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Cyclic sieving, skew Macdonald polynomials
and Schur positivity

Per Alexandersson & Joakim Uhlin

Abstract When λ is a partition, the specialized non-symmetric Macdonald polynomial
Eλ(x; q; 0) is symmetric and related to a modified Hall–Littlewood polynomial. We show that
whenever all parts of the integer partition λ are multiples of n, the underlying set of fillings
exhibit the cyclic sieving phenomenon (CSP) under an n-fold cyclic shift of the columns. The
corresponding CSP polynomial is given by Eλ(x; q; 0). In addition, we prove a refined cyclic
sieving phenomenon where the content of the fillings is fixed. This refinement is closely related
to an earlier result by B. Rhoades.

We also introduce a skew version of Eλ(x; q; 0). We show that these are symmetric and Schur
positive via a variant of the Robinson–Schenstedt–Knuth correspondence and we also describe
crystal raising and lowering operators for the underlying fillings. Moreover, we show that the
skew specialized non-symmetric Macdonald polynomials are in some cases vertical-strip LLT
polynomials. As a consequence, we get a combinatorial Schur expansion of a new family of LLT
polynomials.

1. Introduction
The cyclic sieving phenomenon (CSP), introduced by V. Reiner, D. Stanton and
D. White [35], is currently an active research topic, see e.g. [11, 33, 38, 41]. In this
article, we provide families of cyclic sieving on tableaux related to certain specializa-
tions of non-symmetric Macdonald polynomials. This settles an earlier conjecture by
the authors presented in [48]. The non-symmetric Macdonald polynomials are in our
case closely related to the transformed Hall–Littlewood functions and Kostka–Foulkes
polynomials, previously studied in the CSP context by B. Rhoades [37]. The family
of polynomials we study is the specialization of the non-symmetric Macdonald poly-
nomials Eλ(x1, . . . , xm; q, t) when λ is an integer partition and t = 0. They can be
defined as a weighted sum over certain fillings of the Young diagram λ. We denote
this set of fillings COF(λ,m), which is defined Section 2.8.

1.1. Main results. For an integer partition λ = (λ1, . . . , λ`), we let nλ denote the
partition (nλ1, . . . , nλ`). We show that there is a natural action φ on the fillings
COF(nλ,m) where each block of n consecutive columns is cyclically rotated one step.
Consequently φ generates a Cn-action on COF(nλ,m). In Theorem 3.2, we prove that
for every n,m ∈ N+ and integer partition λ, the triple
(1) (COF(nλ,m), 〈φ〉,Enλ(1m; q, 0))
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exhibits the cyclic sieving phenomenon. Moreover, as λ is held fixed and n =
1, 2, 3, . . . , this family is a Lyndon-like family, a notion by P. Alexandersson, S. Li-
nusson and S. Potka [3] (see also [19]) meaning that fixed points in COF(nλ,m)
under φk are in natural bijection with the elements in COF(nkλ,m) whenever k | n.
When λ = (1), this phenomenon reduces to a classical cyclic sieving phenomenon on
words of length n in the alphabet [m], see Example 2.10 below. A skew version of (1)
is given in Theorem 5.10.

We also prove a refined cyclic sieving phenomenon. Let COF(nλ, ν) denote the set
of coinversion-free fillings with shape nλ and content ν. In Theorem 4.3, we show that
(2) (COF(nλ, ν), 〈φ〉, [mν ] Enλ(x; q, 0))
exhibits the cyclic sieving phenomenon. When λ = (n), we recover the cyclic sieving
phenomenon on words of length n with content ν, and

[mν ] E(n)(x; q, 0) =
[
n

ν

]
q

,

a q-multinomial coefficient. We remark that if we take λ = (1k), [mν ] Enλ(x; q, 0)
in (2) can be seen as a q-analogue of n-tuples of k-subsets of [m] with content ν.

In Section 5 we introduce a skew version of Eλ(x; q, 0) and prove that these are
symmetric and Schur positive. We provide an explicit Schur expansion using a gen-
eralization of charge in Theorem 5.7. As an application, in Theorem 7.3 we obtain a
combinatorial Schur expansion of a certain family of vertical-strip LLT polynomials,
which has not been considered before. Combining Theorem 7.3 and Theorem 5.7, we
have the following main result.

Theorem 1.1. Let λ/µ be a skew shape such that no column contains more than two
boxes. Let ν be the tuple of skew shapes such that νj is the vertical strip 1λj/1µj and
set αi := λi − µi. Then

LLTν(x; q) = qmininv(ν)
∑

ρ`|λ′/µ′|

sρ′(x)
∑

T∈SSYT(ρ,α)

qchargeµ(T )

where chargeµ is a natural generalization of the charge statistic defined in Defini-
tion 5.2, and mininv(ν) is a simple statistic that only depends on the tuple ν given
in Equation (28).

The paper is structured as follows. In Section 2, we define the cyclic sieving phe-
nomenon and give a brief overview of the relevant symmetric functions. In Section 3,
we give a proof of the CSP in (1), and in Section 4 we prove (2). In Section 5 we
introduce the skew specialized Macdonald polynomials and give the Schur expansion
of these. In Section 6, we define crystal operators on the related skew coinversion-free
fillings and thus gives an alternative proof of the crystal structure given in [9]. Finally,
we prove a result in Section 7 which implies Theorem 1.1.

We note that some of the results in this paper are based on earlier work done in
the second author’s master’s thesis [48].

2. Preliminaries
2.1. Partitions and compositions.

Definition 2.1. Let n and ` be natural numbers. A weak composition λ of n into `
parts is defined to be an `-tuple λ = (λ1, . . . , λ`) of non-negative integers such that
λ1 + · · · + λ` = n. We say that the numbers λ1, . . . , λ` are the parts of λ. If all
parts of λ are positive, we say that λ is a composition, and we write λ � n. If λ
has multiple parts of the same size, we may suppress them using exponents. As an
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example, (7, 7, 0, 1, 1, 1, 4, 4, 4, 4) may be expressed as (72, 0, 13, 44). We write mj(λ)
for the number of parts of λ equal to j and nλ := (nλ1, . . . , nλ`) for n ∈ N. If
further λ1 > λ2 > · · · > λ`, then λ is a partition of n, and denote this by λ `
n. The parts of λ are the positive entries of λ. The length of λ is the number of
parts and is denoted `(λ). We identify partitions that only differ by trailing zeros, so
(4, 2, 2, 1, 0, 0, 0)=(4, 2, 2, 1, 0)=(4, 2, 2, 1) as partitions. There is one unique partition
of 0, namely ∅ which is referred to as the empty partition.

Note that in some cases, the word parts is ambiguous. When λ is a weak compo-
sition, a part can be zero whereas when λ is a partition, a part must be a positive
integer. This conflicting terminology is unfortunately very standard, see e.g. [45].

2.2. Semistandard Young tableau.

Definition 2.2. Let λ = (λ1, . . . , λ`) ` n. The Young diagram of λ is defined as the
set {(i, j) ∈ Z2 : 1 6 i 6 λj}. Geometrically(1) we think of this diagram as a set of n
boxes with ` left-justified rows and λi boxes in row i. The box in position (i, j) is the
box in the ith row and jth column. We use the notation λ to both refer to the partition
and to the Young diagram described by λ. The number of boxes in a diagram λ is
denoted |λ|.

Define the conjugate of λ, denoted λ′, to be the Young diagram obtained by trans-
posing λ where the boxes may be seen as matrix entries. We write λ′ = (λ′1, . . . , λ′`).
If λ is a partition on the form λ = ab, then λ is a rectangular Young diagram.
Throughout this article, all the diagrams are displayed in English notation, using ma-
trix coordinates, with a few exceptions in Section 7.

1 1 1 2 3
2 4 4 5 5
4 5
6

Figure 1. To the left: A Young diagram of shape λ = (5, 5, 2, 1). To
the right: A semistandard Young tableau of shape λ.

Definition 2.3. Let λ be a Young diagram. A filling of λ is a map T : λ→ N+ and a
semistandard Young tableau (SSYT) is a filling of λ such that in each row the entries
are weakly increasing and in each column the entries are strictly increasing. The set of
all semistandard Young tableaux of shape λ is denoted SSYT(λ) and we let SSYT(λ, µ)
the the set of such SSYT where the number of entries equal to i is given by µi.

Let T be a semistandard Young tableau. Define the reading word of T , denoted
rw(T ), as the word obtained by reading the entries T from the bottom row to the top
row and in each row from left to right. For example, the semistandard Young tableau
in Figure 1 has reading word rw(T ) = 6452445511123. We let xT :=

∏
j x

mj(T )
j where

mj(T ) is the number of entries in T equal to j. The semistandard Young tableau T
in Figure 1 gives xT = x3

1x
2
2x3x

3
4x

3
5x6.

