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On a curious variant of the Sn-module Lien

Sheila Sundaram

Abstract We introduce a variant of the much-studied Lie representation of the symmetric
group Sn, which we denote by Lie(2)

n . Our variant gives rise to a decomposition of the regular
representation as a sum of exterior powers of the modules Lie(2)

n . This is in contrast to the
theorems of Poincaré–Birkhoff–Witt and Thrall which decompose the regular representation
into a sum of symmetrised Lie modules. We show that nearly every known property of Lien has
a counterpart for the module Lie(2)

n , suggesting connections to the cohomology of configuration
spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of
Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words
arising from Hochschild homology, due to Hanlon and Hersh.

1. Introduction
In this paper we present the unexpected discovery, announced in [20], of a curious
variant of the Sn-module Lien afforded by the multilinear component of the free Lie
algebra with n generators. The theorems of Poincaré–Birkhoff–Witt and Thrall (see,
e.g. [14]) state that the universal enveloping algebra of the free Lie algebra is the
symmetric algebra over the free Lie algebra, and hence coincides with the full tensor
algebra. This is equivalent, via Schur–Weyl duality, to Thrall’s decomposition of the
regular representation into a sum of symmetric powers of the representations Lien .
By contrast, here we obtain a decomposition of the regular representation as a sum
of exterior powers of modules (Theorem 2.5). The key ingredient is our variant of
Lien, an Sn-module that we denote by Lie(2)

n , which turns out to possess remarkable
properties akin to those of Lien . Our results (see Theorems 2.3, 2.8, 2.12) bear a strik-
ing resemblance to properties of the Whitney homology of the partition lattice (and
hence the Orlik–Solomon algebra for the root system An), and to the computation
of the cohomology of the configuration space for the braid arrangement found in [22,
Theorem 4.4]. In particular these properties indicate the possibility of an underlying
algebra structure for Lie(2)

n involving an acyclic complex. Theorem 2.12 furthers this
analogy; we show that Lie(2)

n admits a filtration close to the one arising from the
derived series of the free Lie algebra. There is an interesting action on derangements
arising from Lie(2)

n as well (Theorem 2.18); we prove that Lie(2)
n gives rise to a new

decomposition of the homology of the complex of injective words studied by Reiner
and Webb [13], one that is different from the Hodge decomposition of Hanlon and
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Hersh [6]. These results are collected in Section 2, showing that for every well-known
property of Lien, the representation Lie(2)

n offers an interesting counterpart.
A characteristic feature of the complement of the An−1-hyperplane arrangement

in complex space, and hence the configuration spaces associated to the braid arrange-
ment, is that the cohomology ring has the structure of a symmetric or exterior algebra
over the top cohomology as an Sn-module (see Theorem 2.2 and Theorem 2.3). More-
over this top cohomology is Lien or its sign-tensored version, and thus its character
values are supported on a specific class of permutations: those whose cycles all have
the same length.

The higher Lie modules, first defined in [23], figure prominently in all the situations
mentioned above, and hence the language of symmetric functions and plethysm is
ideal for describing the results. This is precisely the framework of the symmetric
function identities developed in [19]; these crucial identities are described in Section 4,
where we state the key result from [19], Theorem 4.2, and compile a toolkit that
has proved useful in manipulating plethysms arising from homology representations.
One interesting consequence is a fact that does not appear to have been previously
observed, namely the equivalence of all the known representation-theoretic properties
of Lie (the formulas of Thrall and Cadogan, the filtration arising from the derived
series, the appearance of the Lie character in the action on derangements). This is
explained in Theorem 4.8.

The module Lie(2)
n is a special case of a family of variations of Lien, whose discovery

arose from the investigation begun in [19] on the positivity of row sums in the character
table of Sn. Indeed, the symmetrised powers of Lie(2)

n itself give the representation
obtained by taking row sums for the subset of conjugacy classes corresponding to
cycles whose lengths are a power of 2 (Theorem 2.3). The more general results were
announced in [20] and [21], and will be the subject of a separate paper.

1.1. Preliminaries. We follow [12] and [17] for notation regarding symmetric func-
tions. In particular, hn, en and pn denote respectively the complete homogeneous,
elementary and power sum symmetric functions. If ch is the Frobenius characteristic
map from the representation ring of the symmetric group Sn to the ring of symmetric
functions with real coefficients, then hn = ch(1Sn) is the characteristic of the trivial
representation, and en = ch(sgnSn) is the characteristic of the sign representation
of Sn. If µ is a partition of n then define pµ =

∏
i pµi ; hµ and eµ are defined in

similar multiplicative fashion. The Schur function sµ indexed by the partition µ is the
Frobenius characteristic of the Sn-irreducible indexed by µ. Finally, the involution ω
takes hn to en corresponding to tensoring with the sign representation.

If q and r are characteristics of representations of Sm and Sn respectively, they
yield a representation of the wreath product Sm[Sn] in a natural way, with the prop-
erty that when this representation is induced up to Smn, its Frobenius characteristic
is the plethysm q[r]. For more background about this operation, see [12]. We will
make extensive use of the properties of this operation, in particular the fact that
plethysm with a symmetric function r is an endomorphism on the ring of symmetric
functions [12, (8.3)]. See also [17, Chapter 7, Appendix 2, A2.6].

Define

H(t) =
∑
i>0

tihi = exp
∑
i>1

tipi
i
, E(t) =

∑
i>0

tiei = exp
∑
i>1

(−1)i−1 t
ipi
i

;(1)

H =
∑
i>0

hi, E =
∑
i>0

ei; H± =
∑
r>0

(−1)rhr, E± =
∑
r>0

(−1)rer.(2)
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Now let {qi}i>1 be a sequence of symmetric functions, each qi homogeneous of degree
i. Let Q =

∑
i>1 qi, Q(t) =

∑
n>1 t

nqn. For each partition λ of n > 1 withmi(λ) = mi

parts equal to i > 1, let |λ| = n =
∑
i>1 imi be the size of λ, and `(λ) =

∑
i>1 mi(λ) =∑

i>1 mi be the length (total number of parts) of λ.
Define

(3) Hλ[Q] =
∏

i:mi(λ)>1

hmi [qi], Eλ[Q] =
∏

i:mi(λ)>1

emi [qi].

For the empty partition (of zero) we defineH∅[Q] = 1 = E∅[Q] = H±∅ [Q] = E±∅ [Q].
Consider the generating functions H[Q](t) and E[Q](t). With the convention that

Par, the set of all partitions of nonnegative integers, includes the unique empty par-
tition of zero, by the preceding observations and standard properties of plethysm [12]
we have

(4) hr[Q]|degn =
∑
λ`n

`(λ)=r

Hλ[Q], and er[Q]|degn =
∑
λ`n

`(λ)=r

Eλ[Q];

H[Q](t) =
∑
λ∈Par

t|λ|Hλ[Q], and E[Q](t) =
∑
λ∈Par

t|λ|Eλ[Q].

Also write Qalt(t) for the alternating sum
∑
n>1(−1)i−1tiqi = tq1−t2q2+t3q3−· · · .

Let ψ(n) be any real-valued function defined on the positive integers. Define sym-
metric functions fn by

(5) fn = 1
n

∑
d|n

ψ(d)p
n
d

d , so that ω(fn) = 1
n

∑
d|n

ψ(d)(−1)n−nd p
n
d

d .

Note that, when ψ(1) is a positive integer, this makes fn the Frobenius characteristic
of a possibly virtual Sn-module whose dimension is (n− 1)!ψ(1).

Finally, define the associated polynomial in one variable, t, by

(6) fn(t) = 1
n

∑
d|n

ψ(d)tnd .

2. A comparison of Lien and the variant Lie(2)
n

In this section we define the Sn-module Lie(2)
n and describe some of its remarkable

properties. The goal here is to analyse this module by interpreting the plethystic iden-
tities it satisfies in an interesting representation-theoretic and homological context.
The properties are established using plethystic symmetric function techniques applied
to the Frobenius characteristic of Lie(2)

n ; we have relegated the technical details of the
proofs to the next section. The present section has been written to be self-contained.

Recall [14] that the Sn-module Lien is the action of Sn on the multilinear
component of the free Lie algebra, and coincides with the induced representation
exp( 2 iπ

n ) ↑SnCn , where Cn is the cyclic group generated by an n-cycle in Sn. Its
Frobenius characteristic is obtained by taking ψ(d) = µ(d) (the number-theoretic
Möbius function) in equation (5).

Another module that will be of interest is the Sn-module Conjn afforded by the
conjugacy action of Sn on the class of n-cycles. Clearly we have Conjn ' 1 ↑SnCn . Its
Frobenius characteristic is obtained by taking ψ(d) = φ(d) (Euler’s totient function)
in equation (5).
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Definition 2.1. Let kn be the highest power of 2 dividing n. Define Lie(2)
n to be the

induced module
exp

(
2 iπ
n
· 2kn

)
↑SnCn .

The first two of the following facts are now immediate. Lie(2)
n is Sn-isomorphic to

• Lien if n is odd;
• Conjn if n is a power of 2;
• Lien⊗sgnSn if n is twice an odd number.

