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Generalized q, t-Catalan numbers

Eugene Gorsky, Graham Hawkes, Anne Schilling & Julianne
Rainbolt

Abstract Recent work of the first author, Negut, and Rasmussen, and of Oblomkov and Rozan-
sky in the context of Khovanov–Rozansky knot homology produces a family of polynomials in
q and t labeled by integer sequences. These polynomials can be expressed as equivariant Eu-
ler characteristics of certain line bundles on flag Hilbert schemes. The q, t-Catalan numbers
and their rational analogues are special cases of this construction. In this paper, we give a
purely combinatorial treatment of these polynomials and show that in many cases they have
nonnegative integer coefficients.

For sequences of length at most 4, we prove that these coefficients enumerate subdiagrams
in a certain fixed Young diagram and give an explicit symmetric chain decomposition of the set
of such diagrams. This strengthens results of Lee, Li and Loehr for (4, n) rational q, t-Catalan
numbers.

1. Introduction
The last decade revealed deep, and yet partially conjectural connections [11, 9, 12,
13, 6, 7, 8] of the HOMFLY-PT link homologies with various intricate constructions
in algebraic combinatorics such as q, t-Catalan numbers of Garsia and Haiman [4],
LLT polynomials [14], and the elliptic Hall algebra [25]. Some of these conjectures
were recently proven (mostly for the torus knots and links) by Elias, Hogancamp and
Mellit [3, 17, 23].

An interesting class of knots, which best fits in the framework of the above conjec-
tures, are the so-called Coxeter links defined as closures of braids

β(a1, . . . , an) = `a1
1 · · · `an

n t1 · · · tn−1,

where `i = ti−1 · · · t1t1 · · · ti−1 are Jucys–Murphy elements and ti are the standard
braid group generators. Here ai are arbitrary integers, but in this paper we will mostly
assume ai > 0, so that all crossings in the braid β(a1, . . . , an) are positive.

Motivated by the geometry of the flag Hilbert scheme of points on the plane (see
Section 2.2 and references therein) we can approximate the invariants of such knots
with the following combinatorial expressions. Define

(1) f(a1, . . . , an) =
∑
T

za1
1 · · · zan

n

n∏
i=2

1
(1− z−1

i )(1− qtzi−1/zi)
∏
i<j

ω(zi/zj),
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where the sum is over standard tableaux T with n boxes, zi is the (q, t)-content
qc−1tr−1 of the box labeled by i in row r and column c in T , and ω(x) = (1−x)(1−qtx)

(1−qx)(1−tx) .
A priori, this is a rational function in q and t, but we prove in Section 2.3 that it
is always a polynomial in q and t with integer coefficients. This polynomial can be
expressed as a sum over Tesler matrices with row sums ai as in [9] and especially [1],
where similar polynomials have already appeared.

In the special case when

ai = Si(m,n) :=
⌈
im

n

⌉
−
⌈

(i− 1)m
n

⌉
,

by [9] the function f(Si(m,n)) agrees with the rational q,t-Catalan number cm,n(q,t).(1)

By the main result of [22], this is a polynomial in q and t with nonnegative coefficients.
More precisely,

cm,n(q, t) =
∑
D

qarea(D)tdinv(D),

where the sum is over all Dyck pathsD in them×n rectangle and area(D), dinv(D) are
certain combinatorial statistics (see for example [15]). In the even more special case
m = n+1, we obtain ai = Si(n+1, n) = 1 for i > 1, and the polynomial f(1, . . . , 1) =
f(2, 1, . . . , 1) agrees with the q, t–Catalan number of Garsia and Haiman [4].

Motivated by [10, 24], we expect that the beautiful combinatorics of q, t-Catalan
numbers and their rational analogues can be generalized to the case of arbitrary ai,
possibly constrained by some inequalities. In fact, as we show in this paper, that
varying ai allows one to compute the invariants f(a1, . . . , an) recursively, see Corol-
lary 2.21 for the n = 4 example.

Using the machinery of Tesler matrices, we prove the following result.
Proposition 1.1. Suppose that ai > 0. Then f(a1, . . . , an) is a polynomial in q and
t. At t = 1, this polynomial specializes to

f(a1, . . . , an)
∣∣∣
t=1

=
∑

µ⊆λ(a)

q|λ(a)|−|µ|,

where λ(a) = (a2 + · · ·+ an, a3 + · · ·+ an, . . . , an).
Example 1.2. For n = 2, one has

f(a1, a2) = [a2 + 1]q,t := qa2 + qa2−1t+ · · ·+ qta2−1 + ta2 .

For n = 3 and a2 > a3 one has
f(a1, a2, a3) = [a2 + 2a3 + 1]q,t + qt[a2 + 2a3 − 2]q,t + · · ·+ qa3ta3 [a2 − a3 + 1]q,t.

See Examples 2.18 and 2.19 for derivations of these formulas.
The following conjecture was communicated to the authors by Andrei Negut,.

Conjecture 1.3 (Negut,). If a1 > a2 > · · · > an > 0, then f(a1, . . . , an) is a polyno-
mial in q and t with nonnegative coefficients.

For general a1 > a2 > · · · > an > 0, it is still an open problem to find an explicit
statistic stat on partitions µ such that

(2) f(a1, . . . , an) =
∑

µ⊆λ(a)

q|λ(a)|−|µ| tstat(µ).

In this paper, we solve the problem for n = 4:

(1)Note that the formula for Si(m, n) in [9] used floors instead of ceilings, but the two are related
by the change i→ n + 1− i. This change is implicit in [9] since that paper uses opposite conventions
for standard tableaux.
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Theorem 1.4. For a + 1 > b, a + 1, b + 1 > c > 0, the polynomial F (a, b, c) :=
f(a1, a, b, c) has nonnegative integer coefficients and can be written in the form (2).
The statistic stat(µ) arises from an explicit decomposition of the set of µ ⊆ λ(a) into
symmetric chains.

See Section 3 for further details.
Since a symmetric chain specializes to qk + qk−2 + · · ·+ q−k+2 + q−k a t = q−1, we

immediately obtain the following corollary.

Corollary 1.5. For a+1 > b, a+1, b+1 > c > 0, the coefficients of the specialization
F (a, b, c)|t=q−1 are unimodular in even and in odd degrees.

Remark 1.6. By [10, 24] the specialization of f(a1, . . . , an) at q = t−1 coincides with
the part of the HOMFLYPT polynomial of the knot β(a1, . . . , an).

Remark 1.7. Our statistic and decomposition is different from that in [19, 20]. In par-
ticular, some of their chains are not symmetric, but the authors show that partitions
come in symmetric pairs.

We provide a recursion for F (a, b, c) and prove that the combinatorial expression
also satisfies the recursion (see Sections 2.5 and 4.6).

The set of Young diagrams µ contained in the diagram λ(a) is in bijection with the
Demazure crystal [18, 21] with highest weight (a1, . . . , an) and Weyl group element
c = t1 · · · tn−1. The size of µ can be easily expressed in terms of the weight of the
corresponding element of the crystal basis. This observation leads to many interesting
questions:

• What is the crystal-theoretic interpretation of the statistic stat?
• Is there a crystal-theoretic interpretation of the symmetric chains and the
polynomials f(a1, . . . , an)?

Remark 1.8. In the terminology of [2], subdiagrams of λ(a) correspond to so-called
s-Dyck paths, and it is shown in [2] that they are in bijection with remarkably many
combinatorial objects, just as usual Catalan numbers are in bijection with trees,
triangulations etc. It would be interesting to relate the results of [2] both to Demazure
crystals and to the above statistic stat.

The paper is organized as follows. In Section 2, we discuss the algebraic aspects of
the function f(a1, . . . , an) (or equivalently F (a2, . . . , an)). The definition of the func-
tion f(a1, . . . , an) is given in Section 2.1. In Section 2.2, we briefly recall its connection
to flag Hilbert schemes and knot invariants; combinatorially inclined readers are wel-
come to skip this section. In Section 2.3, we connect f(a1, . . . , an) to Tesler matrices
and prove that they are indeed polynomials in q and t. In Section 2.5 we prove the
recursion for n = 4. Section 3 contains the combinatorial expressions for F (a, b, c). We
also provide examples. In Section 4, we construct the symmetric chains underlying
the combinatorial formulas explicitly and also prove the combinatorial formulas.

2. The algebraic side
2.1. The formula. Given a standard tableau T of size n, we define a vector z(T ) =
(zi)16i6n, where zi is the (q, t)-content of the box in T labeled by i. The (q, t)-content
of the box with row and column coordinates (r, c), is qc−1tr−1. For example, for the
tableau

T =
4
3 5
1 2 6 7
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we have
z(T ) = (1, q, t, t2, qt, q2, q3).

By convention, z1 = 1. We define the weight of a tableau T by

wt(T ) = wt(z(T )) =
n∏
i=2

1
(1− z−1

i )(1− qtzi−1/zi)
∏
i<j

(1− zi/zj)(1− qtzi/zj)
(1− qzi/zj)(1− tzi/zj)

.

Note that some of the individual factors in this product (both in the numerator and
denominator) could vanish, and the convention is that we simply ignore these factors.
Given a vector of integers (a2, . . . , an) with n > 2, we define

(3) F (a2, . . . , an) =
∑
T

za2
2 · · · zan

n · wt(T ),

where the summation is over all standard tableaux of size n.
Proposition 2.1. For all integer vectors (a2, . . . , an), the function F (a2, . . . , an) is a
polynomial in q and t with integer coefficients.

The proof is very similar to the computations in [9, Section 6.5], but we present it
in Section 2.3 for completeness.
Remark 2.2. For a2 = · · · = an = m, the polynomial F (a2, . . . , an) agrees with the
Fuss–Catalan polynomial, see [9] and [22].

The following conjecture was communicated to the authors by Andrei Negut,.
Conjecture 2.3 (Negut,). For a2 > a3 > · · · > an > 0, the polynomial F (a2, . . . , an)
has nonnegative coefficients.

In this paper, we prove this conjecture for n = 2, 3 and 4 in the slightly more
general case a2 + 1 > a3, a2 + 1, a3 + 1 > a4 > 0. In addition, we provide explicit
combinatorial formulas for F (a2, a3, a4) in this case (see Section 3).
Remark 2.4. Note that it is not enough to assume that ai−1+1 > ai in the conjecture.
For example,

F (0, 1, 2) = q8 +q7t+q6t2 +q5t3 +q4t4 +q3t5 +q2t6 +qt7 +t8 +q6t+q5t2 +q4t3 +q3t4

+ q2t5 + qt6 + q5t+ 2q4t2 + 2q3t3 + 2q2t4 + qt5 − q4t− q3t2 − q2t3 − qt4.
On can check that F (1, 2, 3) contains negative terms as well.
2.2. Flag Hilbert schemes. The definition of F (a2, . . . , an) is motivated by the
geometry of the flag Hilbert scheme of points on the plane, which we briefly review
here.

The flag Hilbert scheme FHilbn(C2) is defined as the moduli space of flags
FHilbn(C2) = {C[x, y] = I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In},

where all Ik are ideals in C[x, y] of codimension k. Similarly, the punctual flag Hilbert
scheme FHilbn(C2, 0) is defined as the set of such flags, where all Ik are supported at
the origin.

The dilation action of (C∗)2 on C2 defined by (x, y) 7→ (q−1x, t−1y) lifts to an action
on both FHilbn(C2) and FHilbn(C2, 0). The fixed points of this action correspond
to the flags of monomial ideals, and it is easy to see that these are in bijection with
standard Young tableaux of size n. The flag Hilbert scheme carries natural line bundles
Lk := Ik−1/Ik which are equivariant with respect to the action of (C∗)2. The weight
of the line bundle Lk at a fixed point corresponding to a standard tableau T equals
the (q, t)-content zk(T ). Note that the line bundle L1 is trivial.

The results and conjectures in [10, 24] lead to the following conjecture.
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Conjecture 2.5. For all ai the Khovanov–Rozansky homology of the closure of the
braid β(a1, . . . , an) (defined in the introduction) is isomorphic to the total sheaf coho-
mology

H•(FHilbn(C2, 0),La1
1 ⊗ · · · ⊗ Lan

n ).

