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g-vectors of manifolds with boundary

Isabella Novik & Ed Swartz

Abstract We extend several g-type theorems for connected, orientable homology manifolds
without boundary to manifolds with boundary. As applications of these results we obtain
Kühnel-type bounds on the Betti numbers as well as on certain weighted sums of Betti numbers
of manifolds with boundary. Our main tool is the completion ∆̂ of a manifold with boundary ∆;
it is obtained from ∆ by coning off the boundary of ∆ with a single new vertex. We show that
despite the fact that ∆̂ has a singular vertex, its Stanley–Reisner ring shares a few properties
with the Stanley–Reisner rings of homology spheres. We close with a discussion of a connection
between three lower bound theorems for manifolds, PL-handle decompositions, and surgery.

1. Introduction
This paper is devoted to the study of face numbers of manifolds with boundary.
While [24] established the best to-date lower bounds on the g-numbers of manifolds
with boundary, our emphasis here is on Macaulay-type inequalities involving the g-
numbers.

The quest for characterizing possible f -vectors of various classes of simplicial com-
plexes or at least establishing significant necessary conditions started about fifty years
ago with McMullen’s g-conjecture [18] that posited a complete characterization of f -
vectors of simplicial polytopes. In ten years, this conjecture became a theorem [8, 34].
This gave rise to algebraic and combinatorial versions of the g-conjecture for simpli-
cial spheres. Very recently Adiprasito [1] announced a proof of the most optimistic
algebraic version of this conjecture. In the late 1990s, Kalai proposed a far reaching
generalization of the sphere g-conjecture to simplicial manifolds without boundary.
The authors proved that the (weaker) algebraic version of the g-conjecture for spheres
implies all the enumerative consequences of Kalai’s manifold g-conjecture, see [28].
Furthermore, Murai and Nevo [22] establsihed a g̃-variation of this result. In this
paper we extend both of these statements to manifolds with boundary.

The main idea (that goes back to Kalai [13, Section 11]) is as follows: given a
simplicial complex ∆ whose geometric realization is a connected, orientable, homology
manifold with boundary, we define the completion of ∆ — a complex ∆̂ obtained from
∆ by coning the boundary of ∆ (all components of it) with a single new vertex v0. We
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then show that, despite the fact that ∆̂ has a singular vertex, a certain quotient of a
generic Artinian reduction of the Stanley–Reisner ring of ∆̂ enjoys several properties
that Artinian reductions of the Stanley–Reisner rings of simplicial spheres have. This
result together with the computation of the Hilbert function of this quotient allows us
to extend virtually all known results on face numbers of orientable manifolds without
boundary to the class of orientable manifolds with boundary.

The main results and the structure of the paper are as follows. In Section 2 we
discuss basics of simplicial complexes and Stanley–Reisner rings. In particular, we
review Gräbe’s theorem on local cohomology [12] and introduce our main player
— the completion ∆̂ of a manifold with boundary ∆. Section 3 is devoted to the
Gorensteinness and the weak Lefschetz property of a certain quotient of the Stanley–
Reisner ring of ∆̂, see Theorem 3.1 and Corollary 3.6. Section 4 computes the Hilbert
function of this quotient, Theorem 4.1. This result is used in Section 5 to establish two
versions of g-theorems for manifolds with boundary, Theorems 5.1 and 5.3. In Section 6
we use these g-results to derive Kühnel-type bounds on the Betti numbers and certain
weighted sums of Betti numbers of manifolds with boundary. Finally, in Section 7,
we examine the combinatorial and topological consequences of some of the known
inequalities for f -vectors of homology manifolds with boundary when they are sharp.
More specifically, we discuss a connection between three lower bound theorems for
manifolds, PL-handle decompositions, and surgery, see Theorems 7.2, 7.11, and 7.16.

2. Preliminaries
In this section we review the necessary background material on simplicial complexes
and their Stanley–Reisner rings with a special emphasis on homology manifolds with
and without boundary as well as on singular simplicial complexes that have only one
singular vertex. We refer the reader to [35, Chapter 2] and the papers [29, 30] for
more details on the subject.

2.1. Simplicial complexes: homology manifolds and their completions. A
simplicial complex ∆ on the ground set V is a collection of subsets of V that is closed
under inclusion. The maximal faces (with respect to inclusion) are called facets. The
dimension of a face F ∈ ∆ is dimF := |F |−1 and the dimension of ∆ is the maximal
dimension of its faces. A complex is pure if all of its facets have the same dimension.
A complex ∆ is j-neighborly if every j-element subset of V is a face of ∆.

Let ∆ be a simplicial complex and let F be a face of ∆. The star and the link of
F in ∆ are the following subcomplexes of ∆:

stF = st∆ F := {G ∈ ∆ | G∪F ∈ ∆}, lkF = lk∆ F := {G ∈ st∆ F | G∩F = ∅}.

In particular, the link of the empty face is the complex ∆ itself. We refer to the links
of non-empty faces as proper links. The contrastar of F in ∆ (also known as the
deletion of F from ∆) is costF = cost∆ F := {G ∈ ∆ | G 6⊇ F}. If v is a vertex (i.e. a
0-dimensional face), it is customary to write v ∈ ∆, st v, lk v, and cost v instead of
{v} ∈ ∆, st{v}, lk{v}, and cost{v}. (In fact, we will sometimes write ∆ − v instead
of cost{v}.) Also, if v0 /∈ V is a new vertex, then the cone over ∆ with apex v0 is
v0 ∗∆ := ∆ ∪ {v0 ∪ F | F ∈ ∆}.

Throughout the paper, we fix an infinite field k. We denote by H̃∗(∆; k) the re-
duced simplicial homology of ∆ with coefficients in k and by β̃i(∆) := dimk H̃i(∆; k)
the i-th reduced Betti number. Occasionally, we also use the (reduced) relative sim-
plicial homology of a pair (∆,Γ): H̃i(∆,Γ; k) and the corresponding Betti numbers
β̃i(∆,Γ) := dimk H̃i(∆,Γ; k). We remark that H̃i(∆,Γ; k) = Hi(∆,Γ; k) for all Γ ⊆ ∆
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and all i > 0 and that H̃0(∆,Γ; k) = H0(∆,Γ; k) if Γ 6= ∅. On the other hand,
β̃0(∆,∅) = β̃0(∆) = β0(∆,∅)− 1.

One of the central objects of this paper is a k-homology manifold. A pure (d− 1)-
dimensional simplicial complex ∆ is a k-homology manifold without boundary (or a
closed k-homology manifold) if the homology (computed over k) of every proper link
of ∆, lk∆ F , coincides with the homology of a (d − 1 − |F |)-dimensional sphere. In
this case, we write ∂∆ = ∅. Similarly, a pure (d− 1)-dimensional simplicial complex
∆ is a k-homology manifold with boundary if every proper link of ∆, lk∆ F , has the
homology of a (d− 1− |F |)-dimensional sphere or a ball (over k), and the boundary
complex of ∆, i.e.

∂∆ :=
{
F ∈ ∆ | H̃∗(lk∆ F ; k) = 0

}
∪ {∅}

is a (d − 2)-dimensional k-homology manifold without boundary. The faces of ∂∆
are called boundary faces. The non-boundary faces of ∆ are called interior faces.
When the field plays no role we simply call ∆ a homology manifold (with or without
boundary). We refer the reader to Chapter 8 of Munkers’ book [19] (and especially
§§ 63, 65, 70 and 72 there) for more background on homology manifolds.

The prototypical example of a homology manifold (with or without boundary) is
a triangulation of a topological manifold (with or without boundary). A connected
k-homology manifold ∆ is orientable if the top homology of the pair (∆, ∂∆) is 1-
dimensional. In this case, (∆, ∂∆) satisfies the usual Poincaré–Lefschetz duality asso-
ciated with orientable compact manifolds. Note that an arbitrary triangulation of any
topological manifold (orientable or not, with or without boundary) is an orientable
Z/2Z-homology manifold.

A k-homology (d−1)-sphere is a (d−1)-dimensional k-homology manifold without
boundary that has the same homology as the (d−1)-dimensional sphere. A k-homology
(d − 1)-ball is a (d − 1)-dimensional k-homology manifold with boundary whose ho-
mology is trivial and whose boundary complex is a k-homology (d − 2)-sphere. The
contrastar of any vertex in a k-homology (d− 1)-sphere is a k-homology (d− 1)-ball.
Furthermore, every proper link of a k-homology manifold without boundary is a k-
homology sphere, while a proper link of a k-homology manifold with boundary is a
k-homology sphere or ball.

Let ∆ be a k-homology manifold with or without boundary and let v0 6∈ V be a
new vertex. A key to most of our proofs is the completion of ∆, ∆̂, defined as follows:

∆̂ := ∆ ∪ (v0 ∗ ∂∆).

Note that we define v0 ∗∅ = ∅; hence if ∆ is a homology manifold without boundary,
then ∆̂ = ∆.

A pure simplicial complex Γ is a complex with at most one singularity if all of the
vertex links of Γ but possibly one are k-homology balls or spheres. This exceptional
vertex is called a singular vertex; the other vertices are called non-singular. For in-
stance, if ∆ is a k-homology manifold with boundary, ∆̂ is a completion of ∆, and
v 6= v0, then both ∆̂ and cost∆̂ v are complexes with (at most) one singular vertex,
namely, v0.

When only topological properties of a space are relevant we may use capital roman
letters. For instance, “If X is a d-dimensional ball, then its boundary Y is a (d− 1)-
dimensional sphere.”

2.2. Face numbers and the Stanley–Reisner rings. Let ∆ be a (d − 1)-
dimensional simplicial complex on the vertex set V . Denote by fi(∆) the number of
i-dimensional faces of ∆. The f -vector of ∆ is f(∆) = (f−1(∆), f0(∆), . . . , fd−1(∆))
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and the h-vector of ∆ is h(∆) = (h0(∆), h1(∆), . . . , hd(∆)), where

hi(∆) :=
i∑

j=0
(−1)i−j

(
d− j
d− i

)
fj−1(∆).

Let A = k[xv | v ∈ V ] be a polynomial ring, and let m = (xv | v ∈ V ) be the
graded maximal ideal of A. For F ⊆ V , write xF :=

∏
v∈F xv. The Stanley–Reisner

ideal I∆ of ∆ is the ideal of A defined by

I∆ = (xF | F ⊆ V, F /∈ ∆).

The Stanley–Reisner ring k[∆] of ∆ (over k) is the quotient ring k[∆] = A/I∆. In
particular, k[∆] is a graded ring; it is also a graded A-module. If dim ∆ = d − 1,
then the Krull dimension of k[∆] is d and the Hilbert series of k[∆] is given by ([35,
Chapter II.1])

Hilb(k[∆];λ) =
∑d
i=0 hi(∆)λi

(1− λ)d .

A linear system of parameters (or l.s.o.p for short) for k[∆] is a sequence Θ =
θ1, . . . , θd of d = dim ∆ + 1 linear forms in m such that

k(∆,Θ) := k[∆]/Θk[∆]

has Krull dimension zero (i.e. it is a finite-dimensional k-space). Since k is infinite,
by the Noether normalization lemma, an l.s.o.p. always exists: a generic choice of
θ1, . . . , θd does the job. The ring k(∆,Θ) is called an Artinian reduction of k[∆].

