
ALGEBRAIC
 COMBINATORICS

Eric Ramos, David Speyer & Graham White
FI–sets with relations
Volume 3, issue 5 (2020), p. 1079-1098.

<http://alco.centre-mersenne.org/item/ALCO_2020__3_5_1079_0>

© The journal and the authors, 2020.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Access to articles published by the journal Algebraic Combinatorics on
the website http://alco.centre-mersenne.org/ implies agreement with the
Terms of Use (http://alco.centre-mersenne.org/legal/).

Algebraic Combinatorics is member of the
Centre Mersenne for Open Scientific Publishing

www.centre-mersenne.org

http://alco.centre-mersenne.org/item/ALCO_2020__3_5_1079_0
http://creativecommons.org/licenses/by/4.0/
http://alco.centre-mersenne.org/
http://alco.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
www.centre-mersenne.org


Algebraic Combinatorics
Volume 3, issue 5 (2020), p. 1079–1098
https://doi.org/10.5802/alco.128

FI–sets with relations

Eric Ramos, David Speyer & Graham White

Abstract Let FI denote the category whose objects are the sets [n] = {1, . . . , n}, and whose
morphisms are injections. We study functors from the category FI into the category of finite
sets. We write Sn for the symmetric group on [n]. Our first main result is that, if the functor
[n] 7→ Xn is “finitely generated” there is a finite sequence of integers mi and a finite sequence
of subgroups Hi of Smi such that, for n sufficiently large, Xn

∼=
⊔

i
Sn/(Hi×Sn−mi ) as a set

with Sn action. Our second main result is that, if [n] 7→ Xn and [n] 7→ Yn are two such finitely
generated functors and Rn ⊂ Xn × Yn is an FI–invariant family of relations, then the (0, 1)
matrices encoding the relation Rn, when written in an appropriate basis, vary polynomially
with n. In particular, if Rn is an FI–invariant family of relations from Xn to itself, then the
eigenvalues of this matrix are algebraic functions of n. As an application of this theorem we
provide a proof of a result about eigenvalues of adjacency matrices claimed by the first and
last author. This result recovers, for instance, that the adjacency matrices of the Kneser graphs
have eigenvalues which are algebraic functions of n, while also expanding this result to a larger
family of graphs.

1. Introduction
We begin with a specific example of the sort of phenomenon we seek to explain. The
Kneser graph KG(n, r) has as vertices the r–element subsets of n and has an edge
between two vertices if and only if the corresponding subsets are disjoint. Its adjacency
matrix is computed in [8, Section 9.4] to have eigenvalues

λi := (−1)i
(
n− r − i
r − i

)
for 0 6 i 6 r.

Moreover, each eigenvalue λi appears with multiplicity(
n

i

)
−
(

n

i− 1

)
.

Therefore for each fixed r, we observe the following phenomena
• The total number of distinct eigenvalues is eventually independent of n.
Specifically, there are eventually exactly r + 1 such eigenvalues.
• The eigenvalues each agree with a function which is algebraic over the field
Q(n). Specifically, these are the functions (−1)i

(
n−r−i
r−i

)
for 0 6 i 6 r.
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• The multiplicity of each eigenvalue agrees with a polynomial in n. Specifically,
these are the polynomials

(
n
i

)
−
(
n
i−1
)
.

Similar phenomena can be observed in the spectra of the adjacency matrices of John-
son graphs [1], as well as a variety of other examples (see Section 3.3). The main
goal of this paper is to provide a uniform framework under which one can deduce the
existence of these behaviors. We achieve this using the techniques of representation
stability theory and related fields, as appearing in the works of Church, Ellenberg,
Farb, Nagpal, Putman, Sam, Snowden, and many others [2, 3, 4, 10, 15].

Let FI denote the category whose objects are the sets [n] = {1, . . . , n}, including
the empty set [0] = ∅, and whose morphisms are injections. For any commutative
ring k, an FI–module is a functor from FI to the category of k–modules. In this paper,
k will be a field of characteristic zero, which is henceforth fixed. FI–modules were
introduced by Church, Ellenberg, and Farb as a single unifying framework for a large
collection of seemingly unrelated phenomena from topology, representation theory,
and a variety of other subjects [2].