(1)Note, we use the computer-friendly matrix indexing (row, column), which has the advantage
that it is also invariant under English/French convention.
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There are several equivalent ways to define the Schur functions but the following
is the most useful for our purposes. We let the Schur function indexed by the integer
partition λ be defined as

sλ(x) :=
∑

T∈SSYT(λ)

xT .

2.3. q-analogues. A q-analogue of a certain expression is a rational function in the
variable q from which we can obtain the original expression by letting q → 1.

Definition 2.4. Let n ∈ N. Define the q-analogue of n as [n]q := 1 + q + · · ·+ qn−1.
Furthermore, define the q-factorial of n as [n]q! := [n]q[n − 1]q · · · [1]q. Lastly, the
q-binomial coefficient is defined as[

n

k

]
q

:= [n]q!
[n− k]q![k]q!

if n > k > 0, and 0 otherwise.

Theorem 2.5 (q-Lucas theorem, see e.g. [39]). Let n, k ∈ N. Let n1, n0, k1, k0 be the
unique natural numbers satisfying 0 6 n0, k0 6 d− 1 and n = n1d+n0, k = k1d+ k0.
Then [

n

k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

(mod Φd(q))

where Φd(q) is the dth cyclotomic polynomial. In particular, we have

(3)
[
n

k

]
ξ

=
(
n1

k1

)[
n0

k0

]
ξ

if ξ is a primitive dth root.

Theorem 2.5 will be used in later sections.

2.4. Charge and Kostka–Foulkes polynomials. We shall briefly describe the
charge statistic and the related Kostka–Foulkes polynomialsKλµ(q) appearing in later
sections. This combinatorial model was first described by A. Lascoux and M. Schützen-
berger [30]. For a permutation σ ∈ Sk, let Des(σ) := {i ∈ [k − 1] : σi+1 < σi}, the
major index be defined as maj(σ) :=

∑
j∈Des(σ) j, and let rev(σ) := (σn, σk−1, . . . , σ1)

be the reverse. We can now introduce the notion of charge of a permutation.

(4) charge(σ) := maj(rev(σ−1)) =
∑

i/∈Des(σ−1)

(k − i).

For example,

charge(198423765) = maj(rev(156498732)) = maj(237894651) = 20.

We note that our way of defining charge is different from [30].
Given a word w with content µ ` n, we partition its entries into standard subwords

as follows. Start from the right of w and mark the first occurrence of 1. Proceed
to the left, and mark the first occurrence of 2, then 3 and so on, wrapping around
the end if nessecary, until µ′1 entries have been marked. This subword is the first
standard subword of w. Remove this subword, and repeat the process to find the
second standard subword, of length µ′2.

For example, the first standard subword in w = 21123543411223 has been circled.

2, 1, 1, 2 , 3, 5 , 4, 3, 4 , 1, 1 , 2, 2, 3 .

In total, we have four standard subwords in w, with corresponding charge values

charge(25413) = 3, charge(2431) = 2, charge(132) = 2, charge(12) = 1,
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and we define charge(w) as the sum of the charge values of the standard subwords.
In the example above, charge(w) = 8.

Recall the definition of the reading word rw(T ) of a semistandard Young tableau
from Definition 2.3. We then define charge(T ) := charge(rw(T )) and the Kostka–
Foulkes polynomial Kλµ(q) may be computed as

(5) Kλµ(q) =
∑

T∈SSYT(λ,µ)

qcharge(T ).

Example 2.6 (Computing a Kostka–Foulkes polynomial). Consider the case λ = 421,
µ = 3211. There are four tableaux in SSYT(λ, µ). Below, these are displayed, each
with the list of standard subwords and corresponding charge values.

(6)

1 1 1 4
2 2
3
3214, 21, 1

1+0+0

1 1 1 3
2 2
4
4213, 21, 1

2+0+0

1 1 1 2
2 4
3
3241, 12, 1

1+1+0

1 1 1 2
2 3
4
4231, 12, 1

2+1+0

Hence, Kλµ(q) = q + 2q2 + q3.

2.5. Cyclic sieving.

Definition 2.7 (Cyclic sieving, see [35]). Let X be a set of combinatorial objects and
Cn = 〈g〉 be the cyclic group of order n acting on X, with g as a generator. Let
f(q) ∈ N[q] be a polynomial with non-negative integer coefficients. We say that the
triple (X,Cn, f(q)) exhibits the cyclic sieving phenomenon, (CSP) if for all d ∈ Z,

#{x ∈ X : gd · x = x} = f(ξd)(7)

where ξ is a primitive nth root of unity.

Note that it follows immediately from the definition that #X = f(1). In practice,
the group action of Cn on X and the polynomial f(q) is almost always natural in
some sense. The group action could be some form of rotation or cyclic shift of the
elements of X. The polynomial usually has a closed form and is also typically the
generating polynomial for some combinatorial statistic defined on X.

Example 2.8 (k-subset CSP, see [35]). Let
([n]
k

)
be the set of k-subsets of [n]. Suppose

that CN is generated by a permutation σ ∈ Sn, where the cycles of σ consists of N -
cycles and one or zero singletons. Let CN act on [n] in the natural way (this is referred
to as CN acting nearly freely on [n]). Then

(([n]
k

)
, CN ,

[
n
k

]
q

)
exhibits the cyclic sieving

phenomenon.

In Table 1 we summarize some of the most famous and relevant instances of cyclic
sieving. For a more comprehensive list, see B. Sagan’s article [40]. One of the main

Set Group action Polynomial Reference
k-subsets of [n] Nearly free action

[
n
k

]
q

[35]
Words with content α Cyclic shift

[ |α|
α1,...,α`

]
q

[35]
Non-cross. perf. matchings Rotation 1

[n+1]q

[2n
n

]
q

[35]
SYT(nm) Promotion fλ(q) [36]
01-matrices Shift rows/columns See Theorem 4.1 [37]

Table 1. A few known instances of cyclic sieving.
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results of this paper, Theorem 3.2, is a generalization of the first instance of cyclic
sieving in Table 1 and it is also closely related to the last instance in the table.

The situation is even more interesting when different instances of the cyclic sieving
phenomenon are related in a certain fashion.

Definition 2.9 (Lyndon-like CSP, [3]). Let {Xn}∞n=1 be a family of combinatorial
objects with a cyclic group action Cn acting on Xn. Furthermore, let {fn(q)}∞n=1
be a sequence of polynomials in N[q], such that for each n = 1, 2, . . . , the triple
(Xn, Cn, fn(q)) exhibits the cyclic sieving phenomenon. We say that the family of
triples {(Xn, Cn, fn(q))}∞n=1 is Lyndon-like if fn/d(1) = fn(e 2πi

d ) for all positive in-
tegers d, n such that d|n.

Phrased in a different manner, the family is Lyndon-like if and only if the number
of elements inXn fixed by gd is in bijection withXd where g is an element of order n in
Cn. We note that the notion of Lyndon-like is also studied from a different perspective
(called q-Gauß congruences) in [19].

Example 2.10 (See [35, Prop. 4.4]). Let Wnk be the set of words of length n in the
alphabet [k]. Let Cn act on Wnk by cyclic rotation. Take fn(q) =

∑
w∈Wnk

qmaj(w),
where maj(w) is the sum over all indices j such that wj > wj+1. Then (Wnk, Cn, fn(q))
exhibits the cyclic sieving phenomenon. Furthermore, if we fix k, this family of CSP-
triples is Lyndon-like.

One can show that the group action on a Lyndon-like family Xn corresponds to
rotation on some set of words of length n, see [3, Prop. 34]. When Xn is the set of
binary words of length n, the orbits of length n are in bijection with Lyndon words,
see A001037 in [44]. Each Lyndon-like family of combinatorial objects then has an
analogue of Lyndon words.

2.6. Burge words and RSK. The Robinson–Schenstedt–Knuth correspondence
(RSK) is a famous combinatorial bijection with many different applications [27, 45].
The version we use in this paper is a bijection between pairs of certain biwords and
pairs of semistandard Young tableaux. We note that the biwords we consider are not
lexigraphically ordered, which is otherwise typical.

Definition 2.11.A Burge word is a two-line array with positive integers

W =
(
i1 i2 · · · im
j1 j2 · · · jm

)
sorted primarily increasingly in the first row and secondarily on the second row de-
creasingly. Furthermore, all columns are unique. As an example, ( 1 1 2 3 3 3 3 5 6 6 6

3 1 2 6 4 3 2 4 5 3 1 )
is a Burge word. A pair (ic, jc) is called a biletter. The first row of W is called the
recording word and the second row of the biword is called the charge word — the
reason for this terminology will be apparent in Proposition 5.5.

We use the same row insertion bumping algorithm as the standard RSK on biwords,
which we assume the readers are familiar with. Our version of RSK and relevant
properties is the third variant described by C. Krattenthaler [27, § 4.3].