The third fact follows, for example, by first establishing the isomorphism

sgnSn ⊗ χ ↑
Sn
Cn
' (sgnn−1

Cn
⊗ χ) ↑SnCn .

A different proof is given in Theorem 3.6.
Since it is most convenient to use the language of symmetric functions, we will often

abuse notation and use Lien and Lie(2)
n to mean both the module and its Frobenius

characteristic.
We write Lie for the sum of symmetric functions

∑
n>1 Lien and Lie(2) for the

sum
∑
n>1 Lie(2)

n . Recall from Section 1.1 that we define, for each partition λ of
n > 1 with mi(λ) = mi parts equal to i, Hλ[Q] =

∏
i:mi(λ)>1 hmi [qi] and Eλ[Q] =∏

i:mi(λ)>1 emi [qi]; see also equation (4). Finally, recall that pn1 = hn1 = en1 is the
Frobenius characteristic of the regular representation 1 ↑SnS1

of Sn.
TheHλ[Lie] are the (Frobenius characteristics of) the higher Lie modules appearing

in Thrall’s decomposition of the regular representation (see below for more details).
We denote the wreath product of Sa with a copies of Sb by Sa[Sb]; explicitly it is
the normaliser of the direct product Sb × · · · × Sb︸ ︷︷ ︸

a

in Sab. Given representations Va

and Vb of Sa, Sb, respectively, there is an obvious associated representation Va[Vb] of
the wreath product Sa[Sb], whose Frobenius characteristic is given by the plethysm
chVa[chVb]. The higher Lie module Hλ[Lie], for a partition λ of n with mi parts equal
to i, is the characteristic of the induced representation

⊗i1Smi [Liei]↑Sn∏
i
Smi [Si]

.

If X is any topological space, then the ordered configuration space Confn X of n
distinct points in X is defined to be the set {(x1, . . . , xn) : i 6= j =⇒ xi 6= xj}. The
symmetric group Sn acts on Confn X by permuting coordinates, and hence induces
an action on the cohomology Hk(Confn X,Q), k > 0.

Theorem 2.2 ([22, Theorem 4.4, Corollary 4.5]). For all d > 1, and 0 6 k 6 n − 1,
the Frobenius characteristic of

• Hk(Confn R2,Q) ' H(2d−1)k(Confn R2d,Q) is ω (en−k[Lie]|degn) .
• H2k(Confn R3,Q) ' H2dk(Confn R2d+1,Q) is hn−k[Lie]|degn.

The cohomology vanishes in all other degrees.
When d = 1, H0(Confn R,Q) carries the regular representation of Sn.

We will use the cohomology of Confn R2 as the prototype for the configuration
spaces of even-dimensional Euclidean space, and Confn R3 as the prototype for the
configuration spaces of odd-dimensional Euclidean space. Note that cohomology is
concentrated in all degrees in the former (more generally in all multiples of (2d − 1)
for 2d-dimensional space), and only in even degrees in the latter.

The results of this section will show that the representation Lie(2)
n has properties

curiously parallelling those of Lien . Theorem 2.2 above states the “Lie” identities of
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Theorem 2.3 below in the context of the configuration spaces of X = R2 and X = R3.
The module Lien arises as the highest nonvanishing cohomology for the configuration
space of Rd, d odd, and when tensored with the sign, as the highest nonvanishing
cohomology for the configuration space of Rd, d even. This is the classically known
prototype; the variant Lie(2)

n will be shown to closely follow its example. The higher
Lie module Hλ[Lie] dates back to [23], and has been studied by several authors in the
recent literature. Note the appearance of the “higher Lie(2) modules” below. See also
Theorem 4.8 for the list of Lie identities.
Theorem 2.3. The symmetric function Lie(2)

n satisfies the following plethystic iden-
tities, analogous to Lien.∑

λ`n

Hλ[Lie] = pn1 ;
∑
λ`n

Eλ[Lie(2)] = pn1 ;(7)

H

∑
n>1

(−1)n−1ω(Lien)

 = 1 + p1; E

∑
n>1

(−1)n−1ω(Lie(2)
n )

 = 1 + p1;(8)

If n > 2,
∑
λ`n

(−1)n−`(λ)Eλ[Lie] = 0;
∑
λ`n

(−1)n−`(λ)Hλ[Lie(2)] = 0;(9)

If n > 2,
∑
λ`n

Eλ[Lie] = 2e2p
n−2
1 ;

∑
λ`n

Hλ[Lie(2)] =
∑

λ`n,λi=2ai
pλ.(10)

Moreover, the Lie identities are all equivalent, and the Lie(2) identities are also equiv-
alent.

We now discuss the implications of Theorem 2.3.
Equation (7). The first equation in (7) is simply Thrall’s classical theorem [23],
rederived in Theorem 3.2, stating that the regular representation of Sn decomposes
into a sum of symmetrised modules induced from the centralisers of Sn, the Lie
modules. Thrall’s theorem in this context is equivalent to the Poincaré–Birkhoff–Witt
Theorem, which states that the universal enveloping algebra of the free Lie algebra
is its symmetric algebra [14]. Recall that the Lefschetz module of a complex is the
alternating sum by degree of the homology modules. In view of Theorem 2.2, since
cohomology is nonzero only in even degrees, the Lefschetz module is in fact a sum of
homology modules, and this can in turn be reinterpreted as saying that:
Proposition 2.4. The regular representation of Sn is carried by the Lefschetz mod-
ule of Confn R3, and more generally Confn Rd for odd d, which coincides with its
cohomology ring and is isomorphic to the symmetric algebra over the top cohomology.

The second equation in (7) is our new result. It gives a new decomposition of the
regular representation:
Theorem 2.5. The regular representation decomposes into a sum of exterior powers
of modules induced from the centralisers of Sn, namely the modules Lie(2)

n .
Equation (8). In (8), the second equation is new, giving the plethystic inverse of
the elementary symmetric functions

∑
n>1 en, while the first equation contains the

known result of Cadogan [1] (see Theorem 3.2) giving the plethystic inverse of the
homogeneous symmetric functions

∑
n>1 hn.

Equation (9). The equations in (9) and (10) are particularly significant. It is well
known that the degree n term in the plethysm en−r[Lie] is the Frobenius character-
istic of the rth-Whitney homology WHr(Πn) of the partition lattice Πn, tensored
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with the sign (see [18, Remark 1.8.1]), and hence of the sign-tensored rth cohomology
Hr(Confn R2) of Theorem 2.2. The rth Whitney homology also coincides as an Sn-
module with the rth cohomology of the pure braid group, see [8]. The first equation
in (9) therefore restates the acyclicity of Whitney homology for the partition lat-
tice [18], and hence also says (in contrast to the odd case Confn R3 of Proposition 2.4
above) that :

Proposition 2.6. The Lefschetz module of Confn R2 (and more generally Confn R2d

for even d) vanishes identically.

WritingWHodd(Πn) for ⊕n/2
k=0WH2k+1(Πn), andWHeven(Πn) for ⊕n/2

k=0WH2k(Πn),
we have the isomorphism of Sn-modules
(11) WHodd(Πn) 'WHeven(Πn), n > 2.

Equation (10). Denote by WH(Πn) the sum of all the graded pieces of the Whitney
homology of Πn.

The first equation in (10) says (recall that we have tensored with the sign represen-
tation) thatWH(Πn) = 2 (1 ↑SnS2

), n > 2, a result originally due to Lehrer, who proved
that this is the Sn-representation on the cohomology ring H∗(Confn R2) (Lehrer ac-
tually considers the cohomology of the complement of the braid arrangement of type
An−1 [10, Proposition 5.6 (i)]). We may rewrite this in our notation as
(12) H∗(Confn R2) = WH(Πn) = ch−1(2h2p

n−2
1 ) = 2 (1 ↑SnS2

), n > 2.
Note that the first equation in (10) also confirms the following theorem of Orlik

and Solomon.

Proposition 2.7 ([11]).H∗(Confn R2) has the structure of an exterior algebra over
the top cohomology.

By combining equation (12) with (11), we obtain
(13) Hodd(Confn R2) ' Heven(Confn R2) ' 1 ↑SnS2

, n > 2,
yielding the decomposition of the regular representation noticed by Hyde and La-
garias [8]:
(14) Hodd(Confn R2)⊕ sgnSn ⊗H

even(Confn R2) ' 1 ↑SnS1
.

From (12) it also follows that

(15) H∗(Confn+1 R2) ' H∗(Confn R2) ↑Sn+1
Sn

.

We now describe results of a similar flavour for the new representation Lie(2)
n .

Define a new module V hr(n) whose Frobenius characteristic is the degree n term
in hn−r[Lie(2)]; this is a true Sn-module. The second equation of (9) can now be
interpreted as an acylicity statement:

V hn(n)− V hn−1(n) + V hn−2(n)− · · ·+ (−1)rV hr(n) + · · · = 0, n > 2,

and hence, in analogy with (11), letting V hodd(n) = ⊕n/2
k=0V h2k+1 and V heven =

⊕n/2
k=0V h2k :

(16) V hodd(n) ' V heven(n), n > 2.
The second equation in (10) gives, similarly,

(17) ch(V hodd(n)⊕ V heven(n)) =
∑

λ`n;λi=2ai
pλ.