For small values of n, the geometry of FHilbn(C2, 0) can be described explicitly.
For n = 2 we have

FHilb2(C2, 0) = P1, L2 = O(1),

so
H•(FHilb2(C2, 0),La1

1 L
a2
2 ) = H•(P1,O(a2)).

Furthermore, for a2 > 0 higher cohomology vanishes and the (C∗)2-equivariant char-
acter of the space of global sections agrees with F (a2).

For n = 3 the space FHilb3(C2, 0) is a smooth cubic Hirzebruch surface, and the line
bundles La1

1 L
a2
2 L

a3
3 and their cohomology can be described explicitly for all a1, a2, a3,

see [10]. Indeed, there is a natural projection π : FHilb3(C2, 0)→ FHilb2(C2, 0) = P1

and for a3 > 0 one has

π∗La3
3 = Syma3(O(2)⊕O(−1)) = O(2a3)⊕O(2a3 − 3)⊕ · · · ⊕ O(−a3),

so

H•(FHilb3(C2, 0),La1
1 L

a2
2 L

a3
3 ) = H•(P1,O(a2)⊗ π∗La3

3 )(4)
= H•(P1,O(2a3 + a2)⊕ · · · ⊕ O(a2 − a3)).

In particular, for a2 > a3 higher cohomology vanishes and the (C∗)2-equivariant
character of the space of global sections agrees with F (a2, a3), compare (4) with
Example 1.2.

Remark 2.6. For (a2, a3) = (0, 2) we obtain by (4):

H•(FHilb3(C2, 0),L2
3) = H•(P1,O(4)⊕O(1)⊕O(−2)).

Note that H1(P1,O(−2)) is one-dimensional, which corresponds to the negative
term in

F (0, 2) = q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2 − qt.

However, for n > 4 the spaces FHilbn(C2, 0) become very singular and reducible.
Still, they carry a natural virtual structure sheaf, and one can use virtual localization
techniques to prove the identity

χ(C∗)2(FHilbn(C2, 0),La1
1 ⊗ · · · ⊗ Lan

n ) = F (a2, . . . , an).

Here on the left hand side, we obtain the (C∗)2-equivariant Euler characteristic which
can be computed as an explicit sum over fixed points of (C∗)2 or, equivalently, over
standard Young tableaux. This sum agrees with (3). We refer the reader to [9] and [10]
for further details.

It is important to point out that, although the polynomial F (a2, . . . , an) has a
geometric interpretation, this does not immediately imply Conjecture 1.3. Indeed,
for n = 2, 3 this follows from vanishing of higher cohomology, but no such vanishing
results are available yet for n > 4. It would be interesting to compare the results of
this paper with the geometry of FHilb4(C2, 0). See [10, Section 1.4] and [24, Conjec-
ture 6.4.2] for more on the geometric context.
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2.3. Tesler matrices. To prove Proposition 2.1, we need to use the formalism of
Tesler matrices, developed in [16, 1, 5]. Given a sequence a = (a1, a2, . . . , an) of
nonnegative integers, we define a Tesler matrix to be an upper-triangular matrix
M = (mij)j>i with nonnegative integer coefficients mij > 0 satisfying a system of
linear equations

(5) mii +
∑
j<i

mji −
∑
j>i

mij = ai for 1 6 i 6 n.

Lemma 2.7. The set of Tesler matrices is finite for fixed a.

Proof. Equation (5) can be rewritten as follows:

(6) mii + · · ·+mnn +
∑

j<i,k>i

mjk = ai + · · ·+ an.

Since all mij are nonnegative integers, we obtain mij 6 a1 + · · ·+ an for all i, j. �

Given a sequence (a2, . . . , an), we define a partition or Young diagram

λ(a) = (a2 + · · ·+ an, . . . , an)

(note that a1 is not used). Let us call a Tesler matrix two-diagonal, if mij = 0 for
j > i+ 1.

Lemma 2.8. There is a bijection between the set of two-diagonal Tesler matrices as-
sociated to a = (a1, . . . , an) and the set of subdiagrams of λ(a2, . . . , an).

Proof. If M is a two-diagonal Tesler matrix, then for i > 2 (6) simplifies to

mii + · · ·+mnn +mi−1,i = ai + · · ·+ an,

while for i = 1 we obtain

m11 + · · ·+mnn = a1 + · · ·+ an.

This means that for i > 2 the diagonal elements of M define a subdiagram of λ(a)

mii + · · ·+mnn 6 ai + · · ·+ an = λi−1,

while m11 and all mi−1,i are uniquely determined by the diagonal. �

We define the functions A(m) and B(m) by the equations
∞∑
m=0

A(m)zm = (1− z)(1− qtz)
(1− qz)(1− tz) = 1− (1− q)(1− t) z

(1− qz)(1− tz)

= 1− (1− q)(1− t)
∞∑
m=1

[m]q,tzm,

∞∑
m=0

B(m)zm = 1− z
(1− qz)(1− tz) =

∞∑
m=0

([m+ 1]q,t − [m]q,t)zm.

Theorem 2.9. For all ai > 0, we have

(7) F (a2, . . . , an) =
∑
M

∏
i

B(mi,i+1)
∏
j>i+1

A(mi,j),

where the sum is over all Tesler matrices M satisfying (5).
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Proof. The proof is very similar to [9, Section 6.5], but we present it here for com-
pleteness. Since (7) is an identity between rational functions in q and t, without loss
of generality we may assume that q and t are complex numbers very close to 1. Pick
real numbers 1� r1 � · · · � rn, and consider the torus

T = {|z1| = r1, . . . , |zn| = rn} ⊂ Cn.

Given a = (a1, . . . , an), consider the rational function

Φa(z1, . . . , zn) = za1
1 · · · zan

n

n∏
i=1

1
(1− z−1

i )

n∏
i=2

1
(1− qtzi−1/zi)

∏
i<j

ω(zi/zj).

We would like to prove that the integral

I(a1, . . . , an) =
∫
T

Φa(z1, . . . , zn) d z1

2πiz1
· · · d zn

2πizn

equals both the left and the right hand side of (7). First, we can write it as an iterated
integral

I(a1, . . . , an) =
∫
|zn|=rn

· · ·
∫
|z1|=r1

Φa(z1, . . . , zn) d z1

2πiz1
· · · d zn

2πizn
.

Given z2, . . . , zn, the possible poles of Φa(z1, . . . , zn) in z1 are at z1 = 1, z1 = zk/q
and z1 = zk/t. By our choice of ri, we observe that z1 = 1 is the only pole inside the
circle |z1| = r1, so the integral

R1(z2, . . . , zn) =
∫
|z1|=r1

Φa(z1, . . . , zn) d z1

2πiz1

equals the residue at this pole, which is an explicit function in z2, . . . , zn. Similarly, it
is easy to see that for fixed z3, . . . , zn the only poles of R1(z2, . . . , zn) are z2 = q and
z2 = t (see Example 2.10) and compute the integral

R2(z3, . . . , zn) =
∫
|z2|=r2

R1(z2, . . . , zn) d z2

2πiz2

as a sum of residues at these poles. More generally, one can prove that for ai > 0 the
only poles that appear in the computation of I(a1, . . . , an) are at points (z1, . . . , zn)
corresponding to the (q, t)–contents of all standard tableaux, and (3) can be inter-
preted as a sum of residues at these poles. Therefore I(a1, . . . , an) = F (a2, . . . , an).

On the other hand, we can change the order of integration and write

I(a1, . . . , an) =
∫
|z1|=r1

· · ·
∫
|zn|=rn

Φa(z1, . . . , zn) d zn
2πizn

· · · d z1

2πiz1
.

For fixed z1, . . . , zn−1 the possible poles are at zn = 1, zn = qzk and zn = tzk (note
that the denominators (1−qtzi−1/zi) cancel out) which are all inside the circle |zn| =
rn. Therefore the integral can be written as a residue at infinity∫

|zn|=rn

Φa(z1, . . . , zn) d zn
2πizn

= −Reszn=∞ Φa(z1, . . . , zn) d zn
2πizn

,

and similarly we have the iterated residue at infinity

I(a1, . . . , an) = (−1)n Resz1=∞ · · ·Reszn=∞ Φa(z1, . . . , zn) d zn
2πizn

· · · d z1

2πiz1
.
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To deal with these residues properly, we introduce new variables ui = z−1
i . Note that

zi/zj = uj/ui. Hence I(a1, . . . , an) equals

Resu1=0 · · ·Resun=0

u−a1
1 · · ·u−an

n

n∏
i=1

1
(1− ui)

n∏
i=2

1
(1− qtui/ui−1)

∏
i<j

ω(uj/ui)
dun

2πiun
· · · du1

2πiu1
.

which is precisely the coefficient of the rational function
n∏
i=1

1
(1− ui)

n∏
i=2

1
(1− qtui/ui−1)

∏
i<j

ω(uj/ui)

at ua1
1 · · ·uan

n . On the other hand, we can expand the rational function as follows:

(8)
n∏
i=1

1
(1− ui)

×
n−1∏
i=1

(1− ui+1/ui)
(1− qui+1/ui)(1− tui+1/ui)

×
∏
j>i+1

ω(uj/ui)

=
∑
mii

umii
i ×

∑
mi,i+1

B(mi,i+1)
(
ui+1

ui

)mi,i+1

×
∑
mi,j

A(mi,j)
(
uj
ui

)mi,j

.

The terms in the sum in (8) are parameterized by the exponents mii,mi,i+1,mi,j

which can be combined in a single upper-triangular matrix M = (mij). Such a term
contributes to ua1

1 · · ·uan
n if

mii −
∑
j>i

mij +
∑
j<i

mji = ai,

which is precisely the Tesler matrix condition (5). �

Example 2.10. For n = 2, we have

Φa(z1, z2) = za1
1 za2

2 (1− z1/z2)
(1− z−1

1 )(1− z−1
2 )(1− qz1/z2)(1− tz1/z2)

.

For fixed z2, the poles are at z1 = 1, z1 = z2/q and z1 = z2/t, and only the first one
is inside the circle |z1| = r1. Therefore

R1(z2) =
∫
|z1|=r1

Φa(z1, z2) d z1

2πiz1
= za2

2 (1− 1/z2)
(1− z−1

2 )(1− q/z2)(1− t/z2)

= za2
2

(1− q/z2)(1− t/z2) .

At the first step we compute the residue at z1 = 1, and at the second we cancel the
factors (1 − z−1

2 ). Now R1(z2) has poles at z2 = q and z2 = t, and the residues of
R2(z2) d z2

2πiz2
are equal to qa2

1−t/q and ta2

1−q/t , respectively.
To compute the residue at infinity, we write ui = z−1

i and

I(a1, a2) = Resu1=0 Resu2=0
u−a1

1 u−a2
2 (1− u2/u1)

(1− u1)(1− u2)(1− qu2/u1)(1− tu2/z1)
du2

2πiu2

du1

2πiu1
.

Now we expand
1

1− u1
=
∑
m11>0

um11
1 ,

1
1− u2

=
∑
m22>0

um22
2 ,

1− u2/u1

(1− qu2/u1)(1− tu2/u1) =
∑
m12>0

B(m12)(u2/u1)m12 .
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By multiplying these three series and picking up the coefficient at ua1
1 ua2

2 we get
m11 −m12 = a1, m22 +m12 = a2, so m11 and m22 are determined by m12 6 a2 and

I(a1, a2) =
∑

m126a2

B(m12) = [a2 + 1]q,t.

Corollary 2.11. For all ai > 0 the function F (a2, . . . , ar) is a polynomial in q and t.

Proof. Indeed, by Lemma 2.7 there are finitely many terms in the sum (7), and for
all m > 0 both A(m) and B(m) are polynomials in q and t. �

Corollary 2.12. The specialization of F (a2, . . . , ar) at t = 1 agrees with the sum∑
µ⊆λ(a)

q|λ(a)|−|µ|,

where a = (a2, . . . , an).

Proof. It is clear that at t = 1 the coefficients A(m) and B(m) specialize as follows:

A(m)
∣∣∣
t=1

= 0 for m > 0, A(0)
∣∣∣
t=1

= 1, B(m)
∣∣∣
t=1

= qm.

