Des(ρ).

The Robinson–Schensted–Knuth(RSK) correspondence (see Chapter 7 of [12] for a
review of the RSK correspondence) gives a weight-preserving bijection between pairs
(P,Q) with the above conditions and words w of length n in the alphabet of positive
integers with Desn−k+1,n(ρ) ⊆ Des(w) ⊆ Des(ρ). Therefore if we apply the reverse
RSK correspondence to the Frobenius image it can be rewritten as

(88) Frob(Rn,k,ρ) =
∑
w

xwt(w)

where the sum is over words of length n with Desn−k+1,n(ρ) ⊆ Des(w) ⊆ Des(ρ).
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Next let di be the difference between the ith and (i−1)th descents of ρ, taking d1 to
be the first descent. Then let p be the index of the largest descent smaller than n−k+1.
With this notation, any word w as above can be split into subwords w1, w2, . . . , wp, and
v such that w = w1w2 . . . wpv where each wi has length di and has no descents, and
v has descents at dp+1, dp+1 + dp+2, . . . , dp+1 + dp+2 + . . . ddes(ρ). Any such collection
of subwords gives an acceptable word w, thus Frob(Rn,k,ρ) can be written as product
of terms of the form

∑
wi

xwt(wi) and
∑
v xwt(v), where the sums are over words with

the corresponding restrictions. These terms can be simplfied as follows. The term∑
wi

xwt(wi) is equal to hdi and
∑
v xwt(v) is equal to sγ where γ is the skew ribbon

shape with rows of lengths (n − (d1 + d2 + . . . + ddes(ρ)), ddes(ρ), ddes(ρ)−1, . . . , dp+1).
This last part is because there is a bijection between fillings of γ and words with
the conditions of v given by reading the fillings of γ row by row from bottom to top
reading each row from left to right. Combining these together gives that the Frobenius
image of Rn,k,ρ is equal to

(89) Frob(Rn,k,ρ) = sγ

p∏
i=1

hdi

To clarify the above we will give an example. Let n = 11, k = 8, let ρ =
(7, 7, 5, 3, 3, 3, 3, 2, 1, 1). Then Desn−k+1,n(ρ) = {7, 8, 10} and Des(ρ) = {2, 3, 7, 8, 10},
and the values of di written in a list are 2, 1, 4, 1, 2 and p = 2. The skew ribbon
tableau that will appear will thus have row lengths (1, 2, 1, 4). A pair (P,Q) with the
above conditions would then be

P = 1 1 2 3 5
2 3 5 5
3 4

Q = 1 2 5 6 7
3 4 8 10
9 11

Applying the reverse RSK correspondence to this pair gives the word
(90) w = 34125553132.
This is then broken up into the words w1 = 34, w2 = 1, and v = 25553132 these are
then put into semistandard Young (skew) tableaux as follows

3 4 , 1 , 2
1 3
3

2 5 5 5

If we apply ω to this product we get

(91) ω(Frob(Rn,k,ρ)) = sγ′
p∏
i=1

edi .

This expression (for the appropriately chosen values) is the character of the crystals
that Benkart, Colmenarejo, Harris, Orellana, Panova, Schilling, and Yip [4] use to
build up their main crystal strucuture. Therefore the algebras Rn,k,ρ fill in a piece
that was missing on the algebraic side of things.

Using Theorem 1.2 we can also recover a result of Haglund, Rhoades, and Shimo-
zono [10].

We will use the q-binomial coefficient which has the following formulation.

(92) [n]q := 1 + q + · · · qn−1 [n]q! := [n]q[n− 1]q . . . [1]q
[
n

k

]
q

:= [n]q!
[k]q![n− k]q!
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Additionally we will use the well known result that the coefficient of qd in
[
n+m
m

]
q

is the number of partitions of size d that fit in an n×m box.

Corollary 3.10. Let fλ(q) be the generating function for the multiplicities of Sλ in
the degree d component of Rn,k. Then

(93) fλ(q) =
∑

T∈SYT(λ)

qmaj(T )
[
n− des(T )− 1

n− k

]
q

,

where the major index maj(T ) is the sum of the descents of T .