Hence we have established the following results, analogous to (12)–(15):
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Theorem 2.8. The following Sn-equivariant isomorphisms hold for the modules
V hr(n) = ch−1 hn−r[Lie(2)]|degn, giving Schur-positive functions with integer coeffi-
cients.

V hodd(n) ' V heven(n) = ch−1 1
2

∑
λ`n;λi=2ai

pλ.(18)

V h(n) = V hodd(n)⊕ V heven(n) = ch−1
∑

λ`n;λi=2ai
pλ.(19)

V hodd(n)⊕ sgnSn ⊗ V hodd(n) = ch−1
∑

λ`n;n−`(λ)even;λi=2ai
pλ.(20)

V h(2n+ 1) ' V h(2n) ↑S2n+1
S2n

.(21)

We now have at least four decompositions of the regular representation, namely
the two in (7) and two from (14) (tensoring the latter with the sign representation
gives two), into sums of modules indexed by the conjugacy classes, each module
obtained by inducing a linear character from a centraliser of Sn. We write these
out for S4 and S5 to show that they are indeed all distinct. In the two tables below,
each column adds up to the regular representation. Note that Lie(2)

4 coincides with
Conj4, while Lie(2)

5 is just Lie5 . Hence these modules appear in the last row of each
table. The first two decompositions are from equation (7) of Theorem 2.3; the third
is from equation (14). In all cases, of course, the four pieces for S4 (respectively,
the five pieces for S5) each have the same dimension, equal to the sum of the sizes
of the constituent conjugacy classes, namely, 1, 6, 11, 6 (respectively 1, 10, 35, 50, 24).
Note that the conjugacy classes are grouped together by number of disjoint cycles,
i.e. by length ` of the corresponding partition. That these four decompositions are all
distinct is clear, since each has a distinguishing feature. E.g. for S4, both copies of the
irreducible for the partition (22) appear only in one graded piece for [PBW], while
the reflection representation is a submodule of one graded piece only in the third.

Table 1. The regular representation of S4 (Poincaré polynomial 1+
6t+ 11t2 + 6t3)

Conjugacy
classes

PBW (Conf R3)
irreducibles

Ext
irreducibles

Whitney (Conf R2)
irreducibles

(14) h4[Lie]|deg 4 e4[Lie(2)]|deg 4 ω(WH0)
` = 4 (4) (14) (14)
(2, 12) h3[Lie]|deg 4 e3[Lie(2)]|deg 4 WH1

` = 3 (3, 1) + (2, 12) (3, 1) + (2, 12) (4) + (3, 1) + (22)
(3, 1) and (22) h2[Lie]|deg 4 e2[Lie(2)]|deg 4 ω(WH2)

` = 2 (3, 1) + 2(22) + (2, 12) + (14) 2(3, 1) + (22) + (2, 12) (3, 1) + 2(2, 12) + (22)
(4) h1[Lie]|deg 4 e1[Lie(2)]|deg 4 WH3 = ω(Lie4)
` = 1 (3, 1) + (2, 12) (4) + (22) + (2, 12) (3, 1) + (2, 12)

Note from the above example that the two identities in equation (7) of Theorem 2.3,
corresponding respectively to (22) and (24) below, themselves yield the following
four distinct decompositions of the regular representation, obtained by tensoring each
graded piece with the sign representation. The decomposition in equation (23) below is
precisely that obtained from the Eulerian idempotents of Gerstenhaber and Schack [3];
this fact was proved by Hanlon [5, Theorem 5.1 and Definition 3.6]. Curiously it also
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Table 2. The regular representation of S5 (Poincaré polynomial 1+
10t+ 35t2 + 50t3 + 24t4)

Conjugacy
classes

PBW (Conf R3)
irreducibles

Ext
irreducibles

Whitney (Conf R2)
irreducibles

(15) h5[Lie]|deg 5 e5[Lie(2)]|deg 5 ω(WH0)
` = 5 (5) (15) (15)
(2, 13) h4[Lie]|deg 5 e4[Lie(2)]|deg 5 WH1

` = 4 (4, 1) + (3, 12) (3, 12) + (2, 13) (5) + (4, 1) + (3, 2)
(3, 12) and (22, 1) h3[Lie]|deg 5 e3[Lie(2)]|deg 5 ω(WH2)

` = 3 (4, 1) + 2(3, 2) + (3, 12) (4, 1) + 2(3, 2) + 2(3, 12) (3, 2) + 2(3, 12)
+2(22, 1) + (2, 13) + (15) +(22, 1) + (2, 13) +2(22, 1) + 2(2, 13)

(4, 1) and (3, 2) h2[Lie]|deg 5 e2[Lie(2)]|deg 5 WH3

` = 2 (4, 1) + 2(3, 2) + 3(3, 12) (5) + 2(4, 1) + 2(3, 2) 2(4, 1) + 2(3, 2) + 3(3, 12)
+2(22, 1) + 2(2, 13) +2(3, 12) + 3(22, 1) + (2, 13) +2(22, 1) + (2, 13)

(5) h1[Lie]|deg 5 e1[Lie(2)]|deg 5 ωWH4 = Lie5

` = 1 (4, 1) + (3, 2) + (3, 12) (4, 1) + (3, 2) + (3, 12) (4, 1) + (3, 2) + (3, 12)
+(22, 1) + (2, 13) +(22, 1) + (2, 13) +(22, 1) + (2, 13)

appears in a paper of Gessel, Restivo and Reutenauer [4, Lemma 5.3, Theorem 5.1],
where the authors give a combinatorial decomposition of the full tensor algebra as the
enveloping algebra of the oddly generated free Lie superalgebra; they call equation (23)
below a “super” version of the Poincaré–Birkhoff–Witt theorem.

We have, for n > 1 :

pn1 =
∑
k>1

∑
λ`n

`(λ)=k

Hλ[Lie] (PBW)(22)

=
∑
k>1

∑
λ`n

`(λ)=k

ω(Hλ[Lie]) (Eulerian idempotents)(23)

=
∑
k>1

∑
λ`n

`(λ)=k

Eλ[Lie(2)] (Ext)(24)

=
∑
k>1

∑
λ`n

`(λ)=k

ω(Eλ[Lie(2)])(25)

The discussion preceding the tables shows that these four decompositions are them-
selves distinct, and also distinct from the two decompositions arising from theWhitney
homology of the partition lattice.

We point out one more analogy between WHk(Πn) ' Hk(Conf R2) and the mod-
ules Vk(n) arising from the identities of Theorem 2.3. In [18], it was shown that
the Whitney homology of the partition lattice (and more generally of any Cohen–
Macaulay poset) has the following important property:

Theorem 2.9 ([18, Proposition 1.9]). For 0 6 k 6 n − 1, the truncated alternating
sum

WHk(Πn)−WHk−1(Πn) + · · ·+ (−1)kWH0(Πn)
is a true Sn-module, and is isomorphic as an Sn-module to the unique nonvanishing
homology of the rank-selected subposet of Πn obtained by selecting the first k ranks.
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Equivalently, the degree n term in the plethysm

(en−k − en−k+1 + · · ·+ (−1)ken)[Lie]

is Schur-positive. In particular, the kth Whitney homology decomposes into a sum of
two Sn-modules as follows:

chWHk(Πn) = ω (en−k[Lie]|degn) = βn([1, k]) + βn([1, k − 1]),

where βn([1, k]) denotes the Frobenius characteristic of the rank-selected homology of
the first k ranks of Πn as in [18, Proposition 1.9].

We conjecture that a similar decomposition exists for the Sn-modules V hk(n).
More precisely, we have

Conjecture 2.10. Let V hk(n) be the Sn-module whose Frobenius characteristic is
the degree n term in the plethysm hn−k[Lie(2)], for k = 0, 1, . . . , n − 1. Then for
0 6 k 6 n− 1, the truncated alternating sum

V hk(n)− V hk−1(n) + · · ·+ (−1)kV h0(n) = Uk(n)

is a true Sn-module, and hence one has the Sn-module decomposition

V hk(n) = ch−1 hn−k[Lie(2)]|degn ' Uk(n) + Uk−1(n).

Here we define U−1(n) to be the zero module and U0(n) to be the trivial Sn-module.
Equivalently, the degree n term in the plethysm

(hn−k − hn−k+1 + · · ·+ (−1)khn)[Lie(2)]

is Schur-positive for 0 6 k 6 n− 1.

This conjecture is easily verified for 0 6 k 6 3; in the latter case there are relatively
simple formulas for chV hk(n), giving the following clearly Schur positive expressions
for Uk(n), (for n > 4). Tables 3 and 4 contain data for for n = 6 and n = 7.

chU0(n) = chV h0(n) = hn;

chU1(n) = (hn−1 − hn)[Lie(2)]|n = h2hn−2 − hn = s(n−1,1) + s(n−2,2);
chU2(n) = chV h2(n)− chU1(n)

= hn−2s(2,1) − s(n−1,1) − s(n−2,2) + hn−4(h4 + s(2,2));
chU3(n) = chV h3(n)− chU2(n)

= hn−4s(2,12) + s(2,1)(hn−5h2 − hn−3)
+ hn−6(h6 + s(4,2) + s(23)) + s(n−1,1) + s(n−2,2).