Proposition 2.12. The RSK-algorithm yields a bijection between Burge words and
pairs of fillings (P,Q) of the same shape such that the insertion tableau P is semis-
tandard and the recording tableau Q has the property that Qt is semistandard.
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Inserted biletter
(1

4
) (1

1
) (2

3
) (2

2
) (4

5
) (5

4
) (5

3
) (5

1
)

P 4 1
4

1 3
4

1 2
3
4

1 2 5
3
4

1 2 4
3 5
4

1 2 3
3 4
4 5

1 1 3
2 4
3 5
4

Q 1 1
1

1 2
1

1 2
1
2

1 2 4
1
2

1 2 4
1 5
2

1 2 4
1 5
2 5

1 2 4
1 5
2 5
5

Table 2. Computing the image of a Burge word under RSK via a
sequence of row insertions.

As an example of Proposition 2.12, the procedure in Table 2 shows that we have
the following correspondence.(

1 1 2 2 4 5 5 5
4 1 3 2 5 4 3 1

)
RSK−−−→

 1 1 3
2 4
3 5
4

,

1 2 4
1 5
2 5
5

 .

2.7. Symmetric functions and plethysm. We use standard notation (see e.g. [32,
45]) for symmetric functions. We have the elementary symmetric functions eλ, com-
plete homogeneous symmetric functions hλ, the power-sum symmetric functions pλ
and the Schur functions sλ. Recall also the standard involution on symmetric func-
tions ω, with the defining properties that for λ ` n,

ω(hλ) = eλ, ω(sλ) = sλ′ , ω(pλ) = (−1)n−`(λ) pλ .
We shall also require a few identities related to plethysm — for a comprehensive
background on plethysm and the notation used, see J. Haglund’s book [20]. In this
paper, we only need the following few properties. When f is a symmetric function,
we let the plethystic substitution pk[f ] for k ∈ N be defined as

pk[f ] := f(xk1 , xk2 , xk3 , . . . ).(8)
Note that in particular, pk[pm] = pkm. It is clear from the definition that for sym-
metric functions f and g,

pk[f + g] = pk[f ] + pk[g] and pk[f · g] = pk[f ] · pk[g].

Lemma 2.13. For any homogeneous symmetric function f of degree n, we have that
pk[ωf ] = (−1)(k+1)nω(pk[f ]).

Proof. Since plethysm is linear, it suffices to prove the identity for f = pλ, where
λ ` n. We have that pk[ω pλ] is equal to pk[(−1)n−`(λ) pλ] = (−1)n−`(λ) pkλ =
(−1)(n−`(λ))+(kn−`(λ))ω(pkλ) which can be simplified to (−1)(k+1)nω(pk[pλ]). �

2.8. Hall–Littlewood and non-symmetric Macdonald polynomials. The
family of non-symmetric Macdonald polynomials, {Eα(x; q, t)}α where α ∈ Nn is
a basis for C(q, t)[x1, . . . , xn]. These were introduced by E. Opdam [32, 34], and
further developed by I. Cherednik [16]. The first definition of non-symmetric Mac-
donald polynomials is quite cumbersome and indirect. J. Haglund, M. Haiman and
N. Loehr [22] found a combinatorial formula for computing Eα(x; q, t), using the no-
tion of non-attacking fillings, thus generalizing F. Knop and S. Sahi’s earlier formula
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for Jack polynomials [26]. In this paper, we shall only study a special case of the
non-symmetric Macdonald polynomials, namely the case when λ is a partition and
t = 0. Here, we use the same notation as P. Alexandersson and M. Sawney [6, 7],
which differs slightly from Haglund et al. [22]. The notation Eα(x; q, t) in this paper
is equal to Erev(α)(x; q, t) in theirs where the composition has been reversed. Since we
shall only study the specialization Eλ(x; q, 0), we do not introduce the non-symmetric
Macdonald polynomials in full generality.

Let λ = (λ1, . . . , λ`) be a Young diagram, m ∈ N with m > r. Let F : λ→ [m] be
a filling of λ. Three boxes a, b, c in F form a triple if a is just to the left of b and c
in a row lower than b and in the same column as b. The entries in a triple form an
inversion-triple if they are ordered increasingly in a counter-clockwise orientation. If
two entries in the triple are equal, then the entry with the largest subscript in (9) is
considered to be the biggest.

(9)
a3 b1
	

...
c2

A filling of shape λ is called a coinversion-free filling if every triple is an inversion-
triple and the first column is strictly decreasing from top to bottom. The set of such
fillings where the entries are in [m] is denoted COF(λ,m), see Figure 2 for an example.
Note that the conditions imply that every column in a coinversion-free filling must
have distinct entries.
Remark 2.14. The definition of coinversion-free filling is essentially the same as used
by P. Alexandersson and M. Sawhney [6] and by J. Uhlin [48] with the exception
that the aforementioned texts also include basements. However, it is easy to see that
these different definitions both yield Eλ(x; q, 0). Arguably, our definition makes the
results in this article more natural. S. Assaf [8] and S. Assaf, N. Gonzáles [9] study
a generalized form of coinversion-free fillings, which also allows composition-shaped
fillings. Therein, they are called semistandard key tabloids.

A descent(2) of a filling F is a box (i, j) such that F (i, j−1) < F (i, j). In particular,
there are no descents in the first column. The set of descents is denoted Des(F ). The
leg of a box b is the number of boxes that lie strictly to the right of b in the diagram.
In other words, if b = (i, j), then leg(b) = λi − j. The major index of F is defined as

maj(F ) =
∑

b∈Des(F )

(leg(b) + 1)).

Given a filling F of shape λ, we let the weight of F , wt(F ) = (w1, . . . , wm), be the
vector such that wi counts the number of occurrences of i in F . Furthermore, we let
xF denote the monomial

∏
(i,j)∈λ xF (i,j), see Figure 2.

The (specialized) non-symmetric Macdonald polynomial Eλ(x; q, 0) is then defined
as
(10) Eλ(x1, . . . , xm; q, 0) =

∑
F∈COF(λ,m)

qmaj(F )xF .

One can verify that this definition agrees with the one given in [2]. Despite the name,
the specialization Eλ(x; q, 0) is in fact a symmetric polynomial(3) as we shall see below.

(2)Note that this seems non-standard compared to descents in words. This terminology is due to
the usage of skyline diagrams used when describing the non-symmetric Macdonald polynomials [22].
We use English notation rather than skyline diagrams.

(3)There is an extension of the notion of inversion triples to diagrams indexed by weak composi-
tions and then one has that Eλ(x; q, 0) is independent of the order of entries in λ, see [2, Prop. 17].

Algebraic Combinatorics, Vol. 3 #4 (2020) 920



Cyclic sieving, skew Macdonald polynomials and Schur positivity

7 6 5 4 2 7
4 4 4 7 5
3 3 2
2 5 7
1

Figure 2. A coinversion-free filling with descents marked and weight
(1, 3, 2, 4, 3, 1, 4). Its major index is 1 + 2 + 2 + 1 = 6.

Example 2.15.As can be computed by summing all monomials in Figure 3, we have
that E(2,1)(x1, x2, x3; q, 0) is given by

x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 + 2x1x2x3 + qx1x2x3

= (2 + q) m111(x1, x2, x3) + m21(x1, x2, x3).

2 1
1

x2
1x2

2 2
1

x1x
2
2

2 3
1

qx1x2x3

3 1
1

x2
1x3

3 2
1

x1x2x3

3 3
1

x1x
2
3

3 1
2

x1x2x3

3 2
2

x2
2x3

3 3
2

x2x
2
3 .

Figure 3. All coinversion-free fillings of shape λ = (2, 1) in three
variables with their respective contribution to Equation (10).

We shall also briefly make use of the modified Macdonald polynomials further down.
Let λ/µ be a skew shape and let F : λ/µ→ [m] be a filling with no restrictions. The
notion of inversion triples with the cases in (9) is extended to skew shapes, where the
box a may now lie outside the diagram.

(11)
a3 b1
	

...
c2

∞ b1
	

...
c2

Such boxes outside the diagram λ/µ are considered to have value ∞, in which case it
is required F (b1) > F (c2) in order for the triple to be an inversion triple. Let inv(F )
denote the total number of inversion triples in F . The notion of descent is extended
to skew shapes, so that (i, j) is a descent of F if F (i, j − 1) < F (i, j), and we let
maj(F ) =

∑
b∈Des(F )(leg(b) + 1) as before. Similarly, the notion of weight is extended

in the natural way. The (skew) modified Macdonald polynomial H̃λ/µ(x; q, t) is defined
as
(12) H̃λ/µ(x1, . . . , xm; q, t) =

∑
F :λ/µ→[m]

qmaj(F )tinv(F )xF .