Proof. By Theorem 1.2, each standard Young tableau of shape λ contributes to fλ(q)
once for each partition ρ such that ρ is the exponent partition of an (n, k)-descent
monomial and Desn−k+1,n(ρ) ⊆ Des(T ) ⊆ Des(ρ). All such ρ come from (n, k)-descent
monomials gsπ,I where π is a permutation with Des(π) = Des(T ) and I is a sequence
such that k − des(T ) > i1 > i2 > · · · > in−k > 0. This choice of I is the same as
choosing a partition that fits in an (n − k) × (k − 1 − des(T )) box. The generating
function for the number of partitions of size d that fit in an (n− k)× (k− 1−des(T ))
box is

[(n−k)+(k−des(T )−1)
n−k

]
q

=
[
n−des(T )−1

n−k
]
q
. The factor of gsπ in the (n, k)-descent

monomial then has degree maj(T ), so that each standard Young tableau T of shape λ
will contribute qmaj(T )[n−des(T )−1

n−k
]
q
to fλ(q). This completes the proof. �

The proof of this result in [10] is fairly involved using a tricky recursive argument
involving an auxiliary family of algebras. Our method gives a simpler proof for the
result.

4. Wreath Products
This picture can be extended by looking at reflection groups other than Sn. Specif-
ically we will look at the complex reflection group G(r, 1, n) which is equal to the
wreath product of Zr and Sn. This group acts on C[x1, . . . , xn] by Sn permuting the
variables and by the ith copy of Zr sending xi to ξxi where ξ is a primitive rth root of
unity. Alternatively, we can view this group as the set of n× n matrices with exactly
1 non-zero entry in each row and column where the non-zero entries are rth roots of
unity. The action of G(r, 1, n) on C[x1, . . . , xn] in this case is matrix multiplication.
A third way of thinking of this group is as permutation of n in which each number is
assigned one out of r colors.

Throughout this section many of the objects we consider will depend on the positive
integer r, but since we only ever consider a fixed r we will frequently suppresses the r
in our notation in order to avoid cumbersome notation. To begin we will write Gn for
the group G(r, 1, n).

As in the case of Sn there is a coinvariant algebra Sn associated to this action of
Gn that is defined as

(94) Sn := C[x1, . . . , xn]
Jn

,

where Jn is the ideal generated by all polynomials invariant under the action of Gn
with zero constant term. Any polynomial that is invariant under the action of Gn
must be a symmetric polynomials in the variables xr1, xr2, . . . , xrn. We denote this set
of variables as xrn. Then Jn = 〈en(xrn), . . . e1(xrn)〉.

Our goal is to give the multiplicities of all irreducible representations of Gn in
Sn,k,ρ. In order to do this, we will review some of the representation theory of Gn.
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4.1. Background and definitions. The elements of Gn can be viewed as r-colored
permutations of length n which are defined as follows:

Definition 4.1. An r-colored permutation of length n is a permutation π = π1 . . . πn
where each value πi has been assigned a value ci from the set {0, 1, . . . , r−1}. We can
write this in the form πc1

1 π
c2
2 . . . πcnn .

For example 3052211240 is a 3-colored permutation of length 5.
As before we define a statistic on r-colored permutation called descents.

Definition 4.2. An index i is a descent of an r-colored permutation g = πc1
1 π

c2
2 . . . πcnn

if one of the following conditions hold:
(1) ci < ci+1,
(2) ci = ci+1 and πi > πi+1.
We denote the set of descents of an r-colored permutation by Des(g). Furthermore

we will denote |Des(g)| as des(g), and we will write di(g) to be the number of descents
of g that are at least as large as i, that is
(95) di(g) := |Des(g) ∩ {i, i+ 1, . . . , n}|.

For example if g = 305242601121, then Des(g) = {1, 2, 4} since 1 and 4 satisfy
condition (1) and 2 satisfies condition (2).

Using these di values we follow Bagno and Biagioli [3] in defining flag descent values
as
(96) fi(g) = rdi(g) + ci.

With these definitions we recall a set of monomials in C[xn] that descend to a
vector-space basis for Sn provided by Bagno and Biagioli [3].

Definition 4.3. Given a r-colored permutation g = πc1
1 π

c2
2 . . . πcnn , we define the r-

descent monomial bg as follows:

(97) bg :=
n∏
i=1

xfi(g)
πi .

The set of r-descent monomials descend to a basis for Sn.
We note that by the definition of fi and descents of r-colored permutations that

fi(g) is a weakly decreasing sequence such that fi(g)− fi+1(g) 6 r.
Chan and Rhoades [5] generalized these monomials to a set of monomials that

descends to a basis for Sn,k.

Definition 4.4. Given an r-colored permutation g = πc1
1 . . . πcnn such that des(g) < k,

and an integer sequence I = (i1, . . . in−k) such that k − des(g) > i1 > i2 > · · · >
in−k > 0, we define the (n, k, r)-descent monomial as
(98) bg,I := bg · xri1π1

. . . xrin−kπn−k

The set of (n, k, r)-descent monomials descend to a basis for Sn,k. We note that
these monomials have individual powers strictly bounded by kr. These observations
motivate the following definitions.