We need a few more definitions. If M is a finitely-generated graded A-module, we
let Mj denote the j-th homogeneous component of M . For τ ∈ A, define (0 :M τ) :=
{ν ∈M | τν = 0}. The socle of M is the following graded submodule of M :

SocM =
⋂
v∈V

(0 :M xv) = {ν ∈M | mν = 0}.

In particular, for any choice of integers i1 < i2 < · · · < i`,
⊕`

j=1(SocM)ij is a
submodule of M . For a standard graded k-algebra M = A/I of Krull dimension zero,
this allows us to define the interior socle of M :

Soc◦M :=
d0−1⊕
i=0

(SocM)i, where d0 := max{j |Mj 6= 0}.

We say that A/I is a level algebra if Soc◦(A/I) = 0, and that A/I is Gorenstein
if it has a 1-dimensional socle. Equivalently, A/I is Gorenstein if it is level and
dimk(A/I)d0 = 1.

We are interested in the Hilbert functions of k(∆,Θ) and its quotient

k(∆,Θ) := k(∆,Θ)/ Soc◦ k(∆,Θ).

Definition 2.1. Let ∆ be a (d − 1)-dimensional simplicial complex and let Θ =
θ1, . . . , θd be a generic l.s.o.p. for k[∆]. The h′- and the h′′-numbers of ∆ are de-
fined by

h′j(∆) := dimk k(∆,Θ)j and h′′j (∆) := dimk k(∆,Θ)j (for j > 0), respectively.

Although k is suppressed from our notation, the h′- and h′′-numbers do depend on
k. For any (d− 1)-dimensional simplicial complex ∆, h′j(∆) = 0 for all j > d (see [35,
Proposition III.2.4(b)]), while h′d(∆) = h′′d(∆) = β̃d−1(∆) (see [38, Theorem 4.1]
and [3, Lemma 2.2(3)]). The following theorem collects several other known results
on h′- and h′′-numbers.
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Theorem 2.2. Let ∆ be a (d− 1)-dimensional simplicial complex.
(1) If ∆ is a k-homology sphere or a ball, then h′i(∆) = hi(∆) for all 0 6 i 6 d.
(2) If ∆ is a k-homology manifold with or without boundary, then

h′i(∆) = hi(∆)−
(
d

i

) i−1∑
j=1

(−1)i−j β̃j−1(∆) ∀ 0 6 i 6 d.

(3) If ∆ is a connected, orientable k-homology manifold without boundary, then

h′′i (∆) = h′i(∆)−
(
d

i

)
β̃i−1(∆) = hi(∆)−

(
d

i

) i∑
j=1

(−1)i−j β̃j−1(∆) ∀ 0 6 i 6 d−1.

(4) If ∆ is a complex with (at most) one singular vertex u, then for all 0 6 i 6 d,

h′i(∆) = hi(∆)−
i−1∑
j=1

(−1)i−j
((

d− 1
i− 1

)
β̃j−1(∆) +

(
d− 1
i

)
β̃j−1(cost∆ u)

)
.

Part 1 of this theorem is due to Stanley [33], part 2 is due to Schenzel [32], part 3
is [28, Theorem 1.3], and part 4 is a special case of [30, Theorem 4.7]. When ∆ is a
k-homology manifold with boundary, part 4 allows us to compute the h′-numbers of
∆̂. One of the goals of this paper is to understand the h′′-numbers of ∆̂ where we
in addition assume that ∆ is connected and orientable. This requires some results on
the local cohomology of k[∆̂] that we review in the next subsection.

It is worth pointing out that there are several reasons for working with ∆̂ instead
of ∆ itself. One of the reasons is that, as we will see in Section 3, the ring k(∆̂,Θ)
is Gorenstein. Another reason is that the h′′-numbers of k-homology manifolds with
boundary are hard to calculate. In view of Schenzel’s formula (Theorem 2.2(2)), to
compute the h′′-numbers of a homology manifold ∆ (with or without boundary), one
needs to understand the module Soc k(∆,Θ). Theorems 2.2 and 3.4 in [29] decompose
this module into two parts: the first part involves the well-understood local cohomol-
ogy modules of k[∆] while the second part involves a certain mysterious submodule
of SocHd(k[∆]). If ∆ is a connected, orientable k-homology manifold without bound-
ary, then, as was shown in [28, Theorem 2.1], the socle of Hd(k[∆]), and hence also
the “mysterious submodule”, vanish in all but the 0-th degree; this leads to the proof
of Theorem 2.2(3). However, for k-homology manifolds with boundary, at present we
are lacking even a conjectural description of this mysterious part. For instance, if ∆
is a 2-dimensional disk then the h-vector of ∆ is (1,m, n, 0) with m > n > 0. If n > 0,
then 0 6 dimk Soc◦ k(∆,Θ) 6 m− n and every value in the inequality is possible. In
particular, the topology of ∆ does not determine dimk Soc◦ k(∆,Θ).

2.3. Local cohomology and Gräbe’s theorem. Let M be an arbitrary finitely-
generated graded A-module. We denote by Hi

m(M) the i-th local cohomology of M
with respect to m.

For a simplicial complex ∆, Gräbe [12] gave a description of Hi
m(k[∆]) and its

A-module structure in terms of simplicial cohomology of the links of ∆ and the maps
between them. When ∆ is a complex with one singular vertex u, this description takes
the following simple form. For F ∈ ∆, consider the i-th simplicial cohomology of the
pair (∆, cost∆ F ) with coefficients in k:

Hi
F (∆) := H̃i(∆, cost∆ F ; k) ∼= H̃i−|F |(lk∆ F ; k).

In particular, Hi
∅ = H̃i(∆,∅; k) = H̃i(∆; k). If G⊆F ∈∆, we let ι∗ :Hi

F (∆)→Hi
G(∆)

be the map induced by inclusion ι : cost∆G→ cost∆ F .
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Theorem 2.3 (Gräbe). Let ∆ be a (d − 1)-dimensional simplicial complex with one
singular vertex u, and let −1 6 i < d− 1. Then

Hi+1
m (k[∆])−j =


0 if j < 0,
Hi

∅(∆) if j = 0,
Hi
{u}(∆) if j > 0.

For every vertex w 6= u and any integer j, the map ·xw : Hi+1
m (k[∆])−(j+1) →

Hi+1
m (k[∆])−j is the zero map; on the other hand,

·xu =


0-map if j < 0,
ι∗ : Hi

{u}(∆)→ Hi
∅(∆) if j = 0,

identity map: Hi
{u}(∆)→ Hi

{u}(∆) if j > 0.

The description of Hd
m(k[∆]) is quite a bit more involved. To this end, for a mono-

mial ρ ∈ A, define the support of ρ by s(ρ) := {v ∈ V | xv divides ρ}. LetM(∆) be
the set of all monomials in A whose support is in ∆, and letMj(∆) := {ρ ∈M(∆) |
deg(ρ) = j}.

Theorem 2.4 (Gräbe). Let ∆ be any (d − 1)-dimensional simplicial complex. Then
for j ∈ Z,

Hd
m(k[∆])−j =

⊕
ρ∈Mj(∆)

Hρ, where Hρ = Hd−1
s(ρ) (∆),

and the A-structure on the ρ-th component of the right-hand side is given by

·x` =


0-map if ` /∈ s(ρ),
ι∗ : Hd−1

s(ρ) (∆)→ Hd−1
s(ρ/x`)(∆) if ` ∈ s(ρ), but ` /∈ s(ρ/x`),

identity map: Hd−1
s(ρ) (∆)→ Hd−1

s(ρ/x`)(∆) if ` ∈ s(ρ), and ` ∈ s(ρ/x`).

3. The Gorenstein and Weak Lefschetz properties
If ∆ is a k-homology sphere and Θ is an arbitrary l.s.o.p. for k[∆], then k(∆,Θ) is
Gorenstein (see [35, Theorem II.5.1]). This result was extended in [28, Theorem 1.4] to
connected, orientable k-homology manifolds without boundary: if ∆ is such a complex
and Θ is an l.s.o.p. for k[∆], then k(∆,Θ) is Gorenstein. Here we further extend this
result to manifolds with boundary.

Throughout this section, we let ∆ be a k-homology manifold with boundary. We
assume that ∆ is (d− 1)-dimensional and has vertex set V , and so ∆̂ has vertex set
V0 := V ∪ {v0}. The main result of this section is:

Theorem 3.1. Let ∆ be a connected, orientable k-homology manifold with boundary
and let Θ be a generic l.s.o.p. for k[∆̂]. Then k(∆̂,Θ) is Gorenstein.

The proof relies on a few lemmas. For these lemmas we fix a vertex v of ∆. (Hence
v is a non-singular vertex of ∆̂.)

Lemma 3.2. Let ∆ be a (d−1)-dimensional, k-homology manifold with boundary, and
let v be a vertex of ∆. Then for all j 6 d− 3,

β̃j(∆̂) = β̃j(cost∆̂ v) and β̃j(∆) = β̃j(cost∆ v).

Proof. The proof is a simple application of the Mayer-Vietoris argument. Indeed, since
v 6= v0, the link L̂ := lk∆̂ v is a k-homology (d−2)-sphere, while the link L := lk∆ v is
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a k-homology (d−2)-sphere or a (d−2)-ball. In either case, β̃j(L̂) = β̃j(L) = 0 for all
j 6 d−3. Since, the stars st∆ v and st∆̂ v are acyclic, considering the following portion

H̃j(L)→ H̃j(cost∆ v)⊕ H̃j(st∆ v)→ H̃j(∆)→ H̃j−1(L)

of the Mayer-Vietoris sequence for ∆ and its analog for ∆̂ yields the result. �

The following lemma is a generalization of [36, Proposition 4.24]. We set A :=
k[xu | u ∈ V0] and Av := k[xu | u ∈ V0 r {v}]. Observe that k[∆̂] and k[cost∆̂ v]
have natural A-module structures (where multiplication by xv on k[cost∆̂ v] is the
zero map), while k[lk∆̂ v] has a natural Av-module structure (if u 6= v is not in the
link of v, then multiplication by xu is the zero map). Let Θ = θ1, . . . , θd ∈ A be
a generic l.s.o.p. for k[∆̂], and hence also for k[cost∆̂ v]. Since Θ is generic, θ1 has
non-vanishing coefficients. So by scaling the variables if necessary, we can work in an
isomorphic setting and assume w.l.o.g. that all coefficients of θ1 are equal to 1. Let
θ′1 := θ1 − xv, and for j > 1, let θ′j = θj − cjθ1 where cj is the coefficient of xv in
θj . Then θ′1, θ′2, . . . , θ′d can be viewed as elements of Av, with Θv = {θ′2, . . . , θ′d} ⊂ Av
forming an l.s.o.p. for k[lk∆̂ v]. Furthermore, the ring k(lk∆̂ v,Θv) inherits an Av-
module structure, and defining

xv · y := −θ′1 · y for y ∈ k(lk∆̂ v,Θv)
extends it to an A-module structure.