Therefore at t = 1 the sum (7) specializes to the sum over two-diagonal Tesler matrices
which by Lemma 2.8 correspond to subdiagrams µ ⊆ λ(a). The weight of such a two-
diagonal Tesler matrix specializes to

∏
i q
mi,i+1 = q|λ(a)|−|µ|. �

Corollary 2.13. For ai > 0 and an = 0 we have
F (a2, . . . , an−1, 0) = F (a2, . . . , an−1).

Proof. The last equation in (5) reads as

mnn +
∑
j<n

mjn = an.

Hence if an = 0, we obtain mjn = 0 for all j. Therefore a Tesler matrix with parame-
ters (a1, a2, . . . , an−1, 0) is just an (n−1)× (n−1) Tesler matrix with row parameters
(a1, a2, . . . , an−1) completed with a column of zeroes. Since A(0) = B(0) = 1, the
weight of a Tesler matrix in (7) does not change after adding this column. �

2.4. Separating the sum. It is useful to separate the sum (3) into two pieces.
Clearly, for any tableau T with at least two boxes either z2 = q or z2 = t. Let us
call a standard tableau T head-like if z2 = q. Given such a tableau, we define reduced
weight w̃t(T ) = (1− t/q) wt(T ) and

H(a2, . . . , an; q, t) =
∑

z2(T )=q

za2
2 · · · zan

n · w̃t(T ).

Similarly to the proof of Proposition 2.1 one can prove that H(a2, . . . , an) is a poly-
nomial in q and t with integer coefficients.

Remark 2.14. The polynomial H(a2, . . . , an) depends on a2 only by an overall factor
of qa2 :

H(a2, . . . , an; q, t) = qa2

 ∑
z2(T )=q

za3
3 · · · zan

n · w̃t(T )

 .

Remark 2.15. In the geometric setup of Section 2.2 the series H(a2, . . . , an) computes
the equivariant character of the pushforward π∗(La2

2 · · · · · · Lan
n ) at one of the fixed

points on FHilb2(C2, 0) = P1. Here π : FHilbn(C2, 0) → FHilb2(C2, 0) is the natural
projection.
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The following is clear from the definition:

(9) F (a2, . . . , an) = 1
1− t/qH(a2, . . . , an; q, t) + 1

1− q/tH(a2, . . . , an; t, q).

Therefore any linear relation on H(a) implies a linear relation for F (a).
Lemma 2.16. Assume that H(a2, . . . , an) is a polynomial in q and t with nonnegative
coefficients, where all monomials qitj satisfy i > j. Then F (a2, . . . , an) is a polynomial
in q and t with nonnegative coefficients.
Proof. By linearity of (9) it suffices to prove the statement for a single monomial qitj
with i > j. In this case

qitj

1− t/q + qjti

1− q/t = qjtj
qi−j+1 − ti−j+1

q − t
= qjtj(qi−j + · · ·+ ti−j)

= qitj + qi−1tj+1 + · · ·+ qj+1ti−1 + qjti. �

Corollary 2.17. Assume that the polynomial H(a2, a3, . . . , an) has nonnegative co-
efficients. Then for all sufficiently large N the polynomial F (N, a3, . . . , an) has non-
negative coefficients.
Proof. Indeed, by Remark 2.14 we have

H(N, a3, . . . , an) = qN−a2H(a2, . . . , an)
and for sufficiently large N all terms in it satisfy the condition in Lemma 2.16. �

As we will see below, writing the formulas for H(a; q, t) is much more efficient than
the ones for F (a; q, t), and the sums contain half as many terms.
Example 2.18. Consider the case n = 2. There is only one tableau with z2(T ) = q,
and z(T ) = (1, q). A direct computation shows that wt(1, q) = 1

1−t/q , so w̃t(1, q) = 1.
Therefore H(a) = qa. By the proof of Lemma 2.16, this confirms Example 1.2.
Example 2.19. Consider the case n = 3. There are two tableaux with z2 = q and

wt(1, q, q2) = 1
(1− t/q)(1− t/q2) , wt(1, q, t) = 1

(1− t/q)(1− q2/t)
while

w̃t(1, q, q2) = 1
(1− t/q2) , w̃t(1, q, t) = 1

(1− q2/t) .

We obtain

(10) H(a, b) = qa+2b

(1− t/q2) + qatb

(1− q2/t) = qa(q2b+q2b−2t+ · · ·+tb) = qa
b∑
i=0

(q2)b−iti.

Note that (10) holds for any integer a and b > −1. Furthermore, H(a,−1) = 0 for
all integers a. For a > b > 0 the conditions of Lemma 2.16 are satisfied, and F (a, b)
has nonnegative coefficients. Using (9), one can confirm the explicit expression in
Example 1.2 (see also Lemma 2.23).
2.5. Recursion for n = 4. The situation for n = 4 is more interesting. We record
here the reduced weights w̃t(T ) for all five head-like tableaux:

w̃t(1, q, q2, q3) = 1
(1− t/q2)(1− t/q3) , w̃t(1, q, q2, t) = 1

(1− t/q2)(1− q3/t) ,

w̃t(1, q, t, q2) = (1− t)
(1− t2/q2)(1− q2/t)(1− t/q) , w̃t(1, q, t, t2) = 1

(1− q2/t2)(1− q/t) ,

w̃t(1, q, t, qt) = 1− q
(1− q2/t)(1− q/t)(1− t/q) .
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Lemma 2.20. The polynomials H(a, b, c) satisfy the following recursion

H(a, b, c) = H(a+1, b+1, c−1)+(qt)cH(a+c, b−c)+
c−1∑
i=0

(qt)b+2c−2iH(a−b−2c+4i).

Proof. Let us compute the contribution of all tableaux to H(a, b, c) − H(a + 1, b +
1, c− 1). Let `(T ; a, b, c) = za2z

b
3z
c
4. Then

`(1, q, q2, q3; a, b, c) = qa+2b+3c = `(1, q, q2, q3; a+ 1, b+ 1, c− 1),
`(1, q, q2, t; a, b, c) = qa+2btc, `(1, q, q2, t; a+ 1, b+ 1, c− 1) = qa+2b+3tc−1,

`(1, q, t, q2; a, b, c) = qa+2ctb, `(1, q, t, q2; a+ 1, b+ 1, c− 1) = qa+2c−1tb+1,

`(1, q, t, t2; a, b, c) = qatb+2c, `(1, q, t, t2; a+ 1, b+ 1, c− 1) = qa+1tb+2c−1,

`(1, q, t, qt; a, b, c) = qa+ctb+c = `(1, q, t, qt; a+ 1, b+ 1, c− 1).

Therefore the contributions of (1, q, q2, q3) and (1, q, t, qt) cancel, and

H(a, b, c)−H(a+ 1, b+ 1, c− 1) = qa+2btc(1− q3/t)w̃t(1, q, q2, t)

+ qa+2ctb(1− t/q)w̃t(1, q, t, q2)

+ qatb+2c(1− q/t)w̃t(1, q, t, t2)

= qa+2btc

(1− t/q2) + qa+2ctb(1− t)
(1− t2/q2)(1− q2/t) + qatb+2c

(1− q2/t2) .

On the other hand, by (10) we obtain

(qt)cH(a+ c, b− c) = qa+2btc

(1− t/q2) + qa+2ctb

(1− q2/t) ,

so

H(a, b, c)−H(a+ 1, b+ 1, c− 1)− (qt)cH(a+ c, b− c) = − qa+2ctb

(1− q2/t2) + qatb+2c

(1− q2/t2) .

Comparing this with the last term in the recurrence, we find

c−1∑
i=0

(qt)b+2c−2iH(a− b− 2c+ 4i) =
c−1∑
i=0

(qt)b+2c−2i · qa−b−2c+4i

=
c−1∑
i=0

qa+2itb+2c−2i = qatb+2c 1− q2ct−2c

1− q2/t2

= qatb+c − qa+2ctb

1− q2/t2
. �

Corollary 2.21. The polynomials F (a, b, c) satisfy the recursion relation

F (a, b, c) = F (a+1, b+1, c−1)+(qt)cF (a+c, b−c)+
c−1∑
i=0

(qt)b+2c−2iF (a−b−2c+4i).

Note that the entries a− b−2c+ 4i in the recurrence of Corollary 2.21 can become
negative. However, the following symmetry relation holds.

Proposition 2.22. We have for a > 0

F (−a) = − 1
(qt)a−1 F (a− 2).
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Proof. By (9) and Example 2.18, we have

F (a) = 1
1− t/q q

a + 1
1− q/t t

a = qa
1− (t/q)a+1

1− t/q .

Hence

F (−a) = q−a
1− (t/q)−a+1

1− t/q = −q−a(t/q)−a+1 1− (t/q)a−1

1− t/q = − 1
(qt)a−1F (a− 2). �

Note that using Corollary 2.21 and Proposition 2.22, F (a, b, c) for a > b > c > 0
can be reduced to F (a, b) for a > b > 0 and F (a) for a > 0, which are given in
Example 1.2.

Now we compute F (a, b) explicitly by separating the sum.

Lemma 2.23. For b > −1 and a > b− 1 we have

F (a, b) =
b∑
i=0

a+2b−2i∑
j=i

qjt(a+2b−i)−j .

Proof. We may express F (a, b) in terms of H(a, b) by separating the sum as above.
Using the expression for H(a, b) from Example 2.19 (note that this expression is valid
for b > −1 and any value of a) this gives us

F (a, b) = 1
1− t/q q

a
b∑
i=0

(q2)b−iti + 1
1− q/t t

a
b∑
i=0

(t2)b−iqi

= 1
q − t

(
qa+1

b∑
i=0

(q2)b−iti − ta+1
b∑
i=0

(t2)b−iqi
)

=
b∑
i=0

qa+2b+1−2iti − ta+2b+1−2iqi

q − t
=

b∑
i=0

a+2b−2i∑
j=i

qjt(a+2b−i)−j ,

where the last step is legal because we are assuming a > b− 1. �

Lemma 2.24. We have F (−1) = F (a,−1) = 0 for a > −2 and F (a, b,−1) = 0 for
a, b > 1.

Proof. Since H(−1; q, t) = q−1, Equation (9) implies F (−1) = 0. On the other hand,
Lemma 2.23 immediately implies F (a,−1) = 0. Finally, by Corollary 2.21 we have
F (a− 1, b− 1, 0) = F (a− 1 + 1, b− 1 + 1, 0− 1) + (qt)0F (a− 1 + 0, b− 1− 0).

But by Corollary 2.13 we have F (a − 1, b − 1, 0) = F (a − 1, b − 1) and the lemma
follows. �

The recursion of Corollary 2.21 implies the following “two-step” recursion. It has
the advantage that it does not contain any negative arguments, which will be advan-
tageous for the combinatorial analysis of Section 4.

Lemma 2.25. For a > b− 1, a, b > c− 1 > 0, we have

F (a, b, c) = F (a+ 2, b+ 2, c− 2) + (qt)c F (a+ c, b− c) + (qt)c−1 F (a+ c, b− c+ 2)

+
min(a−b,2c)∑

j=2
(qt)b+j F (a− b+ 2c− 2j)−

1∑
j=a−b+1

(qt)b+j F (a− b+ 2c− 2j).

Remark 2.26. If a > b then the last sum is empty. If a = b or a = b− 1 then the next
to last sum is empty, and the last sum contains one or two terms, respectively.
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Proof. Using the recurrence in Corollary 2.21 and then the same recurrence again on
the term F (a+ 1, b+ 1, c− 1), we obtain

F (a, b, c) = F (a+ 2, b+ 2, c− 2) + (qt)c F (a+ c, b− c) + (qt)c−1 F (a+ c, b− c+ 2)

+
c−1∑
i=0

(qt)b+2c−2iF (a− b− 2c+ 4i) +
c−2∑
i=0

(qt)b+2c−1−2iF (a− b− 2c+ 2 + 4i).