Definition 4.5. We call a partition an (n, k, r)-partition if it has n parts (some of
which might be zero), each of which is strictly less than rk.

Definition 4.6. Given a partition µ, we call an index i an r-descent of µ if

(99)
⌊µi
r

⌋
>
⌊µi+1

r

⌋
.

We will denote Desr(µ) as the set of r-descents of µ.
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Definition 4.7. We call a partition an r-descent partition if the difference between
consecutive parts is at most r, and the last part has size less than r.

The exponent partitions of both r and (n, k, r)-descent monomials are (n, k, r)-
partitions. Furthermore the exponent partition of an r-descent monomial is an r-
descent partition with r-descents equal to Des(g) for the corresponding r-colored per-
mutation g. The last k parts of the exponent partition of an (n, k, r)-descent monomial
is an r-descent partition with r-descents determined by Desn−k+1,n(g), and the first k
parts have r-descents that are a superset of Des1,n−k(g). Furthermore it is straight-
forward to see that all such (n, k, r)-partitions arise as the exponent partition of some
(n, k, r)-descent monomial.

In order to work with the basis of (n, k, r)-descent monomials we need to relate
them to the partial order on monomials from the previous section. To do that we first
give a way of associating an r-colored permutation to a monomial.

Definition 4.8. Given a monomial xa1
1 . . . xann we define its index r-colored permu-

tation g(m) = πc1
1 π

c2
2 . . . πcnn to be the unique r-colored permutation such that

(1) aπi > aπi+1 for 1 6 i < n,
(2) if aπi = aπi+1 , then πi < πi+1,
(3) ai ≡ ci(mod r).

One last definition before we state some results is the following:

Definition 4.9. Given a monomial m = xa1
1 . . . xann the r-complementary partition

µ(m) is the partition conjugate to

(100)
(
aπ1 − rd1(g)− c1(g)

r
, . . . ,

aπn − rdn(g)− cn(g)
r

)
where g = g(m) and π is the uncolored permutation of g.

Implicit in these definitions is that they are well defined which is covered in [3].
We can now state the lemma that ties these objects together.

Lemma 4.10. Let m be a monomial equal to xp1
1 . . . xpnn , then among the monomials

appearing in m · eµ(xrn), the monomial

(101)
n∏
i=1

x
p(π(i))+rµ′i
π(i)

is the maximum with respect to ≺, where π is the index permutation of m.

Proof. The proof of this is similar to the proof of Proposition 2.8. �

For the representation side of things we will give only a cursory overview of perti-
nent details, a more thorough treatment can be found in [13]. The analog of partitions
which index the irreducible representations of Sn = G(1, 1, n) are r-partitions.

Definition 4.11. An r-partition of n is an r-tuple of partitions (µ0, µ1, . . . , µr−1)
such that

∑r−1
i=0 |µi| = n. We will use Greek letters with a bar to denote r-partitions,

and will write µ `r n to denote that µ is an r-partition of n.

The conjugacy classes of Gn, and thus the irreducible representations of Gn, are
indexed by r-partitions of n. Given an r-partition λ, we denote the irreducible repre-
sentation of Gn corresponding to λ as Sλ. The analog of standard Young tableaux in
Gn are standard Young r-tableaux.
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Definition 4.12. A standard Young r-tableau of shape (µ0, µ1, . . . , µr−1) = µ is a
way of assigning the integers 1, 2, . . . , n to the boxes of r Ferrers diagrams of shapes
µ0, µ1, . . . µr−1 such that in each of the Ferrers diagrams the integers increase down
columns and along rows. We denote the set of all standard Young r-tableaux of shape
µ as SYT(µ)

As with standard Young tableaux we have the notion of descents.

Definition 4.13. An index i is a descent of a standard Young r-tableaux T if one of
the following holds:

(1) i+ 1 is in a component with a higher index than i,
(2) i+ 1 and i are in the same component and i+ 1 is strictly below i.
Similar to other descents, we will denote Des(T ) as the set of all descents of T ,

des(T ) will be the number of descents of T , di(T ) will be the number of descents of T
that are i or bigger. One last statistic related to descents is
(102) fi(T ) = r · di(T ) + ci(T )
where ci(T ) is the index of the component of T that contains i.

The result connecting standard Young r-tableaux to our problem is the following:

Proposition 4.14. The graded trace of the action of τ on Sn has the following formula

(103) TrC[xn](τ) = 1∏n
i=1(1− qr1qr2 . . . qri )

∑
λ`rn

χλτ
∑

T∈SYT(λ)

n∏
i=1

q
fi(T )
i ,

where χλτ is the character Sλ evaluated at an element of type τ .

The proposition is proved in [3], though it is in a more general form since the
formula that they give is for the entire family of groups G(r, p, n). The formula that
we state here is how it simplifies in the case p = 1.