There has been a recent push in the literature to apply the theory of FI–modules
to more traditionally combinatorial fields. In [7], Gadish introduces a theory of FI–
posets, functors from FI to the category of posets. He then applied this framework to
prove non–trivial facts about linear subspace arrangements. In [14], the first and third
authors consider FI–graphs, functors from FI to the category of graphs. It is proven
in that work that such families of graphs display a variety of asymptotic regularities
in their enumerative, topological, and algebraic properties. This was expanded in the
follow-up works [12, 13]

What is notable about the works mentioned in the previous paragraph is that they
follow a common theme: both FI–posets and FI–graphs can be thought of as a pair
of an FI–set with a relation. An FI–set is a functor X• from FI to the category of
finite sets. For an FI–set X• we write Xn to denote its evaluation at n, while we use
transition map to mean one of the maps Xm → Xn induced by the FI–structure. The
product of two FI–sets X• and Y• is the FI–set (X × Y )• with (X × Y )n = Xn × Yn
and the obvious transition maps. A relation between FI–sets X• and Y• is any FI–set
R• with a natural inclusion into (X × Y )•. In the case of graphs this relation is the
edge relation, while in the case of posets it is the partial ordering. The purpose of this
work is to use the language of FI–sets and relations to unify these topics, while also
expanding our understanding of both.

We say that an FI–set X• is finitely generated in degree 6 d if, for all n > d, the
elements ofXn+1 are all in the image of some transition map fromXd. We will say that
an FI–set is finitely generated if it is finitely generated in some degree. For instance,
the assignment Xn := [n] is finitely generated, while the assignment Xn := 2[n] is not.

Our first goal will be to prove the following structure theorem for FI–sets. For the
remainder of this paper we write Sn for the symmetric group on n letters.

Theorem 1.1. Let X• denote an FI–set finitely generated in degree 6 d. Then there
exists a finite collection of integers mi 6 d, and subgroups Hi ⊆ Smi , such that, for
n sufficiently large, we have an isomorphism

Xn
∼=
⊔
i

Sn/(Hi ×Sn−mi)

as sets with an action of Sn.

Remark 1.2. The isomorphisms of Theorem 1.1 are natural, in the following sense. If
n� 0 is big enough so that the result of Theorem 1.1 holds for the FI–set X•, and f :
[n]→ [m] is an injection of sets, then the transition map induced by f on X• is given
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as follows. If π is an element of Sn, then the image of the coset π ·(Hi×Sn−mi) under
the transition map induced by f is given by the coset π′ · (Hi ×Sm−mi) defined by

π′(x) :=
{
f ◦ π ◦ f−1(x) if x is in the image of f
x otherwise.

This fact will follow from the proof of Theorem 1.1, but will not be used in the paper.

Example 1.3. Let Xn be the set of ordered m–tuples of distinct elements of [n], with
transition maps defined coordinate–wise. Then Xn

∼= Sn/({e}×Sn−m) as a set with
Sn action, so there is one term in the disjoint union, with mi = m and Hi = {e}.

Example 1.4. Let Xn be the set of unordered m–tuples of distinct elements of [n],
with the obvious induced maps. Then Xn

∼= Sn/(Sm × Sn−m) as a set with Sn

action, so there is one term in the disjoint union, with mi = m and Hi = Sm.

One can interpolate between Examples 1.3 and 1.4 by choosing intermediate sub-
groups of Sm, and can also take disjoint unions of this construction for different
choices of m. Theorem 1.1 states that, once n is sufficiently large, all finitely gener-
ated FI–sets are built from these operations.

As previously stated, FI–sets become richer and more interesting when paired with
a relation. Having proven the aformentioned structure theorem for finitely generated
FI–sets, we turn our attention to properties of relations associated to these FI–sets.

The linearization kX• is the FI–module where (kX)n is the free k–module on Xn

and the transition maps are defined in the obvious way. For x ∈ Xn, we’ll write ex
for the corresponding basis element of kXn. Let R• be a relation between X• and Y•,
meaning an FI–subset of X• × Y•. Then R induces a sequence of maps

rn : kXn → kYn

by
rn(ex) =

∑
(x,y)∈Rn

ey.