The first three terms are the same as in the statement of the lemma. The last two
sums can be combined to

2c−2∑
j=0

(qt)b+2c−jF (a− b− 2c+ 2j),

or, reversing the order of the sum:

(11)
2c∑
j=2

(qt)b+jF (a− b+ 2c− 2j).

If 2c 6 a− b the corollary is proved. Otherwise we may break expression (11) above
into two pieces to obtain

a−b∑
j=2

(qt)b+jF (a− b+ 2c− 2j) +
2c∑

j=max(a−b+1,2)

(qt)b+jF (a− b+ 2c− 2j),

or equivalently

a−b∑
j=2

(qt)b+jF (a− b+ 2c− 2j) +
2c∑

j=a−b+1
(qt)b+jF (a− b+ 2c− 2j)

−
1∑

j=a−b+1
(qt)b+jF (a− b+ 2c− 2j).

Therefore, if we show that the middle sum above is 0 the corollary is proved. However,
setting K = −a+ b− 2c we have

2c∑
j=a−b+1

(qt)b+jF (a− b+ 2c− 2j) =
∑

−K6r6K−2
(qt)b−(K+r)/2F (r),

where the sum is over only those r such that 2|(K + r). Since F (−1) = 0 this can be
split into ∑

26r6K
(qt)b−(K−r)/2F (−r) +

∑
06s6K−2

(qt)b−(K+s)/2F (s),

where again the sum is only over r with 2|(K+r). However, applying Proposition 2.22
term-wise to the left sum gives precisely the opposite of the right sum. �

3. Combinatorial expressions
In this section, we present a combinatorial formula for F (a, b, c) when a + 1 > b,
a+ 1, b+ 1 > c > 0.
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3.1. Symmetric chain expression. Recall that λ(a, b, c) = (a+ b+ c, b+ c, c). We
set A = |λ(a, b, c)| = a+ 2b+ 3c, εij = max(0, i+ j− b− c), and mcj = c− j (mod 2)
for convenience. Define the symmetric chain for k 6 ` as

[k, `]q,t = q`tk + q`−1tk+1 + · · ·+ qk+1t`−1 + qkt`.

We may write F (a, b, c) as a sum of symmetric chains.
Theorem 3.1. For nonnegative integers a, b, c and a+ 1 > b, a+ 1, b+ 1 > c, we have

F (a, b, c) =
∑

(i,j)∈Q̃

[i+ εij , A− 2i− j]q,t,

where Q̃ = {(i, j) | 0 6 j 6 c, j 6 i 6 b+ c, 2i+ 2j 6 a+ b+ 2c−mcj}.
The proof of Theorem 3.1 is given in Section 4, see in particular Corollary 4.14. For

the various conditions appearing in Q̃, see the conditions for quasiheads in Table 3.
Note that Theorem 3.1 immediately implies that the right hand side is symmetric in
q and t.
Remark 3.2. Note that the conditions on i and j imply that i + εij 6 A − 2i − j.
Namely, since i 6 b + c, we have i + εij 6 max(b + c, i + j). Furthermore, since
2i+ 2j 6 a+ b+ 2c, we have A− 2i− j = A− 2i− 2j + j > b+ c+ j which in turn
is greater or equal to max(b+ c, i+ j) given that j > 0 and i 6 b+ c.
Remark 3.3. Note that the interval [i + εij , A − 2i − j] of integers that appears in
the symmetric chains in Theorem 3.1 will be called the area range in Section 4 as it
is the range of the area statistic for the given symmetric chain.
Remark 3.4. Surprisingly, the identity H(a, b, c) =

∑
(i,j)∈Q̃ q

A−2i−jti+εij does not
hold in general, as the right hand side satisfies slightly different recursion relation, see
Lemma 4.11.
3.2. Combinatorial expression. The symmetric chain expression of Theorem 3.1
leads to a purely combinatorial expression for F (a, b, c) as a sum of all subpartitions of
λ(a, b, c) with two associated statistics. The area statistic for λ ⊆ λ(a, b, c) is given by

area(λ) = |λ(a, b, c)| − |λ|.
The second statistic requires a little more notation. We set L = a+ b+ c. Further-

more, we name the following cases:
Case 1. z > min(b+ c− x, dy−a2 e)

(a) x+ y − z + 2εyz < L
(b) x+ y − z + 2εyz > L

(i) y + z < b+ c
(ii) y + z > b+ c

Case 2. z < min(b+ c− x, dy−a2 e).
With this, we are ready to define the t-statistic, where λ = (x, y, z) is a partition

with x > y > x > 0 and x 6 a+ b+ c, y 6 b+ c, z 6 c

(12) stat(λ) =



x+ max(0, dy−a2 e, y + z − b− c, d 2y+z−L
2 e) in Case 1(a),

−L+ 2x+ y − z + max(0, dL+z−x−a
2 e) in Case 1(b)(i),

2x+ 3y + z − (a+ 3b+ 3c)
+ max(0, d 2b+2c−x−y

2 e, a+ 2b+ 2c− x− 2y) in Case 1(b)(ii),
y + z in Case 2.

Our main result is the following.
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Theorem 3.5. Let a, b, c be nonnegative integers with a+1 > b, a+1, b+1 > c. Then

F (a, b, c) =
∑

λ⊆λ(a,b,c)

qarea(λ)tstat(λ).

The proof of Theorem 3.5 is given in Section 4.7.

Example 3.6. Let us take a = b = c = 1, so that λ(1, 1, 1) = (3, 2, 1). The subpar-
titions λ of (3, 2, 1) together with their monomial qarea(λ)tstat(λ) are listed in Table 1,
organized in the chains associated to Theorem 3.1.

Table 1. Subpartitions of (3, 2, 1) with their monomials
qarea(λ)tstat(λ)

chains subpartitions with statistics

[0, 6]q,t ∅

q6 q5t q4t2 q3t3 q2t4 qt5 t6

[1, 4]q,t

q4t q3t2 q2t3 qt4

[1, 3]q,t

q3t q2t2 qt3

Remark 3.7. Note that stat(λ) is in general different from dinv(λ) and bounce(λ).
As stated in [15, Exercise 3.19], dinv(λ) is the number of cells x in λ such that
leg(x) 6 arm(λ) 6 leg(x) + 1. Here leg(x) is the number of cells in λ above x in the
same column as x and arm(x) is the number of cells in λ to the right of x in the same
row as x. Then qarea(λ)tdinv(λ) for the partitions in Table 1 read row by row, top to
bottom, left to right are

q6, q5t, q4t2, q3t2, q2t4, qt5, t6, q4t, q3t3, q2t3, qt3, q3t, q2t2, qt4,

which differs from Table 1. Similarly, one may check that bounce(λ) is in general
different from stat(λ).

Example 3.8. Consider (a, b, c) = (1, 1, 2), so that λ(1, 1, 2) = (4, 3, 2). The subpar-
titions λ of (4, 3, 2) together with their monomial qarea(λ)tstat(λ) are listed in Table 2
organized in the chains associated to Theorem 3.1.

Remark 3.9. As the parameter a becomes larger with respect to b and c, simplifica-
tions occur.

• When a > b+c−1, the statistic in (12) can be simplified by eliminating Case 2
and setting any expression that appears inside a “d·e” to 0. Moreover, in Ta-
ble 3 the parameters δij and δEF become uniformly 0 and the condition (15d)
becomes unnecessary.
• When a > b+ 2c, all the above simplifications hold. Moreover, in Table 3 the
conditions (14c), (15c), and (17c) become unnecessary.
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Table 2. Subpartitions of (4, 3, 2) with their monomials
qarea(λ)tstat(λ)

chains subpartitions with statistics

[0, 9]q,t ∅

q9 q8t q7t2 q6t3 q5t4 q4t5 q3t6 q2t7 qt8 t9

[1, 7]q,t
q7t q6t2 q5t3 q4t4 q3t5 q2t6 qt7

[1, 6]q,t
q6t q5t2 q4t3 q3t4 q2t5 qt6

[2, 5]q,t
q5t2 q4t3 q3t4 q2t5

[3, 3]q,t
q3t3

4. Partition chains and proofs
In this section, we assume that a > b − 1, a, b > c − 1. We provide four different
indexing sets for symmetric chains that partition the set

Λ := {λ | λ ⊆ λ(a, b, c) and λ a partition}
called tails, pseudoheads, heads, and quasiheads. The tails, pseudoheads, and quasi-
heads are defined as

(13)
Set of tails T := {TEF | conditions (14a)-(14c) on E,F},
Set of pseudoheads P := {Pij | conditions (15a)-(15d) on i, j},
Set of quasiheads Q := {Qst | conditions (17a)-(17c) on s, t},

where TEF , Pij , and Qst are defined in Table 3 and for convenience A = a+ 2b+ 3c
and L = a+ b+ c throughout this section. In addition, we write P = P− ∪P+, where

P− = {Pij ∈ P | δij 6 εij} and P+ = {Pij ∈ P | δij > εij}
and εij and δij are also given in Table 3.

Finally, we define the set of heads H = H− ∪H+, where H− = P− and
H+ = {(k, `, 0) | a < ` 6 k < b+ c}.

For a negative head, the area range is the same as its area range as a pseudohead.
For positive heads we set the area range to

R`k = [`, A− k − `].

Example 4.1. In terms of the indexing sets of Table 3, the symmetric chains in Table 1
of Example 3.6 from top to bottom correspond to the tails T 00 = (3, 2, 1), T 10 =
(2, 2, 1), T 01 = (3, 1, 1), the pseudoheads (and heads) P00 = (0, 0, 0), P10 = (1, 1, 0),
P11 = (1, 1, 1), and the quasiheads Q00 = (0, 0, 0), Q10 = (1, 1, 0), Q11 = (1, 1, 1),
respectively. The tails are the largest partitions in the chain and the pseudoheads
(heads, quasiheads) are the smallest partitions in each chain.
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Example 4.2. The symmetric chains in Table 2 of Example 3.8 from top to bottom
correspond to the tails T 00 = (4, 3, 2), T 10 = (3, 3, 2), T 01 = (4, 2, 2), T 11 = (3, 2, 2),
T 21 = (2, 2, 2), the pseudoheads P00 = (0, 0, 0), P10 = (1, 1, 0), P11 = (1, 1, 1), P21 =
(2, 2, 1), P22 = (2, 2, 2), the heads P00 = (0, 0, 0), P10 = (1, 1, 0), P11 = (1, 1, 1),
H2

2 = (2, 2, 0), P22 = (2, 2, 2), and the quasiheads Q00 = (0, 0, 0), Q10 = (1, 1, 0),
Q11 = (1, 1, 1), Q20 = (2, 2, 0), Q22 = (2, 2, 2), respectively. The tails are the largest
partitions in the chain and the heads are the smallest partitions in the chain. For the
chain [2, 5]q,t, the head and pseudohead are not the same.

The set of tails, pseudoheads, heads, and quasiheads are all in area preserving
bijection. That is, if X,Y are one of the sets tails, pseudoheads, heads, and quasiheads
and the area ranges for x ∈ X and y ∈ Y are Rx and Ry, respectively, then there
is a bijection Φ: X → Y such that Rx = RΦ(x) for all x ∈ X (see Sections 4.1, 4.2
and 4.5).

In Section 4.4, we define chains (using the strings of Section 4.3) and prove in
Theorem 4.8 that the chains partition Λ, the set of all subpartitions of λ(a, b, c). In
Section 4.6, using the quasiheads, we show that the combinatorial symmetric chain
function G(a, b, c) satisfies the same recursions as F (a, b, c), thereby proving Theo-
rem 3.1. The proof of Theorem 3.5 is given in Section 4.7.

4.1. Area preserving bijection between tails and pseudoheads. We now
construct an area preserving bijection between tails and pseudoheads.

Lemma 4.3. Define maps Ψ and Ψ−1 by
Ψ(E,F ) = (E + F − εEF , F + εEF ),

Ψ−1(i, j) = (i− j + 2εij , j − εij).
Then Ψ induces a bijection from T to P via the rule that if Ψ(E,F ) = (i, j) then

(a+ b+ c− E, b+ c− F, c) 7→ (i, i, j).
The inverse of this bijection is induced by Ψ−1 via the rule that if Ψ−1(i, j) = (E,F )
then

(i, i, j) 7→ (a+ b+ c− E, b+ c− F, c).
Moreover, if Ψ(E,F ) = (i, j), then REF = Rij.