This stabilizes to a symmetric function as m → ∞. Note that [t∗] H̃λ(x; q, t) =
Eλ(x; q, 0), that is, the coefficient of the highest power of t that appears is given
by a specialized Macdonald polynomial.
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A lot of research has been devoted to study the family of modified Macdonald
polynomials. The starting point for the formula in (12) is the reference [21], while the
skew extension is the main topic in [10]

We shall also make use of the transformed Hall–Littlewood polynomials, Q′µ(x; q).
There are many different ways to define these, for example via the Kostka–Foulkes
polynomials Kλµ(q):

Q′µ(x; q) =
∑
λ

Kλµ(q) sλ(x).(13)

We refer to [17, 32, 47] for more background and properties. For completeness, we
provide a combinatorial method for computing Kλµ(q) in Section 2.4. The trans-
formed Hall–Littlewood polynomials are closely related to our specialization of the
non-symmetric Macdonald polynomials.

Proposition 2.16 (See [6, Thm. 14] or [20]). For any partition λ

Eλ(x; q; 0) = ωQ′λ′(x; q).

2.9. Evaluations at roots of unity. Our first goal is to evaluate Eλ(x; q; 0) when
q is a root of unity. We need a few intermediate results.

Proposition 2.17 (See [29, Thm. 2.1]). Let λ be a partition of n. Let d be a positive
integer and write mj(λ) = dm′j+rj with 0 6 rj < d. Furthermore, let ξ be a primitive
dth root of unity. Then

Q′λ(x; ξ) = Q′
λ̃
(x; ξ)

n∏
j=1

(
Q′(jd)(x; ξ)

)m′j
(14)

where λ̃ is the partition (nrn , . . . , 2r2 , 1r1).

Proposition 2.18 (See [29, Thm. 2.2]). Let ξ be a primitive nth root of unity. Then

Q′kn(x; ξ) = (−1)k(n−1) pn[hk(x)].(15)

Theorem 2.19. Let µ be an integer partition and n ∈ N. Furthermore, let ξ be a
primitive nth root of unity and d a divisor of n. Then

Enµ(1m; ξd, 0) =
∏
j>1

(
m

j

)d·mj(µ′)
.(16)

Proof. We have that ξd is a primitive
(
n
d

)th root of unity. Sincemj((nµ)′) = n·mj(µ′)
we have by Proposition 2.17,

Q′(nµ)′(x; ξd) =
∏
j>1

(
Q′jn/d(x; ξd)

)d·mj(µ′)
.

Moreover, Proposition 2.18 then gives that

(17) Q′(nµ)′(x; ξd) =
∏
j>1

(
(−1)j(n/d−1) pn/d[hj(x)]

)d·mj(µ′)
.

Applying the ω-involution on both sides of (17) and using Proposition 2.16 and
Lemma 2.13 gives

Enµ(x; ξd, 0) =
∏
j>1

(
pn/d[ej(x)]

)d·mj(µ′)
=
∏
j>1

(
ej(x

n
d
1 , x

n
d
2 , . . . )

)d·mj(µ′)
.
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Finally, we set (x1, . . . , xm) = (1, q, q2, . . . , qm−1) and remaining variables are set to
zero. Formulas for the principal specialization of elementary symmetric functions,
see [45, p. 303], give

(18) Enµ(1, q, q2, . . . , qm−1; ξd, 0) =
∏
j>1

(
q
n
d (j2)

[
m

j

]
q
n
d

)d·mj(µ′)

.

In particular, with q = 1 we obtain (16). �

Example 2.20. Let µ = 885322, n = 12 and d = 4. Then µ′ = 66433222 and

E12µ(1m; e 2πi4
12 , 0) =

((
m

2

)3(
m

3

)2(
m

4

)(
m

6

)2
)4

.

3. Cyclic sieving on coinversion-free fillings
Recall that COF(nλ,m) denotes the set of coinversion-free fillings of shape nλ and
entries in [m]. In order to define the cyclic group action on COF(nλ,m), we need to
keep the following result in mind.
Proposition 3.1 (See [6, 7]). Let λ be a partition with ` parts and let S1, S2, . . . , S`
be subsets of [m] such that |Sj | = λj. Then there is a unique coinversion-free filling
F of shape λ′ such that the entries in column j of F are given by Sj.

Note that this proposition implies that Eλ′(x; 1; 0) = eλ(x), and this identity gen-
eralizes to the non-symmetric setting, see [7].

Let φ act on COF(nλ,m) by cyclically shifting the first n columns one step to
the right, the next n columns one step to the right, and so on. Finally, the elements
in each column are rearranged so that the result is again a coinversion-free filling
in COF(nλ,m). This action is well-defined according to Proposition 3.1. Clearly, φ
generates a cyclic group of order n acting on COF(nλ,m), see Figure 4 for an example.
We are now ready to prove one of the main results of the paper.

6 4 2 1 1 6
5 2 6 3 4 3
2 1 4

φ−−→
6 6 4 3 3 1
4 2 2 6 1 4
2 5 1

Figure 4. The action of φ on a filling of shape nλ = 3(2, 2, 1).

Theorem 3.2. For every integer partition λ and n > 1, the triple
(COF(nλ,m), 〈φ〉,Enλ(1m; q, 0))

exhibits the cyclic sieving phenomenon. Moreover, the family
{(COF(nλ,m), 〈φ〉,Enλ(1m; q, 0))}∞n=1

is a Lyndon-like family.
Proof. We first need to compute the number of elements fixed under φd whenever
d | n. Since coinversion-free fillings are uniquely determined by their column sets, a
coinversion-free filling in COF(nλ,m) fixed under φd is uniquely determined by the
first d columns in each consecutive block of n columns. Hence,

(19) #{F ∈ COF(nλ,m) : φd · F = F} = # COF (dλ,m) =
∏
j>1

(
m

j

)d·mj(λ′)
.

By using Theorem 2.19, the statements in the theorem now follows. �
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There is another natural group action on coinversion-free fillings. Pick σ ∈ Sm and
let σ : COF(λ,m) → COF(λ,m) act by letting F ′ = σ(F ) be given by F ′(i, j) =
σF (i, j) for all (i, j) ∈ λ, followed by rearranging the elements in each column of F ′
to obtain a new coinversion-free filling. By Proposition 3.1, this action is well defined.
Let CM = 〈σ〉. Recall the notion of CM acting nearly freely on [m] from Example 2.8.
This induces a CM -action on COF(λ,m).

Theorem 3.3. Let n and m be positive integers and let λ be a partition. If Cn acts
nearly freely on [m], then(

COF(λ,m), Cn,Eλ(1, q, q2, . . . , qm−1; 1, 0)
)

exhibits the cyclic sieving phenomenon.

Proof. The proof of the case when λ is rectangular can be found in [48], and ex-
tends to the general case without extra effort. Suppose Cn is generated by σ. Write
λ′ = (λ′1, . . . , λ′c) and consider the set of c-tuples s = (s1, . . . , sc), so that si ⊆ [m]
and #si = λ′i. We let Cn act on such c-tuples by letting σs = (σs1, . . . , σsc). Propo-
sition 3.1 implies that we can identify a coinversion-free filling with its column sets.
Hence, there is a bijection from COF(λ,m) to the set of c-tuples on the above form
and it is clear that this bijection is equivariant with respect to σ, so it suffices to show
that the set of c-tuples exhibits the cyclic sieving phenomenon.

But the set of c-tuples is a direct product of sets which we know exhbit the cyclic
sieving phenomenon — this is just Example 2.8. Furthermore, the product of the CSP-
polynomials in the example agree with (18) (when ξ = 1). It is straightforward to
show that that CSP is preserved under taking direct products (see e.g. [12, Prop. 2.2],
[1, Rem. 2.3] or [48, Lem. 4.13 (i)]) so we are done. �

Example 3.4.Note that the above theorem does in general not hold if CM does
not act nearly freely on [m]. Suppose that n = k = 1 and C4 is generated by the
permutation 〈(1234)〉. Then, the CSP-polynomial Enk(1, q, q2, . . . , qm−1; 1, 0) = 1 +
q + q2 + q3 + q4 + q5, which evaluated at a primitive 4th of unity ξ = i yields 1 + i.

7 6 5 4 2 7
4 4 4 3 7
3 3 2 1
2 5

σ−−→

5 5 5 5 3 1
4 4 3 2 1
3 7 6 4
1 6

Figure 5. An example of the action of σ = (1234567).

4. Refined CSP on stretched specialized Macdonald fillings
After the project started, we realized that Theorem 3.2 is very much connected
with [37]. In fact, the main result of B. Rhoades implies a refined version of Theo-
rem 3.2 as we shall see later in this section. Note however that the connection between
his set of combinatorial objects (01-matrices), and coinversion-free fillings and Mac-
donald polynomials passes through RSK, which in our opinion makes it worthwhile
to give the direct proof Theorem 3.2.