Table 3. Alternating sums Uk(n) of hk[Lie(2)] for n = 6

k Uk(6)
0 (6)
1 (5, 1) + (4, 2)
2 (6) + (5, 1) + 2(4, 2) + (4, 12) + 2(3, 2, 1) + (23)
3 (6) + (5, 1) + 3(4, 2) + 2(4, 12) + (32) + 3(3, 2, 1) + 2(3, 13) + 2(22, 12)
4 Lie(2)

6 = (5, 1) + 2(4, 2) + (4, 12) + 3(3, 2, 1) + 2(3, 13) + (23) + (22, 12) + (2, 14)
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Table 4. Alternating sums Uk(n) of hk[Lie(2)] for n = 7

k Uk(7)
0 (7)
1 (6, 1) + (5, 2)
2 (7) + (6, 1) + 2(5, 2) + (5, 12) + (4, 3) + 2(4, 2, 1) + (3, 22)
3 (7)+2(6, 1)+3(5, 2)+2(5, 12)+3(4, 3)+5(4, 2, 1)+2(4, 13)+2(32, 1)+3(3, 22)

+3(3, 2, 12) + 2(23, 1)
4 2(6, 1) + 4(5, 2) + 3(5, 12) + 3(4, 3) + 8(4, 2, 1) + 3(4, 13) + 4(32, 1) + 5(3, 22)

+7(3, 2, 12) + 3(3, 14) + 3(23, 1) + 2(22, 13)
5 Lie(2)

7 = Lie7 = (6, 1) + 2(5, 2) + 2(5, 12) + 2(4, 3) + 5(4, 2, 1) + 3(4, 13)
+3(32, 1) + 3(3, 22) + 5(3, 2, 12) + 2(3, 14) + 2(22, 1) + 2(22, 13) + (2, 15)

Recent work of Hyde and Lagarias [8] rediscovers the representations βn([1, k]) of
Theorem 2.9 in a cohomological setting. Our results suggest the existence of a similar
topological context in which the modules V hk(n) and Uk(n) appear.

Question 2.11. Is there a cohomological context for the “Lie(2)” identities of Theo-
rem 2.3, as there is for the Lie identities in the context of configuration spaces (The-
orem 2.2), or as in [8]?

Recall from Section 2 and Theorem 4.8 the following facts. The free Lie al-
gebra has a filtration arising from its derived series [14, Section 8.6.12], which
in our notation may be described as follows. Let κ =

∑
n>2 s(n−1,1). Then

Lie>2 = κ+ κ[κ] + κ[κ[κ]] + · · · .
Theorem 2.3 allows us to deduce a similar decomposition for Lie(2)

n . In fact we
have the following exact analogue of Theorem 4.8:

Theorem 2.12. The following identities hold, and are equivalent:

(26) (E − 1)[Lie(2)] =

∑
r>1

er

 [Lie(2)] =
∑
n>1

pn1 .

(27) (1−H±)[Lie(2)] =

∑
r>1

(−1)r−1hr

 [Lie(2)] = p1.

(28) (1−H±)[Lie(2)
>2] =

∑
r>1

(−1)r−1hr

 [Lie(2)
>2] = ω(κ)

(29) The degree n term in
∑
r>0

(−1)n−rhn−r[Lie(2)
>2] is (−1)n−1s(2,1n−2).

(30) Lie(2)
>2 = Lie(2)[ω(κ)]

(31) Lie(2)
>2 = ω(κ) + ω(κ)[ω(κ)] + ω(κ)[ω(κ)[ω(κ)]] + · · ·
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(Analogue of the derived series filtration of the free Lie algebra)

(32) (E − 1)[Lie(2)
>2] =

∑
r>1

er[Lie(2)
>2] = (1− p1)−1 ·H± − 1 =

∑
n>2

n∑
k=0

(−1)kpn−k1 hk.

We offer two more contrasting results for Lien and Lie(2)
n :

Proposition 2.13. Let DPar denote the set of partitions with distinct parts.

(1)
∑
r>1(−1)r−1hr[Lie]|degn =

{
p1p

k
2 , n = 2k + 1 is odd

−pk2 , n = 2k is even

(2)
∑
r>1(−1)r−1er[Lie(2)]|degn =

∑
λ`n:λi=2ki ,ki>0

λ∈DPar
(−1)`(λ)−1pλ.

Next we examine more closely the action on derangements, i.e. fixed-point-free per-
mutations. Reiner and Webb study the Cohen–Macaulay complex of injective words,
and compute the Sn-action on its top homology [13]. Theorem 2.12 shows that the
representations Lie(2)

n make an appearance here as well:

Theorem 2.14. Let n > 2. For k > 1 let ∆k
n denote the degree n term in ek[Lie(2)

>2].
Define ∆n =

∑
k>1 ∆k

n for n > 2, and ∆1 = 0,∆0 = 1. Then

(1) ∆n =
∑n
k=0(−1)kpn−k1 hk = p1∆n−1 + (−1)nhn; and hence

(2) For n > 2, ∆n coincides with the Frobenius characteristic of the homology
representation on the complex of injective words in the alphabet {1, 2, . . . , n}.

Proof. Clearly ∆n is the degree n term in E[Lie(2)
>2], so this is nothing but a restate-

ment of equation (32) above. �

Hanlon and Hersh showed that this homology representation has a Hodge decom-
position [6, Theorem 2.3], by showing that the complex itself splits into a direct sum
of Sn-invariant subcomplexes. Writing Dk

n for the degree n term in hk[Lie>2], in our
terminology their result may be stated as follows:

∆n =
∑
k>1

ω(Dk
n).

In fact the identity
∑
kD

k
n =

∑n
k=0(−1)kpn−k1 ek is simply a restatement of equa-

tion (65) in Theorem 4.8.
Surprisingly, the decomposition of ∆n given in Theorem 2.14 is different from the

Hodge decomposition, i.e. the summands ∆k
n and ω(Dk

n) do not coincide. The first
nontrivial example appears below.

Example 2.15. For n = 4, we have ∆4 = p2
1h2−p1h3 +h4 = (4)+(3, 1)+(22)+(2, 12).

Also ∆2
4 = e2[h2] = (3, 1), ∆1

4 = Lie(2)
4 = (4) + (22) + (2, 12). The two Hodge pieces,

however, each consist of two irreducibles: ω(h2[Lie2]) = (22) + (4) and ω(h1[Lie4]) =
(3, 1) + (2, 12).

This prompts the following:

Question 2.16. Is there an algebraic complex explaining the representation-theoretic
decomposition

∆n =
∑
k>0

∆k
n =

∑
k>0

ek[Lie(2)
>2]|degn,
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just as the Hodge complex explains the decomposition

∆n = ω

∑
k>0

hk[Lie>2]|degn

 ,

noting (from the preceding example) that ek[Lie(2)
>2]|degn is not in general equal to

ω(hk[Lie>2]|degn)?
It is a well-known fact (see [11], [19]) that the exterior power of Lie, when tensored

with the sign representation, coincides with the Whitney homology of the lattice of
set partitions. Thus equation (62) (from the fundamental theorem of equivalences,
Theorem 4.8), when tensored with the sign, can be rewritten as a formula for the
alternating sum of Whitney homology modules of Πn, when restricted to partitions
with no blocks of size 1. Define WHi

>2(Πn) to be the sum of all the homology
modules H̃(0̂, x) where x ranges over all partitions into n − i blocks, with no blocks
of size 1. Then chWHi

>2(Πn) = ω(en−i[Lie>2]|degn) and so equation (62) (and hence
the Poincaré–Birkhoff–Witt theorem), is equivalent to

(33)
∑
i>0

(−1)i chWHi
>2(Πn) = (−1)n−1s(2,1n−2).

In the notation of [7], Ŵ i
n = WHi

>2(Πn) (see Corollary 2.11). Hersh and Reiner con-
struct an Sn-cochain complex Fn(A∗) with nonvanishing cohomology only in degree
n − 1, whose Sn-character is the irreducible indexed by (2, 1n−2), explicitly proving
a conjecture of Wiltshire–Gordon ([7, Conjecture 1.5, Theorem 1.6, Theorem 1.7]).

Define, in analogy with [7], V̂n(k) to be the module with Frobenius characteristic
hn−k[Lie(2)

>2]|degn. Then it is natural to ask:

Question 2.17. Is there an Sn-(co)chain complex for the representations Lie(2)
>2 whose

Lefschetz module is given by equation (29) of Theorem 2.12 above, i.e. the analogue of
equation (2.6)? Note that although the nonvanishing (co)homology would occur again
only in degree (n−1), affording the same irreducible indexed by (2, 1n−2), the modules
in the alternating sum are now different (although they are once again obtained by
inducing one-dimensional modules from the same centralisers of Sn, and thus have
the same dimensions). More precisely, and curiously,

Ŵ i
n 6' V̂n(i),

although in both cases the alternating sums collapse to the irreducible indexed by
(2, 1n−2). For instance, the calculation for n = 4 gives:

ω(e1[Lie>2]|deg 4) = ω(Lie4) = Lie4 6= h1[Lie(2)
>2]|deg 4 = Lie(2)

4 ;

ω(e2[Lie>2]|deg 4) = ω(e2[e2]) = e2[h2] 6= h2[Lie(2)
>2]|deg 4 = h2[h2].