Proof. First we show that Ψ is a bijection on Z2. Indeed, note that if either Ψ(E,F ) =
(i, j) or Ψ−1(i, j) = (E,F ) we have δEF = δij and εEF = εij . Hence, a simple
computation shows that Ψ ◦ Ψ−1 and Ψ−1 ◦ Ψ are the identity on Z2. Moreover, it
is apparent that Ψ preserves the area range. It remains to show that Ψ(T ) ⊆ P and
Ψ−1(P ) ⊆ T .

First let TEF ∈ T and suppose Ψ(E,F ) = (i, j). We must show that the conditions
in (15a)-(15d) hold:

• Condition (15a): The condition 0 6 j 6 c translates to 0 6 F + εEF 6 c
which is immediate from (14a).

• Condition (15b): The condition j 6 i 6 b + c translates to F + εEF 6
E + F − εEF 6 b + c. The left hand side follows from the left hand side
of (14b). If εEF = 0, then we have E + 2F 6 b + c so the right hand side
follows. Otherwise the right hand side reduces to −F + b + c 6 b + c which
follows from F > 0.

• Condition (15c): The condition 4i+ j 6 a+ 3b+ 3c translates to 4E + 5F −
3εEF 6 a+ 3b+ 3c which is (14c).
• Condition (15d): The condition i − 2j 6 a translates to E − F − 3εEF 6 a
which follows from the right hand side of (14b).
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Table 3. Various indexing sets for chains

Tails TEF = (a+ b+ c− E, b+ c− F, c)

Conditions
0 6 F 6 c− εEF(14a)
2εEF 6 E 6 F + a(14b)
4E + 5F − 3εEF 6 a+ 3b+ 3c(14c)

Area range REF = [E + F,A− 2E − 3F + max(εEF , δEF )]

Notation εEF = max(0, E + 2F − b− c) and δEF =
⌈
E+F−a

2
⌉

Pseudoheads Pij = (i, i, j)

Conditions

0 6 j 6 c(15a)
j 6 i 6 b+ c(15b)
4i+ j 6 a+ 3b+ 3c(15c)
i− 2j 6 a(15d)

Area range Rij = [i+ εij , A− 2i− j + max(0, δij − εij)]

Notation (16) εij = max(0, i+ j − (b+ c)), δij =
⌈
i+ εij − a

2

⌉

Quasiheads Qst = (s, s, t)

Conditions
0 6 t 6 c(17a)
t 6 s 6 b+ c(17b)
2s+ 2t 6 a+ b+ 2c−mct(17c)

Area range Rst = [s+ εst, A− 2s− t]

Notation εst = max(0, s+ t− (b+ c)) and mct = (c− t) (mod 2)

Now let Pij ∈ P and suppose Ψ−1(i, j) = (E,F ). We must show that the conditions
in (14a)-(14c) hold:

• Condition (14a): The condition 0 6 F 6 c − εEF translates to 0 6 j − εij 6
c − εEF . The left hand side follows from j > 0 unless εij > 0, in which case
it follows from i 6 b + c. The right hand side is equivalent to j 6 c (since
εij = εEF ).

• Condition (14b): The condition 2εEF 6 E 6 F + a translates to 2εEF 6
i − j + 2εij 6 j − εij + a. The left hand side is equivalent to j 6 i and the
right hand side follows from (15d).

• Condition (14c): The condition 4E + 5F − 3εEF 6 a + 3b + 3c translates to
4i− 4j + 8εij + 5j − 5εij − 3εEF 6 a+ 3b+ 3c which follows from (15c). �

4.2. Area preserving bijection between pseudoheads and heads. We now
construct an area preserving bijection between pseudoheads and heads. Set δ`k = d `−a2 e
and ε`k = max(k + δ`k − b− c, 0).
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Lemma 4.4. Define maps Θ and Θ−1 by

Θ(i, j) = (i+ j − δij , i+ εij),
Θ−1(k, `) = (`− ε`k, k − `+ ε`k + δ`k).

Then Θ induces a bijection from P to H, which is the identity on P− and, if Θ(i, j) =
(k, `) it acts as (i, i, j) 7→ (k, `, 0) on P+. The inverse of this map is the identity on H−
and, if Θ−1(k, `) = (i, j), then (k, `, 0) 7→ (i, i, j) on H+. Moreover if Θ(i, j) = (k, `)
then Rij = R`k.

Proof. First we show that Θ is a bijection on Z2. Indeed, note that if either Θ(i, j) =
(k, `) or Θ−1(k, `) = (i, j) we have δ`k = δij and ε`k = εij . Hence, a simple computation
shows that Θ ◦Θ−1 and Θ−1 ◦Θ are the identity on Z2. Moreover, it is apparent that
Θ preserves the area range.

Now suppose Pij ∈ P+, and Θ(i, j) = (k, `). We wish to show that (k, `, 0) ∈ H+.
This means we must verify the inequalities a < i + εij 6 i + j − δij < b + c. The
first inequality is immediate because δij > εij is equivalent to i− εij > a. The second
inequality is the same as δij+εij 6 j which is equivalent to i−2j 6 a−3εij . If εij = 0,
this is the same as the pseudohead condition i − 2j 6 a. Otherwise, it is equivalent
to the pseudohead condition 4i + j 6 a + 3b + 3c. Finally, the last inequality is just
i + j − (b + c) < δij which is immediate since the former is less than or equal to εij
which is by assumption less than δij .

Now suppose H`
k ∈ H+ and Θ−1(k, `) = (i, j). We need to show that δij > εij as

well as the pseudohead conditions (15a)-(15d) for i = `− ε`k and j = k − `+ ε`k + δ`k
for any (k, `) such that a < ` 6 k < b+ c:

• δij > εij . We have δij − εij = δ`k − ε`k = min(−k + b + c, δ`k). But this is a
positive number because k < b+ c and ` > a.

• Condition (15a): The condition 0 6 j 6 c translates to 0 6 k−`+ε`k+δ`k 6 c.
The left side holds since all of k − `, ε`k, δ`k are nonnegative. Now, if ε`k = 0
then k+ δ`k 6 b+ c 6 a+ c+ 1 6 `+ c which implies the right hand side. On
the other hand, if ε`k > 0 the inequality becomes 2k − ` + 2δ`k 6 b + c which
would certainly hold if 2k+ 2 `−a2 − ` = 2k− a < b+ 2c. But this is true since
k < b+ c and k 6 b+ c− 1 6 a+ c.

• Condition (15b): The left hand side of the condition j 6 i 6 b+ c translates
to k − ` + ε`k + δ`k 6 ` − ε`k, that is, k + 2ε`k 6 2` − δ`k. If ε`k = 0 this says
k 6 b 3`+a

2 c. But k 6 b + c − 1 6 (a + 1) + (a + 1) − 1 = 2a + 1. On the
other hand ` > a implies b 3`+a

2 c 6 2a + 1. If ε`k > 0 the left hand inequality
reduces to 3k 6 2`−3δ`k+2b+2c = b `+a2 c+a+2b+2c which would certainly
hold if 2k + k = 3k 6 2a + 2b + 2c. But 2k 6 b + c − 2 and k 6 2a + 1
so this holds (in fact strictly). Moreover, the righthand side easily holds as
`− ε`k 6 ` 6 k < b+ c.

• Condition (15c): The condition 4i+j 6 a+3b+3c translates to 3`−3ε`k+k+
δ`k 6 a+ 3b+ 3c. If ε`k = 0, we have k+ δ`k 6 b+ c. Hence it is enough to show
that 3` 6 a+ 2b+ 2c. But this is also true since k + δ`k 6 b+ c is equivalent
to 2k+ ` 6 a+ 2b+ 2c and ` 6 k. On the other hand, if ε`k > 0 the inequality
we need to show reduces to 3` − 2k − 2δ`k 6 a. Since ` − k 6 0 it suffices to
show that `− 2δ`k 6 a. But this is clear since `− 2δ`k 6 `− 2 `−a2 = a.

• Condition (15d): The condition i−2j 6 a translates to 3`−2k−3ε`k−3δ`k 6 a.
But this follows from `− 2δ`k 6 a and `− k 6 0.

This shows that Θ induces a bijection from P+ to H+. Extending this map to all of
P by declaring it to be the identity on P− is also a bijection as long as H−∩H+ = ∅.
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Indeed, only partitions of the form (m,m, 0) may lie in both H− and H+. Moreover,
being in H− implies δm0 − εm0 6 0 which means m 6 a. On the other hand, being in
H+ would require a < m. �

4.3. Strings. We now consider the set of all partitions Λ which fit inside the partition
λ(a, b, c) = (a + b + c, b + c, c). We call such a partition (x, y, z) positive if z <
min(b+ c− x, dy−a2 e) and negative otherwise. Write Λ = Λ− ∪ Λ+.

Let Pij = (i, i, j) be a pseudohead with Ψ(E,F ) = (i, j). Suppose that TEF =
(p, q, c). We define the string associated to Pij and TEF to be

(18) S(Pij) = S(TEF ) =
⋃

i6x<p
(x, i, j)

⋃
i6y<q

(p, y, j)
⋃

j6z6c
(p, q, z).

Lemma 4.5. (p, q, c) is a partition containing (i, i, j) and is contained in λ(a, b, c).
Thus every S(Pij) is a nonempty set of partitions contained in λ(a, b, c).

Proof. It is clear that p = L − E 6 L by the left side of (14b). Furthermore, q =
b+ c−F 6 b+ c by the left side of (14a). Obviously c 6 c. Hence (p, q, c) is contained
in λ(a, b, c).

Now p − q = L − E − (b + c − F ) = a − E + F > 0 by the right side of (14b).
Furthermore, q = b + c − F > c follows from F 6 c (which comes from the right
side of (14a)) unless b < c. If b < c, we must have b = c − 1 so we just need to
show q = (c − 1) + c − F > c or equivalently F 6 c − 1. Indeed, if F = c then
εEF = max(2c+E − (2c− 1), 0) = max(E + 1, 0) > 0 by the left-hand side of (14b).
Thus the right-hand side of (14a) implies F 6 c − 1 contradicting the assumption
F = c. This shows that (p, q, c) is indeed a partition.

Finally it is obvious that j 6 c and since we already showed that p > q all that
remains to show is q > i. But this says b+ c− F > i or b+ c− (j − εij) > i which is
equivalent to i+ j − (b+ c) 6 εij which follows immediately from (16). �

Theorem 4.6. Let µ ∈ Λ−. Then there exists unique Pij ∈ P such that µ ∈ S(Pij).
Conversely, if µ ∈ S(Pij) for some pseudohead Pij, then µ ∈ Λ−.

Proof. Let µ = (x, y, z) ∈ Λ−. Let us set:

E(y, z) = y − z + 2εyz and F(y, z) = z − εyz.

We prove the first statement in three cases.
(1) First suppose x + E(y, z) < L. Note that this corresponds to Case 1(a) in

Section 3.2. To show uniqueness suppose µ ∈ S(Pij) with tail T (L−p)(b+c−q).
If µ is from the second union in (18), then µ = (p, y, j) for i 6 y < q. Since

E(y, j) > E(i, j) we have:

x+ E(y, z) = p+ E(y, j) > p+ E(i, j) = (L− E(i, j)) + E(i, j) = L.

If µ is from the third union in (18), then µ = (p, q, z) for j 6 z 6 c.
Now q = b + c − F(i, j) implies q + j > b + c. From this, it follows that
E(q, z) > E(q, j). Since E(q, j) > E(i, j) as well we have:

x+ E(y, z) = p+ E(q, j) > p+ E(i, j) = (L− E(i, j)) + E(i, j) = L.

This means that µ can only come from the first union, so that we must have
i = y and j = z. Hence µ can be in no other string than S(Pyz).