Lemma 3.3. Let ∆ be a (d− 1)-dimensional, connected, orientable k-homology mani-
fold with boundary, and let v be a vertex of ∆. Then the map

φv : k(lk∆̂ v,Θv)→ (xv)k(∆̂,Θ) given by z → xv · z
is well-defined and is a graded isomorphism of A-modules (of degree 1).

Proof. The proof of [36, Proposition 4.24] shows that φv is a well-defined and sur-
jective homomorphism of A-modules. Thus to complete the proof, it suffices to check
that for 1 6 i 6 d, the dimensions of k-spaces

(
k(lk∆̂ v,Θv)

)
i−1 and

(
(xv)k(∆̂,Θ)

)
i

agree. Since v 6= v0, the link lk∆̂ v is a k-homology sphere, and so

(1) dimk
(
k(lk∆̂ v,Θv)

)
i−1 = hi−1(lk∆̂ v) for all i 6 d.

To compute dimk
(
(xv)k(∆̂,Θ)

)
i
for i 6 d, consider the following exact sequence,

induced by the natural surjection k[∆̂]→ k[cost∆̂ v],

(2) 0→ (xv)k(∆̂,Θ)→ k(∆̂,Θ)→ k(cost∆̂ v,Θ)→ 0.
If i = d, then, since ∆ is connected and orientable,

dimk
(
k(∆̂,Θ)

)
d

= β̃d−1(∆̂) = 1 while dimk k(cost∆̂ v,Θ)d = β̃d−1(cost∆̂ v) = 0.
Hence, in this case eq. (2) implies that

dimk
(
(xv)k(∆̂,Θ)

)
d

= dimk
(
k(∆̂,Θ)

)
d

= 1 = β̃d−1(lk∆̂ v) = dimk
(
k(lk∆̂ v,Θv)

)
d−1,

as desired.
Thus for the rest of the proof we assume that 1 6 i 6 d − 1. Since both ∆̂

and cost∆̂ v are complexes with at most one singular vertex, namely v0, and since
cost∆̂ v0 = ∆, we infer from Theorem 2.2(4) that

(3) dimk
(
k(∆̂,Θ)

)
i
− hi(∆̂)

= −
i−1∑
j=1

(−1)i−j
((

d− 1
i− 1

)
β̃j−1(∆̂) +

(
d− 1
i

)
β̃j−1(∆)

)
,
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and that a similar expression holds for dimk
(
k(cost∆̂ v,Θ)

)
i
− hi(cost∆̂ v): to obtain

it, simply replace all occurrences of ∆̂ on the right-hand side of (3) with cost∆̂ v
and those of ∆ with cost∆ v. Since according to Lemma 3.2, for i 6 d − 1, these
replacements do not affect the value of the right-hand side of (3), we conclude that
for all 1 6 i 6 d− 1,

dimk
(
(xv)k(∆̂,Θ)

)
i

by (2)= dimk
(
k(∆̂,Θ)

)
i
− dimk

(
k(cost∆̂ v,Θ)

)
i

= hi(∆̂)− hi(cost∆̂ v)

= hi−1(lk∆̂ v) by (1)= dimk
(
k(lk∆̂ v,Θv)

)
i−1,

where the penultimate step uses [2, Lemma 4.1]. The result follows. �

We are now in a position to prove Theorem 3.1. Our proof follows the same outline
as the proof of [28, Theorem 1.4] with an additional twist at the end.

Proof of Theorem 3.1. Let ∆ be a (d − 1)-dimensional, connected, orientable k-
homology manifold with boundary, and let Θ be a generic l.s.o.p. for k[∆̂].
(As before, we assume w.l.o.g. that all coefficients of θ1 are equal to 1.) Then
dimk k(∆̂,Θ)d = β̃d−1(∆̂) = 1. Hence, we only need to verify that the so-
cle of k(∆̂,Θ) = k(∆̂,Θ)/ Soc◦ k(∆̂,Θ) vanishes in all degrees j 6= d. Since(

Soc◦ k(∆̂,Θ)
)
d

= 0 and
(

Soc◦ k(∆̂,Θ)
)
d−1 =

(
Soc k(∆̂,Θ)

)
d−1, this does hold for

j = d− 1.
Now, let j 6 d− 2, and let y ∈ k(∆̂,Θ)j be such that xv · y ∈ (Soc k(∆̂,Θ))j+1 for

every vertex v of ∆̂. We must show that y ∈ Soc k(∆̂,Θ). Assume first that v 6= v0.
Then the isomorphism of Lemma 3.3 implies that yv := φ−1

v (xv · y) ∈ (k(lk∆̂ v,Θv))j
is in the socle of k(lk∆̂ v,Θv). Since lk∆̂ v is a k-homology (d−2)-sphere, k(lk∆̂ v,Θv)
is Gorenstein, and hence its socle vanishes in all degrees 6 d− 2. Therefore, yv = 0.
We conclude that

(4) xv · y = φv(yv) = 0 in k(∆̂,Θ) for all v 6= v0.

Finally, to show that xv0 ·y = 0 in k(∆̂,Θ), recall that θ1 = xv0 +
∑
v 6=v0

xv, and so

(5) θ1 · y = xv0 · y +
∑
v 6=v0

xv · y.

The left-hand side of (5) is zero in k(∆̂,Θ) = k[∆̂]/Θk[∆̂]. Furthermore, by (4), all
summands on the right-hand side of (5), except possibly xv0 · y, are zeros in k(∆̂,Θ).
Thus xv0 · y must be zero in k(∆̂,Θ). The result follows. �

We now turn to some consequences of Theorem 3.1. As the Hilbert function of a
Gorenstein graded k-algebra of Krull dimension zero is always symmetric, one imme-
diate corollary is

Corollary 3.4. Let ∆ be a (d − 1)-dimensional, connected, orientable k-homology
manifold with boundary. Then h′′i (∆̂) = h′′d−i(∆̂) for all 0 6 i 6 d.

Let Γ be a k-homology (m − 1)-sphere or (m − 1)-ball. We say that Γ has the
weak Lefschetz property over k (the WLP, for short) if for a generic l.s.o.p. Θ for k[Γ]
and an additional generic linear form ω, the map ·ω : k(Γ,Θ)bm

2 c → k(Γ,Θ)bm
2 c+1

is surjective. For instance, by a result of Stanley [34], the boundary complexes of all
simplicial polytopes have the WLP over Q. Furthermore, it follows from [20, Cor. 3.5]
and [40] that all triangulations of 2-dimensional spheres have the WLP over any
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infinite field. Combined with the argument given in [36, Corollary 4.29] (see also the
proof of [29, Theorem 5.2]) this leads to the following (by now well-known) lemma:

Lemma 3.5. Let d > 4 and let ∆ be a (d−1)-dimensional k-homology manifold without
boundary. Then the map k(∆,Θ)d−2 → k(∆,Θ)d−1 is surjective.

Building on some of these ideas, it was proved in [28, Theorem 3.2] that if Λ is a
(d − 1)-dimensional, connected, orientable k-homology manifold without boundary,
and if all but at most d vertex links of Λ have the WLP over k, then for generic Θ and
ω, the map ·ω : k(Λ,Θ)i → k(Λ,Θ)i+1 is an injection for i < bd2c and is a surjection
for i > dd2e. The proof relied on [36, Theorem 4.26] and on the Gorenstein property of
k(Λ,Θ) established in [28, Theorem 1.4]). Noting that [36, Theorem 4.26] continues
to hold for ∆̂ and using Theorem 3.1 instead of [28, Theorem 1.4], but leaving the
rest of the proof of [28, Theorem 3.2] intact, yields the following generalization:

Corollary 3.6. Let ∆ be a (d − 1)-dimensional connected, orientable k-homology
manifold with boundary.

(1) If d > 4, then the map ·ω : k(∆̂,Θ)i → k(∆̂,Θ)i+1 is an injection for i 6 1
and is a surjection for i > d− 2.

(2) If for all vertices v of ∆, the link lk∆̂ v has the WLP over k, then the map
·ω : k(∆̂,Θ)i → k(∆̂,Θ)i+1 is an injection for all i < bd2c and is a surjection
for all i > dd2e.

Remark 3.7.A recent preprint by Adiprasito [1] announces a spectacular generaliza-
tion of Stanley’s result [34]: for an arbitrary infinite field k, every k-homology sphere
has the weak Lefschetz (and even strong Lefschetz) property over k, and so the hy-
pothesis of the WLP assumption in the statement of Corollary 3.6(2) as well as in the
rest of the paper might be unnecessary.

To apply results of this section to the study of face numbers of homology manifolds
with boundary, we first need to work out the h′′-numbers of ∆̂, that is, the Hilbert
function of k(∆̂,Θ). This is done in the next section.

4. The h′′-numbers of ∆̂
In this section we prove the following extension of Theorem 2.2(3) to manifolds with
boundary.

Theorem 4.1. Let ∆ be a (d−1)-dimensional, connected, orientable k-homology man-
ifold with boundary and let Θ be a generic l.s.o.p. for k[∆̂]. Then for all i < d,

(1) dimk
(

Soc k(∆̂,Θ)
)
i

=
(
d−1
i−1
)
β̃i−1(∆̂) +

(
d−1
i

)
β̃i−1(∆), and

(2) h′′i (∆̂) = hi(∆̂)−
∑i
j=1(−1)i−j

((
d−1
i−1
)
β̃j−1(∆̂) +

(
d−1
i

)
β̃j−1(∆)

)
.

Remark 4.2. It is instructive to rewrite both formulas of the theorem purely in terms
of ∆. Indeed, by connectivity, β̃0(∆̂) = β̃0(∆) = 0, while

H̃j−1(∆̂; k) ∼= H̃j−1(∆̂, st∆̂ v0; k) ∼= H̃j−1(∆, ∂∆; k) ∼= H̃d−j(∆; k) ∀ j < d,

where the first step follows from the acyclicity of vertex stars, the second by exci-
sion, and the third by Poincaré–Lefschetz duality. Furthermore, hi(∆̂) = hi(∆) +
hi−1

(
lk∆̂ v0

)
= hi(∆) +hi−1(∂∆) (see [2, Lemma 4.1]). Thus, for i < d, Theorem 4.1

can be rewritten as
(1) dimk

(
Soc k(∆̂,Θ)

)
i

=
(
d−1
i

)
β̃i−1(∆) +

(
d−1
i−1
)
β̃d−i(∆);
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(2) h′′i (∆̂) = hi(∆)+hi−1(∂∆)−
∑i
j=2(−1)i−j

((
d−1
i

)
β̃j−1(∆) +

(
d−1
i−1
)
β̃d−j(∆)

)
.

Note that if ∆ is a connected, orientable k-homology manifold without boundary,
then

(i) ∆̂ = ∆,
(ii) β̃d−j(∆) = β̃j−1(∆) for all 1 < j < d (by Poincaré duality), and
(iii) hi−1(∂∆) = 0 for all i (since ∂∆ = ∅).