We summarise these facts in the following:
Theorem 2.18. We have

(1) (Hodge decomposition for complex of injective words)

(34)
∑
r>1

ω (hr[Lie>2]|degn) =
n∑
k=0

(−1)kpn−k1 hk =
∑
r>1

er[Lie(2)
>2]|degn;

(2) (Derived series filtration)

(35)
∑
r>1

(−1)r−1ω (er[Lie>2]|degn) = s(2,1n−2) =
∑
r>1

(−1)r−1hr[Lie(2)
>2]|degn.
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By applying Part (1) of Theorem 4.9 to F = Lie(2), we obtain the following ana-
logue of a result of [7]. See the remarks at the end of Section 4.

Proposition 2.19. Let αn = H[Lie(2)
>2]|degn, n > 0 We have α0 = 1, α1 = 0. Then

αn = p1 ·αn−1 +(−1)nσn, where σn =
∑
i>0 en−2ig2i. Here gn is the virtual represen-

tation of dimension zero given by gn =
∑
λ pλ, the sum running over all partitions λ

of n with no part equal to 1, and all parts a power of 2. In particular σn is the charac-
teristic of a one-dimensional virtual representation whose restriction to Sn−1 is σn−1.

The first few virtual representations σn are σ0 = 1, σ2 = e2 + p2 = s(2), σ3 =
e3 + e1p2 = 2s(13) + s(3), σ4 = 2s(4) − s(3,1) + s(22), σ5 = 2s(5) − s(3,12) + s(22,1).

The analogous recurrence for the exterior powers E[Lie(2)
>2]|degn, n > 0, has already

been stated in (1) of Theorem 2.14. See also the remark at the end of Section 4.
We conclude with yet another feature of the Lien representation which seems to

be shared to some extent by Lie(2)
n . Recall that Lien−1⊗ sgn admits a lifting Wn

which is a true Sn-module, the Whitehouse module, appearing in many different
contexts [15], [24], whose Frobenius characteristic is given by chWn = p1ω(Lien−1)−
ω(Lien). (See also [17, Solution to Exercise 7.88 (d)] for more extensive references.)

One can ask if the same construction for Lie(2)
n yields a true Sn-module. Clearly

one obtains a possibly virtual module which restricts to Lie(2)
n−1 as an Sn−1-module.

We have the following conjecture, verified in Maple (with Stembridge’s SF package)
up to n = 32 :

Conjecture 2.20. The symmetric function p1 Lie(2)
n−1−Lie(2)

n is Schur-positive if and
only if n is NOT a power of 2. Equivalently, Lie(2)

n−1 ↑Sn −Lie(2)
n is a true Sn-module

which lifts Lie(2)
n−1, if and only if n is not a power of 2.

One direction of this conjecture is easy to verify. Let n = 2k. Then n − 1 is odd,
so Lie(2)

n−1 = Lien . Also Lie(2)
n = ch 1 ↑SnCn= Conjn, i.e. Lie(2)

n is just the permutation
module afforded by the conjugacy action on the class of n-cycles of Sn. Consequently
it contains the trivial representation (exactly once). But it is well known that Lien
never contains the trivial representation, and hence, when n is a power of 2, the trivial
module appears with negative multiplicity (−1) in p1 Lie(2)

n−1−Lie(2)
n .

3. The Frobenius characteristic of Lie(2)
n

In this section we will derive the key symmetric function identities satisfied by the
Frobenius characteristic of the module Lie(2)

n , thereby proving its intriguing paral-
lelism with Lien .

We begin with a general theorem of Foulkes on the character values of representa-
tions induced from the cyclic subgroup Cn of Sn, asserting Part (1) of the following
(see also [17, Ex. 7.88]). We refer the reader to [17] for the definition of the major
index statistic on tableaux.

Theorem 3.1. Let `(r)
n denote the Frobenius characteristic of the induced representa-

tion exp
( 2iπ
n · r

)xSn
Cn
, 1 6 r 6 n. Then

(1) (Foulkes) [2]

`(r)
n = 1

n

∑
d|n

φ(d)
µ
(

d
(d,r)

)
φ
(

d
(d,r)

)pndd .
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(2) (Stanley; Kráskiewicz and Weyman) ([9], [17]; see also [14]) The multiplicity
of the Schur function sλ in the Schur function expansion of `(r)

n is the num-
ber of standard Young tableaux of shape λ with major index congruent to r
modulo n.

Remark. The quantity φ(d)µ( d
(d,r) )/φ( d

(d,r) ) in Foulkes’ formula is called a Ramanu-
jan sum; it is the sum of the rth powers of the primitive dth roots of unity.

Thus Lien and Conjn are obtained by taking r = 1 and r = n in Foulkes’ theorem,
while our new variant Lie(2)

n is the case r = kn, where kn is the highest power of 2
dividing n. Note that Part (2) provides a complete combinatorial description of the
decomposition into irreducibles of Lien,Conjn and also Lie(2)

n .

Our goal in this section is to describe the symmetric and exterior powers of Lie(2)
n ,

the analogues of the higher Lie modules in Section 2. The meta theorem, Theorem 4.2,
of Section 4 allows us to deduce formulas for these higher Lie2

n-modules quickly and
elegantly, avoiding technical plethystic or cycle index calculations. We begin by stating
three well-known results on Lien and Conjn .

Theorem 3.2 ([23, 1, 16] (See also [17, Ex. 7.71, Ex. 7.88, Ex. 7.89].)). The symmetric
powers of Lien and Conjn satisfy the following:

(Thrall, PBW ) H

∑
n>1

Lien

 (t) = (1− tp1)−1

(Decomposition of the regular representation into a sum of higher Lie modules)

(Cadogan) H

∑
n>1

(−1)n−1ω(Lien)

 (t) = 1 + tp1.

(The plethystic inverse of
∑
n>1 hn.)

(Solomon) H

∑
n>1

Conjn

 (t) =
∏
n>1

(1− tnpn)−1

Proposition 3.3 ([19, Theorem 4.2 and Corollary 5.2]). The exterior powers of Lie
and Conj satisfy the following:

(1) E[Lie](t) = (1− t2p2)(1− tp1)−1

(2)
∑
λ∈Par(−1)|λ|−`(λ)Hλ[Lie](t) = ω(E[ω(Lie)alt])(t) = (1 + tp1)(1− t2p2)−1

(3) E[
∑
n>1 Conjn](t) =

∏
n>1, n odd(1− tnpn)−1

(4) E[
∑
n>1(−1)n−1ω(Conjn)](t) =

∏
n>1, n odd(1 + tnpn)

Recall that write Lie(2)
n for the Frobenius characteristic of the representation. Also

recall the definition of the polynomial Lie(2)
n (t) from (6).

Lemma 3.4. Let n = 2α` where ` is odd. We have

(36) Lie(2)
n = 1

n

α∑
s=0

∑
d=2sd1
d1|`

φ(2s)µ(d1)p
n
d1
d1
,

(37) Lie(2)
n (1) =

{
1, n = 2α for some α > 0,
0, otherwise.

Algebraic Combinatorics, Vol. 3 #4 (2020) 998



On a curious variant of the Sn-module Lien

(38) Lie(2)
n (−1) =

{
−1, n = 1,
0, otherwise.

Proof. Equation (36) follows directly from Foulkes’ formula, by factoring the highest
power of 2 out of each divisor d of n, and using the multiplicativity of φ and µ. Hence
we have

Lie(2)
n (1) = 1

n

∑
d1|`

µ(d1)
(

1 +
α∑
s=1

φ(2s)
)

= 1
n

∑
d1|`

µ(d1)
(

1 +
α∑
s=1

2s−1

)
= 2α

n

∑
d1|`

µ(d1).

The last sum is nonzero if and only if ` = n
2α = 1. Equation (38) now follows imme-

diately by invoking the meta-result of Proposition 4.3, which says that

Lie(2)
2n+1(−1) = −Lie(2)

2n+1(1), Lie(2)
2n (−1) = Lie(2)

n (1)− Lie(2)
2n (1),

(or directly by a more cumbersome case-by-case calculation). �

Theorem 3.5. Let Lie(2)
n be the Frobenius characteristic of the induced representation

exp( 2 iπ
n · 2

k) ↑SnCn , where k is the largest power of 2 which divides n. Then we have
the following generating functions:

(1) (Exterior powers) E

∑
n>1

Lie(2)
n

 (t) = (1− tp1)−1.

(Alternating symmetric powers) H±

∑
n>1

Lie(2)
n

 (t) = 1− tp1.

That is,
∑
n>1 Lie(2)

n is the plethystic inverse of
∑
n>1(−1)n−1hn.

(2) E
[∑

n>1(−1)n−1ω(Lie(2)
n )
]

(t) = 1 + tp1.