The maps rn commute with theSn action, but they do not form a map of FI–modules.
Our Main Theorem 1.5, roughly stated, says that for any finitely generated FI–

sets X• and Y• and any relation R• between them, the corresponding linear maps
rn : kXn → kYn are given by a matrix whose entries depend polynomially on n.
e.g. Let Z• be the FI–set where Zn = [n], with the obvious transition maps. We can
linearize this to give an FI–module kZ• where (kZ•)n = kn. We write {ei}i∈[n] for
the usual basis of (kZ•)n. As an Sn–module, kn = Sp(n)⊕ Sp(n− 1, 1), where Sp(λ)
is the Specht module. The regularity of this isotypic decomposition as n grows is an
example of what is known as representation stability.

We have a relation, R•, on Z•, defined by Rn := {(i, j) ∈ [n]2 | i 6= j}. We can
linearize these relations to give maps ei 7→

∑
j∈[n], j 6=i ej from kZn → kZn. These

maps do not give a map of FI–modules so the existing theory of FI–modules does
not let us study them. However, for each n, this map is a map of symmetric group
representations so, by Schur’s lemma, it acts by scalars on Sp(n) and Sp(n − 1, 1).
Explicitly, these scalars are n− 1 on Sp(n) and −1 on Sp(n− 1, 1). We want to prove
that this sort of simple algebraic dependence on n is what happens in general.

Our first goal, therefore, is to explain in what sense a family of maps kXn → kXn,
between different vector spaces of different sizes, can be given by a fixed matrix. We
describe the relevant definitions briskly here; see Section 2.2 for the full details.

Given a positive integer n, a partition of n is a tuple of positive integers λ =
(λ1, . . . , λr) such that λj > λj+1 and

∑
j λj = n. The irreducible representations of
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Sn are in bijection with partitions of n in a standard manner, and we write Sp(λ)
for the irreducible representation (over k) corresponding to the partition λ. We recall
that HomSn(Sp(λ),Sp(λ)) ∼= k. If W is a representation of Sn, then we write Wλ :=
HomSn(Sp(λ),W ). SoW 7→Wλ is a functor fromSn–representations to vector spaces
and we have a canonical isomorphism W ∼=

⊕
|λ|=nWλ⊗Sp(λ). The summand Wλ⊗

Sp(λ) is called the λ–isotypic component of W . We will write αλ for the injection
Wλ ⊗ Sp(λ)→W and βλ for the surjection W →Wλ ⊗ Sp(λ).

Our next task is to define an analogue of the λ–isotypic component for an FI–
module M•. If λ = (λ1, . . . , λr) is any partition of m, and n > m + λ1, then we set
λ[n] = (n −m,λ1, . . . , λr). Let m + λ1 6 p 6 q. The inclusion of [p] ↪→ [q] induces
an Sp–equivariant homomorphism from Mp → Mq, and thus an Sq–equivariant ho-
momorphism IndSq

Sp
Mp →Mq. We can take the λ[q] isotypic component of this map,

giving a map
(

IndSq
Sp

Mp

)
λ[q]
→ (Mq)λ[q], and there is a natural inclusion (Mp)λ[p] →(

IndSq
Sp

Mp

)
λ[q]

. So for sufficiently large p 6 q, we obtain maps (Mp)λ[p] → (Mq)λ[q].

We show (Theorem 2.8) that this map is an isomorphism for p large enough. So we
can define (M•)λ to be the inductive limit limp→∞(Mp)λ[p]. There are many details
to be checked here; we do so in Section 2.2.

Let X• and Y• denote finitely generated FI–sets and k a characteristic zero field.
Let R• denote a relation between them with associated maps rn : kXn → kYn. Since
rn is a map of Sn–modules, by Schur’s lemma, it induces maps rn,λ : (kXn)λ[n] →
(kYn)λ[n]. For n sufficiently large, we have isomorphisms (kXn)λ[n] ∼= (kX•)λ and
(kYn)λ[n] ∼= (kY•)λ, so we obtain a family of maps rn,λ : (kX•)λ −→ (kY•)λ. In other
words, the rn,λ are a family of linear transformations, varying in n, between two fixed
vector spaces, unvarying in n.