In this case, the above formula for h′′i (∆̂) reduces to Theorem 2.2(3).

To prove Theorem 4.1, several lemmas are in order. As in the previous section, we
continue to assume that Θ is a generic l.s.o.p. for k[∆̂] and that all coefficients of θ1
are equal to 1.

Lemma 4.3. Let ∆ be a (d−1)-dimensional k-homology manifold with boundary. Then(
Soc k(∆̂,Θ)

)
i
∼=

(
d−2⊕
j=0

(
d− 1
j

)(
Hj

m

(
k[∆̂]/θ1k[∆̂]

))
i−j

)⊕
(SB)i−(d−1) ∀i ∈ Z,

where SB is a graded submodule of SocHd−1
m

(
k[∆̂]/θ1k[∆̂]

)
. Furthermore, for j 6

d− 2,

dimk
(
Hj

m

(
k[∆̂]/θ1k[∆̂]

))
`

=


β̃j(∆̂) if ` = 1
β̃j−1(∆) if ` = 0
0 otherwise.

Proof. Since ∆̂ has at most one singularity, Lemma 4.3(2) of [30] implies that
k[∆̂]/θ1k[∆̂] is a Buchsbaum A-module of Krull dimension d − 1. The first part of
the statement then follows from [29, Theorem 2.2], while the second part follows
from [30, Lemma 4.3(1) and Theorem 4.7]. �

We now turn our attention to the submodule SB of SocHd−1
m

(
k[∆̂]/θ1k[∆̂]

)
.

Proposition 4.4. Let ∆ be a (d− 1)-dimensional, connected, orientable k-homology
manifold with boundary. Then, for all ` 6 −1,

(
SocHd−1

m

(
k[∆̂]/θ1k[∆̂]

))
`

= 0, and
hence (SB)` = 0.

Proof. Since depth k[∆̂] > 1, θ1 is a non-zero divisor on k[∆̂]; in other words, the
sequence

0→ k[∆̂](−1) ·θ1−→ k[∆̂] −→ k[∆̂]/θ1k[∆̂]→ 0
is exact. (For a graded A-module M , M(−1) denotes M with grading defined by
M(−1)` = M`−1.)

The above sequence induces a long exact sequence in local cohomology. In partic-
ular, the part

Hd−1
m

(
k[∆̂]

)
(−1) ·θ1−→ Hd−1

m

(
k[∆̂]

)
−→ Hd−1

m

(
k[∆̂]/θ1k[∆̂]

)
−→ Hd

m

(
k[∆̂]

)
(−1)

·θ1−→ Hd
m

(
k[∆̂]

)
is exact. Thus, Hd−1

m

(
k[∆̂]/θ1k[∆̂]

)
, considered as a vector space, is isomorphic to the

direct sum of
C := Coker

[
Hd−1

m

(
k[∆̂]

)
(−1) ·θ1−→ Hd−1

m

(
k[∆̂]

)]
and

K := Ker
[
Hd

m

(
k[∆̂]

)
(−1) ·θ1−→ Hd

m

(
k[∆̂]

)]
.

Futhermore, on the K-part of Hd−1
m

(
k[∆̂]/θ1k[∆̂]

)
, the A-module structure is induced

by the A-module structure on Hd
m

(
k[∆̂]

)
.
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Since ∆̂ has (at most) one singular vertex, namely v0, Theorem 2.3 implies that for
` 6 −1, the map ·θ1 :

(
Hd−1

m

(
k[∆̂]

))
`−1 →

(
Hd−1

m

(
k[∆̂]

))
`
is the identity map. Hence

its cokernel, C`, vanishes for all ` 6 −1. Therefore, it only remains to show that the
socle (SocK)`, vanishes for all ` 6 −1. Indeed, by definition of socles,

(SocK)` =
(

Soc Ker
[
· θ1 : Hd

m

(
k[∆̂]

)
(−1) −→ Hd

m

(
k[∆̂]

)])
`

=
(

SocHd
m

(
k[∆̂]

)
(−1)

)
`

=
(

SocHd
m

(
k[∆̂]

))
`−1

.

The following lemma verifies that the latter term vanishes, and thus completes the
proof. �

Lemma 4.5. Let ∆ be a (d− 1)-dimensional, connected, orientable k-homology mani-
fold with boundary. Then, for all ` > 2,

(
SocHd

m

(
k[∆̂]

))
−`

= 0.

Proof. Recall that by Theorem 2.4,

(6) Hd
m(k[∆̂])−` =

⊕
ρ∈M`(∆̂)

Hρ, where Hρ = Hd−1
s(ρ) (∆̂).

Fix ` > 2, and let ρ ∈ M`(∆̂). Then either ρ is divisible by x2
v for some vertex

v of ∆̂ (possibly v0) or ρ is a squarefree monomial whose support has size at least
two: s(ρ) ⊇ {v, w}. In the former case, by Theorem 2.4, the multiplication map
·xv : Hρ → Hρ/xv

is the identity map, and so no non-zero element ofHρ is in the socle.
In the latter case, at least one of v, w is not v0. Assume without loss of generality that
w 6= v0, and consider the map ·xv : Hρ → Hρ/xv

, which by Theorem 2.4 is simply
ι∗ : Hd−1

s(ρ) (∆̂) → Hd−1
s(ρ/xv)(∆̂). We will show that this map is an isomorphism, and

hence that no non-zero element of Hρ is in the socle in this case as well.
Our argument is similar to the one used in the proof of [28, Theorem 2.1]. Denote

by ‖∆̂‖ the geometric realization of ∆̂, and by b(ρ) and b(ρ/xv) the barycenters of re-
alizations of faces s(ρ) and s(ρ/xv), respectively. Consider the following commutative
diagram, where the maps f∗ and j∗ are induced by inclusion:

H̃d−1(‖∆̂‖) (j∗)−1

−−−−→ H̃d−1(‖∆̂‖, ‖∆̂‖ − b(ρ/xv)) f∗−−−−→ H̃d−1(∆̂, cost∆̂ s(ρ/xv)
)∥∥∥ ι∗

x
H̃d−1(‖∆̂‖) (j∗)−1

−−−−→ H̃d−1(‖∆̂‖, ‖∆̂‖ − b(ρ)
) f∗−−−−→ H̃d−1(∆̂, cost∆̂ s(ρ)

)
.

The two maps f∗ are isomorphisms by the usual deformation retractions. Since w 6= v0
and w ∈ s(ρ/xv) ⊂ s(ρ), the links lk∆̂ s(ρ) and lk∆̂ s(ρ/xv) are k-homology spheres,
so the four k-spaces on the right and in the middle of the diagram are 1-dimensional.
Furthermore, since ∆ is connected and orientable, the k-spaces on the left of the dia-
gram are 1-dimensional and the two j∗-maps are isomorphisms, so that (j∗)−1-maps
are well-defined and are isomorphisms as well. This implies that ι∗ is an isomorphism
and completes the proof. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We prove both parts simulataneously. If d = 2, then ∆̂ is
a circle, in which case the statement is known. So assume d > 3. Lemma 4.3 and
Proposition 4.4 imply that the formula for the dimension of the socle holds for all
i 6 d − 2. Together with Theorem 2.2(4) and Definition 2.1, this also implies that
the formula for h′′i (∆̂) holds for all i 6 d − 2. Thus, it only remains to show that
the theorem holds for i = d − 1. Since by Corollary 3.4, the h′′-numbers of ∆̂ are
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symmetric, to complete the proof of both parts, it suffices to check that the proposed
expression for h′′d−1(∆̂) is equal to h′′1(∆̂) = h1(∆̂).

Let χ̃ denote the reduced Euler characteristic. Note that since β̃d−1(∆̂) = 1 and
β̃d−1(∆) = 0, the proposed expression for h′′d−1(∆̂),

hd−1(∆̂)−
d−1∑
j=1

(−1)d−j−1
[
(d− 1)β̃j−1(∆̂) + β̃j−1(∆)

]
,

can be rewritten as

hd−1(∆̂)− (d− 1)
(

1 + (−1)dχ̃(∆̂)
)
− (−1)dχ̃(∆).

Thus to complete the proof, we only need to verify that

hd−1(∆̂) = h1(∆̂) + (d− 1)
(

1 + (−1)dχ̃(∆̂)
)

+ (−1)dχ̃(∆).

To do so, observe that for all i,

fi(∆̂) = fi(∆) + fi(st∆̂ v0)− fi(∂∆).

This, together with the fact that vertex stars are contractible, implies that

(7) χ̃(∂∆) = χ̃(∆) + χ̃(st∆̂ v0)− χ̃(∆̂) = χ̃(∆)− χ̃(∆̂).

Finally, according to [30, Theorem 3.1],

hd−1(∆̂) = h1(∆̂) + d
(

1 + (−1)dχ̃(∆̂)
)
−
(
1 + (−1)d−1χ̃(∂∆)

)
by (7)= h1(∆̂) + (d− 1) + d(−1)dχ̃(∆̂) + (−1)d

(
χ̃(∆)− χ̃(∆̂)

)
= h1(∆̂) + (d− 1)

(
1 + (−1)dχ̃(∆̂)

)
+ (−1)dχ̃(∆).

The result follows. �

5. Applications: g-theorems for manifolds with boundary
Algebraic results obtained in the two previous sections along with Macaulay’s char-
acterization of Hilbert functions of homogeneous quotients of polynomial rings allow
us to easily derive several new enumerative results on face numbers of k-homology
manifolds with boundary. This section is devoted to results that generalize and are
similar in spirit to the g-theorem for simplicial polytopes. We follow the custom and
define gi := hi − hi−1, g′i := h′i − h′i−1, and g′′i := h′′i − h′′i−1.

We start by recalling that given positive integers a and i, there is a unique way to
write

a =
(
ai
i

)
+
(
ai−1

i− 1

)
+ · · ·+

(
aj
j

)
, where ai > ai−1 > · · · > aj > j > 1.

Define

a〈i〉 :=
(
ai + 1
i+ 1

)
+
(
ai−1 + 1

i

)
+ · · ·+

(
aj + 1
j + 1

)
and 0〈i〉 := 0.

Macaulay’s theorem [35, Theorem II.2.2] asserts that a (possibly infinite) sequence
(b0, b1, . . .) of integers is the Hilbert function of a homogeneous quotient of a poly-
nomial ring if and only if b0 = 1 and 0 6 b`+1 6 b

〈`〉
` for all ` > 1. A sequence that

satisfies these conditions is called an M -vector.
Our first g-type result is an extension of [28, Theorem 3.2] to manifolds with

boundary. Recall that by Remark 4.2(2), if ∆ is a (d − 1)-dimensional, connected,
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orientable k-homology manifold with boundary, then h′′i (∆̂) = hi(∆) + hi−1(∂∆) −∑i
j=2(−1)i−j

((
d−1
i

)
β̃j−1(∆) +

(
d−1
i−1
)
β̃d−j(∆)

)
for i < d and h′′d(∆̂) = 1.

Theorem 5.1. Let ∆ be a (d−1)-dimensional, connected, orientable k-homology man-
ifold with boundary. Then

(1) h′′i (∆̂) = h′′d−i(∆̂) for all 0 6 i 6 d.
(2) If d > 4, then

(
1, g′′1 (∆̂), g′′2 (∆̂)

)
is an M -vector.