That is, the plethystic inverse of
∑
n>1 en is given by∑

n>1(−1)n−1ω(Lie(2)
n ).

(3) (Symmetric powers and higher Lie(2)
n -modules)

H

∑
n>1

Lie(2)
n

 (t) =
∏

n=2k,k>0

(1− tnpn)−1 =
∑
λ∈Par

every part is a power of 2

t|λ|pλ.

(4) (Alternating Exterior Powers)

∑
λ∈Par

(−1)|λ|−`(λ)ω(Eλ[Lie(2)])(t) = H

∑
n>1

(−1)n−1ω(Lie(2)
n )

 (t)

=
∏

n=2k,k>0

(1 + tnpn) =
∑

λ∈DPar
every part is a power of 2

t|λ|pλ.

Proof. We apply the meta theorem Theorem 4.2 to the sequence of symmetric func-
tions fn = Lie(2)

n . All of these identities follow immediately thanks to the values of
Lie(2)

n (t) at t = ±1 given by the preceding lemma. For the equivalence of the second
equation in (1) and the equation (2), we invoke Lemma 4.5, which also gives the
equivalence of (3) and (4). �
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Remark. Observe that Part (3) of the above also gives the description of Lie(2)
n men-

tioned in the Introduction: If we form the row sums in the character table of Sn
corresponding to conjugacy classes of type λ, where each part of λ is a power of 2,
then those row sums are nonnegative and produce the representation obtained by sym-
metrising Lie(2)

n . The theorems about the variant Lie(2)
n in Section 2 now follow easily.

Proof of Theorem 2.3. The Lie(2) identities are all restatements of Theorem 3.5
above, using the definition of Hλ and Eλ. Likewise the Lie identities are all restate-
ments of known results, Theorem 3.2 and Theorem 4.8. The first equation in (10) is,
for instance, a restatement of the first equation of Proposition 3.3. The statement
about the equivalence of the Lie (respectively, Lie(2)) identities is a consequence of
Proposition 4.6. �

Proof of Theorem 2.12. Equation (26) is the identity E[Lie(2)] = (1−p1)−1 of Part (1)
of Theorem 3.5, and hence by Lemma 4.4, we obtain H±[Lie(2)] = 1 − p1, which is
equation (27) after removing the constant term and adjusting signs.

Now invoke (57) of Theorem 4.7, Section 4. We have

H±[Lie(2)
>2] = E · (1− p1) = 1 +

∑
n>2

(en − en−1p1) = 1− ω(κ),

and this is precisely equation (28), again after cancelling the constant term and adjust-
ing signs. The remaining statements follow exactly as in Theorem 4.8, Section 4. �

Proof of Proposition 2.13. Parts (1) and (2) are respectively restatements of Part (2)
of Proposition 3.3, and Part (4) of Theorem 3.5. �

The following observation allows us to compute the character values of Lie(2)
n di-

rectly from those of Lien .

Theorem 3.6. Lie(2)
n is the degree n term in the plethysm

∑
k>0 Lie[p2k ], and Lien is

the degree n term in Lie(2)−Lie(2)[p2]. In particular Lie(2)
n = Lien if n is odd, and

coincides with the sign tensored with Lien if n is twice an odd number.

Proof. From (1), it is easy to see that E = H[p1 − p2]. By Theorem 2.3, we have
H[Lie] = E[Lie(2)]. Putting these two facts together and using associativity of
plethysm immediately gives H[Lie] = H[(p1 − p2)[Lie(2)]], and hence, since power
sums commute with plethysm,

(H − 1)[Lie] = (H − 1)[Lie(2)−Lie(2)[p2]].

But H − 1 is invertible with respect to plethysm (see Cadogan’s formula in Theo-
rem 3.2), so the result follows. It is easy to check that p1 − p2 has plethystic inverse∑
k>1 p2k , completing the proof of the first part. (It is also possible to prove this di-

rectly using the Frobenius characteristics, although the computation with Ramanujan
sums is somewhat involved.)

The last statement is clear if n is odd. Now suppose n = 2(2m−1) for m > 1. Then
we have Lie(2)

n = Lien + Lie2m−1[p2]. A routine calculation shows that this coincides
with ω(Lie2(2m−1)) (see [4]). �

This yields the following curious Sn-module isomorphism, giving a recursive defi-
nition of Lie(2)

n :

Proposition 3.7. When n is even:

Lien⊕1S2 [Lie(2)
n
2

] ↑SnS2[Sn
2

] ' Lie(2)
n ⊕sgnS2 [Lie(2)

n
2

] ↑SnS2[Sn
2

],
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where S2[Sn
2

] is the wreath product of S2 with Sn
2
(i.e. the normaliser of Sn

2
×Sn

2
). If

n is odd, this identity simply reduces to the known fact that Lien and Lie(2)
n coincide.

The module Lie(2)
n makes an appearance in the decomposition of the module Conjn

of the conjugacy action on the class of n-cycles as well. Again we have the following
contrasting results between Lie and Lie(2).

Theorem 3.8.
(39)

∑
n

Conjn =
∑
k>1

pk[Lie]; equivalently, Lie =
∑
k>1

µ(k)pk[Conj].

(40)
∑
n

Conjn =
∑
k>1

p2k−1[Lie(2)]; equivalently, Lie(2) =
∑
k>1

µ(2k− 1)p2k−1[Conj].

Proof. The equivalence of the two statements in each case follows by using the fact
(easily verified by direct computation) that

∑
k>1 pk and

∑
k>1 µ(k)pk are plethystic

inverses, as are
∑
k>1 p2k−1 and

∑
k>1 µ(2k − 1)p2k−1. For the first statement, we

combine the theorems of Solomon and Thrall in Theorem 3.2 as follows:
H[Conj] =

∏
n>1

pn[(1− p1)−1] =
∏
n>1

pn[H[Lie]] =
∏
n>1

H[Lie[pn]] = H[
∑
n>1

Lie[pn]].

Here we have used the fact that plethysm is associative, and the commutative property
pn[f ] = f [pn] for power sums. Hence (H−1)[Conj] = (H−1)[

∑
n>1 Lie[pn]]. Now the

result follows as in Theorem 3.6, which also gives the second part, since it says that
Lie = (p1 − p2)[Lie(2)]. Clearly

∑
k>1 pk[p1 − p2] =

∑
k>1 p2k−1. �

4. Meta theorems
In this section we review the meta theorem of [19] giving formulas for symmetric and
exterior powers of modules induced from centralisers, and also further develop these
tools in a general setting. Theorem 4.2 below has wide-ranging applications, as shown
in [20] and [21]. We begin by recalling the following results regarding the sequence of
symmetric functions fn defined in equation (5) of Section 1.

Proposition 4.1 ([19, Proposition 3.1]). Define

F (t) =
∑
i>1

tifi,

and define
(ωF )alt(t) =

∑
i>1

(−1)i−1tiω(fi).

Then
F (t) = log

∏
d>1

(1− tdpd)−
ψ(d)
d .(41)

(ωF )alt(t) = log
∏
d>1

(1 + tdpd)
ψ(d)
d .(42)

Theorem 4.2 ([19, Theorem 3.2]). Let F =
∑
n>1 fn where fn is of the form (5),

H(v) =
∑
n>0 v

nhn and E(v) =
∑
n>0 v

nen. We have the following plethystic gener-
ating functions:

(Symmetric powers)

(43) H(v)[F ] =
∑
λ∈Par

v`(λ)Hλ[F ] =
∏
m>1

(1− pm)−fm(v).
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(Exterior powers)

(44) E(v)[F ] =
∑
λ∈Par

v`(λ)Eλ[F ] =
∏
m>1

(1− pm)fm(−v).

(Alternating exterior powers)

(45)
∑
λ∈Par

(−1)|λ|−`(λ)v`(λ)ω(Eλ[F ])

=
∑
λ∈Par

v`(λ)Hλ[ω(F )alt] = H(v)[ω(F )alt] =
∏
m>1

(1 + pm)fm(v).

(Alternating symmetric powers)

(46)
∑
λ∈Par

(−1)|λ|−`(λ)v`(λ)ω(Hλ[F ])

=
∑
λ∈Par

v`(λ)Eλ[ω(F )alt] = E(v)[ω(F )alt] =
∏
m>1

(1 + pm)−fm(−v).

Proposition 4.3 ([19, Lemma 3.3]). The numbers fn(1) and fn(−1) determine
each other according to the equations f2m+1(−1) = −f2m+1(1) for all m > 0,
and f2m(−1) = fm(1) − f2m(1) for all m > 1. In fact, the symmetric functions
fn = 1

n

∑
d|n ψ(d)p

n
d

d are determined by the numbers fn(1) = 1
n

∑
d|n ψ(d), or by the

numbers fn(−1) = 1
n

∑
d|n ψ(d)(−1)nd .

Recall from Section 1.1 that we define H± =
∑
r>0(−1)rhr and E± =∑

r>0(−1)rer. Thus H± = 1 − Halt, where Halt =
∑
r>1(−1)r−1hr, and likewise

E± = 1 − Ealt. The following identity is well known (see [12, Equation (2.6)], [17,
Section 7.6]).