4.2. Results. In order to calculate the multiplicities of Sλ in Sn,k,µ we will calculate
the graded trace of the action on an element of type τ on the space of polynomials
in C[xn] where the individual exponents of each variable are less than kr. We denote
this space Ckr[xn]. First, we will calculate this trace using Proposition 4.14. Then we
will use a basis for Ckr[xn] created from the descent basis for Sn,k .

Lemma 4.15. If m =
∏n
i=1 x

ai
i is a monomial in Crk[xn] (that is ai < kr for all i),

then
(104) m = bg,Ieν(xrn) +

∑
,

where g = g(m);
∑

is a sum of monomials m′ ≺ m; I is a sequence defined by
i` = µ′` − µ′n−k+1 where µ = µ(g); and ν is the partition specified by:

(1) ν′` = µ′` for ` > n− k,
(2) ν′` = µ′n−k+1 for ` 6 n− k.
Furthermore ν consists of parts of size at least n− k + 1.

Proof. In order for bg,I to be well defined, we need that k − des(g) > i1 > . . . >
in−k > 0. Since I is defined by taking a weakly decreasing, non-negative sequence
and subtracting a constant which is smaller than the smallest part, I satisfies i1 >
i2 > . . . > in−k > 0. Letting π be the uncolored permutation of g and using definitions
we get

(105) i1 = µ′1 − µ′n−k+1 6 µ
′
1 =

aπ(1) − rd1(g)− c1(g)
r
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and then by assumption aπ(1) < rk, and by definition d1(g) = des(g), thus

(106) i1 <
rk − r des(g)

r
= k − des(g).

Therefore the use of bg,I is well defined.
We now show that bg,I and m have the same index r-colored permutation, specifi-

cally that

(107) g(bg,I) = g(m) = g.

We look at the sequence of the exponents of xπ(`) in bg,I . This is the sum of rd`(g) +
c`(g) and ri` (where we take i` = 0 for ` > n − k). Both of these sequences are
weakly-decreasing, and therefore their sum is also weakly-decreasing. Additionally if
the `th and (`+ 1)th entries are the same, then rd`(g) + c`(g) = rd`+1(g) + c`+1(g),
and thus d`(g) = d`+1(g) and c`(g) = c`+1(g). By the definition of d`(g), this implies
that ` is not a descent of g. Since c`(g) = c`+1(g) this means that π(`) < π(` + 1),
thus g satisfies the first two conditions of being the index r-colored permutation, and
the 3rd condition follows by the definition.

Now by Lemma 4.10, the maximum monomial in bg,Ieν(xrn) will have the form∏n
`=1 x

q`
π(`) where q` is given by:

(1) q` = rd`(g) + c`(g) + ri` + rν′` for ` 6 n− k,
(2) q` = d`(g) + c`(g) + rν′` for ` > n− k.
Substituting using the definitions of i` and ν` and then the definition of the r-

complementary partition, we have that

(108) q` = d`(g) + c`(g) + rµ′` − rµ′n−k+1 + rµ′n−k+1 = d`(g) + c`(g) + rµ′` = aπ(`)

for ` 6 n− k, and

(109) q` = d`(g) + c`(g)− rµ′` = aπ(`)

for ` > n− k
Finally ν has parts of size at least n−k+1 because by definition, the first n−k+1

parts of ν′ are all the same size. �

Proposition 4.16. The set Bn,k which consists of products bg,Ieν(xrn) for ν a parti-
tion with parts of size at least n − k + 1 and (λ(bg,I) + rν′)1 < rk form a basis for
Crk[xn].

Proof. The condition that (λ(bg,I) + rν′)1 < rk along with Lemma 4.15 guarantees
that each of the elements of Bn,k are in Cnk[xn].

Applying Lemma 4.15 iteratively lets us express any monomial in Ckr[xn] as a
linear combination elements of Bn,k, which means that Bn,k spans Crk[xn]. To see
that (up to rearrangement) this expansion is unique it is sufficient to show that if
the maximal monomials in bg,Ieν(xrn) and bh,Jeρ(xrn) are the same, then g = h,
I = J and ν = ρ. As a corollary of the proof of Lemma 4.15, the index r-colored
permutations of the maximal monomials are the same, and they are both g and h,
and thus g = h. By Lemma 4.10, the power of xπ(`) in each of the maximummonomials
will be rd`(g)+c`(g)+ri`+rν′` and rd`(h)+c`(h)+rj`+rρ′`. This means that ν′` = ρ′`
for ` > n − k since i` = j` = 0 for ` > n − k. Next since the first n − k + 1 parts of
ν′ are all equal and the first n − k + 1 parts of ρ′ are equal and ν′n−k+1 = ρ′n−k+1,
we have that ν′ = ρ′ which implies ν = ρ. This then implies that i` = j` for all `,
and therefore this expansion is unique. Therefore Bn,k is linearly independent and is
a basis. �
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Proposition 4.17. Let p be the map projecting from C[xn] to Sn,k and let m be a
monomial in Crk[xn]. Then

(110) p(m) =
∑
g,I

αg,Ibg,I

where αg,I are some constants, and the sum is over pairs g, I such that λ(bg,I) E λ(m).