(3) If for all vertices v of ∆, lk∆̂ v has the WLP over k, then(
1, g′′1 (∆̂), g′′2 (∆̂), . . . , g′′b d

2 c(∆̂)
)
is an M -vector.

Proof. Part 1 is the content of Corollary 3.4. Furthermore, it follows from Corollary 3.6
and Theorem 4.1/Remark 4.2 that under our assumptions, for generic Θ and ω, and
for i 6 2 in part 2 and i 6

⌊
d
2
⌋
in part 3,

dimk

(
k(∆̂,Θ)/ωk(∆̂,Θ)

)
i

= g′′i (∆̂,Θ).

Together with Macaulay’s theorem, this completes the proof. �

Remark 5.2.Applying the same reasoning to k(∆̂,Θ)/
⊕`

j=0
(

Soc k(∆̂,Θ)
)
j
instead

of k(∆̂,Θ), part 3 of Theorem 5.1 can be strengthened to the statement that(
1, g′′1 (∆̂), . . . , g′′` (∆̂), g′′`+1(∆̂) +

(
d− 1
`+ 1

)
β̃`(∆) +

(
d− 1
`

)
β̃d−`−1(∆)

)
is an M -vector for every ` <

⌊
d
2
⌋
(cf. discussion at the bottom of page 995 in [28]).

Our second g-type result is an extension of [22, Theorem 5.4(i)] to manifolds with
boundary. To this end, in the spirit of [22, Section 5], for a (d − 1)-dimensional,
connected, orientable, k-homology manifold with boundary, ∆, and for r 6 bd/2c,
define

g̃r(∆̂) := g′′r (∆̂)−
((

d− 1
r − 1

)
β̃r−1(∆) +

(
d− 1
r − 2

)
β̃d−r(∆)

)
(8)

= gr(∆) + gr−1(∂∆)−
r∑
j=2

(−1)r−j
((

d

r

)
β̃j−1(∆) +

(
d

r − 1

)
β̃d−j(∆)

)
,(9)

where the last equality follows from Remark 4.2(2).

Theorem 5.3. Let ∆ be a (d−1)-dimensional, connected, orientable k-homology man-
ifold with boundary.

(1) If d > 4, then
(
1, g̃1(∆̂), g̃2(∆̂)

)
is an M -vector.

(2) If for all vertices v of ∆, lk∆̂ v has the WLP over k, then(
1, g̃1(∆̂), g̃2(∆̂), . . . , g̃b d

2 c(∆̂)
)
is an M -vector.

Proof. Observe that by definition of g̃r(∆̂),

g̃r(∆̂) = h′′r (∆̂)− h′′r−1(∆̂)−
((

d− 1
r − 1

)
β̃r−1(∆) +

(
d− 1
r − 2

)
β̃d−r(∆)

)
= h′′d−r(∆̂)− h′′d−r+1(∆̂)−

((
d− 1

d− r + 1

)
β̃d−r(∆) +

(
d− 1
d− r

)
β̃d−(d−r+1)(∆)

)
= h′′d−r(∆̂)− h′d−r+1(∆̂),(10)

where the middle step is by Corollary 3.4 and the last step is by Remark 4.2(1).
The rest of the proof follows the proof of [22, Theorem 5.4(i)]: the only change is
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that we rely on Theorem 3.1 that asserts Gorensteinness of k(∆̂,Θ) instead of [28,
Theorem 1.4] that asserts Gorensteinness of the analogous ring associated with a
manifold without boundary. �

Remark 5.4.Assume that for all vertices v of ∆, lk∆̂ v has the WLP over k and
that for all boundary vertices v of ∆, lk∂∆ v has the WLP over k; assume also that
r 6 b(d− 1)/2c. Under these assumptions the non-negativity part of Theorem 5.3(2)
is not new: the fact that g̃r(∆̂) > 0 follows from [24, Theorem 1.5] (see Theorem 7.6)
along with the Poincaré–Lefschetz duality and the long exact sequence of (∆, ∂∆).
For a detailed treatment of the case d > 4 and r = 2 see the proof of Proposition 7.15.

6. Applications: Kühnel-type bounds
The results of previous sections can also be used to extend known Kühnel-type bounds
on the Betti numbers (and their sums) of manifolds without boundary to the case of
manifolds with boundary. Deriving such bounds is the goal of this section. Throughout
this section ∆ is a homology manifold with boundary such that f0(∆) = n. Thus,
f0(∆̂) = n+1. In particular, all results established in this section should be compared
to known results about manifolds without boundary and n+1 (rather than n) vertices.

Specifically, Theorem 5.3 in [21] asserts that if ∆ is a (d−1)-dimensional, connected,
k-homology manifold without boundary that has n + 1 vertices, then

(
d+1

2
)
β̃1(∆) 6(

n−d+1
2
)
as long as d > 4. Furthermore, Theorem 5.1 in [21] asserts that if, in addition,

all vertex links of ∆ have the WLP over k, then
(
d+1
r+1
)
β̃r(∆) 6

(
n−d+r
r+1

)
for all r 6⌊

d
2
⌋
−1. (The conjecture that for r 6 bd/2c−1 and for an arbitrary (d−1)-dimensional

simplicial manifold ∆ with n+ 1 vertices, the inequality
(
d+1
r+1
)
β̃r(∆) 6

(
n−d+r
r+1

)
holds

is due to Kühnel [17, Conjecture 18].) In the special case of orientable k-homology
manifolds without boundary the same results were proved in [29, Theorem 5.2] and [27,
Theorem 4.3], respectively. An easy adaptation of proofs from [29, 27] combined with
our results from the previous sections leads to the following extension. We do not
know if this extension also holds in the non-orientable case.

Theorem 6.1. Let ∆ be a (d−1)-dimensional, connected, orientable k-homology man-
ifold with boundary, and assume that f0(∆) = n.

(1) If d > 4, then
(
d
2
)
β̃1(∆) +

(
d
1
)
β̃d−2(∆) 6

(
n−d+1

2
)
. If equality holds, then ∆ is

2-neighborly and has no interior vertices.
(2) If for all vertices v of ∆, lk∆̂ v has the WLP over k, then(

d

r + 1

)
β̃r(∆) +

(
d

r

)
β̃d−r−1(∆) 6

(
n− d+ r

r + 1

)
for all r 6

⌊
d

2

⌋
− 1.

If equality holds, then ∆ is (r + 1)-neighborly and has no interior faces of
dimension 6 r − 1.

Proof. Since the proof is very similar to that of [27, Theorem 4.3], we omit some of
the details. Fix an integer r: r = 1 for part 1 and any r 6

⌊
d
2
⌋
−1 for part 2. It follows

from Theorem 5.3 that g̃r+1(∆̂) is nonnegative. Hence

0 6 h′′r+1(∆̂)− h′′r (∆̂)−
((

d− 1
r

)
β̃r(∆) +

(
d− 1
r − 1

)
β̃d−r−1(∆)

)
by Remark 4.2(1)= h′r+1(∆̂)− h′′r (∆̂)−

((
d

r + 1

)
β̃r(∆) +

(
d

r

)
β̃d−r−1(∆)

)
.
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We conclude that
(
d
r+1
)
β̃r(∆)+

(
d
r

)
β̃d−r−1(∆) 6 h′r+1(∆̂)−h′′r (∆̂). Thus, to complete

the proof, it suffices to show that h′r+1(∆̂) − h′′r (∆̂) 6
(
n−d+r
r+1

)
and that if equality

holds then ∆̂ is (r + 1)-neighborly. (The latter condition implies that ∆ is (r + 1)-
neighborly and that all faces of ∆ of cardinality 6 r are in the link of v0, and hence
that they are boundary faces.)

Indeed, since f0(∆) = n, h′1(∆̂) = n−d+1. Macaulay’s theorem applied to k(∆̂,Θ),
then shows that h′r+1(∆̂) =

(
x+1
r+1
)
for some real number x 6 n − d + r. Another ap-

plication of Macaulay’s theorem, this time to k(∆̂,Θ)/(Soc k(∆̂,Θ))r, yields that
h′r+1(∆̂) 6 (h′′r (∆̂))〈r+1〉, and hence that h′′r (∆̂) >

(
x
r

)
. Therefore, h′r+1(∆̂)−h′′r (∆̂) 6(

x
r+1
)
6
(
n−d+r
r+1

)
, as desired. Furthermore, if h′r+1(∆̂) − h′′r (∆̂) =

(
n−d+r
r+1

)
, then

dimk k
(
∆̂,Θ

)
r+1 = h′r+1(∆̂) =

(
n−d+r+1

r+1
)
, which, in turn, implies that ∆̂ is (r + 1)-

neighborly. �

Corollary 6.2. Let ∆ be a (d − 1)-dimensional, connected, orientable k-homology
manifold with boundary, and assume that f0(∆) = n.

(1) If d > 4, then β̃1(∆) 6
(
n−d+1

2
)
/
(
d
2
)
. In particular, if β̃1(∆) 6= 0, then n >

2d− 1.
(2) If for all vertices v of ∆, lk∆̂ v has the WLP over k, then β̃r(∆) 6(

n−d+r
r+1

)
/
(
d
r+1
)

for all r 6
⌊
d
2
⌋
− 1. Consequently, if β̃r(∆) 6= 0, then

n > 2d− r. Similarly, if both β̃r(∆) and β̃d−r−1(∆) are non-vansishing, then
n > 2d− r + 1.

The bounds on the number of vertices in the above corollary are similar in spirit
to the bounds established by Brehm and Kühnel [10, Theorem B] on the number of
vertices that an (r−1)-connected, but not r-connected closed PL manifold must have.
Example 6.3.Kühnel [14] (see also [16]) constructed for every d > 3, a (d − 1)-
dimensional handle, orientable or not depending on the parity of d, with exactly
2d− 1 vertices. (For instance, when d = 3, this gives a unique 5-vertex triangulation
of the Möbius band.) His construction thus provides a family of connected, orientable
over Z/2Z manifolds with boundary that have non-vanishing β̃1 and achieve equalities
in both statements of Corollary 6.2(1).

We now turn to Kühnel-type bounds on certain weighted sums of Betti numbers.
It was conjectured by Kühnel [15, Conjecture B] and proved in [29, Theorem 4.4] (see
also [26, Theorem 7.6]) that if Λ is a 2k-dimensional, orientable k-homology manifold
without boundary and f0(∆) = n + 1, then (−1)k

(
χ̃(Λ) − 1

)
6
(
n−k−1
k+1

)
/
(2k+1
k+1

)
. In

fact, the proof showed that the same upper bound applies to β̃k(Λ) + β̃k−1(Λ) +
2
∑k−2
i=0 β̃i(Λ). The methods of [26, 29] combined with our results from Sections 3

and 4 lead to the following extension of this result to manifolds with boundary.
Theorem 6.4. Let ∆ be a connected, orientable, k-homology manifold with boundary.
If ∆ is 2k-dimensional and has n vertices, then
(11)

β̃k(∆) +
k∑
i=2

(
n−k−1
k+1

)(2k+1
k+1

)(
n−2k−1+i

i

) · ((2k
i

)
β̃i−1(∆) +

(
2k
i− 1

)
β̃2k+1−i(∆)

)
6

(
n−k−1
k+1

)(2k+1
k+1

) .
Equality holds if and only if ∆ is (k + 1)-neighborly and has no interior faces of
dimension 6 k − 1.