(47)

∑
n>0

tnhn

∑
n>0

(−t)nen

 = 1. Equivalently, H± · E = 1 = H · E±.

This identity is generalised in Lemma 4.4 below.

Lemma 4.4. Let F =
∑
n>1 fn, G = 1 +

∑
n>1 gn and K = 1 +

∑
n>1 kn be arbitrary

formal series of symmetric functions, as usual with fn, gn, kn being of homogeneous
degree n.

(1) H[F ] = G ⇐⇒ E±[F ] = 1
G ⇐⇒

∑
r>1(−1)r−1er[F ] = G−1

G .

(2) E[F ] = K ⇐⇒ H±[F ] = 1
K ⇐⇒

∑
r>1(−1)r−1hr[F ] = K−1

K .

Proof. (1) By definition, E± =
∑
r>0(−1)rer = 1/H, and hence the first equality

follows. For the second equality, note that
∑
r>1(−1)r−1er = 1−E± = 1− 1/H, and

hence
∑
r>1(−1)r−1er[F ] = 1− 1/H[F ] as claimed. The reverse direction is clear.

(2) This follows exactly as above, since H± =
∑
r>0(−1)rhr = 1/E. �

Lemma 4.5. Let G =
∑
n>1 gn, K =

∑
n>0 kn, where gn, kn are symmetric func-

tions of homogeneous degree n for n > 1, and k0 = 1. Let K± denote the sum
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∑
n>0(−1)nkn. Then

H

∑
n>1

(−1)n−1ω(gn)

 = K ⇐⇒ H

∑
n>1

gn

 = 1
K[−p1] = 1

ω(K)±(48)

⇐⇒ E±

∑
n>1

gn

 = ω(K)±.(49)

E[
∑
n>1

(−1)n−1ω(gn)] = K ⇐⇒ E[
∑
n>1

gn] = 1
K[−p1] = 1

ω(K)±(50)

⇐⇒ H±

∑
n>1

gn

 = ω(K)±.(51)

Proof. We use the fact that for any symmetric functions f1, f2 of homogeneous degree,
f1[−f2] = (−1)deg f1ω(f1)[f2]. In particular this implies K[−p1] = ω(K)± whenever
K is a series of symmetric functions kn of homogeneous degree n. Hence, using asso-
ciativity of plethysm,

K = H[−
∑
n>1

(−1)nω(gn)] = H[−G[−p1]] = (H[−G])[−p1],

or equivalently

K[−p1] = E±[G] =
(

1
H

)
[G] = 1

H[G] ,

and finally

H[G] = 1
K[−p1] = 1

ω(K)± .

The equivalence of the first two equations is a consequence of the fact that H[G] =
( 1
E± )[G] = 1

E±[G] . The equivalences of the second pair follow in a similar manner. �

Lemma 4.5 explains, in greater generality, the connection between equations (43)
and (45) (resp. (44) and (46)). In fact these lemmas give us the following observation.
Let F, H, and E be as defined in Theorem 4.2. Then

Proposition 4.6. The identities of Theorem 4.2 are all equivalent, and are also equiv-
alent to

(52) E±(v)[F ] =
∏
m>1

(1− pm)fm(v).

(53) H±(v)[F ] =
∏
m>1

(1− pm)−fm(−v).

Now let F =
∑
n>1 fn be an arbitrary series of symmetric functions fn homoge-

neous of degree n. In particular fn need not be of the form (5). We write F>2 for the
series

∑
n>2 fn.

Theorem 4.7 ([19, Proposition 2.3, Corollary 2.4]). Assume that F =
∑
n>1 fn is

any series of symmetric functions fn homogeneous of degree n. Also assume f1 = p1.
Then we have the following identities:

(54) H(v)[F>2] = E(−v) ·H(v)[F ].
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Equivalently,

(55) E±(v)[F>2] = E±(v)

∑
n>2

fn

 = H(v)
H(v)[F ] .

(56) E(v)[F>2] = H(−v) · E(v)[F ].

Equivalently,

(57) H±(v)[F>2] = H±(v)

∑
n>2

fn

 = E(v)
E(v)[F ] .

Proof. The equivalence of (54) and (55) follows because of the identity (47). Consider
now equation (54). By standard properties of the skewing operation and the plethysm
operation (see, e.g. [12, (8.8)]), we know that hn[G1 + G2] =

∑n
k=0 hk[G1]hn−k[G2].

This in turn gives
H[G1 +G2] = H[G1]H[G2].

Taking G1 = f1 and G2 = F − f1, we have

H[F ] = H[f1]H

∑
n>2

fn

 .
But H[f1] = H[p1] =

∑
n>0 hn. Hence, using (47),

1
H(v)[f1] =

∑
n>0

(−v)nen.

The equations (56) and (57) are obtained in entirely analogous fashion. �

An important consequence of Theorem 4.7 is worth pointing out. Denote by Lien
the Frobenius characteristic of the Sn-representation afforded by the multilinear com-
ponent of the free Lie algebra on n generators. Let Lie =

∑
n>1 Lien . This special

case of equation (43), Theorem 4.2, obtained by taking ψ(d) = µ(d) in (5), and hence
fn = Lien, yields

H[Lie] = (1− p1)−1

This is Thrall’s theorem. See Theorem 3.2 and more generally[14]. Define a symmetric
function κ =

∑
n>2 s(n−1,1), where s(n−1,1) is the Schur function indexed by the

partition (n−1, 1). (This is the Frobenius characteristic of the standard representation
of Sn.)

Lemma 4.4 and Theorem 4.7 now imply that Thrall’s theorem is in fact equivalent
to the derived series decomposition of the free Lie algebra [14]. More precisely, the
following identities are equivalent:

Theorem 4.8. (Equivalence of Thrall’s theorem and derived series for free Lie alge-
bra)

(H − 1)[Lie] =

∑
r>1

hr

 [Lie] =
∑
n>1

pn1 .(58)

(H − 1)

∑
i>1

(−1)i−1ω(Liei)

 = p1,(59)
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(the plethystic inverse of the sum of homogeneous symmetric functions
∑
r>1 hr).

(60) (1− E±)[Lie] =

∑
r>1

(−1)r−1er

 [Lie] = p1,

(the plethystic inverse of the sum
∑
r>1 Lier).

(1− E±)[Lie>2] =

∑
r>1

(−1)r−1er

 [Lie>2] = κ.(61)

The degree n term in
∑
r>0

(−1)n−ren−r[Lie>2] is (−1)n−1s(n−1,1),(62)

Lie>2 = Lie[κ],(63)
Lie>2 = κ+ κ[κ] + κ[κ[κ]] + · · ·(64)

(The derived series filtration of the free Lie algebra)

(65) (H−1)[Lie>2] =

∑
r>1

hr

 [Lie>2] = (1−p1)−1 ·E±−1 =
∑
n>2

n∑
k=0

(−1)kpn−k1 ek.

Proof. We specialise the preceding identities to v = 1. Equation (58) is equivalent to
H[Lie] = (1− p1)−1, and hence by Lemma 4.4, we obtain E±[Lie] = 1− p1, which is
equation (60) after removing the constant term and adjusting signs.

Now invoke (55) of Theorem 4.7. We have

E±[Lie>2] = H · (1− p1) = 1 +
∑
n>2

(hn − hn−1p1) = 1− κ,

and this is precisely equation (61), again after cancelling the constant term and ad-
justing signs. Since these steps are clearly reversible, we see that (60) and (61) are in
fact equivalent.

The equivalence of (61) and (62)–(63) follows by applying the plethystic inverse of∑
r>1(−1)r−1er, which is given by (60).
It is clear by iteration that (63) gives (64). In the reverse direction, we can

rewrite (64) as

Lie = p1 + κ+ κ[κ] + κ[κ[κ]] + · · · ,

and hence Lie[κ] = Lie−p1 = Lie>2, which is (63). Finally the equivalence of (58)
and (65) follows from equation (54) of Theorem 4.7 and equation (47). �

Theorem 4.9. Let F,H,E be as in Theorem 4.2, and assume f1 = p1.

(1) Let
∏
m>2(1−pm)−fm(1) =

∑
n>0 gn for homogeneous symmetric functions gn

of degree n, g0 = 1. (Note that g1 = 0.) Also define σn =
∑
i>0(−1)ien−igi.

Then σn, n > 1, is the characteristic of a one-dimensional, possibly virtual
representation, with the property that its restriction to Sn−1 is σn−1. Let αn
be the degree n term in H[F>2], n > 0. (Note that α0 = 1 and α1 = 0. ) Then
we have the recurrence

(66) αn = p1αn−1 + (−1)nσn.
(2) Let

∏
m>2(1−pm)fm(−1) =

∑
n>0 kn for homogeneous symmetric functions kn

of degree n, k0 = 1. (Note that k1 = 0.) Also define τn =
∑
i>0(−1)ihn−iki.

Then τn, n > 1, is the characteristic of a one-dimensional, possibly virtual
representation, with the property that its restriction to Sn−1 is τn−1. Let βn
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be the degree n term in E[F>2], n > 0. (Note that β0 = 1 and β1 = 0. ) Then
we have the recurrence

(67) βn = p1βn−1 + (−1)nτn.