Proof. Since Bn,k is a basis we can express m =
∑
g,I,ν αg,I,νbg,Ieν(xrn). By

Lemma 4.15 αg,I,ν is zero if the leading monomial of bg,Ieν is not weakly smaller than
m under the partial order on monomials. But since the partial order on monomials
refines the dominance order on exponent partitions, for each non-zero term the
exponent partition of the leading monomial will be dominated by λ(m) that is that

(111) (λ(bg,I) + rν′) E λ(m).

Then when we project down to Sn,k, each term with ν 6= ∅ will vanish since eν(xrn)
is in Jn,k, so that

(112) p(m) =
∑
g,I

αg,I,∅bg,I

where the sum is over (g, I) such that λ(bg,I) E λ(m). �

Proposition 4.17 gives the following corollary:

Corollary 4.18. Sn,k,ρ is zero unless ρ is the exponent partition of an (n, k, r)-
descent monomial, which occurs precisely when ρ is an (n, k, r)-partition such that
the last k parts form an r-descent partition.

Similarly to the case for the symmetric group, this basis allows us to calculate the
trace the action of τ ∈ Gn on Crk[xn] in terms of the trace of its action on Sn,k with
the basis of (n, k, r)-descent monomials. Specifically the contribution to the trace of
the element bg,I in Sn,k will be equal to the contribution of bg,Ieν(xrn) in Crk[xn].

Lemma 4.19. Given an (n, k, r)-partition µ and an (n, k, r) r-descent partition ν there
exists a unique (n, k, r)-partition ρ such that µ = ν + rρ if and only if Desr(ν) ⊆
Desr(µ) and µi ≡ νi(mod r) for all i.

Proof. The only possible value for each part of ρ is ρi = µi−νi
r . The mod r condition

is necessary and sufficient for these values to be integers. In order for this to be a
partition we need

(113) ρi − ρi+1 = 1
r

[(µi − µi+1)− (νi − νi+1)] > 0.

Let ci be the common remainder of µi and νi mod r. Since ν is an r-descent partition,
1
r ((νi − ci) − (νi+1 − ci+1)) is 1 if i is an r-descent of ν and 0 if it is not. Similarly,
1
r ((µi− ci)− (µi+1− ci+1)) is at least 1 if i is an r-descent of µ and 0 otherwise. Thus
in order for
(114)
1
r

[(µi− ci)− (µi+1− ci+1)]− 1
r

[(νi− ci)− (νi+1− ci+1)] = 1
r

[(µi−µi+1)− (νi− νi+1)]

to be non-negative, it is necessary and sufficient that if i is an r-descent of ν, then i
is also an r-descent of µ. That is, ρ will be a partition if and only if Desr(ν) ⊆
Desr(µ). �
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Lemma 4.20. Given an (n, k, r)-partition µ and a set S ⊆ Desrn−k+1,n(µ), there is
a unique pair (ν, ρ) such that µ = ν + rρ and ν is the exponent partition of an
(n, k, r)-descent monomial with Desrn−k+1,n(ν) = S, and ρ is an (n, k)-partition with
ρ1 = ρ2 = . . . = ρn−k+1.

Proof. The last k values of the exponent partition of an (n, k, r)-descent monomial
form an r-descent partition, so by Lemma 4.19 applied to the partition determined
by S and the values of µi(mod r) the last k values of ρ are determined. Since the
first n − k + 1 values of ρ need to be the same, this determines what ρ must be,
and by subtraction what ν must be. We only need to check that ν is actually a
partition, that is that νi − νi+1 > 0 for 1 6 i 6 n− k. This is true since νi − νi+1 =
(µi − rρi)− (µi+1 − rρi+1) = µi − µi+1 > 0 since ρi = ρi+1. �

We now give the proof of Theorem 1.4.

Proof of Theorem 1.4. The condition on when Sn,k,ρ is zero is covered by Corol-
lary 4.18.

We consider the graded trace of the action of τ ∈ Gn on Crk[xn] defined by

(115) TrCrk[xn](τ) :=
∑
m

〈τ(m),m〉 · q̄λ(m).