Examples that achieve equality include (k + 1)-neighborly triangulations of closed
manifolds of dimension 2k with one vertex removed. Before proving Theorem 6.4 we
discuss some of its consequences.
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Corollary 6.5. Let ∆ be a connected, orientable, k-homology manifold with bound-
ary. Assume ∆ is 2k-dimensional and has n vertices. Then

(1) β̃k(∆) 6 (n−k−1
k+1 )

(2k+1
k+1 ) . In particular, if β̃k(∆) 6= 0, then n > 3k + 2.

(2) If n > 3k + 2, then β̃k(∆) +
∑k−1
i=2 β̃i−1(∆) 6 (n−k−1

k+1 )
(2k+1

k+1 ) .

(3) If n > 4k + 2, then
∑k+1
i=2 β̃i−1(∆) 6 (n−k−1

k+1 )
(2k+1

k+1 ) .

To derive parts 2 and 3 of Corollary 6.5 from Theorem 6.4, use routine computations
with binomial coefficients to show that if n > 4k + 2, then the coefficient of β̃i−1(∆)
in (11) is at least 1 for all i 6 k, while if n > 3k+ 2, then such a coefficient is > 1 for
all i 6 k− 1. (And, of course, the coefficient of βk(∆) is 1.) The proof of Theorem 6.4
is very similar to that of [29, Theorem 4.4], and so we only sketch the main details.

Proof of Theorem 6.4 (Sketch). Let Np :=
(
f0(∆̂)−(2k+1)+p−1

p

)
=
(
n−2k−1+p

p

)
. In par-

ticular, Nk+1 −Nk =
(
n−k−1
k+1

)
.

Applying Macaulay’s theorem to k(∆̂,Θ)/(Soc k(∆̂,Θ))i, yields that

h′i+1(∆̂) 6 (h′′i (∆̂))〈i+1〉

6
Ni+1

Ni
h′′i (∆̂) = Ni+1

Ni

(
h′i(∆̂)− dimk

(
Soc k(∆̂,Θ)

)
i

)
for all i 6 2k.

Iterating this process (see the proof of [29, Theorem 4.4] for more details), we obtain
that

(12)

h′k+1(∆̂)− h′k(∆̂)

6 (Nk+1−Nk)−
[
Nk+1

Nk
dimk

(
Soc k(∆̂,Θ)

)
k

+Nk+1−Nk
Nk

k−1∑
i=2

Nk
Ni

dimk
(

Soc k(∆̂,Θ)
)
i

]
.

On the other hand, since h′i(∆̂) =h′′i (∆̂)+dimk
(

Soc k(∆̂,Θ)
)
i
and since h′′k+1(∆̂) =

h′′k(∆̂) by Corollary 3.4, it follows that

(13) h′k+1(∆̂)− h′k(∆̂) = dimk
(

Soc k(∆̂,Θ)
)
k+1 − dimk

(
Soc k(∆̂,Θ)

)
k
.

Combining equations (12) and (13), we conclude that

dimk
(

Soc k(∆̂,Θ)
)
k+1 + Nk+1 −Nk

Nk

k∑
i=2

Nk
Ni

dimk
(

Soc k(∆̂,Θ)
)
i
6 Nk+1 −Nk.

Substituting expressions for the dimensions of graded components of the socle from
Remark 4.2(1) and, in particular, noting that dimk

(
Soc k(∆̂,Θ)

)
k+1 =

(2k+1
k

)
β̃k(∆),

yields the inequality. The treatment of equality case is almost identical to that in [29,
Theorem 4.4] and is omitted. �

7. Equality
In this section we examine the combinatorial and topological consequences of some
of the known inequalities for f -vectors of homology manifolds with boundary when
they are sharp. This includes a discussion of a connection between three lower bound
theorems for manifolds, PL-handle decompositions, and surgery. Along the way we
propose several problems.
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The right-hand side of Theorem 2.2(3) makes sense for any simplicial complex ∆.
So we define

h̄′′i (∆) := hi(∆)−
(
d

i

) i∑
j=1

(−1)i−j β̃j−1(∆) ∀ 0 6 i 6 d− 1.

It turns out that for homology manifolds with boundary, or more generally Buchs-
baum complexes, h̄′′i > 0 [29, Section 3]. In fact, h̄′′-numbers of Buchsbaum complexes
have an algebraic interpretation, see [25, Theorem 1.2]. Murai and Nevo determined
the combinatorial implications of h̄′′i = 0. To state this we recall that a homology man-
ifold with boundary is i-stacked if it contains no interior faces of codimension i + 1
or more. A homology manifold without boundary is i-stacked if it is the boundary
of an i-stacked homology manifold with boundary. As is customary, for both homol-
ogy manifolds with or without boundary we will generally shorten 1-stacked to just
stacked.

Theorem 7.1 ([22, Theorem 3.1]). Let ∆ be a (d−1)-dimensional homology manifold
with boundary, 1 6 i 6 d − 1, and d > 4. Then h̄′′i (∆) = 0 if and only if ∆ is
(i− 1)-stacked.

Murai and Nevo further noted that with the same hypotheses, h̄′′i = 0 also im-
plied that β̃j = 0 for all j > i [22, Corollary 3.2]. When ∆ is a PL-manifold with
boundary the above combinatorial restriction has an even stronger topological impli-
cation in terms of the PL-handle decomposition of ‖∆‖. In order to describe this we
review handle decompositions of PL-manifolds. We refer the reader to Rourke and
Sanderson [31] for definitions and results concerning PL-manifolds.

Let B be a (d − 1)-dimensional PL-ball decomposed as a product B = Bs × Bt,
where Bs and Bt are PL-balls of dimensions s and t respectively. Hence,

∂B = (∂Bs ×Bt)
⋃

∂Bs×∂Bt

(Bs × ∂Bt).

Now let X be a (d − 1)-dimensional PL-manifold with boundary. We say that X ′ is
obtained from X by adding a PL-handle of index s if X ′ is the union of X and B and,
in addition, the intersection of X and B is contained in the boundary of X and equals
∂Bs×Bt. For instance, adding a disjoint ball to X is adding a PL-handle of index 0.
A PL-handle decomposition of X is a sequence of (d− 1)-dimensional PL-manifolds

X1 ⊆ X2 ⊆ · · · ⊆ Xr = X

such that X1 is a PL-ball and for 1 6 j 6 r − 1 each Xj+1 is obtained from Xj by
adding a PL-handle.

The following result first appeared as a remark in Section 6 of [37]. We include it
here for completeness.

Theorem 7.2. Suppose ∆ is a (d−1)-dimensional PL-manifold with boundary, d > 4,
and h̄′′i (∆) = 0 for some 1 6 i 6 d − 1. Then ‖∆‖ has a PL-handle decomposition
using handles of index less than i.

Proof. Let ∆′′ be the second barycentric subdivision of ∆. For each nonempty face F
of ∆, let vF be the vertex in ∆′′ which represents F. The star of vF in ∆′′ is a PL-ball
and every facet of ∆′′ is contained in exactly one such star. Now order the interior faces
F of ∆, F1, F2, . . . , Fr so that all of the codimension zero faces (the facets) of ∆ come
first, then the interior faces of codimension one, etc. Finally, set Xj =

⋃j
k=1 st∆′′ vFk

.
Thus, for j 6 fd−1(∆), Xj is a disjoint union of j PL-balls. By [31, Proposition 6.9]
and the discussion that precedes it, X1 ⊆ · · · ⊆ Xr is a handle decomposition of ‖∆‖
with a collar of the boundary removed. Furthermore, the index of the handle attached
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to go from Xj to Xj+1 is the codimension of Fj+1. Since removing a collar does not
change the PL-homeomorphism type of a complex, X1 ⊆ · · · ⊆ Xr is the handle
decomposition of a PL-manifold which is PL-homeomorphic to ‖∆‖. Theorem 7.1
completes the proof. �

What about the converse?
Question 7.3. Suppose X is a (d − 1)-dimensional PL-manifold with boundary that
has a PL-handle decomposition using handles of index less than i for some 1 6 i 6
d− 1. Is there a PL-triangulation ∆ of X such that h̄′′i (∆) = 0?

For i = 1, 2, and d−1 the answer to the above question is yes. If X has a PL-handle
decomposition involving only handle additions of index zero, then X is a disjoint
union of PL-balls. Hence a disjoint union of (d− 1) simplices triangulates X and has
h̄′′1 = 0. For i = 2 we first observe that if X has a PL-handle decomposition using
handles of index zero or one, then X is a handlebody and all of these have stacked
triangulations, which are precisely triangulations with h̄′′2 = 0. (This observation
is any easy consequence of, say, [11, Theorem 4.5].) For the last case we first note
that any (d− 1)-dimensional PL-manifold with nonempty boundary has a PL-handle
decomposition which does not have (d − 1)-handles [31, Corollary 6.14 (ii)]. On the
other hand, every such space has a PL-triangulation with no interior vertices [9,
Theorem 1].

The above theorems and problems have close analogs for manifolds without bound-
ary. Suppose X ′ is obtained from X by adding an s-handle. Then the boundary of X ′
is a (d− 2)-dimensional PL-manifold without boundary and is obtained from ∂X by
removing a copy of ∂Bs×Bt from ∂X and replacing it with Bs×∂Bt along the com-
mon boundary ∂Bs×∂Bt. Such an operation is called an (s−1)-surgery on ∂X and we
call s−1 the index of the surgery. We denote such a surgery operation by ∂X ⇒ ∂X ′.
So, if X has a handle decomposition Bd−1 = X1 ⊆ X2 ⊆ · · · ⊆ Xr = X, then ∂X has
a surgery sequence Sd−2 = ∂X1 ⇒ · · · ⇒ ∂Xr = ∂X. From the g-vector point of view
the connection between these two is given by the following theorem of Murai–Nevo.
Note that if ∆ is a (d−1)-dimensional, connected, orientable homology manifold with-
out boundary, then eq. (9) reduces to g̃r(∆) = gr(∆) −

(
d+1
r

)∑r
j=1(−1)r−j β̃j−1(∆).

We use the same equation to define g̃r for all (d−1)-dimensional homology manifolds
without boundary.
Theorem 7.4 ([22]). Let ∆ be a (d− 1)-dimensional homology manifold and d > 4.

(1) If ∂∆ 6= ∅ and h̄′′i (∆) = 0 for some i 6 (d− 1)/2, then g̃i(∂∆) = 0.
(2) If ∂∆ = ∅, the links of the vertices of ∆ have the WLP, and g̃i(∆) = 0 for

some 1 6 i 6 (d− 1)/2, then ∆ is (i− 1)-stacked.
In combination with Theorem 7.2 two natural questions are:
Question 7.5. Let ∆ be a (d− 1)-dimensional PL-manifold without boundary, d > 4,
and 2 6 i 6 (d− 1)/2.