Now we show that µ ∈ S(Pyz). First we need to check Pyz satisfies the
pseudohead conditions:
• Condition (15a): 0 6 z 6 c is immediate.
• Condition (15b): z 6 y 6 b+ c is immediate.
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• Condition (15c): 4y + z 6 a + 3b + 3c. If εyz = 0 then the original
assumption becomes x+y−z < L and we also have y+z 6 b+c. Adding
the first inequality to twice the second yields x+3y+z < a+3b+3c and
we are done since y 6 x. If εyz > 0 then the original assumption reduces
directly to x+ 3y + z < a+ 3b+ 3c so we are done for the same reason.

• Condition (15d): y − 2z 6 a. First suppose εyz = 0. Now, since µ is a
negative partition we either have z > dy−a2 e which would mean 2z > y−a
and we would be done, or else, z > b+ c− x. In the second case: εyz = 0
along with the original assumption imply x+ y− z < L, and subtracting
from this the inequality x + z > b + c gives y − 2z < a. Finally, if
εyz > 0 then we have y + z > b + c. Subtracting three times this from
4y + z 6 a+ 3b+ 3c (which we have already verified) gives y − 2z < a.

Now that Pyz is in fact a pseudohead it is obvious that µ ∈ S(Pyz) (in the
first union) because x < L− E(y, z).

(2) Now suppose x + E(y, z) > L and y + z < b + c. Note that this corresponds
to Case 1(b)(i) in Section 3.2. To show uniqueness suppose µ ∈ S(Pij) with
tail T (L−p)(b+c−q).

If µ is from the first union in (18), then µ = (x, i, j) for i 6 x < p. But this
means x+ E(i, j) < L, that is, x+ E(y, z) < L, contradicting our assumption.

If µ is from the third union in (18), then µ = (p, q, z) for j 6 z 6 c. Now
q = b+ c−F(i, j) where F(i, j) = j because y+ z < b+ c means i+ j < b+ c.
Thus q+ j = b+ c so q+ z > b+ c, that is, y+ z > b+ c, again contradicting
our assumption.

This means that µ can only come from the second union in (18). In this
case, µ is of the form (p, y, j) for i 6 y < q. In particular, x = p = L −
E(i, j) = L − E(i, z). But i + z 6 y + z < b + c so εiz = 0 and this reduces
to x = L − i + z. Therefore, i = L + z − x, and we see µ can be in no other
string than S(P(L+z−x)z).

Now we show that µ ∈ S(P(L+z−x)z). First we need to check that P(L+z−x)z
satisfies the pseudohead conditions:
• Condition (15a): 0 6 z 6 c is immediate.
• Condition (15b): z 6 L+ z − x 6 b+ c. The left hand side is immediate
because x 6 L. On the other hand the first original assumption implies
L + z − x 6 E(y, z) + z and the second original assumption implies
E(y, z) = y − z. Thus L+ z − x 6 y 6 b+ c.
• Condition (15c): 4(L + z − x) + z 6 a + 3b + 3c. Since µ is a negative
partition we have z > min(b+c−x, dy−a2 e). First suppose that z > d

y−a
2 e.

This along with the fact that (L+z−x)+z 6 y+z < b+ c implies that:

4(L+ z − x) + z = (L+ z − x) + 3(L+ z − x+ z)− 2z
6 y + 3(b+ c) + (a− y) = a+ 3b+ 3c.

Otherwise we must have z < dy−a2 e, but z > b + c − x. Now dy−a2 e >
b + c − x means y > a + 2b + 2c − 2x. Since y < b + c − z this gives
a+ 2b+ 2c− 2x < b+ c− z which becomes 2x− z > a+ b+ c. Adding
this inequality to x + z > b + c (which is equivalent to the assumption
on hand) we obtain 3x > a + 2b + 2c. At this point we suppose for the
sake of contradiction that 4(L + z − x) + z > a + 3b + 3c. This means
(L+z−x+z) + 3L+ 3z−3x > a+ 3b+ 3c which in light of the previous
equation yields (L+z−x+z)+3L+3z > 2a+5b+5c. This in turn gives
3L + 3z > 2a + 4b + 4c since L + z − x + z < b + c. Finally, we are left
with 3z > −a+ b+ c. But at the same time 4(L+z−x)+z > a+3b+3c
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means 4(L + z − x + z) − 3z > a + 3b + 3c. And again making use of
L+z−x+z < b+c this implies 3z < −a+b+c, which is a contradiction.
Hence we must have 4(L+ z − x) + z 6 a+ 3b+ 3c.

• Condition (15d): (L + z − x) − 2z 6 a. Again, µ is negative so we may
consider two cases. First, if z > dy−a2 e then L + z − x 6 y implies
L+z−x−2z = (L+z−x)−y+a 6 a. On the other hand if z > b+c−x
then (L+ z − x)− 2z = L− x− z 6 L− b− c = a.

Now since P(L+z−x)z is indeed a pseudohead, the facts that L−E(L+ z−
x, z) = L − (L − x) = x and L + z − x 6 y < b + c − F(L + z − z, z) (since
the latter is equal to b + c − z) imply that µ ∈ S(P(L+z−x)z) (in the second
union in (18)).

(3) Now suppose x + E(y, z) > L and y + z > b + c. Note that this corresponds
to Case 1(b)(ii) in Section 3.2. To show uniqueness suppose µ ∈ S(Pij) with
tail T (L−p)(b+c−q).

If µ is from the first union in (18), then µ = (x, i, j) for i 6 x < p. This
means that x+ E(y, z) = x+ E(i, j) < L, contradicting our assumption.

If µ is from the second union in (18), then µ = (p, y, j) for i 6 y < q. Thus
y < b + c − F(i, j) which is equivalent to y + j − (b + c) < εij 6 εyj which
implies εyj = 0 and y + j − (b+ c) < 0, contradicting y + j = y + z > b+ c.

This means that µ can only come from the third union in (18), so that
we must have x = p and y = q. Hence µ can be in no other string than
S(T (L−x)(b+c−y)).

Now we show that µ ∈ S(T (L−x)(b+c−y)). First we need to check that
T (L−x)(b+c−y) satisfies the tail conditions (14a)-(14c) for E = L − x and
F = b+ c− y:
• Condition (14a): 0 6 F 6 c − εEF . This means 0 6 b + c − y 6 c −
ε(L−x)(b+c−y). The left-hand side follows from y 6 b + c. The right-
hand side says ε(L−x)(b+c−y) 6 y − b. We may assume ε(L−x)(b+c−y) =
a + 2b + 2c − x − 2y because if it were 0 then the fact that z 6 c and
y + z > b + c imply y − b > 0 which would prove this side. Under this
assumption what we need to show becomes x + 3y > a + 3b + 2c. But
y + z > b + c implies that E(y, z) = 3y + z − 2(b + c), so the original
assumption that x+ E(y, z) > L becomes x+ 3y+ z 6 a+ 3b+ 3c which
implies what we wanted to show as z 6 c.

• Condition (14b): 2εEF 6 E 6 F + a. If εEF = 0 the left-hand side is
immediate. Otherwise it is equivalent to x+4y > a+3b+3c. This follows
from x+ 3y+ z 6 a+ 3b+ 3c unless y < c. But this means we must have
z > b to obtain y+ z > b+ c. Since y > z this would give b 6 c−2 which
is not allowed. The right hand side follows directly from x > y.

• Condition (14c): 4E+5F −3εEF 6 a+3b+3c. This reduces to 4x+5y+
3ε(L−x)(b+c−y) > 3a+6b+6c. If ε(L−x)(b+c−y) = 0 we must have x+2y >
a+2b+2c. Adding three times this inequality to the inequality x−y > 0
gives us what we desire. If ε(L−x)(b+c−y) > 0 then ε(L−x)(b+c−y) = a +
2b+2c−x−2y and the inequality 4x+5y+3ε(L−x)(b+c−y) > 3a+6b+6c
reduces to x− y > 0.

Now we know that T (L−x)(b+c−y) is a valid tail. Denote Ψ(L− x, b+ c− y) =
(i, j). In order to show that µ ∈ S(T (L−x)(b+c−y)) we need only verify that
j 6 z. That is to say b + c − y + ε(L−x)(b+c−y) 6 z. If ε(L−x)(b+c−y) = 0 this
follows from the original assumption that y + z > b+ c. Otherwise it reduces
to a+ 3b+ 3c 6 x+ 3y + z. But this is equivalent to the original assumption
that x+ E(y, z) > L since y + z > b+ c implies εyz = y + z − (b+ c).
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This concludes the proof of the first statement.
Now we prove the second statement. Suppose µ = (x, y, z) ∈ S(Pij) for some

pseudohead Pij . We must show that z > min(b+ c− x, dy−a2 e). We use two cases:

(1) µ is in the first union in (18). We show z > dy−a2 e. We have y = i and j = z

so this becomes j > d i−a2 e. But the latter is equivalent to 2j > i− a which is
equivalent to condition (15d).

(2) µ is in the second or third union in (18). We show z > b + c − x. First, if
εij > 0 then i+ j > b+ c directly implies j > b+ c− x so that z > b+ c− x.
Now we assume εij = 0. Since x = L− E(i, j) and z > j it would be enough
to show j > b + c − (L − (i − j)) which reduces to j > −a + i − j but this
follows from condition (15d). �

If H`
k ∈ H+, we define the appendage associated to H`

k to be

A(H`
k) =

{
(k, `, z) | z < min

(
b+ c− k,

⌈
`− a

2

⌉)}
.

Theorem 4.7. Let µ ∈ Λ+. Then there exists unique H`
k ∈ H+ such that µ ∈ A(H`

k).
Conversely, if µ ∈ A(H`

k) for some positive head H`
k, then µ ∈ Λ+.

Proof. Let µ = (x, y, z) ∈ Λ+. Note that this correspond to Case 2 in Section 3.2.
Then it is immediate that µ could only belong to the appendage A(Hy

x). Since z <
min(b+c−x, dy−a2 e) in particular 0 < min(b+c−x, dy−a2 e). This implies both x < b+c
and y > a so (as y 6 x) Hy

x ∈ H+. Since µ is positive z < min(b + c − x, dy−a2 e), so
µ ∈ A(Hy

x).
Now if µ = (x, y, z) ∈ A(H`

k) for some head, then x = k and y = ` and so the
inequality z < min(b+ c− x, dy−a2 e) is clearly satisfied implying that µ ∈ Λ+. �

4.4. Chains. Suppose TEF ∈ T . Set (i, j) = Ψ(E,F ). If Pij ∈ P+ set (k, `) = Θ(i, j).
We define the chain of TEF to be

(19) C(TEF ) =
{
S(Pij) if Pij ∈ P−,
S(Pij) ∪A(H`

k) if Pij ∈ P+.

Our fundamental result concerning chains is the following.

Theorem 4.8. Λ is the disjoint union:

Λ =
⋃

TEF∈T
C(TEF ).

Moreover, for each integer m ∈ REF = [E + F,A− 2E − 3F + max(δEF , εEF )] there
is precisely one element µ ∈ C(TEF ) with area area(µ) = m.

Proof. The first statement is immediate by combining Theorems 4.6 and 4.7.
Now fix TEF and set (i, j) = Ψ(E,F ). If Pij ∈ P−, then by definition

C(TEF ) = S(Pij). By construction, this string has one partition of area m for
each m ∈ [area(TEF ), area(Pij)]. But area(TEF ) = E + F . Moreover, area(Pij) =
A−2i− j = A−2E−3F + εEF and since Pij ∈ P− implies that εij = max(δij , εij) =
max(δEF , εEF ) this means area(Pij) = A− 2E − 3F + max(δEF , εEF ).

Now suppose Pij ∈ P+. Then C(TEF ) = S(Pij) ∪ A(H`
k) has one partition of

area m for each m ∈ [area(TEF ), area(Pij)] and one partition of area n for each
n ∈ [area(H`

k)−min(b+ c− k, d `−a2 e) + 1, area(H`
k)]. Again, area(TEF ) = E + F and
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area(Pij) = A− 2E − 3F + εEF so it suffices to prove the two equations

area(H`
k)−min

(
b+ c− k,

⌈
`− a

2

⌉)
+ 1 = A− 2E − 3F + εEF + 1,

area(H`
k) = A− 2E − 3F + max(δEF , εEF ) = A− 2E − 3F + δEF .