From 4.14 we have that

(116) TrC[xn](τ) = 1∏n
i=1(1− qr1qr2 . . . qri )

∑
λ

χλµ
∑

T∈SYT(λ)

n∏
i=1

q
fi(T )
i

(where µ is the cycle type of τ). From this we can recover TrCrk[xn](τ) by restricting
to powers of q1 that are at most rk − 1. Doing this gives

(117)
∑
λ`rn

χλµ
∑

T∈SYT(λ),ν

q̄λF (T ) q̄rν ,

where F (T ) = (f1(T ), . . . , fn(T )) and the ν’s are partitions such that (λF (T ))1+rν1 <
rk.

Alternatively, we can calculate TrCrk[xn](τ) by using the basis from Proposi-
tion 4.16, this gives

TrCrk[xn](τ) =
∑
g,I,ν

〈τ(bg,Ieν(xrn), bg,Ieν(xrn)〉q̄λ(bg,I)q̄rν
′

(118)

=
∑
g,I,ν

〈τ(bg,I), bg,I〉q̄λ(bg,I)q̄rν
′

(119)

=
∑
φ,ν

TrSn,k(τ ; q̄φ)q̄φq̄rν
′

(120)

where the ν’s are partitions with parts of size at least n − k + 1 such that (φ)1 +
(rν′)1 < rk, the φ’s are the exponent partitions of (n, k, r)-descent monomials, and
TrSn,k(τ ; q̄φ) is the coefficient of q̄φ in the graded trace of the action of τ on Sn,k.

We now consider the coefficient of q̄ρ for some (n, k, r)-partition ρ. Using the first
calculation and Lemma 4.19, the inner sum can be reduced to T such that Des(T ) ⊆
Desr(ρ), and such that ci(T ) ≡ ρi(mod r) for all i, so that we get

(121)
∑
λ`rn

χλµ|{T ∈ SYT(λ) : Des(T ) ⊆ Desr(ρ), and ci(T ) ≡ ρi(mod r)}|.
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Looking at the second calculation and using Lemma 4.20 gives

(122)
∑
φ

TrSn,k(τ ; q̄φ),

where the sum is over the set consisting of the all exponent partitions φ of (n, k, r)-
descent monomials that satisfy the following two conditions:

(1) Desrn−k+1,n(φ) is a subset of Desrn−k+1,n(ρ),
(2) φi ≡ ρi (mod r) for all i.
Together this gives that

(123)∑
λ`rn

χλµ|{T ∈ SYT(λ) : Des(T ) ⊆ Desr(ρ), ci(T ) ≡ ρi(mod r)}| =
∑
φ

TrSn,k(τ ; q̄φ).

We can further refine this result by showing that
(124)∑

λ`rn

χλµ|{T ∈ SYT(λ) : Desn−k+1,n(φ) ⊆ Des(T ) ⊆ Des(φ), ci(T ) ≡ ρi(mod r)}|

(125) = TrSn,k(τ ; q̄φ)

for any specific φ′. We do this by induction on |φ′|. The base case of φ′ being empty
can be easily seen by taking ρ = ∅. If we take ρ = φ′, then φ′ will appear in the sum,
and all other φ’s will be smaller, so by the inductive hypothesis,
(126)∑

λ`rn

χλµ|{T ∈ SYT(λ) : Desn−k+1,n(φ) 6⊆ Des(T ) ⊆ Des(φ), ci(T ) ≡ ρi(mod r)}|

(127) =
∑
φ 6=φ′

TrSn,k(τ ; q̄φ)

Subtracting this from our result gives the desired refinement. This then proves the
theorem since the exponent partition of any (n, k, r)-descent monomials bg,I appears
when we take ρ = λ(bg,I). �

As an example of Theorem 1.4, let n = 7, k = 5 and let r = 2. Then consider letting
ρ = (9, 5, 5, 4, 3, 2, 0). The standard Young r-tableaux T that we must consider will
have 4, 6, 7 in the 0-component, and 1, 2, 3, 5 in the 1-component. Furthermore they
will have {4, 6} ⊆ Des(T ) ⊆ {1, 4, 6}. The possibilities for the 0-component and the
1-component are independent. The possibilities for the 0-component are

4 6
7

,
4
6
7

.

The possibilities for the 1-component are

1 2 3 5 , 1 2 3
5

, 1 3 5
2

, 1 3
2 5

, 1 3
2
5

.

Therefore the multiplicites of S(2,1),(4), S(2,1),(2,2), S(2,1),(2,1,1), S(1,1,1),(4),
S(1,1,1),(2,2), and S(1,1,1),(2,1,1) in Sn,k,ρ are 1, and the multiplicities of S(2,1),(3,1) and
S(1,1,1),(3,1) are 2. All other multiplicities are zero.
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Theorem 1.4 also allows us to recover the following corollary which is equivalent
(up to a change of indexing) to a result of Chan and Rhoades [5].