Let [mν ]f denote the coefficient of mν in the symmetric function f . It follows from
Proposition 2.16 and (13) that

(20) [mν ] Eλ(x; q, 0) =
∑
µ

Kµν(1)Kµ′λ′(q).
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Theorem 4.1 (See [37, Thm. 1.4]). Let µ and ν be compositions of n, with cyclic
symmetries a and b, respectively. Let X(µ, ν) be the set of `(λ)× `(ν) binary matrices
with row content µ and column-content ν. Then the product C`(µ)/a × C`(ν)/b act on
X by a-fold row-rotation and b-fold column-rotation, respectively. Then(

X(µ, ν), C`(µ)/a × C`(ν)/b, δn(q, t)
∑
λ`n

Kλµ(q)Kλ′ν(t)
)

exhibits the bi-cyclic sieving phenomenon. Here, δn(q, t) is a messy polynomial taking
on values ±1 at relevant roots of unity. Furthermore, one can check that δn(q, t) ≡ 1
in the case q = 1.

By only considering the action on the columns in Theorem 4.1, we get the following
corollary.

Corollary 4.2. Let n ∈ N, λ ` k where ` = `(λ), ν � nk with m parts and let
X(ν, nλ) be the set of m×nλ1 binary matrices with row-content ν and column-content
given by the conjugate of nλ. Let Cn act on X(ν, nλ) by cyclic rotation of each block
of n consecutive columns. ThenX(ν, nλ), Cn,

∑
µ`nk

Kµ,ν(1)Kµ′,(nλ)′(q)


is a CSP-triple.

Proof. Note that there is an easy correspondence between n-fold rotation of columns
and rotation of each block of n consecutive columns. �

Recall the definition of φ in Section 3, which cyclically shifts each block of n
consecutive columns.

Theorem 4.3. Let n ∈ N, λ ` k and let ν be a weak composition of nk with m parts.
Then

(COF(nλ, ν), 〈φ〉, [mν ] Enλ(x; q, 0))

exhibits the cyclic sieving phenomenon.

Proof. Let ϕ denote the one-step cyclic rotation of each block of n consecutive columns
in a matrix. By (20) it suffices to show that there is a bijection A : X(ν, nλ) →
COF(nλ, ν) such that φ ◦A(M) = A ◦ ϕ(M). We let A(M) = F if and only if

M(i, j) = 1 ⇐⇒ column j in F contains i.

It is straightforward to verify that φ ◦ A(M) = A ◦ ϕ(M), so fixed-points under ϕd
are mapped to fixed-points under φd for all d ∈ Z. This proves the theorem. �

See Figure 6 for an illustration of Theorem 4.3.

Remark 4.4. In an upcoming article [5], we prove a result reminiscent of Theo-
rem 4.3. We show that there exists a cyclic group action ρ of order n such that
(SYT(nλ), 〈ρ〉, fnλ(q)) is a CSP-triple, where fλ(q) := Kλ,1n(q) is the major-index
generating function on standard Young tableaux. We now have two families of fillings
where stretched shapes admit CSP. Computer experiments on various other families
of stretched symmetric functions suggest additional instances of CSP. This raises the
question if there is some general theory behind these observations.
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3 3 2 2 1 1 1 1
1 1 1 1

2 1 1 1 1 1 1 1
1 3 3 2

3 2 2 1 1 1 1 1
1 1 1 3

2 2 1 1 1 1 1 1
1 1 3 3

3 2 3 2 1 1 1 1
1 1 1 1

2 1 1 1 1 1 1 1
1 3 2 3

Figure 6. The orbits of COF(84, (8, 2, 2)) under φ. The CSP-
polynomial is f(q) = [m(8,2,2)] E84(x; q, 0) = 1 + q+ q2 + q3 + q4 + q6.
One can easily check that for a primitive 4th root of unity ξ, f(ξ) = 0,
f(ξ2) = 2 and f(ξ4) = 6 and thus agreeing with the definition of CSP
in (7).

5. Skew specialized Macdonald polynomials
There is a natural generalization of Eλ(x; q, 0) to skew diagrams. In this section,
we shall see that Eλ/µ(x; q, 0) is symmetric and Schur positive. Interestingly, the
coefficients in the Schur expansion are not related to skew Kostka–Foulkes polynomials
which at first glance is a natural guess.

A skew specialized Macdonald filling of shape λ/µ is a filling F of the skew shape
λ/µ such that each column of F contains distinct entries, the first column is strictly
decreasing, and every triple in F is an inversion-triple as in (11). We let COF(λ/µ)
denote the set of all such fillings. It is not difficult to see that Proposition 3.1 can
be generalized to the skew-case as well. In other words a skew specialized Macdonald
filling is completely determined by the shape of the diagram and the ordered tuple of
column sets.

Definition 5.1. Let λ/µ be a skew shape, and define the skew (specialized) non-
symmetric Macdonald polynomial as

Eλ/µ(x; q, 0) :=
∑

F∈COF(λ/µ)

xF qmaj(F ).

One can quite easily see that these polynomials generalize the skew Schur functions:
(21) Eλ/µ(x; 0, 0) = sλ/µ(x).
As in the non-skew case, the functions Eλ/µ(x; q, 0) are actually symmetric, and we
are justified to work in any number of variables. It is clear from the definition that
(22) Eλ/µ(x; q, 0) = [t∗] H̃λ/µ(x; q, t).
The fact that these are symmetric follows from Theorem 5.7 below. Symmetry
was proved earlier in the non-skew case [48] by using a variant of the Lascoux–
Schützenberger involutions, see Definition 6.5 below.

Given a filling F ∈ COF(λ/µ) and some large integer M , we define the extended
filling F̂ as the filling of shape λ obtained from F as

(23) F̂ (i, j) =
{
M − i if (i, j) ∈ µ
F (i, j) otherwise.

Note that F̂ is a specialized Macdonald filling and that maj(F ) = maj(F̂ ). We shall
make use of this definition in the next subsection.
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8 4 6
7 3 6 3
6 2 4

4 4 1
3 2 8
1 5

1̂9 1̂9 1̂9 8 4 6
1̂8 7 3 6 3
1̂7 6 2 4
4 4 1
3 2 8
1 5

Figure 7. Left: A skew specialized Macdonald filling of shape λ/µ
with λ = (6, 5, 4, 3, 3, 2) and µ = (3, 1, 1) with descents marked. The
weight of the filling is (2, 2, 3, 4, 1, 3, 1, 2). Right: F̂ with M = 20.

5.1. Charge, RSK and Schur expansion. We assume that the reader is famil-
iar with the (row-insertion) Robinson–Schenstedt–Knuth correspondence (RSK), de-
scribed briefly in Section 2.6.

Definition 5.2. Let µ be a partition and let w be a word with content β (which can
be a weak composition) such that µ+ β is a partition. The postfix charge chargeµ(w)
is defined via the usual charge statistic as

chargeµ(w) := charge (w · `µ` · · · 2µ21µ1) .

That is, we concatenate a postfix to w with content µ, where the letters appear in
decreasing order. For example, charge21(12231233) = charge(12231233 · 211) = 2.

Recall the definition of elementary Knuth transforms, stating that yzx ∼K yxz
whenever x < y 6 z and xzy ∼K zxy whenever x 6 y < z. Two words are Knuth-
equivalent, if one can obtain one from the other via a sequence of elementary Knuth
transforms. If w has partition-content, then its equivalence class contains a unique
word which is the reading word of a semistandard Young tableau. Moreover, two words
of partition content, w and w′ are Knuth-equivalent if and only if they insert to the
same semistandard Young tableau under RSK, see [18, p. 22] or [15, Cor. 2.3.21].

Lemma 5.3. Let µ be a partition and suppose u and v are Knuth-equivalent. Then u ·
`µ` · · · 2µ21µ1 and v · `µ` · · · 2µ21µ1 are Knuth-equivalent and chargeµ(u) = chargeµ(v).

Proof. The first statement follows easily from the definition of Knuth-equivalence.
Furthermore, if two words are Knuth-equivalent, they have the same charge, [15,
Cor. 2.4.38]. �

Recall the notion of a Burge word from Definition 2.11.

Definition 5.4. For each skew specialized Macdonald filling F we associate a Burge
word W = W (F ) as follows. For each entry e = F (i, j), let ( ej ) be a biletter in W .
Take W to be the (unique) Burge word with all such biletters.

The non-skew case of Definition 5.4 was first given in [6]. Recall Proposition 3.1
and note that we can easily recover the column sets of F from W . We send fillings
in COF(λ/µ,m) to biwords where the top row is a weakly increasing sequence with
elements in [m], and the bottom row has j entries equal to λ′j − µ′j such that entries
are strictly decreasing on each block of identical elements in the top row. This is
a bijection when we fix some shape λ/µ. However, two skew specialized Macdonald
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fillings of different shapes may give the same biword. For example,

3 2
1 1

and
2

3 1
1

both have the same biword ( 1 1 2 3
2 1 2 1 ).