However, we have
k + ` = (i+ j − δij) + (i+ εij) = 2i+ j − (δij − εij)

= 2(E + F − εEF ) + (F + εEF )− (δEF − εEF ) = 2E + 3F − δEF ,

so that area(H`
k) = A− (k + 1) = A− 2E − 3F + δEF as desired. On the other hand

min
(
b+ c− k,

⌈
`− a

2

⌉)
= min(b+ c−

(
i+ j − δij ,

⌈
i+ εij − a

2

⌉)
= min(b+ c− (i+ j) + δij , δij) = δij + min(b+ c− (i+ j), 0)
= δij − εij = δEF − εEF .

Hence we have

area(H`
k)−min

(
b+ c− k,

⌈
`− a

2

⌉)
= A− 2E − 3F + δEF − (δEF − εEF )

= A− 2E − 3F + εEF ,

which gives the other equation we wanted after adding 1 to both sides. �

Since Ψ and Θ fix the area range, we can conclude the following statement.

Corollary 4.9. Let X represent the set of heads, the set of pseudoheads, or the set
of tails. Then Λ is the disjoint union of all chains which contain an element of X.
Moreover, for x ∈ X and each m in the area range of x, there is precisely one element
µ of area m in the same chain as x.

4.5. Area preserving bijection between head and quasiheads. We write
Q = Q−6 ∪Q

−
> ∪Q+, where

Q−6 = {Qst ∈ Q | s+ t 6 b+ c, s 6 a},
Q−> = {Qst ∈ Q | s+ t > b+ c} ∪ {Qst ∈ Q | s+ t = b+ c, s > a},
Q+ = {Qst ∈ Q | s+ t < b+ c, s > a},

and H = P−6 ∪ P
−
> ∪H+, where

P−6 = {Pij ∈ P− | i+ j 6 b+ c} and P−> = {Pij ∈ P− | i+ j > b+ c}.

Proposition 4.10. There is an area range preserving bijection from H to Q.

Proof. We prove the proposition in three parts. First we show that the identity is an
area range preserving bijection from P−6 to Q−6. Then we define an area range pre-
serving bijection from P−> to Q−>. Finally we define an area range preserving bijection
from H+ to Q+.

(1) The set P−6 is the set of triples (i, i, j) obeying the conditions (15a)-(15d) as
well as the inequalities δij 6 εij and i + j 6 b + c. In light of (15b), εij = 0
and δij 6 εij simply becomes i 6 a. But this in turn implies (15d). Moreover,
adding i 6 a to 3i + 3j 6 3b + 3c gives condition (15c). Thus P−6 is the set
of triples (i, i, j) satisfying the four conditions in (15a) and (15b) as well as
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i + j 6 b + c and i 6 a. On the other hand, Q−6 is the set of triples (s, s, t)
satisfying the five conditions (17a)-(17c) as well as s + t 6 b + c and s 6 a.
Since conditions (15a)-(15b) are equivalent to (17a)-(17b), if we can show
that condition (17c) is implied by the other four conditions, it follows that
Q−6 = P−6 . Indeed, adding the three inequalities s + t 6 b + c, s 6 a, and
t 6 c gives 2s + 2t 6 a + b + 2c. This is strict unless we have equality in all
of the three previous conditions. In particular, this would mean t = c so that
mct = 0. Thus in any case 2s+ 2t 6 a+ b+ 2c−mct. Therefore, Q−6 = P−6 .
Since for Pij ∈ P−6 max(0, δij − εij) = 0, we have Rij = Rst if i = s, j = t, so
that the identity is an area range preserving bijection between the two sets.

(2) Let ωij = max(0, d 2i+j−L
2 e) and define maps Φ and Φ−1 by

Φ(i, j) = (i+ ωij , j − 2ωij) and Φ−1(s, t) = (s− ωst, t+ 2ωst).

Now if Φ(i, j) = (s, t) or Φ−1(s, t) = (i, j), it is clear that ωij = ωst. From
this it follows that Φ−1 ◦Φ and Φ◦Φ−1 are the identity on Z2. We claim that
Φ induces an area range preserving bijection from P−> to Q−> via the rule that
if Φ(i, j) = (s, t), then (i, i, j) 7→ (s, s, t) with the inverse induced by Φ−1 via
the rule that if Φ−1(s, t) = (i, j), then (s, s, t) 7→ (i, i, j).

First suppose Pij ∈ P−> , so that conditions (15a)-(15d) are satisfied along-
side δij − εij 6 0 and i + j > b + c. We need to check that if Φ(i, j) = (s, t),
i.e. s = i+ωij and t = j−2ωij , then (s, t) satisfies conditions (17a)-(17c) and
that s+ t > b+ c and (s+ t = b+ c) =⇒ s > a.
• Condition (17a): 0 6 t 6 c. This translates to 0 6 j−2ωij 6 c. The right
hand side follows from j 6 c (see the right hand side of (15a)). If ωij = 0,
the left hand side follows from the left hand side of (15a). Otherwise it
says that j > 2d 2i+j−L

2 e. Now δij − εij 6 0 is equivalent to i − εij 6 a,
but i+ j > b+ c so εij > 0 and this becomes i− (i+ j − (b+ c)) 6 a or
−j 6 a− b− c. Adding this to (15c) yields 4i 6 2a+ 2b+ 2c or 2i 6 L.
This is enough to prove j > 2d 2i+j−L

2 e unless 2i = L and j is odd. But
then 4i+ j is odd and a+ 3b+ 3c is even so we have strictness in (15c),
that is, 4i+ j < a+ 3b+ 3c. Hence adding this to −j 6 a− b− c results
in 4i < 2a+ 2b+ 2c which contradicts 2i = L.
• Condition (17b): t 6 s 6 b + c. This translates to j − 2ωij 6 i + ωij 6
b + c. The left hand side follows from the left hand side of (15b). If
ωij = 0, then the right hand side comes from the right hand side (15b).
Otherwise the right hand side says i + d 2i+j−L

2 e 6 b + c which follows
from i + 2i+j−L

2 6 b + c (which is equivalent to (15c)) since b + c is an
integer.

• Condition (17c): 2s+ 2t 6 a+ b+ 2c−mct. This translates to 2i+ 2j −
2ωij 6 a + b + 2c −mcj (note that mc(j−2ωij) = mcj). If ωij = 0 then
2i + j 6 L so it suffices to show j 6 c − mcj which is evident by the
definition of mcj and j 6 c. On the other hand if ωij > 0, then proving
2i+ 2j 6 (2i+ j−L) +a+ b+ 2c−mcj suffices since (2i+ j−L) 6 2ωij .
But the former again reduces to j 6 c−mcj .
• s+ t > b+c. This says i+j−ωij > b+c. This is clear from the definition
of P−> if ωij = 0 so suppose ωij > 0. Now, as in the first bullet point,
δij− εij 6 0 and i+ j > b+ c imply j > b+ c−a. The latter is equivalent
to 2i+ 2j − 2 2i+j−L

2 > 2b+ 2c, or, dividing by 2, i+ j − 2i+j−L
2 > b+ c.

But since b + c is an integer, this implies i + j − d 2i+j−L
2 e > b + c as

desired.
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• (s + t = b + c) =⇒ s > a. This translates to, if i + j − ωij = b + c,
then i+ ωij > a. If ωij = 0, the hypothesis would clearly contradict the
assumption i + j > b + c. Thus we may assume ωij > 0 which means
2i + j > L. Adding this to −i − j > −b − c − ωij gives i > a − ωij as
desired.

Now suppose Qst ∈ Q−>, so that conditions (17a)-(17c) are satisfied along-
side s + t > b + c and (s + t = b + c) =⇒ s > a. We need to check that if
Φ−1(s, t) = (i, j), that is, i = s − ωst and j = t + 2ωst, then (i, j) satisfies
conditions (15a)-(15c) as well as δij − εij 6 0 and i + j > b + c. (We do not
need to check condition (15d) as adding −3i− 3j < −3b− 3c to (15c) yields
i− 2j < a.)
• Condition (15a): 0 6 j 6 c. This translates to 0 6 t+ 2ωst 6 c. The left
hand side follows from 0 6 t (which is the left hand side of (17a)). Now,
if either t − c or a + b are odd, then 2s + 2t 6 a + b + 2c −mct implies
2s+ 2t < a+ b+ 2c, which is to say t+ 2 2s+t−L

2 < c so that t+ 2ωst 6 c.
On the other hand if both t − c and a + b are even, then we can only
deduce t+ 2 2s+t−L

2 6 c from (17c), but in this case 2s+t−L
2 = ωst so we

still get what we want.
• Condition (15b): j 6 i 6 b+c. This translates to t+2ωst 6 s−ωst 6 b+c.
The right hand side follows from the right hand side of (17b). If ωst = 0,
then the left hand side comes from the left hand side (17b). Now suppose
ωst > 0. We need to show that t+2ωst 6 s−ωst. The inequality we wish
to show is equivalent to 2t− 2s+ 6ωst 6 0. Since 2ωst can be rewritten
as 2s+ t− L+mLt this becomes 4s+ 5t 6 3L− 3mLt.
First suppose that s+ t > b+ c and mLt 6 mct. Since twice (17c) reads
4s+4t 6 2L+2c−2mct it suffices to prove t 6 a+b−c+2mct−3mLt, since
the sum of the last two inequalities mentioned gives the one at the end of
the last sentence. Since t 6 c, it suffices to show a+b > 2c−2mct+3mLt.
Since s+ t > b+ c, we have −2s− 2t 6 −2b− 2c− 2 which we can add
to (17c) to get a > b+2+mct or a−b > 2+mct. Adding this to 2b > 2c−2
yields a+ b > 2c+mct which implies a+ b > 2c− 2mct + 3mLt since we
are assuming mLt 6 mct.
Now suppose that s + t > b + c, but 0 = mLt < mct = 1. Since L + c
must be odd, we have strictness in (17c), that is we have 2s + 2t <
a + b + 2c = L + c. Thus we have 4s + 4t 6 2L + 2c − 2 so it suffices
to prove t 6 a+ b− c− 1 since adding these gives 4s+ 5t 6 3L− 3mLt

as desired. Again, t 6 c so its enough to show a + b > 2c + 1. Since
strictness of (17c) implies 2s + 2t 6 a + b + 2c − 1, we can add this to
−2s− 2t 6 −2b− 2c− 2 to obtain a > b+ 3. Since b > c− 1, this implies
a+ b > 2c+ 1 as desired.
Finally suppose that s + t = b + c (and so also s > a). We need to
show 4(b + c) + t 6 3L − 3mLt, or equivalently, t 6 3a − b − c − 3mLt.
When s + t = b + c, condition (17c) becomes a > b + mct. Thus s > a
implies s > b + mct + 1, which in turn means t 6 c − mct − 1. In
fact t 6 c − 2 because if t = c − 1 then we would have mct = 1 and
thus t 6 c − 2. Now since a > b + mct > c − 1 + mct this means t 6
c− 2 + (a− b−mct) + 2(a− c+ 1−mct) or that t 6 3a− b− c− 3mct

which implies t 6 3a − b − c − 3mLt unless 0 = mct < mLt = 1. But in
the latter case a + b must be odd so a > b implies a > b. Thus we have
a > b+1 > c so that t 6 c−2+(a−b−1)+2(a−c) or t 6 3a−b−c−3.
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• Condition (15c): 4i+ j 6 a+ 3b+ 3c. This translates to 4s+ t− 2ωst 6
a+3b+3c. If ωst = 0, then 2s+t 6 L which we add to two times the right
hand side of (17b) to obtain 4s+ t 6 a+3b+3c as desired. Now suppose
ωst > 0. Then 4s+ t− 2ωst = 4s+ t− 2d 2s+t−L

2 e 6 4s+ t− 2 2s+t−L
2 =

2s+ L 6 L+ b+ c, where the last inequality comes from the right hand
of (17b).