Corollary 4.21. Let fλ(q) be the generating function for the multiplicities of Sλ in
the degree d component of Sn,k. Then

(128) fλ(q) =
∑

T∈SYT(λ)

qmaj(T )
[
n− des(T )− 1

n− k

]
qr
,

where the major index maj(T ) is equal to
∑n
i=1 rdi(T ) + ci(T )

Proof. By Theorem 1.4, each standard Young r-tableau of shape λ contributes to fλ(q)
once for each partition ρ such that ρ is the exponent partition of an (n, k, r)-descent
monomial and Desrn−k+1,n(ρ) ⊆ Des(T ) ⊆ Desr(ρ). All such ρ come from (n, k, r)-
descent monomials bg,I where g is an r-colored permutation with Desr(g) = Des(T ),
ci(g) = ci(T ) for all i, and I is a sequence such that k − des(T ) > i1 > i2 >
· · · > in−k > 0. This choice of I is the same as choosing a partition that fits in an
(n− k)× (k − 1− des(T )) box. The generating function for the number of partitions
of size d that fit in an (n − k) × (k − 1 − des(T )) box is

[(n−k)+(k−des(T )−1)
n−k

]
q

=[
n−des(T )−1

n−k
]
q
. But in bg,I we are multiplying the values in I by r, so we need to plug

qr into this q-binomial coefficient to get
[
n−des(T )−1

n−k
]
qr
. The factor of bg in the (n, k, r)-

descent monomial then has degree maj(T ), so that each standard Young tableau T of
shape λ will contribute qmaj(T )[n−des(T )−1

n−k
]
qr

to fλ(q). This completes the proof. �

The proof of this result in [5] is fairly involved using a tricky recursive argument
involving an auxiliary family of algebras. We manage to give a simpler proof for this
result.

Overlapping notations slightly, Chan and Rhoades [5] also defined the ideal
(129) In,k := 〈xkr+1

1 , xkr+1
2 , . . . , xkr+1

n , en(xrn), en−1(xrn), . . . , en−k+1(xrn)〉,
and the algebra

(130) Rn,k := C[x1, x2, . . . , xn]
In,k

.

As before we can refine the grading on this algebra to define Rn,k,ρ, and can ask what
the graded isomorphism type of this Gn module is. By slightly modifying the results
of this section (looking at partitions with largest part kr instead of kr− 1, and using
the extended descent monomials from [5] instead of the descent monomials) we can
obtain a result that is analogous to Theorem 1.4.

5. Conclusion
One path to take from here would be to try to extend the (n, k)-coinvariant algebras
introduced by Chan and Rhoades [5] for G(r, 1, n) to all complex reflection groups. It
seems that the simplest groups to consider are G(2, 2, n) which are equal to the real
reflection groups of Coxeter–Dynkin typeDn. In the case that G(r, 1, n) is a real reflec-
tion group, the structure of the corresponding (n, k)-coinvariant algebra is governed
by the combinatorics of the k-dimensional faces of the associated Coxeter complex.
We can define a candidate graded algebras for Dn that will satisfy this property by
using a more general technique of Garsia and Procesi [8] which we recall here.

We start by taking a finite set of points X ⊂ Cn. We then consider the set of
polynomials in C[x1, x2, . . . , xn] that vanish on X, that is
(131) {f ∈ C[x1, . . . , xn] : f(x) = 0 for all x ∈ X}.
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This set is an ideal in C[x1, . . . , xn], and we will denote it by I(X). Next, we consider
the quotient C[x1,...,xn]

I(X) .
The elements of this quotient can be viewed as C-valued function on X. We do

this by taking a representative polynomial in C[x1, . . . , xn], viewing it as a function
from Cn to C, and then restricting its domain to X. Two polynomials will give rise
to the same C-valued function if and only if their difference vanishes on X, which
occur precisely if the difference is in I(X). Therefore this is well defined. Furthermore
for every element x ∈ X, we can construct an indicator function for x as follows. For
each element y ∈ X\x choose an index iy at which x and y differ, then

(132)
∏

y∈X\x

xiy − yiy
xiy − yiy

is an indicator function for x. Therefore C[x1,...,xn]
I(X) is isomorphic as a vector space to

C[X] where C[X] is the coordinate ring of X.
Any subgroup W of GL(Cn) acts on C[x1, . . . , xn] by linear substitution. If X is

invariant underW , then I(X) is invariant underW , and thus bothC[x1,...,xn]
I(X) and C[X]

are W -modules. Furthermore in addition to being isomorphic as vector spaces, these
two objects are isomorphic as W -modules. Unfortunately, I(X) will not generally be
homogeneous, and thus we will not have that C[x1,...,xn]

I(X) is graded. In order to fix
this we introduce a function τ that sends a non-zero polynomial to its top degree
component. For example
(133) τ(x2

1 + x2
2 + x2x3 − x1 − x2 − x3 + 3) = x2

1 + x2
2 + x2x3

and
(134) τ(x4

1 + x1x2x3x4 + x4
3 − x3

2 − x2
2 + 3) = x4

1 + x1x2x3x4 + x4
3.