(1) If g̃i(∆) = 0, does ‖∆‖ have a surgery sequence beginning with Sd−1 and using
surgeries whose indices are less than i− 1?

(2) Suppose X is a (d − 1)–dimensional PL-manifold with a surgery sequence
X = X1 ⇒ · · · ⇒ Xr = ‖∆‖ whose indices are less than i − 1. Does X have
a PL-triangulation ∆ with g̃i(∆) = 0?

Note that for i = 2 the answer to the first part of the problem is yes; see the discussion
preceding Theorem 7.11.

In [24] Murai and Novik considered a different invariant of the f -vector. Let ∆ be
a homology manifold and define fi(∆, ∂∆) to be the number of interior i-dimensional
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faces. If ∆ has a nonempty boundary, f−1(∆, ∂∆) = 0 as the empty set is no longer an
interior face. Now define all of the other invariants, such as hi(∆, ∂∆) and gi(∆, ∂∆)
by using fi(∆, ∂∆) instead of fi(∆). For example,

g1(∆, ∂∆) = h1(∆, ∂∆)− h0(∆, ∂∆) = f0(∆, ∂∆)− (d+ 1)f−1(∆, ∂∆),
and

g2(∆, ∂∆) = h2(∆, ∂∆)−h1(∆, ∂∆) = f1(∆, ∂∆)−d f0(∆, ∂∆)+
(
d+ 1

2

)
f−1(∆, ∂∆).

Among Murai–Novik’s results is the following.

Theorem 7.6 ([24]). Let ∆ be a (d− 1)-dimensional k-homology manifold and d > 4.

(1) For i = 1 or 2, gi(∆, ∂∆) >
(
d+1
i

) i∑
j=1

(−1)i−j β̃j−1(∆, ∂∆).

(2) If the links of the vertices of ∆ satisfy the WLP and 1 6 i 6 d/2, then

gi(∆, ∂∆) >
(
d+ 1
i

) i∑
j=1

(−1)i−j β̃j−1(∆, ∂∆).

In fact, Theorem 7.6(1) holds for the larger class of normal pseudomanifolds with
boundary and Betti numbers replaced with the more subtle µ-invariant of Bagchi and
Datta. See [24, Theorem 7.3] for details.

Now we consider the implications of equality in Theorem 7.6. Suppose ∆ satisfies
the hypotheses of Theorem 7.6. Then g1(∆, ∂∆) = (d+ 1)β̃0(∆, ∂∆) if and only if all
of the vertices of every component of ∆ which has boundary are on the boundary, and
every component of ∆ which does not have boundary is the boundary of a d-simplex.
In particular, if ∆ is also a PL-manifold, then its components with boundary have no
further topological restrictions [9], while the components without boundary must be
PL-spheres. The situation for general homology manifolds is less clear. For instance,
suppose X is the suspension of RP 3. Now remove an open ball whose closure does
not include the suspension points of X and call the resulting space Y. Then Y is a
Q-homology ball and excision applied to homology with integer coefficients around
the suspension points of X shows that in any triangulation ∆ of Y the suspension
points of X must be vertices of ∆ and are not on the boundary of ∆.

Question 7.7.What are the topological restrictions imposed on k-homology manifolds
by the relation g1(∆, ∂∆) = (d+ 1)β̃0(∆, ∂∆)?

For k-homology manifolds which satisfy equality in Theorem 7.6(1) with i = 2,
Murai and Novik gave a local combinatorial description in terms of the links of the
vertices. If ∆ does satisfy 7.6(1) with equality and i = 2, we say that ∆ has minimal
g2. Before stating their result we review the operations and properties of connected
sum and handle addition.

Let ∆1 and ∆2 be (d−1)-dimensional complexes with disjoint vertex sets. Suppose
F1 and F2 are facets of ∆1 and ∆2 respectively and φ : F1 → F2 is a bijection. The
connected sum of ∆1 and ∆2 along φ is the complex obtained by identifying all faces
σ ⊆ F1 with φ(σ) ⊆ F2 and then removing the identified facet F1 ≡ F2. The resulting
complex is denoted by ∆1#∆2, or by ∆1#φ∆2 if we need to specify φ. To define
handle addition we suppose F1 and F2 are both facets of a single component of a
complex ∆ and φ is still a bijection between them. Now make the same identifications
and facet removal as in the connected sum. As long as the graph distance between v
and φ(v) is at least three for all v ∈ F1, the result is a simplicial complex which we
denote by ∆#, or by ∆#

φ if we need to specify φ. If F1 and F2 are in the same complex,
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but distinct components we rename the components as distinct complexes and use the
connected sum notation. Note that if ∆1 and ∆2 are PL-manifolds without boundary
then ‖∆1#∆2‖ and ‖∆#

1 ‖ are produced from ‖∆1 ∪ ∆2‖ and ‖∆1‖ respectively by
0-surgery.

As pointed out in [24, Lemma 7.7] the connected sum of a k-homology ball and
a k-homology sphere of the same dimension is a k-homology ball whose boundary is
the same as the boundary of the original homology ball. Similarly, the connected sum
of two k-homology spheres of the same dimension is another k-homology sphere. On
the other hand, the connected sum of two k-homology balls of the same dimension is
neither a k-homology ball nor a sphere. Thus, if ∆1 and ∆2 are k-homology manifolds
of the same dimension, then ∆1#φ ∆2 is a k-homology manifold if and only if for
each vertex v in the identified facet at least one of v or φ(v) is an interior vertex. A
similar statement holds for ∆#. Lastly, we observe that the boundary of ∆1#∆2 is
the disjoint union of the boundaries of ∆1 and ∆2. Similarly, the boundary of ∆#

equals the boundary of ∆.
Both connected sum and handle addition introduce a missing facet into the result-

ing complex. A missing facet in a (d − 1)-dimensional complex ∆ is a subset F of
cardinality d of the vertices such that F /∈ ∆, but every proper subset of F is a face of
∆. For future inductive purposes we observe that connected sum and handle addition
strictly increase the number of missing facets. In homology manifolds missing facets
characterize the connected sum and handle addition operations.

Proposition 7.8. Suppose ∆ is a (d−1)-dimensional homology manifold, d > 4, and
F is a missing facet of ∆. Then either ∆ is a connected sum of homology manifolds,
or ∆ is the result of a handle addition on a homology manifold.

Proof. Consider ∆̂. In ∆̂, the links of all of the vertices of F are homology spheres,
and so Alexander duality implies that the boundary of F is locally two-sided (that
is, for every x ∈ F , ‖∂(F\x)‖ separates the link of x, ‖ lk∆̂ x‖, into two connected
components). The argument of [7, Lemma 3.3] then shows that ‖∂F‖ is two-sided in
‖∆̂‖. Now, if ∂∆ = ∅, in which case ∆ = ∆̂, and ‖∂F‖ is two-sided in ‖∆‖, the above
statement is known; for a very detailed treatment see [5, Lemma 3.3]. So assume
∂∆ 6= ∅. Cut ∆̂ along the boundary of F and fill in the two missing (d − 1)-faces
that result from F . We obtain either a connected complex or two disjoint complexes
one of which contains v0 — the singular vertex of ∆̂. Thus we can write ∆̂ = Γ̂#

or ∆̂ = ∆̂1#∆2, where v0 is in ∆̂1. Removing v0 allows us to write ∆ = Γ# or
∆ = ∆1#∆2.

We consider the case ∆ = ∆1#φ∆2, φ : F1 → F2, as the handle addition case
is virtually identical. All that remains is to show that ∆1 and ∆2 are homology
manifolds. The vertices of ∆1 and ∆2 which are not in F1 or F2 have links which are
simplicially isomorphic to their image in ∆, and hence are homology balls or spheres.
Now suppose that v ∈ F1 and let x be its image in F. If the link of x in ∆ was a
homology sphere, then the links of v in ∆1 and φ(v) in ∆2 are also homology spheres.
If the link of x in ∆ was a homology ball, then in ∆̂ the link of x is a homology sphere
Γ which is the link of x in ∆ with its boundary coned off. Since F − x is a missing
facet in Γ, we can write Γ = Γ1#Γ2, where each Γi is a homology sphere and the
identified facet is F − x. The link of v in ∆1 is then Γ1 with the vertex v0 removed
and hence is a homology ball, while the link of φ(v) in ∆2 is Γ2 and is therefore
a homology sphere. Finally, to see that the boundaries of ∆1 and ∆2 are (possibly
empty) (d − 2)-dimensional homology manifolds we simply recall that the boundary
of ∆ = ∆1#∆2 is equal to the disjoint union of the boundaries of ∆1 and ∆2. �
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We now list several procedures which result in a ∆ that has minimal g2. All of the
proofs are routine applications of the definitions and/or an expected Mayer–Vietoris
sequence. For instance, the proof of the third part relies on the following observations:
β̃1
(
∆1#∆2, ∂(∆1#∆2)

)
= β̃1(∆1, ∂∆1) + β̃1(∆2, ∂∆2), f1

(
∆1#∆2, ∂(∆1#∆2)

)
=

f1(∆1, ∂∆1) + f1(∆2, ∂∆2) −
(
d
2
)
, and f0

(
∆1#∆2, ∂(∆1#∆2)

)
= f0(∆1, ∂∆1) +

f0(∆2, ∂∆2)− d.
Proposition 7.9. Let ∆ be a (d−1)-dimensional k-homology manifold, where d > 4.

(1) If ∆ has no interior edges, then ∆ has minimal g2.
(2) ∆ has minimal g2 if and only if each component of ∆ has minimal g2.
(3) If ∆ = ∆1#∆2 with ∆1 and ∆2 both k-homology manifolds, then ∆ has

minimal g2 if and only if ∆1 and ∆2 have minimal g2 and at least one of
∆1,∆2 has no boundary.

(4) If ∆ = Γ# with Γ a k-homology manifold, then ∆ has minimal g2 if and only
if Γ has minimal g2.

Here is the Murai–Novik restriction on links of vertices in complexes with minimal
g2. In combination with the previous propositions it allows us to describe a global
combinatorial characterization of such complexes.
Theorem 7.10 ([24, Section 7]). Let ∆ be a (d−1)-dimensional k-homology manifold
with d > 4 and minimal g2. Then the link of every interior vertex is a stacked sphere.
Furthermore, for every boundary vertex v there exists m > 0 (which depends on v)
such that the link of v is of the form

T #S1# · · ·#Sm,
where T is a homology ball with no interior vertices and each Si is the boundary of a
(d− 1)-simplex.