We let ins(F ) and rec(F ) denote the the insertion tableau and the recording
tableau, respectively, after performing RSK on W (F ). Note that the content of F
is equal to the content of P and is also given by the bottom row of W while the
content of Q is given by the top row of W . Moreover, we let the charge word cw(F )
denote the bottom row of W .

2 1 3
3 3 1
2 2
1 4

W−−→
(

1 1 1 2 2 2 3 3 3 4
4 3 1 3 2 1 5 2 1 2

)
RSK−−−→

 1 1 1 2
2 2 5
3 3
4

,

1 2 3 4
1 2 3
1 3
2


Figure 8. A skew specialized Macdonald filling F , the correspond-
ing biword, and the result (P,Q) = (ins(F ), rec(F )) under RSK.

Proposition 5.5. Suppose λ/µ is a skew shape and F ∈ COF(λ/µ). Then maj(F ) =
chargeµ′(cw(F )).
Proof. A short proof in the case µ = ∅ was given in [6, Thm. 16]. Let F ∈ COF(λ/µ)
and let F̂ be the extended filling of F as in (23). Recall that maj(F ) = maj(F̂ ). It
follows from the definition of the biword that cw(F̂ ) = cw(F ) ·`µ′` · · · 2µ′21µ′1 . The case
µ = ∅ implies that maj(F ) = maj(F̂ ) = charge(cw(F̂ )) = chargeµ′(cw(F )). �

Proposition 5.6. RSK provides a bijection

(24) COF(λ/µ) RSK←−−→
⋃

ν`|λ/µ|
SSYT(ν, α)× SSYT(ν′), αi := λ′i − µ′i,

such that if F RSK←−−→ (P,Q) then maj(F ) = chargeµ′(cw(F )) = chargeµ′(rw(P )) =
chargeµ′(P ).
Proof. The Robinson–Schenstedt–Knuth correspondence has the essential property
that if the word w inserts to P under RSK, then charge(w) = charge(P ). This is just
a restatement of the fact that Knuth-equivalent words have the same charge. Using
this property, Proposition 5.5 and Lemma 5.3, the statement follows. �

We now have the setup needed to prove the following theorem.
Theorem 5.7 (The Schur expansion of skew specialized Macdonald polynomials). Let
λ/µ be a skew shape and let α be the weak composition given by αi := λ′i − µ′i. Then

(25) Eλ/µ(x; q, 0) :=
∑

ν`|λ/µ|

sν′(x)
∑

T∈SSYT(ν,α)

qchargeµ′ (T ).

Proof. By definition, Eλ/µ(x; q, 0) is equal to
∑
F∈COF(λ/µ) xF qmaj(F ), which is equal

to
∑
F∈COF(λ/µ) xF qchargeµ′ (cw(F )) by using Proposition 5.5. Applying the RSK bijec-

tion in (24), we then have that

Eλ/µ(x; q, 0) =
∑
ν

sν′(x)
∑

P∈SSYT(ν,α)

qchargeµ′ (P ),

which is exactly the statement in (25). �
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Shape λ/µ Schur expansion of Eλ/µ(x; q, 0)
1 s1

2 s2 +q s11
11 s11
21/1 s2 + s11

3 s3 +(q + q2) s21 +q3 s111
21 s21 +q s111
111 s111
22/1 s21 +q s111
31/1 s3 +(1 + q) s21 +q s111
211/1 s21 + s111
321/21 s3 +2 s21 + s111

Table 3. Here are the Schur expansions of Eλ/µ(x; q, 0) in the cases
|λ| − |µ| 6 3.

Recall that the Littlewood–Richardson coefficients cλµν are defined via the relation
sµ sν =

∑
λ c

λ
µν sλ, and that the skew Schur functions expand as sλ/µ =

∑
ν c

λ
µν sν .

Corollary 5.8 (A Littlewood–Richardson rule). Let λ/µ be a skew shape and let α
be the weak composition αi := λ′i − µ′i. Let

(26) Kν
λ/µ(q) :=

∑
T∈SSYT(ν,α)

qchargeµ′ (T ).

Then
(a) Kν

λ/µ(0) = cλµν , a Littlewood–Richardson coefficient,
(b) Kν

λ/µ(1) = Kνα, a Kostka coefficient, and
(c) the product

Eλ(x; q, 0) Eµ(x; q, 0) =
∑
ν

Kν
κ/cr (q) sν′(x)

where c = µ1, r = `(λ), and κ = (c+ λ1, . . . , c+ λ`(λ), µ1, µ2, . . . , µ`(µ)).

Proof. The first and second identity follow from Theorem 5.7 and (22) and using
the fact that cλµν = cλ

′

µ′ν′ . The third identity follows from the observation that the
product in the left hand side can be realized as a single skew specialized Macdonald
polynomial, E(λ+c,µ)/cr (x; q, 0), see the diagram in (27).

�(27)
λ

µ

Note that the first property in the corollary implies that

cλµν = |{T ∈ SSYT(ν, λ− µ) : chargeµ(T ) = 0}|,

where λ − µ denotes the integer vector where the ith entry is λi − µi. This also
follows from [24, Rem. 14 and Cor. 21], so this is not a new characterization of
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Littlewood–Richardson coefficients. We ask if there is a connection between the coef-
ficients Kν

λ/µ(q) and the parabolic Kostka polynomials, whose constant terms are also
Littlewood–Richardson coefficients, see [25, 43] for details.

We end this subsection with proving an additional property of postfix-charge. Re-
call that the charge statistic is Mahonian, meaning that

∑
σ∈Sn q

charge(σ) = [n]q!.
There is a natural generalization of this identity for chargeµ(·).

Proposition 5.9. Let µ be an integer partition and n > 0. Then∑
σ∈Sn

qchargeµ(σ) = n!
∏
i>1

[λi − µi]q!
(λi − µi)!

where λ′ = (µ′1 + 1, µ′2 + 1, . . . , µ′n + 1, µ′n+1, . . . ).

Proof. First note that the shape λ/µ has exactly one box in each of the first n columns.
For example, µ = 53111 and n = 8 gives the following skew shape λ/µ:

We use Proposition 5.5 together with the fact that every permutation appear as charge
word appears exactly one when summing over fillings with weight 1n. Hence,

[x1x2 · · ·xn] Eλ/µ(x; q) =
∑
σ∈Sn

qchargeµ(σ).

But the left hand side is easy to compute directly since the rows of λ/µ occupy
disjoint columns; there are n!/((λ1−µ1) · · · (λ`−µ`)) ways to distribute {1, 2, . . . , n}
in the rows of λ/µ. Furthermore, in row i, the major index gives the Mahonian
distribution [λi − µi]q! when summing over all permutations of the entries. This
implies the formula. �

We remark that there is also the notion of skew Kostka–Foulkes polynomials,
Kλ/µ,ν(q) see [15]. They are defined as in (5), where the sum now ranges over the
elements in SSYT(λ/µ, ν). To our knowledge, there is no obvious relationship between
these skew Kostka–Foulkes polynomials and the polynomials∑

T∈SSYT(ν′,α)

qchargeµ′ (T )

appearing in (25).

5.2. CSP on skew specialized Macdonald polynomials. We can generalize
Theorem 3.2 to the skew setting. We let φ act on COF(nλ/nµ,m) as before, by
cyclically shifting each block of n consecutive columns one step to the right, followed
by rearranging the entries in each column such that a (unique) specialized Macdonald
filling is obtained. Again, 〈φ〉 is a cyclic group of order n.

Theorem 5.10. For every skew shape λ/µ and n > 1, the triple(
COF(nλ/nµ,m), 〈φ〉,Enλ/nµ(1m; q, 0)

)
exhibits the cyclic sieving phenomenon. Furthermore, the family

{
(
COF(nλ/nµ,m), 〈φ〉,Enλ/nµ(1m; q, 0)

)
}∞n=1

is Lyndon-like, as described in Definition 2.9.
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Proof. The number of descents between two adjacent columns of the same height only
depends on the set of entries in the two columns, and this is proved in [48, Thm. 3.15].
A priori, one would not expect this as the actual positions of the entries depend on
all previous columns in a coinversion-free filling.

Now consider the blocks of columns, where each block consists of n consecutive
columns (of the same height). Descents involving two entries from different blocks
only contribute with a multiple of n to the major index. Hence, in order to determine
the major index mod n of a filling, it suffices to examine the columns in each block
separately. Let ν be the partition such that the parts of ν′ are given by the multiset
{λ′i − µ′i : i = 1, 2, . . . }. By the previous observations,

Enλ/nµ(1m; q, 0) ≡ Enν(1m; q, 0) mod (qn − 1).
It is then straightforward to use the same arguments as in the non-skew case, Theo-
rem 3.2, to finish the proof. �

Note that Theorem 4.3 can be generalized to the skew setting using a similar
argument — we leave the details to the reader.