We then consider the ideal T(X) generated by the top degrees of polynomials that
vanish on X, that is
(135) T(X) := 〈{τ(f) : f ∈ I(X)− {0}}〉.

This ideal is homogeneous and invariant underW , therefore C[x1,...,xn]
T(X) is a gradedW -

module. Furthermore it can be shown (see [8] for details) that

(136) C[x1, . . . , xn]
T(X)

∼=W
C[x1, . . . , xn]

I(X)
∼=W C[X].

Then if we take W to be Dn and take X to be a set of points containing exactly one
point in each of the k-dimensional faces of the Coxeter complex of Dn such that X is
invariant under Dn, our candidate algebra will then be C[x1,...,xn]

T(X) .
There are two difficulties that we run into at this point. The first is the question of

how we chooseX. Different choices ofX lead to isomorphic ungradedDn-modules, but
the graded structure in general depends on X, and it is not clear what the “correct”
choice is. The second difficulty is getting a nice generating set for T(X). We do have
a general method to get a (potentially ugly) description of T(X) from X which is the
following.

The idea behind our method is that if we find a set P ⊂ T(X) such that

(137) dim
(
C[x1, . . . , xn]

〈P 〉

)
= dim

(
C[x1, . . . , xn]

T(X)

)
= |X|,

then P generates T(X). For a given P ⊂ T(X), let st(P ) be the standard monomial
basis forC[x1,...,xn]

〈P 〉 with respect to some graded monomial ordering (see [1] for more
details). We will have found a P that works when we have that |st(P )| = |X|.
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All monomials of degree |X| will appear in T(X). In order to avoid cumbersome
notation we will show this with an example. If n = 3 and X consists of the points
(α1, α2, α3), (β1, β2, β3), and (γ1, γ2, γ3), then have

x3
1 = τ((x1 − α1)(x1 − β1)(x1 − γ1))(138)

x2
1x2 = τ((x1 − α1)(x1 − β1)(x2 − γ2))(139)
x2

1x3 = τ((x1 − α1)(x1 − β1)(x3 − γ3)),(140)

and so on. This idea generalizes to show that all degree |X| monomials will appear in
T(X). We will thus start with P consisting of all monomials of degree d. Then st(P )
will consist of monomials of degree less than d, which is a finite set.

We now describe a method for adding an element to P that will reduce the size of
st(P ). Letm1,m2, . . .ms be the elements of st(P ), and let p1, p2, . . . pt be the elements
of X. We then create a t × s matrix M by setting Mij = mj(pi). If t < s, then the
null space of M is non-zero, so we can take a non-zero vector v = (v1, v2, . . . , vs)
in the null space. We then consider the polynomial f =

∑s
j=1 vjmj . Evaluating this

polynomial at pi gives
∑s
j=1 vjmj(pi) = (Mv)i = 0. Thus f vanishes on X which

means that τ(f) is in T(X). The leading monomial of τ(f) is an element of st(P ),
and adding τ(f) to P will at least eliminate this leading monomial from st(P ). We
then iterate this process until |st(P )| = |X|.

This method also gives us the standard monomial basis for C[x1,...,xn]
T(X) . This allows

us to give examples of when different choices of X lead to different graded structures.
If we let X be the orbits of (1, 1, 2), (−1, 1, 2), and (1, 2, 2) under D3, then the Hilbert
series of C[x1,...,xn]

T(X) is 5q5 + 11q4 + 10q3 + 6q2 + 3 + 1. If instead we take the orbits

of (1, 1, 2), (−1, 1, 2), and (1,
√

5
2 ,
√

5
2 ), then we get Hilbert series 11q5 + 9q4 + 7q3 +

5q2 + 3q + 1, and if we take the orbits of (1, 1, 2), (−1, 1, 2), and (0,
√

3,
√

3) we get
Hilbert series 4q6 + 8q5 + 8q4 + 7q3 + 5q2 + 3q + 1. From experimental data it does
appear that there is a generic isomorphism type, but even for X that give rise to
isomorphic graded Dn-modules, the ideals T(X) can be different.
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