Theorem 1.5. In any bases for the vector spaces (kX•)λ and (kY•)λ, the entries of
rn,λ depend polynomially on n.

This theorem has a number of more concrete consequences in the case where
X• = Y•.

Corollary 1.6. Let X• denote a finitely generated FI–set, and let R• denote a self-
relation with associated maps rn : kXn → kXn. Then for n� 0:

(1) the number N of distinct eigenvalues of rn is unchanging in n;
(2) there exists a finite list of functions f1, . . . , fN , each algebraic over the field

Q(n), such that the complete list of distinct eigenvalues of rn is given by f1(n),
. . . , fN (n);

(3) for each i, the function

n 7→ the algebraic multiplicity of fi(n) as an eigenvalue of rn

agrees with a polynomial in n.

Remark 1.7. In [14, Theorem H] a version of the above theorem is claimed in the case
of FI–graphs and the edge relation. In that work it is said that the theorem would
be proven in this paper. In the final section of this work we will explain why [14,
Theorem H] follows from Corollary 1.6.

A natural followup question related to the conclusions of Corollary 1.6 is how one
can leverage these statements about eigenvalues to say something about the statistics
of random walks being performed on FI–sets which have been paired with a transition
relation. This is the topic of [13].
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2. FI–modules and representation stability
2.1. FI–modules. The present work is largely concerned with structures we refer to
as FI–sets. One of the primary tools we will use to study these objects, as well as one
of the main motivations for considering FI–sets in the first place, are FI–modules.

FI–modules were introduced by Church, Ellenberg, and Farb in their seminal
work [2]. It was later discovered that this concept arose in a variety of different,
sometimes older, contexts such as the twisted commutative algebras of Sam and Snow-
den [15] and the study of polynomial functors (see [5, 6] for modern treatments). In
this work we will follow the exposition of Church, Ellenberg, and Farb.
Definition 2.1. Let FI denote the category whose objects are the sets [n] := {1, . . . , n}
and whose maps are injections. An FI–module over k is a (covariant) functor V• from
FI to the category of k–modules. In this paper, k is always a field of characteristic
zero. We will often write Vn := V•([n]) for the degree n piece of V•, and f* := V•(f).

Since HomFI([n], [n]) is the symmetric group Sn, each vector space Vn is an Sn–
representation.

Our next objective will be to specialize to those objects which are finitely generated
in the appropriate sense. One should note that the category of FI–modules and natural
transformations is abelian, with abelian operations defined point–wise.
Definition 2.2.A submodule of an FI–module V• is an FI–module W•, such that
Wn is a submodule of Vn for all n, and for all injections f : [n] ↪→ [m] one has
W•(f) = V•(f)|Wn

. An FI–module V• is said to be finitely generated in degree 6 d

if there is a finite subset of the disjoint union
⊔d
n=0 Vn which is not contained in any

proper submodule of V•.
We will now define the analogue of free modules for the FI–setting.

Definition 2.3. Let W be a (left) k[Sm]–module. Then the free FI–module on W , or
the induced FI–module on W is the FI–module M(W )• defined by the assignments

M(W )n := k[HomFI([m], [n])]⊗Sm W,

where k[HomFI([m], [n])] is the free k–module with basis indexed by HomFI([m], [n]),
viewed as a right k[Sm]–module in the obvious way. For any injection of sets f , the
induced map M(W )(f) is defined on pure tensors by post composition on the left
tensor factor.

We make the abbreviations M(m)• = M(kSm)• (here kSm is the regular repre-
sentation of Sm) and M(λ)• = M(Sp(λ))•.
Remark 2.4. It is an easily verifiable fact that there are isomorphisms

HomFI−mod(M(W )•, V•) ∼= HomSm(W,Vm).
In particular, a map from M(i)• into V• is equivalent to choosing an element of Vi,
and

HomFI−mod(M(λ)•, V•) ∼= (V|λ|)λ.
This uniquely defines M(W )• via Yoneda’s lemma.