6. Crystal operators on words and SSYT
We now recall some minimal background on crystal operators (in the sense of Kashi-
wara and Stembridge) on words and semistandard Young tableaux, see [14, 42] for
more background.

The operators ẽi, f̃i : Nk → Nk ∪ {∅} are defined as follows. Given a word w ∈ Nk
consider the subword wi consisting only of the letters i and i+1. Replace each instance
of i with a right bracket and each i+1 with a left bracket. Remove all pairs of matching
brackets and consider the remaining unmatched brackets, which now consist of a right-
brackets and b left-brackets. These brackets correspond to a subword w′ of the form
ia(i + 1)b in w. The operator ẽi acting on w turns the leftmost i + 1 of w′ into an
i, if such an entry exists, otherwise, ẽi(w) := ∅. Similarly, f̃i acting on w turns the
rightmost i in w′ into an i + 1, if such an entry exists, otherwise, f̃i(w) := ∅. For
example,
ẽ1(2, 1, 3, 1, 2, 4, 2, 1, 1, 3, 1, 2, 3, 2, 1, 2, 1) = 2, 1, 3, 1, 2, 4, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 1.

The operator ẽi is a crystal raising operator while f̃i is a crystal lowering operator.
The operators also act on semistandard Young tableaux by acting on the reading
word. We define a graph structure on words (or semistandard Young tableaux) by
having a labeled directed edge u → v with label i if f̃i(u) = v. Examples on such
components are given in Figure 9.

6.1. Crystal operators on COF and RSK. We shall now define crystal operators
on the set COF(λ/µ). These operators are considered in [48], and the non-skew case
was recently considered by S. Assaf and N. Gonzáles [9], where the authors prove that
they are indeed crystal operators. Here, we take a slightly different route and define
the operators on biwords instead — it is straightforward to verify that our definitions
are equivalent with theirs. These crystal biwords are closely related to the biwords we
have seen previously.

Definition 6.1 (Crystal operators on fillings). Let F ∈ COF(λ/µ) and define the
crystal biword W̃ , with entry ( jc ) appearing in W̃ if and only if there is a box with
value j in column c. The entries in W̃ are then sorted decreasingly, primarily on the
bottom row entry, see Figure 10. Note that the map to W̃ is invertible if λ/µ is fixed.
We then define ẽi(F ), and f̃i(F ) as the result when applying ẽi and f̃i, respectively,
on the first row of W̃ .
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1 2 1 1

1 2 1 2 1 3 1 1

2 2 1 2 1 2 1 3 1 3 1 2

2 2 1 3 1 3 1 3 1 3 2 2

2 3 1 3 1 3 2 3 2 3 2 2

3 3 3 1 2 3 2 3

3 3 2 3

f̃1 f̃2

f̃1 f̃2 f̃1

f̃1f̃2 f̃2 f̃1

f̃2 f̃1 f̃2 f̃1

f̃2 f̃1 f̃2

f̃1 f̃2

1 1 1
2

1 1 2
2

1 1 1
3

1 2 2
2

1 1 3
2

1 1 2
3

1 2 3
2

1 1 3
3

1 2 2
3

1 3 3
2

1 2 3
3

2 2 2
3

1 3 3
3

2 2 3
3

2 3 3
3

f̃1 f̃2

f̃1 f̃2 f̃1

f̃1f̃2 f̃2 f̃1

f̃2 f̃1 f̃2 f̃1

f̃2 f̃1 f̃2

f̃1 f̃2

Figure 9. A crystal graph on words and one on SSYT.

For the subset of coinversion-free fillings F with maj(F ) = 0, these operators are
essentially a generalization of the raising and lowering operators defined on semistan-
dard Young tableaux.

F =
2 1 3

3 3 1
2 2
1 4

, W̃ =
(

3 1 2 1 4 3 2 3 2 1
5 4 3 3 2 2 2 1 1 1

)
, W =

(
1 1 1 2 2 2 3 3 3 4
4 3 1 3 2 1 5 2 1 2

)

Figure 10. A skew specialized Macdonald filling F , the correspond-
ing crystal biword W̃ and the biwordW used for RSK. Note that the
only difference between W̃ and W is the ordering of the entries.

The following theorem was proven independently by S. Assaf and N. Gonzáles [9]
and the second author [48].

Theorem 6.2 (See [48, Thm. 3.19], [9]). The operators ẽi and f̃i preserve major index.
That is, suppose that F and F ′ are in COF(λ/µ) and that ẽi(F ), f̃i(F ′) 6= ∅. Then

maj(ẽi(F )) = maj(F ) and maj(f̃i(F ′)) = maj(F ′).
Furthermore, F , ẽi(F ) and f̃i(F ) differ only at boxes with entries i and i+ 1.
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In Theorem 6.4 below we prove that the operators ẽi and f̃i define proper crys-
tal graphs on the set COF(λ/µ). See Figure 11 for examples of crystal graphs on
coinversion-free fillings.

3 1
1 2

3 2
1 2

3 3
1 2

f̃1

f̃2

2 3
1 1

2 3
2 1

2 3
3 1

f̃1

f̃2

2 1
1 1

2 1
2 1

3 1
1 1

2 2
2 1

2 1
3 1

3 1
2 1

2 2
3 1

3 1
3 1

3 1
2 2

3 2
3 1

3 1
3 2

3 2
2 2

3 3
3 1

3 2
3 2

3 3
3 2

f̃1 f̃2

f̃1 f̃2 f̃1

f̃1f̃2 f̃2 f̃1

f̃2 f̃1 f̃2 f̃1

f̃2 f̃1 f̃2

f̃1 f̃2

3 3
1 1

3 2
2 1

3 2
1 1

2 2
1 1

3 3
2 1

3 3
2 2

f̃2

f̃1 f̃2

f̃2 f̃1

f̃1

Figure 11. The crystal structure on skew coinversion-free fillings of
shape λ/µ with λ = (3, 2) and µ = (1) in 3 variables. Notice that the
large component is isomorphic to the crystal graphs in Figure 9.

There is an important interaction between the crystal operators and the RSK
correspondence, as we shall see in the following example.

Example 6.3. Suppose F ∈ COF(λ) with biword W

W =
(

1 1 1 2 2 2 3 3 3 4
4 3 1 3 2 1 5 2 1 2

)
.

The crystal biword is

W̃ =
(

3 1 2 1 4 3 2 3 2 1
5 4 3 3 2 2 2 1 1 1

)
.

Apply ẽ1 on the top row. We have the subword 121221 which turns into 121121 under
ẽ1. The resulting biword after applying ẽ1 on the top row is therefore(

3 1 2 1 4 3 1 3 2 1
5 4 3 3 2 2 2 1 1 1

)
.
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Finally, the columns are sorted, and we obtain the biword W ′ that corresponds to
ẽ1(F ):

ẽ1(F )↔
(

1 1 1 1 2 2 3 3 3 4
4 3 2 1 3 1 5 2 1 2

)
.

If we now perform RSK on W and W ′ we see in Figure 12 that ẽ1 has a predictable
effect on the corresponding insertion and recording tableau, see Theorem 6.4.

 1 1 1 2
2 2 5
3 3
4

,

1 2 3 4
1 2 3
1 3
2

 ẽ1−→

 1 1 1 2
2 2 5
3 3
4

,

1 2 3 4
1 2 3
1 3
1


Figure 12. An example of the raising operator at the level of RSK.
The pairs of tableaux correspond to the two biwords in Example 6.3.

Theorem 6.4. Let F ∈ COF(λ/µ) and suppose ẽi(F ) 6= ∅. Then ins(F ) = ins(ẽi(F ))
and ẽi(rec(F )) = rec(ẽi(F )). Stated equivalently on biwords: Let W be a biword and
let W̃ be its entries reordered such that it is a crystal biword. Suppose ẽi(W̃ ) 6= ∅,
and that W ′ is the biword corresponding to ẽi(W̃ ). Then ins(W ) = ins(W ′) and
ẽi(rec(W )) = rec(W ′). The analogous statements for f̃i also hold.

Proof sketch. The fact that ins(F ) = ins(ẽi(F )) follows from properties of the classical
RSK algorithm.

The second property requires some more work, but every step is a routine transfor-
mation using known properties of various versions of RSK. First restate the property
to the analogous statement about the dual RSK insertion algorithm (using column
insertion), see [27, Sec. 4.3]. One can then use that dual RSK and classical RSK are
related in a simple manner (see e.g. [15, Prop. 2.3.14]) and reduce the problem fur-
ther to the case of the classical RSK. For classical RSK, the interaction with crystal
operators is well-documented, see e.g. [14, 28, 42]. �

Using the bijection in Theorem 6.4, we see that the set COF(λ/µ) is indeed a
crystal graph under the raising and lowering operators, since we have an equivariant
bijection with crystals and crystal operators on semistandard tableaux. We remark
that S. Assaf and N. Gonzáles [9] proved the same result in the non-skew case by
verifying the local characterization axioms introduced by Stembridge, see [46].