Recall that homology manifolds without boundary and minimal g2 are well un-
derstood: according to [21, Theorem 5.3] (that built on [29, Theorem 5.2] and [4,
Theorem 1.14], as well as on the notions of σ- and µ-numbers introduced in [6]),
they are stacked homology manifolds without boundary, which in turn are precisely
the elements of the Walkup’s class introduced in [39] (see also [13, Section 8]). Each
such manifold is obtained by starting with several disjoint boundary complexes of
the d-simplex and repeatedly forming connected sums and/or handle additions. In
particular, if ∆ is a stacked homology manifold without boundary, then ∆ is PL;
furthermore, ‖∆‖ is a sphere, a sphere bundle over S1, or a connected sum of several
of these. In view of this and Proposition 7.9(2), we now concentrate on connected
homology manifolds with boundary. Our goal is to prove the following theorem.
Theorem 7.11. Let ∆ be a (d−1)-dimensional, connected, k-homology manifold with
boundary. Assume further that ∆ has minimal g2 and d > 4. Then there is a sequence
∆1 → · · · → ∆r = ∆ such that every ∆i has boundary, minimal g2, and ∆1 has no
interior edges. Furthermore, for every 1 6 i 6 r − 1, ∆i+1 is equal to ∆#

i or ∆i#Γ,
where ∂Γ = ∅ and Γ has minimal g2.

Proof. If the link of any vertex is the boundary of a (d− 1)-simplex, then either ∆ is
the boundary of the d-simplex or we can remove the vertex and replace its star with a
facet. Repeating this procedure as many times as necessary we can assume that there
is no vertex whose link is the boundary of a (d−1)-simplex. The proof now continues
by induction on the number of missing facets.

First we show that if ∆ has no missing facets, then ∆ has no interior edges and
hence ∆ = ∆1 is the required sequence. Thus let e be an interior edge with endpoints
v and w. There are two cases to consider:
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(1) either v or w is an interior vertex, say v, or
(2) both v and w are boundary vertices.

Theorem 7.10 then shows that in the former case, the link of v must be a stacked
sphere which by our assumption is not the boundary of the simplex; hence, the link
of v is of the form S0#S1# · · ·#φSm, where m > 1 and Sm is the boundary of the
(d−1)-simplex. Similarly, in the latter case, since v is the boundary vertex whose link
has the interior vertex w, the link of v is T #S1# · · ·#φSm, where m > 1 and Sm is
the boundary of the (d−1)-simplex. Thus, in either case the link of v contains a vertex
x (e.g. the vertex of Sm that is not in the image of φ) such that the link of the edge
f = {v, x} is the boundary of the (d− 2)-simplex G (the facet of Sm opposite to x).
Hence st f is f ∗ ∂G. If G /∈ ∆ then we retriangulate st f by removing f and inserting
two new facets v ∪ G and x ∪ G. (This is usually called a (d − 2) bistellar move.)
The resulting complex is homeomorphic to ∆ but has smaller g2. This is impossible,
so G ∈ ∆. However, G ∈ ∆ implies that v ∪ G or x ∪ G is a missing facet of ∆ as
otherwise ∆ contains the boundary of the d-simplex {v, x} ∪G.

Once we know that ∆ has at least one missing facet we can write ∆ as ∆1#∆2 or
Γ# (see Proposition 7.8) and apply Proposition 7.9 and the induction hypothesis along
with the known characterization of stacked homology manifolds without boundary to
produce the required sequence of complexes. �

There are no immediately obvious Betti number restrictions on ∆ when ∆ has
minimal g2. However, there are some topological restrictions. For instance, let X be
an integral homology sphere with nontrivial fundamental group and let Y be X with a
small ball removed. If ∆ is a triangulation of Y, then [24, Theorem 7.3] (see also [23])
can be used to show that even though β̃1(∆, ∂∆) = β̃0(∆, ∂∆) = 0, g2(∆, ∂∆) > 0.

Question 7.12.What topological restrictions does the above combinatorial decomposi-
tion imply for PL-manifolds with boundary that have minimal g2? What about general
homology manifolds with boundary that have minimal g2?

Question 7.13. Is there a similar decomposition for ∆ when ∆ has minimal gi for
i > 3?

The last inequality we consider is g̃2(∆̂) > 0. As noted in Remark 5.4, at least for
d > 5, this inequality is implied by Theorem 7.6. In fact, for connected orientable
homology manifolds with boundary, g̃2(∆̂) > 0 can be a strictly weaker statement
than the Murai–Novik inequality in Theorem 7.6. So it is reasonable to expect a
stronger conclusion from g̃2(∆̂) = 0. When a connected orientable k-homology man-
ifold ∆ satisfies g̃2(∆̂) = 0 we will say ∆̂ has minimal g̃2. (Note that for homology
manifolds without boundary, having minimal g̃2 and having minimal g2 are equiva-
lent properties.) We begin by noting how connected sum and handle addition interact
with minimal g̃2. The proofs are the usual applications of Mayer–Vietoris and the
definitions.

Proposition 7.14. Let d > 4 and let ∆1,∆2, and Γ be (d−1)-dimensional, connected,
orientable k-homology manifolds with boundary.

(1) Γ̂# has minimal g̃2 if and only if Γ̂ has minimal g̃2.
(2) Suppose that the connected sum of ∆1 and ∆2 is a k-homology manifold.

Then the completion of ∆1#∆2 has minimal g̃2 if and only if ∆̂1 and ∆̂2
have minimal g̃2 and at least one of ∆1 or ∆2 has no boundary.

Like in the previous two cases, the key to analyzing complexes with minimal g̃2
involves understanding the links of vertices.
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Proposition 7.15. Let ∆ be a (d−1)-dimensional, connected, orientable k-homology
manifold with boundary such that d > 4 and the completion of ∆ has minimal g̃2.
Then the link of every interior vertex of ∆ is a stacked sphere while the link of every
boundary vertex is a stacked sphere with one vertex removed.

Proof. First we consider d > 5. Since g̃2(∆̂) = 0, eq. (10) implies that h′′d−2(∆̂) =
h′d−1(∆̂). So an argument along the same lines as in [29, Theorem 5.2] (but using
Lemma 3.3 instead of [36, Proposition 4.24]) shows that the link of every nonsingular
vertex in ∆̂ is a stacked sphere, and the result follows. This argument depends on
the fact that a (d − 1)-dimensional homology sphere with d > 4 and hd−2 = hd−1
is a stacked sphere. Since vertex links of 3-dimensional homology spheres are 2-
dimensional spheres and h1 = h2 for all two-dimensional spheres, stacked or not,
we use a different approach for d = 4.

Thus assume d = 4. The definition of gi shows that

g2(∆) + g1(∂∆) = g2(∆, ∂∆) + g2(∂∆).

So g̃2(∆̂) = 0 and (9) imply that g2(∆, ∂∆) + g2(∂∆) = 6β̃1(∆) + 4β̃2(∆). Since ∂∆
is an orientable compact surface g2(∂∆) = 3β̃1(∂∆) and hence,

g2(∆, ∂∆) = 6β̃1(∆)− 3β̃1(∂∆) + 4β̃2(∆).

Now, the long exact sequence of the pair (∆, ∂∆) implies that

β̃3(∆, ∂∆) + β̃2(∆) + β̃1(∂∆) + β̃1(∆, ∂∆) = β̃2(∂∆) + β̃2(∆, ∂∆) + β̃1(∆) + β̃0(∂∆).

Poincaré–Lefschetz duality applied to ∆ and ∂∆ gives us

1 + 2β̃1(∆, ∂∆) + β̃1(∂∆) = 2β̃1(∆) + 2β̃0(∂∆) + 1.

Thus,

g2(∆, ∂∆) = 6β̃1(∆, ∂∆)− 6β̃0(∂∆) + 4β̃2(∆) = 10β̃1(∆, ∂∆)− 6β̃0(∂∆).

By Theorem 7.6, ∆ has minimal g2 and ∂∆ has only one component. Theorem 7.10
and the fact that triangulations of two-dimensional disks with no interior vertices are
stacked spheres with one vertex removed proves that the links of the vertices of ∆ are
as claimed. �

Theorem 7.16. Let ∆ be a (d−1)-dimensional, connected, orientable homology mani-
fold with boundary such that ∆̂ has minimal g̃2 and d > 4. Then there exists a sequence
of (d − 1)-dimensional homology manifolds ∆1 −→ · · · −→ ∆r = ∆ such that ∆1 is
a stacked homology manifold, and for all 1 6 j 6 r − 1, ∆j+1 = ∆j#Γ, where Γ̂ has
minimal g̃2 and no boundary, or ∆j+1 = ∆#

j .

Proof. As in the proof of Theorem 7.11 we can assume that there is no vertex whose
link is the boundary of a (d− 1)-simplex and continue by induction on the number of
missing facets in ∆. If ∆ has a missing facet, then Propositions 7.8 and 7.14 allow us
to write ∆ as a connected sum or handle addition as required for the induction step.

In preparation for the base case where ∆ has no missing facets, we first show that
if the link of any vertex w has a missing facet F , then {w}∪F is a missing facet of ∆.
For this it is sufficient to prove that F ∈ ∆. To prove that F ∈ ∆ we follow Walkup’s
idea in [39] and retriangulate ∆̂ as follows. The previous proposition shows that the
link of w in ∆̂ is a stacked sphere. Remove w from ∆̂ and insert F. The union of lk∆̂ w
and F consists of two PL-spheres whose intersection is F. Now add two new vertices
x and y which cone off these two PL-spheres and call the new complex ∆̂′. Counting
edges shows that g2(∆̂′) = g2(∆̂)− 1. This is a contradiction since ∆̂ has minimal g̃2
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and ∆̂′ is homeomorphic to ∆̂. To see that ∆̂′ is homeomorphic to ∆̂ we note that stw
and stx ∪ st y are homeomorphic since they are both (d− 1)-dimensional PL-balls.

Now assume ∆ contains no missing facets. We start by observing that a stacked
sphere which is not the boundary of a simplex contains missing facets. Since no vertex
link of ∆ can have a missing facet, the previous proposition implies that every vertex
of ∆ is a boundary vertex and its link is a stacked sphere with one vertex removed.
Hence the link of a vertex w of ∆ can be written as (S1# · · ·#Sm)− v, where the Si
are boundaries of (d− 1)-simplices. Of course, v is v0 — the vertex added to form the
completion of ∆. It must be the case that v is in every Si. Otherwise there would be a
missing facet in the link of w. But now the union of (images) of Si − v (i = 1, . . . ,m)
is a stacking of the link of w which proves that the link of w is a stacked ball. Since
all of the links of vertices of ∆ are stacked balls, ∆ is a stacked homology manifold.
Indeed, if F ∈ ∆ were an interior face of ∆ of codimension > 2, then for any w ∈ F ,
F − w would be an interior face of codimension > 2 of the link of w. �

Remark 7.17.All ∆i in the statement of Theorem 7.16 have a nonempty connected
boundary.

Theorem 7.16 allows a description of the possible topological types of ∆ such that ∆̂
has minimal g̃2.

Corollary 7.18. If ∆ is a (d−1)-dimensional, connected, orientable homology man-
ifold such that d > 4 and ∆̂ has minimal g̃2, then ‖∆‖ is a ball, sphere, orientable
handlebody with boundary, orientable Sd−2-bundle over S1, or a connected sum of two
or more of these which have a (possibly empty) connected boundary.

Question 7.19. Is there a similar decomposition for minimal g̃i when i > 3?
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