Put another way, the functorW 7→M(W ) fromSm–representations to FI–modules
is a left adjoint to the forgetful functor V• 7→ Vm, hence the terminology of free.
Remark 2.5. Because k is a field of characteristic zero, the FI–module M(W )• will
always be projective. If we were to consider a general commutative ring k, thenM(W )•
is projective if and only if W is a projective k[Sn]–module (See [11], for instance).
Group algebras of finite groups over characteristic zero fields are semi–simple, so this
is automatic in our setting.
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An FI–module V• is finitely generated if there exists a collection of non–integers,
(di)i>0, all but finitely many equaling zero, and a surjection⊕

i>0
M(i)di• → V• → 0

The following was first proven by Snowden in [16] when k was a field of character-
istic 0, and later expanded to more general k by Church, Ellenberg, Farb and Nagpal
in [2, 3].

Theorem 2.6 (Snowden, [16]; Church, Ellenberg, Farb, and Nagpal [2, 3]). Let V• be
a finitely generated FI–module over a Noetherian ring k. Then every submodule of V•
is also finitely generated.

The above Noetherian property is arguably the most powerful tool that one has
access to when studying finitely generated FI–modules. We will see that it grants us
surprisingly brief, although admittedly non–constructive, proofs of certain combina-
torial facts. This philosophy can be seen in the context of FI–graphs and FI–posets
in [14] and [7], respectively.

We take the opportunity to quote:

Proposition 2.7 (Church, Ellenberg, and Farb, [2]). If V• is finitely generated in
degree 6 d and W• is finitely generated in degree 6 e, then

(1) V•⊕W• is generated in degree 6 max{d, e}, where the directed sum is defined
point–wise;

(2) V• ⊗W• is generated in degree 6 d + e, where the tensor product is defined
point–wise.

2.2. Representation stability. We recall the notation from the introduction:
Sp(λ) is the Specht module. For an Sn–representation W and a partition λ of n,
we put Wλ = HomSn(Sp(λ),W ). For a partition λ = (λ1, . . . , λr) and an integer n
with n− |λ| > λ1, we put λ[n] = (n− |λ|, λ1, λ2, . . . , λr). When n− |λ| < λ1, we put
Sp(λ[n]) = 0.

We also recall that M(λ) is shorthand for M(Sp(λ)).
Let V• be a finitely generated FI–module. Church, Ellenberg, and Farb proved that

V• exhibits Representation Stability [2, Theorem 1.13]. This result has three parts,
the one of which that is usually cited is Stability of Multiplicities, which states the
following: There is a positive integer N and a sequence of nonnegative integers mλ

indexed by partitions, such that all but finitely many mλ are 0, and
dim(Vn)λ[n] = mλ for n > N.

We will need a more precise statement which, as we will explain, is also part of Church,
Ellenberg, and Farb’s result.

Let λ be a partition, and let n be large enough that λ[n] is defined. So by Re-
mark 2.4, we have an isomorphism

HomFI−mod(M(λ[n])•, V•) ∼= HomSm(Sp(λ[n]), Vn) ∼= (Vn)λ[n].

By the Pieri rule, there is a unique copy of Sp(λ[n + 1]) inside(1) M(λ[n])n+1 =
Indn+1

n Sp(λ[n]) so by Remark 2.4 there is a unique up to scalar multiple nonzero
map (f•) : M(λ[n+ 1])• →M(λ[n])•. This induces a map

HomFI−mod(M(λ[n])•, V•)→ HomFI−mod(M(λ[n+ 1])•, V•).

(1)We will often abbreviate induction from Sm to Sn by Indn
m, and similarly write Resn

m for
restriction.
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Church, Ellenberg, and Farb’s result states that, for n sufficiently large, the vector
spaces on the two sides of this map are of the same dimension. We require

Theorem 2.8. For n sufficiently large, the map HomFI−mod(M(λ[n])•, V•) →
HomFI−mod(M(λ[n+ 1])•, V•) is an isomorphism.

Remark 2.9. This result, and our method of proof, is very similar to ideas from
Sam and Snowden [15], particularly Section 2.2. We base our argument on Church,
Ellenberg, and Farb [2] rather than Sam and Snowden in order to follow our general
pattern of using the former’s terminology, and because their paper is slightly earlier.