We shall now briefly discuss an application of the crystal operators. Using the
crystal operators ẽi and f̃i, we can define involutions on COF(λ/µ). For a coinversion-
free filling F , denote mi = mi(F ) the number of i-entries of F .

Definition 6.5. For i ∈ N, define the operators s̃i on COF(λ/µ) by letting

s̃i(F ) :=


(ẽi)mi+1−mi(F ) if m < mi+1

(f̃i)m−mi+1(F ) if mi > mi+1

F if mi = mi+1.

Restricted to the set of coinversion-free fillings with maj = 0, the operators s̃i
are essentially the famous Lascoux–Schützenberger involutions [30]. The difference is
that the elements with maj = 0 have weakly decreasing rows and strictly increasing
columns as opposed to the weakly increasing in rows and strictly increasing columns
for in semistandard Young tableaux.

It is clear by Theorem 6.2 that the operators s̃i are maj-preserving involutions.
Furthermore, if F ∈ COF(λ/µ) and wt(F ) = (w1, . . . , w`), then wt(s̃i(F )) =
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(w1, . . . , wi+1, wi, . . . , w`). This yields yet another proof that Eλ/µ(x; q, 0) is sym-
metric. In fact, it follows from general theory of crystals that the operators s̃1, s̃2,
. . . , s̃`−1 generate an S`-action on COF(λ/µ, `).

7. Schur expansion of certain vertical-strip LLT polynomials
In this section, we briefly sketch that Eλ/µ(x; q, 0) sometimes is a vertical strip LLT
polynomial, up to a power of q. As a consequence, we therefore obtain an explicit for-
mula for the Schur expansion of these particular LLT polynomials. Hence, we provide
a new family of LLT polynomials with a combinatorial Schur expansion, not covered
by previous results. We note that it is a major open problem in general to describe
the LLT polynomials in the Schur basis.

Definition 7.1 (As in [21]). Let ν be a k-tuple of skew Young diagrams. Given
such a tuple, we let SSYT(ν) = SSYT(ν1) × SSYT(ν2) × · · · × SSYT(νk) where
SSYT(λ/µ) is the set of skew semistandard Young tableaux of shape λ/µ. Given
T = (T 1, T 2, . . . , T k) ∈ SSYT(ν), let xT := xT 1 · · ·xTk where xT i is the same mono-
mial weight of T i as for Schur polynomials. Given a cell u = (r, c) (row, column) in
a skew diagram, the content is defined as c(u) := c − r. Entries T i(u) > T j(v) in a
tuple form an inversion if and only if

i < j and c(u) = c(v), or i > j and c(u) = c(v)− 1.

The LLT polynomial associated with the k-tuple ν is given by

LLTν(x; q) =
∑

T∈SSYT(ν)

qinv(T )xT

where inv(T ) is the total number of inversions appearing in T . One can show that
LLTν(x; q) is a symmetric function, see [21] or [4] for short proofs.

LLT polynomials such that each νj is a skew shape of the form 1a/1b with a > b
are called vertical strip LLT polynomials. Given a k-tuple ν, we let mininv(ν) be the
minimum number of inversions obtainable over all fillings. That is,

(28) mininv(ν) := min
T∈SSYT(ν)

inv(T ).

Example 7.2.A k-tuple of skew shapes is traditionally illustrated using the French
convention where box (1, 1) of each shape νi is placed on the line y = x with content
0, and Cartesian coordinates are used. Below, we illustrate an element

T ∈ SSYT(13/∅)× SSYT(13/11)× SSYT(12/11)× SSYT(13/∅)

which appears when computing the vertical-strip LLT polynomial LLTν(x; q) for ν =
(111/∅, 111/1, 11/1, 111/∅).

T =
2

1

4

3

2

5

5
6

4

There are two inversions involving boxes u and v where c(u) = c(v) and six inversions
for which c(u) = c(v) − 1. Hence, T contributes with q8x1x

2
2x3x

2
4x

2
5x6. The full LLT
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polynomial LLTν(x; q) in the Schur basis is given by
q8 s333 +q7 s432 +(q9 + q10 + q11) s3222 +(q8 + 2q9 + q10) s3321 +(q8 + q9) s4221

+ q8 s4311 +(q10 + q11 + q12 + q13) s22221 +(q9 + 3q10 + 2q11 + q12) s32211

+ (q9 + q10 + q11) s33111 +(q9 + q10) s42111 +(2q11 + 2q12 + q13 + q14) s222111

+ (q10 + 2q11 + 2q12 + q13) s321111 +q11 s411111 +(q12 + 2q13 + q14 + q15) s2211111

+ (q12 + q13 + q14) s3111111 +(q14 + q15 + q16) s21111111 +q17 s111111111 .

As q7 is the lowest power of q that appear in the expansion, we must have that
mininv(ν) = 7.

The current state-of-the-art regarding combinatorial proofs of Schur positivity of
LLT polynomials is as follows.

• When all shapes in ν are non-skew, the coefficients in the Schur basis
are known to be certain parabolic Kazhdan–Lusztig polynomials, see [31].
Hence, the coefficients are in N[q]. In particular, this case contains the
Hall–Littlewood symmetric functions.

• Whenever the k-tuple of shapes ν consists of at most 3 shapes, all avoiding
an arrangement of 2× 2-boxes (that is, they are ribbons), Schur positivity is
given by a combinatorial formula, see J. Blasiak [13].

• A few other cases when each shape in ν is a single box is given in [23].

Theorem 7.3. Let λ/µ be a skew shape such that no column contains more than two
boxes. Then

Eλ′/µ′(x; q, 0) = q−mininv(ν) LLTν(x; q)
where νj is the vertical strip (λj)/(µj).

Proof sketch. For the modified Macdonald polynomials H̃λ(x; q, t), we have the sym-
metry H̃λ(x; q, t) = H̃λ′(x; t, q). This interchanges the rôle of inversion triples and
major index, see [20]. This relationship extends to modified Macdonald polynomials
indexed by skew shapes λ/µ as long as each column contains at most two boxes, see
J. Bandlow, [10, Thm. 5].

There is a correspondence between inversion triples and inversions that appearing
definition of LLT polynomials. In [21, Eq. (23)], the authors provide (via a straight-
forward bijective argument) an expansion of the form

H̃λ(x; q, t) =
∑
D

qmaj(D)t− stat(D) LLTν(D)(x; t),(29)

where the sum runs over all subsets (possible descents) of boxes (i, j) with i > 1 of the
diagram λ. In particular, the coefficient of the terms maximizing the major index a
vertical-strip LLT polynomial. This expansion has a natural extension to skew shapes
and one can check that stat(·) corresponds to mininv(·) for the highest-degree term.
Combining all these observations we have

Eλ′/µ′(x; q, 0) = [t∗] H̃λ/µ(x; q, t) = [t∗] H̃λ′/µ′(x; t, q) = q−mininv(ν) LLTν(x; q).
The first identity is due to (22). The second identity is the tricky part and relies
on [10]. The third identity is a simple consequence of (29). �

Example 7.4.We illustrate Theorem 7.3 in the case λ/µ = 4431/31. The skew shape
λ/µ is illustrated in (30) where we have labeled the boxes row by row, from right to
left in each row. The corresponding k-tuple of vertical strips is shown to the right.
The labeling has the property that it maps inversion pairs in the filling to the right,
to inversions in the LLT diagram, see [21] for details.
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(30)
1

5 3 2
7 6 4
8

1

2
3
5

4
6
7

8

Notice that no column contains more than two boxes so the conditions in the theorem
applies. The k-tuple ν is 1111/111, 1111/1, 111/∅, 1/∅, and it is easy (for a computer)
to check that

Eλ′/µ′(x; q, 0) = s332 + s422 +(1 + q2) s2222 +(2 + 2q) s3221 + s3311 + s4211

+ (3q + q2) s22211 +4q s32111 +q s41111 +4q2 s221111 +3q2 s311111

+ 3q3 s2111111 +q4 s11111111

and that this is also equal to q−1 LLTν(x; q).
As a final check, we verify one of the coefficients with the combinatorial formula.

Using the notation in Theorem 5.7, α = 1331. The term (2+2q) s3221 then arises from
the four semistandard tableaux

1 2 2 2
3 3 3
4

,

1

1 2 2 3
2 3 3
4

,

0

1 2 2 3
2 3 4
3

,

0

1 2 2 4
2 3 3
3

.

1

where the value of charge31(w) = charge(w · 2111) is shown under each tableau.
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