• δij − εij 6 0. This reduces to i − εij 6 a which says that s − ωst −
max(0, s + t + ωst − (b + c)) 6 a. Since s + t > b + c, this is equivalent
to −t− 2ωst 6 a− b− c. If ωst = 0 then 2s + t 6 L and which we may
add to −2s− 2t 6 −2b− 2c to get −t 6 a− b− c as desired. If ωst > 0
then it will suffice to show −t− 2 2s+t−L

2 6 a− b− c but this reduces to
−2s− 2t 6 −2b− 2c.
• i+ j > b+ c. This means s+ t+ ωst > b+ c. If ωst > 0 this follows from
s+ t > b+ c. Now suppose ωst = 0. Then 2s+ t 6 L which we may add
to −s− t 6 −b− c to get s 6 a. Thus the assumptions s+ t > b+ c and
(s+ t = b+ c) =⇒ s > a reveal that s+ t > b+ c.

This proves that Φ induces a bijection from P−> to Q−>. Moreover if Pij ∈
P−> , then δij 6 εij and i + j > b + c, so the area range reduces to Rij =
[2i + j − (b + c), A − 2i − j]. Now if Φ(i, j) = (s, t), then since by the above
Qst ∈ Q−> we have s+t > b+c so that we get Rst = [2s+t−(b+c), A−2s−t].
Since it is clear that 2i+ j = 2s+ t we see that Rij = Rst and so the bijection
induced by Φ preserves the area range.

(3) Define maps Ω and Ω−1 by

Ω(k, `) = (`, k − `) and Ω−1(s, t) = (s+ t, s).

Since Ω is an invertible linear transformation (with inverse Ω−1), it is im-
mediate that Ω−1 ◦ Ω and Ω ◦ Ω−1 are the identity on Z2. We claim that Ω
induces an area range preserving bijection from H+ to Q+ via the rule that,
if Ω(k, `) = (s, t), then (k, `, 0)→ (s, s, t) with inverse induced by Ω−1 via the
rule that, if Ω−1(s, t) = (k, `) then (s, s, t)→ (k, `, 0).

First suppose that H`
k ∈ H+ so that a < ` 6 k < b+ c, and that Ω(k, `) =

(s, t), that is, s = ` and t = k − `. We need to check inequalities (17a)-(17c)
as well as s+ t < b+ c and s > a.
• Condition (17a): 0 6 t 6 c. This translates to 0 6 k − ` 6 c. The left
hand side is true because ` 6 k. Moreover, since ` > a > b − 1, the
inequalities ` > b and k < b+ c give k − ` < c.
• Condition (17b): t 6 s 6 b+ c. This translates to k− ` 6 ` 6 b+ c. Now
k 6 b+ c− 1 6 2a+ 1 < 2` which established the left hand side. On the
other hand ` 6 k < b+ c makes the right hand side obvious.
• Condition (17c): 2s + 2t 6 a + b + 2c − mct. This translates to 2k 6
a+ b+ 2c−mc(k−`). But k 6 b+ c− 1 and since a > b− 1 also k 6 a+ c.
Since adding these gives 2k 6 a+ b+ 2c− 1 we are done.
• s + t < b + c. This translates to ` + k − ` < b + c, that is, k < b + c, as
assumed.
• s > a. This says ` > a, as assumed.
Now suppose that Qst ∈ Q+ so that the inequalities (17a)-(17c) hold and

we have s + t < b + c and s > a. We need to show that if Ω−1(s, t) = (k, `)
then H`

k ∈ H+, that is, a < ` 6 k < b+ c. Since k = s+ t and ` = s, this says
a < s 6 s+ t < b+ c. The left and right hand inequalities are those assumed
above. The middle inequality follows from the left hand side of (17a).
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This proves that Ω induces a bijection from H+ to Q+. Moreover if H`
k ∈ H+,

then R`k = [`, A − k − `]. Now if Ω(i, j) = (s, t), then since by the above Qst ∈ Q+,
we have s+ t < b+ c so εst = 0 and Rst = [s,A− 2s− t] = [`, A− 2`− k + `]. Thus
R`k = Rst and so the bijection induced by Ω preserves the area range. �

4.6. Combinatorial recursion. In this section, we show that the combinatorial
expression of Theorem 3.1 also satisfies the recursion relations of Lemma 2.25 for
c > 1 and equals F (a, b, 0) and F (a, b,−1) for c = 0 and c = −1, respectively.

Recall that the set of quasiheads is defined as

Q̃(a, b, c) = {(i, j) | 0 6 j 6 c, j 6 i 6 b+ c, 2i+ 2j 6 a+ b+ 2c−mcj}
where mcj = c− j (mod 2). Define

(20) Hcomb(a, b, c) =
∑

(i,j)∈Q̃(a,b,c)

qA−2i−jti+εij ,

where εij = max(0, i+ j − b− c).

Lemma 4.11. For a+ 1 > b, a+ 1, b+ 1 > c > 1, we have

(21) Hcomb(a, b, c) = Hcomb(a+ 2, b+ 2, c− 2) + (qt)cH(a+ c, b− c)

+ (qt)c−1H(a+ c, b− c+ 2) +
∑

26`6min(2c,a−b)

qa+2c−`t`+b − δa,b−1q
a+2ctb

− (δa,b + δa,b−1)qa+2c−1tb+1,

where H(a, b) is given by (10).

Proof. Observe that if (a′, b′, c′) = (a+2, b+2, c−2), then b′+c′ = b+c, a′+b′+2c′ =
a+ b+ 2c, mc′j = mcj . Therefore

Q̃(a′, b′, c′) = {(i, j) | 0 6 j 6 c′, j 6 i 6 b+ c, 2i+ 2j 6 a+ b+ 2c−mcj}.

We conclude that Q̃(a′, b′, c′) ⊆ Q̃(a, b, c) and the difference of these two sets consists
of (i, j) ∈ Q̃(a, b, c) with j = c or j = c− 1. In the former case, the inequalities have
the form
(22) c 6 i 6 b+ c, 2i 6 a+ b

and the contribution to Hcomb equals∑
c6i6b+c
2i6a+b

qA−c−2i ti+max(0,i−b).

This sum breaks into two parts for c 6 i 6 b and for b+ 1 6 i∑
c6i6b

2i6a+b

qa+2b+2c−2i ti +
∑

b+16i6b+c
2i6a+b

qa+2b+2c−2i t2i−b.

If a > b, the restriction 2i 6 a + b in the first sum is redundant and so it becomes
(qt)cH(a + c, b − c). On the other hand if a = b − 1, the first sum does not contain
the i = b term qa+2ctb but (qt)cH(a + c, b − c) does. Thus we conclude the above is
equal to

(qt)cH(a+ c, b− c)− δa,b−1q
a+2ctb +

∑
2b+262i6min(2b+2c,a+b)

qa+2b+2c−2i t2i−b.

Similarly, in the case j = c− 1 for a > b we obtain
c− 1 6 i 6 b+ c, 2i 6 a+ b+ 1
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and the contribution to Hcomb equals∑
c−16i6b+1
2i6a+b+1

qa+2b+2c−2i+1 ti +
∑

b+26i6b+c
2i6a+b+1

qa+2b+2c−2i+1 t2i−1−b.

If a > b the restriction 2i 6 a+ b+ 1 in the first sum is redundant and so it becomes
(qt)c−1H(a + c, b − c + 2). On the other hand if a = b or a = b − 1 the first sum
does not contain the i = b + 1 term qa+2c−1tb+1 or the i = b term qa+2ctb but
(qt)c−1H(a+ c, b− c− 2) does. Thus we conclude the above is equal to

(qt)c−1H(a+ c, b− c+ 2)− (δa,b−1 + δa,b)qa+2c−1tb+1

+
∑

2b+362i−16min(2b+2c−1,a+b)

qa+2b+2c−2i+1t2i−1−b.

Finally, ∑
2b+262i6min(2b+2c,a+b)

qa+2b+2c−2it2i−b

+
∑

2b+362i−16min(2b+2c−1,a+b)

qa+2b+2c−2i+1t2i−1−b

=
∑

2b+26k6min(2b+2c,a+b)

qa+2b+2c−ktk−b,

where we combined terms with even and odd k. If we denote ` = k − 2b, then∑
2b+26k6min(2b+2c,a+b)

qa+2b+2c−ktk−b =
∑

26`6min(2c,a−b)

qa+2c−` t`+b. �

Corollary 4.12. Let

Fcomb(a, b, c) = 1
1− t/qHcomb(a, b, c; q, t) + 1

1− q/tHcomb(a, b, c; t, q).

Then for a+ 1 > b, a+ 1, b+ 1 > c > 1 we have

(23) Fcomb(a, b, c) = Fcomb(a+ 2, b+ 2, c− 2) + (qt)cF (a+ c, b− c)

+ (qt)c−1F (a+ c, b− c+ 2) +
∑

26`6min(2c,a−b)

(qt)`+bF (a− b+ 2c− 2`)

−
1∑

j=a−b+1
(qt)b+jF (a− b+ 2c− 2j).

Proof. This follows directly from Lemma 4.11, using (9), and Example 2.18. Also note
that

1∑
j=a−b+1

(qt)b+jF (a− b+ 2c− 2j) = δa,b(qt)b+1F (a− b+ 2c− 2)

+ δa,b−1
[
(qt)bF (a− b+ 2c) + (qt)b+1F (a− b+ 2c− 2)

]
. �

We need to check the base cases.

Lemma 4.13. We have
Fcomb(a, b, 0) = F (a, b, 0) for a, b > 0,

Fcomb(a, b,−1) = F (a, b,−1) for a, b > 1.
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Proof. For a, b > 0 and c = 0, we have j = 0 in Q̃(a, b, 0), so 0 6 i 6 b. Therefore, by
comparing (20) with (10)

Hcomb(a, b, 0) = H(a, b),

and hence Fcomb(a, b, 0) = F (a, b). Furthermore, by Corollary 2.13 the first claim
follows.

For a, b > 1, we have by Lemma 2.24 and the fact that Fcomb(a, b,−1) = 0 by
definition that F (a, b,−1) = Fcomb(a, b,−1) = 0. �

Corollary 4.14. For nonnegative integers a, b, c and a+ 1 > b, a+ 1, b+ 1 > c, we
have F (a, b, c) = Fcomb(a, b, c) proving Theorem 3.1.

Proof. By Lemma 2.25 and Corollary 4.12, F (a, b, c) and Fcomb(a, b, c) satisfy the same
two step recursion. Hence the equality F (a, b, c) = Fcomb(a, b, c) can be reduced to
the equalities F (a, b, 0) = Fcomb(a, b, 0) for a, b > 0 and F (a, b,−1) = Fcomb(a, b,−1)
for a, b > 1. These are given in Lemma 4.13. �

4.7. Proof of Theorem 3.5. By Corollary 4.14, we have that F (a, b, c) =
Fcomb(a, b, c). By Proposition 4.10, there is an area preserving bijection between
quasiheads and heads. Combined with Corollary 4.9, there is also an area preserving
bijection with pseudoheads and tails. Furthermore, each λ ⊆ λ(a, b, c) sits in precisely
one chain indexed by a given pseudohead (or head). The proofs of Theorems 4.6
and 4.7 tell us, which chain λ sits in depending on the cases spelled out in Section 3.2:

Case Chain membership
Case 1(a) λ ∈ C(Pyz)
Case 1(b)(i) λ ∈ C(P(L+z−x)z)
Case 1(b)(ii) λ ∈ C(T (L−x)(b+c−y))
Case 2 λ ∈ C(Hy

x)

Now if the area range for a given chain is [r,R], then due to the symmetry between
q and t in each chain, we have

stat(λ) = r +R− area(λ) = r +R−A+ x+ y + z

for λ = (x, y, z). Using the area ranges for pseudoheads, tails, and heads as given in
Table 3 and the beginning of this section, this yields (12). In Case 1(a), we first obtain
stat(λ) = x+max(εyz, δyz), which is equal to x+max(0, dy−a2 e, y+z−b−c, d 2y+z−L

2 e).
In Case 1(b)(i), we first obtain stat(λ) = −L+2x+y−z+max(ε(L+z−x)z, δ(L+z−x)z),
but using that y + z 6 b + c and L + z − x 6 y, we obtain ε(L+z−x)z = 0 and
δ(L+z−x)x = dL+z−x−a

2 e. Combined with Theorem 3.1 this proves Theorem 3.5.
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