Proof. Let λ and µ be partitions with |λ| > |µ| and let m 6 n with m and n large
enough that λ[m] and µ[n] are defined. So (Vm)λ[m] ⊗ Sp(λ[m]) is the λ[m]–isotypic
component of Vm, and likewise for µ[n]. We claim that, for any transition map Vm →
Vn, the composition

(Vm)λ[m] ⊗ Sp(λ[m])
αλ[m]−→ Vm → Vn

βµ[n]−→ (Vn)µ[n] ⊗ Sp(µ[n])
is 0. To see this, note that this map must be Sm–equivariant, where we restrict the
right hand side to a suitable Sm ⊂ Sn. But, by the Pieri rule, Sp(λ[m]) does not
occur in (Sp(µ[n]))|Sm . The same argument also shows that, if |λ| = |µ| and λ 6= µ,
then the composite map (Vm)λ[m] ⊗ Sp(λ[m]) −→ (Vn)µ[n] ⊗ Sp(µ[n]) is 0.

Choose any total ordering of the set of partitions such that |λ| < |µ| implies λ < µ.
Define

V >λ
n =

⊕
µ>λ

(Vn)µ[n] ⊗ Sp(µ[n]) ⊆ Vn.

Then the above argument shows that the transition maps carry V >λ
m to V >λ

n for any
m 6 n. So the V >λ

m form a submodule of V•, which we denote V >λ
• .

By Remark 2.4, we have isomorphisms
HomFI−mod(M(λ[n])•, V•) ∼= (Vn)λ[n] ∼= HomFI−mod(M(λ[n])•, V >λ

• ).

Also, since V >λ
• is a submodule of the finitely generated FI–module V•, it is finitely

generated itself. So we may, and do, replace V• by V >λ
• . As a result, we may and do

assume that (Vn)µ[n] = 0 for µ < λ.
Now, suppose that HomFI−mod(M(λ[n])•, V•) → HomFI−mod(M(λ[n + 1])•, V•)

is not an isomorphism. Since both of these are vector spaces of dimension mλ, this
means that the map is not surjective. So there is some U ( (Vn+1)λ[n+1] in which
the image of HomFI−mod(M(λ[n])•, V•) lies. Tracing through our isomorphisms, this
means that all of our transition maps (Vn)λ[n] → Vn+1, followed by projection onto
the λ[n+ 1] isotypic component, land in U ⊗ Sp(λ[n+ 1]). Also, for every µ 6= λ, the
transition maps (Vn)µ[n] → Vn+1 project to 0 in the λ[n+1] isotypic component by our
observations in the first paragraph of the proof. But [2, Proposition 3.3.3] states that
the images of the transition maps from Vn span Vn+1. This contradiction establishes
that HomFI−mod(M(λ[n])•, V•) → HomFI−mod(M(λ[n + 1])•, V•) is an isomorphism
after all. �

We define (V•)λ to be the inductive limit limn→∞HomFI−mod(M(λ[n])•, V•). So,
by Theorem 2.8, (V•)λ ∼= (Vn)λ[n] for all sufficiently large n.

Fix a partition λ. Let V• and W• be two FI modules and let rn : Vn → Wn be
a sequence of maps of Sn–representations. For n large enough that λ[n] is defined,
rn induces a map of vector spaces (Vn)λ[n] → (Wn)λ[n]. For n sufficiently large, we
have canonical isomorphisms (Vn)λ[n] ∼= (V•)λ and (Wn)λ[n] ∼= (W•)λ, we obtain a
composite map (V•)λ → (W•)λ. This is the map we denote rn,λ, which appears in
Theorem 1.5.
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The inclusion M(λ[n + 1]) → M(λ[n]) is only unique up to multiplication by
a scalar. We fix choices of these scalars once and for all for the purpose of defining
(V•)λ. If we changed to other scalars, there would be a canonical isomorphism between
the old and the new (V•)λ, and the maps rn,λ above would be unchanged.

3. FI–sets
3.1. Elementary definitions and properties. In this section we define the fun-
damental object of study for this paper: FI–sets.