Proof. (1) The hypothesis that the degree one term f1 in F equals p1 implies that
f1(1) = 1. From equation (43) of Theorem 4.2 and (54) of Theorem 4.7, we now have

(1− p1)H[F>2] = E± ·
∏
m>2

(1− pm)−fm(1)

=
∑
r>0

(−1)rer
∑
n>0

gn =
∑
n>0

n∑
i=0

(−1)n−ien−igi =
∑
n>0

(−1)nσn,

from which the recurrence is clear. It remains to establish the statement about τn.
First observe that since p1 does not appear in the power-sum expansion of gn, for
i > 1, en−igi is the Frobenius characteristic of a zero-dimensional (hence virtual)
representation (dimension is computed, for example, by taking the scalar product
with pn1 ). The dimension of σn is therefore that of en, and is thus one. To verify the
statement about the restriction, we use the fact that the Frobenius characteristic of
the restriction is the partial derivative ∂σ

∂p1
. The partial derivative of en with respect

to p1 is clearly en−1, n > 1, and that of gn with respect to p1 is clearly 0. The claim
follows.

(2) Again, f1 = p1 implies 1 = −f1(−1). The argument is identical, but now use
equation (44) and equation (56). �

Note that, with F as in Theorem 4.2, the dimension of the representation whose
characteristic is hj [F ]|degn (respectively ej [F ]|degn) is the number c(n, j) of permu-
tations in Sn with j disjoint cycles. Similarly the dimension of the representation
whose characteristic is hj [F>2]|degn (respectively ej [F>2]|degn) is the number d(n, j)
of fixed-point-free permutations, or derangements, in Sn with j disjoint cycles, and
hence the dimension of αn (respectively βn) is the total number of derangements dn.
Hence, taking dimensions in either of the above recurrences, we recover the well-known
recurrence dn = ndn−1 + (−1)n, n > 2. On the other hand, the recurrence (69) below
is the symmetric function analogue of the recurrence

d(n, j) = n(d(n− 1, j) + d(n− 2, j − 1)),

while (68) is the analogue of

c(n, j) = c(n− 1, j) + nc(n− 1, j − 1).

From Theorem 4.7 we can also deduce interesting recurrences for the restrictions of
the symmetric and exterior powers of F from Sn to Sn−1, for an arbitrary formal sum
F of homogeneous symmetric functions fn having the following key property: each
fn is the Frobenius characteristic of an Sn-representation (possibly virtual) which
restricts to the regular representation of Sn−1. See also [18, Proposition 3.5].

Theorem 4.10. Let F =
∑
n>1 fn. Assume fn is a symmetric function of homoge-

neous degree n with the following property: ∂
∂p1

fn = pn−1
1 , n > 1.

(1) Let Gjn equal either hj [F ]|degn or ej [F ]|degn. Then for n > 1 and 0 6 j 6 n
we have

(68) ∂

∂p1
Gn−jn = Gn−1−j

n−1 + p1
∂

∂p1
G
n−1−(j−1)
n−1 .
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(2) Let Ĝjn equal either hv[F>2]|degn or ej [F>2]|degn. Then for n > 2 and 1 6
j 6 n− 1, we have

(69) ∂

∂p1
Ĝn−jn = p1

(
∂

∂p1
Ĝ

(n−1)−(j−1)
n−1 + Ĝ

n−2−(j−1)
n−2

)
.

Proof. The hypothesis about the fn implies that derivative of F with respect to p1 is∑
n>1 p

n−1
1 = (1− p1)−1. Also note that

∂

∂p1
H(v) = vH(v), ∂

∂p1
E(v) = vE(v).

(1) The chain rule gives
∂

∂p1
(H(v)[F ]) = v ·H(v)[F ] ·(1−p1)−1 =⇒ v ·H(v)[F ] = (1−p1) ∂

∂p1
(H(v)[F ]);(70)

v · E(v)[F ] = (1− p1) ∂

∂p1
(E(v)[F ]) .(71)

If Gjn = hj [F ]|degn, then H(v)[F ] =
∑
j>0

∑
n>0 G

j
n. The result follows by extracting

the symmetric function of degree n−1 on each side of (70), and the coefficient of vn−j .
The recurrence for ej [F ] is identical in view of equation (70); now use the expansion
E(v)[F ] =

∑
j>0

∑
n>0 G

j
n.

(2) Now we use the identity (54) of Theorem 4.7. We have
H(v)[F>2] = E±(v) ·H(v)[F ].

Using the fact that
∂

∂p1
E±(v) = −v · E±(v),

and the chain rule, we obtain
∂

∂p1
(H(v)[F>2]) = −v · E±(v) ·H(v)[F>2] + E± · ∂

∂p1
(H(v)[F>2])

= −v ·H(v)[F>2] + E± · v ·H(v)[F ] · (1− p1)−1,

where we have used the computation in (1). It follows that

(1− p1) ∂

∂p1
(H(v)[F>2]) = v · p1(H(v)[F>2]), and hence

∂

∂p1
(H(v)[F>2]) = p1

(
∂

∂p1
(H(v)[F>2]) + v · ∂

∂p1
(H(v)[F>2])

)
.

Let H(v)[F>2] =
∑
i>0
∑
n>1 v

jĜjn. The recurrence follows by extracting the sym-
metric function of degree n− 1 on each side, and the coefficient of vn−j . Similarly, in
view of the identity (56) of Theorem 4.7 and the fact that

∂

∂p1
H±(v) = −v ·H±(v),

we obtain
∂

∂p1
(E(v)[F>2]) = p1

(
∂

∂p1
(E(v)[F>2]) + v · ∂

∂p1
(E(v)[F>2])

)
.

Hence it is clear that the same recurrence holds for ej [F>2]. �

In particular, Theorem 4.10 applies to the family of representations whose char-
acteristic fn is defined by equation (5), provided ψ(1) = 1. The latter condition
guarantees that each fn restricts to the regular representation of Sn−1.
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In the recent paper [7], Hersh and Reiner derive several identities and recurrences
for what are essentially the symmetric and exterior powers of Lie . The connection
between the work of [7] and the specialisation of our results to F = Lie, is the well-
known fact (see [11], [19]) that the exterior power of Lie, when tensored with the sign
representation, coincides with the Whitney homology of the lattice of set partitions.
Here we record the conclusions for the special setting of F = Lie. In the notation
of [7], we have ch L̂ie

i

n = hn−i[Lie>2]|degn, while chω(Ŵ i
n) = en−i[Lie>2]|degn. Also

let L̂ien =
∑n−1
i>0 L̂ie

i

n, and Ŵn =
∑n−1
i>0 Ŵ

i
n.

Corollary 4.11 (The case F = Lie).
(1) ([7, Theorem 1.7])

∑
i>0(−1)i chω(Ŵ i

n) = (−1)n−1s(2,1n−2).

(2) ([7, Theorem 1.2])

ch L̂ien = (H − 1)[Lie>2]|degn = p1 · ch L̂ien−1 + (−1)nen,

ch Ŵn = (E − 1)[Lie>2]|degn = p1 · ch Ŵn−1 + (−1)nτn,

where τn = s(n−2,12) − s(n−2,2), n > 4, and τ3 = s(n−2,12).
(3) ([7, Theorem 1.4])

∂

∂p1
ch L̂ie

j

n = p1

(
∂

∂p1
ch L̂ie

(j−1)
n−1 + ch L̂ie

(j−1)
n−2

)
,

∂

∂p1
ch Ŵ j

n = p1

(
∂

∂p1
ch Ŵ (j−1)

n−1 + ch Ŵ (j−1)
n−2

)
.

Proof. Clearly (1) is just equation (62) tensored with the sign.
For (2), apply Theorem 4.9 to F = Lie =

∑
n>1 Lien . It is clear that in this case

we have gn = 0, n > 2, and k2 = −p2, kn = 0, n > 3. Hence Theorem 4.9 gives the
following:

(H − 1)[Lie>2]|degn = p1 · (H − 1)[Lie>2]|degn−1 + (−1)nen
and

(E − 1)[Lie>2]|degn = p1 · (E − 1)[Lie>2]|degn−1 + (−1)nτn,
where τn = hn − hn−2p2 = s(n−2,12) − s(n−2,2), n > 4, and τ3 = s(n−2,12).

Part (3) is immediate from Theorem 4.10, which applies since it is well known that
Lien restricts to the regular representation of Sn−1.When F = Lien, the functions Gjn
become ch L̂ie

n−j
n when applied to the symmetric powers H, and ω(ch Ŵn−j

n ) when
applied to the exterior powers E. �

Hersh and Reiner use the second recurrence in (2) above to establish a remarkable
formula for the decomposition into irreducibles for (E − 1)[Lie>2]|degn, in terms of
certain standard Young tableaux that they call Whitney-generating tableaux [7, Theo-
rem 1.3]. The decomposition into irreducibles of (H−1)[Lie>2]|degn is similarly given
as a sum of desarrangement tableaux [7, Section 7]. This was established from the first
recurrence in (2) above, for the sign-tensored version, in [13, Proposition 2.3].
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