Definition 3.1.An FI–set is a (covariant) functor from FI to the category of sets.
We will usually denote FI–sets by X• or Y•, where evaluation at [n] is written Xn.
If X• is an FI–set, and f : [n] ↪→ [m] is an injection, we will generally write f∗
to denote the induced map, or X(f) if X is not clear from context. For any non–
negative integers n < m, we will write ιnm : [n] ↪→ [m] for the standard inclusion.
The category of FI–sets is that whose objects are FI–sets, and whose morphisms are
natural transformations.

We say that Y• is a subset of X• if Yn ⊆ Xn for all n, and for any f : [n] ↪→ [m]
one has X(f)|Yn = Y (f). We say that X• is torsion–free if X(f) is injective for all
choices of f .

To the knowledge of the authors, this is the first paper which has formally con-
sidered FI–sets. That being said, related structures have been studied in the past.
For instance, the first and third authors considered FI–graphs in [14], while Gadish
studied FI–posets in [7].

Just as with FI–modules, we will begin by defining finite generation for FI–sets.

Definition 3.2.We say that an FI–set X• is finitely generated in degree > d if there
is a finite subset of

⊔d
i=0 Xi which is not contained in any proper FI–subset of X•.

We say that X• is finitely generated if it is finitely generated in some degree.

Note, if X• is finitely generated, then all the Xn are finite.

Definition 3.3. For any FI–set X•, the linearization kX• is the FI–module where
(kX•)n is the free k–vector space on the set Xn, with the obvious maps.

Linearization is a functor from FI–sets to FI–modules. We see that X• is finitely
generated if and only if kX• is (and in the same degree). This yields some immediate
consequences:

Proposition 3.4. Let X• be a finitely generated FI–set. For n sufficiently large, and
f : [n] ↪→ [n+ 1] any injection, the map f∗ : Xn → Xn+1 is injective.

Proof. The map f∗ : Xn → Xn+1 is injective if and only if the linearization f∗ :
kXn → kXn+1 is, and the latter is true for n � 0 by the representation stability
theorem of [2, Theorem 1.13]. �

Proposition 3.5. Let X• be a finitely generated FI–set. For n sufficiently large, the
number of orbits of Sn on Xn is a constant independent of n.

Proof. The number of orbits of Sn on Xn is the multiplicity of Sp(n) in kXn. Since
Sp(n) = Sp(∅[n]), this is eventually constant by [2, Theorem 1.13]. �

For any fixed n > 0, every inclusion f : [n] → [n + 1] induces a map on the orbit
sets Xn/Sn → Xn+1/Sn+1, and all of these maps are the same.

Proposition 3.6. Let X• be a finitely generated FI–set. For n sufficiently large, the
map Xn/Sn → Xn+1/Sn+1 described above is bijective.
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Proof. By Proposition 3.5, for n large enough, |Xn/Sn| = |Xn+1/Sn+1|. So, it is
enough to show that the map is surjective for n sufficiently large. Suppose that u ∈
Xn+1 is such that the orbit Sn+1u is not in the image of this map. Finite generation
implies that ∪σ∈Sn+1σ ·Xn = Xn+1 for n sufficiently large, a clear contradiction. �

Definition 3.7. The previous proposition implies that we may define the inductive
limit with respect to the maps defined above,

X•/S := lim
n→∞

Xn/Sn.

Elements of X•/S will be referred to as the stable orbits, or just the orbits of X•.

3.2. Induced FI–sets. In this section we discuss the properties of what we call
induced FI–sets.

Definition 3.8. Let m be a fixed non-negative integer, and let X be an Sm–set. For
any n > m, we define M(X)n to be the set of ordered pairs (f, x) where x ∈ X and
f ∈ HomFI([m], [n]) is strictly increasing. For n < m, we set M(X)n = ∅. Given an
injection g : [n] → [p], we define g∗ : M(X)n → M(X)p as follows: We can uniquely
factor g ◦ f as h ◦ σ where σ ∈ Sm and h is strictly increasing. We put

g∗(f, x) = (h, σx).

FI–sets of the form M(X)• will be called the induced FI–sets.

Remark 3.9. There is an alternative definition of M(X), for an Sm–set X, which
we take the time to point out now as it will be used in the proof of Theorem 1.5.
Any strictly increasing function f : [m] ↪→ [n] may be uniquely identified by its
image in [n]. Therefore we may equivalently think of M(X)m as consisting of ordered
pairs (K,x) where K ⊆ [n] is of size m, and x ∈ X. With respect to this definition,
the induced map of an injection f : [n] ↪→ [n′] will map the pair (K,x) to the pair
(f(K), σf,K · x), where σf,K : [m] → K is the bijection sending i to the preimage
under f of the i–th smallest element of f(K). Note that we have identified σf,K with
an element of Sm by using the bijection between [m] and K sending i to the i–th
smallest element of K.

We have taken the time to outline both of these descriptions of induced FI–sets, as
our original definition most closely replicates analogous constructions in the theory
of FI–modules, while the second definition will prove to be a bit more convenient for
computations later.

Example 3.10. Recall the FI–set Z• defined in Example 1. We claim that Z• is the
induced FI–set M({1}). Indeed, let f : [1] → [n] be an injection. Then we may
assign to a pair (f, 1) the image of f(1) ∈ [n]. This assignment defines the necessary
isomorphism.

The following lemma is clear from the definition of the induced FI–set, and of
induced representations.

Lemma 3.11. Let X be an Sm–set. Then

kM(X)• ∼= M(kX)•.

We observe that Theorem 1.1 is straight-forward for induced FI–sets.

Lemma 3.12. Let X be an Sm–set, and write

X =
⊔
i∈I

Sm/Hi
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for some indexing set I. Then for any n > 0,

M(X)n =
⊔
i∈I

Sn/(Hi ×Sn−m),

where implicitly Sn/(Hi ×Sn−m) is empty for n < m.

Proof. We must show that the stabilizers of M(X)n are of the form Hi × Sn−m.
Indeed, given an element (f, x), where x is stabilized by Hi, for any g ∈ Sn, we have
g∗(f, x) = (f, x) if and only if g ◦ f = f ◦ σ for σ ∈ Hi. This will occur if and only if
g|[m] = σ. So g stabilizes (f, x) if and only if g ∈ Hi ×Sn−m. �

One way to interpret Theorem 1.1 is that every finitely generated FI–set eventually
“looks like” an induced FI–set. More precisely, if X• is a finitely generated FI–set
which is generated in degree 6 d, then there exists a collection {Yi}di=0, with Yi a
Si–set, and an isomorphism of Sn–sets

Xn
∼= tiM(Yi)n,

for all n � 0. An analogous theorem has been known to be true about FI–modules
since at least the work of Nagpal [9].

3.3. Motivating examples. In this section, we take time to write down a collection
of motivating examples for the study of FI–sets. Our focus will be on constructing
illustrative examples of FI–graphs. An FI–graph is a functor from FI to the category of
graphs. In other words, an FI–graph is an FI–set of vertices, paired with a symmetric
relation which dictates how these vertices are connected through edges (see [14]).
Here, a symmetric relation of FI–sets is a relation of FI–sets R• for which Rn is a
symmetric relation for each n.

Our study of FI–graphs begins with Kneser graphs.

Example 3.13. For any fixed n, r > 0, the Kneser graph KGn,r has vertices indexed
by the r–element subsets of [n], with edges between two vertices if those subsets are
disjoint.

The FI–graph KG•,r has Gn = KGn,r. For each injection f from [m] to [n],
the corresponding transition map takes the vertex {a1, . . . , ar} of Gm to the vertex
{f(a1), . . . , f(ar)} of Gn.

There are several minor ways in which this construction can be generalized, as in
the following examples.

The vertices could be indexed by ordered r–tuples rather than by (unordered)
subsets.

Example 3.14. For any fixed r > 0, define each graph Gn to have vertices indexed by
the r–tuples of elements of [n], with edges between two vertices if no element of [n]
appears in both r–tuples. For each injection f from [n] to [m], the corresponding tran-
sition map takes the vertex (a1, . . . , ar) of Gn to the vertex (f(a1), . . . , f(ar)) of Gm.

As with Example 3.13, these graphs and transition maps form an FI–graph.

Future examples with the same vertex sets as Example 3.13 or 3.14 will use the
same transition maps, without this being explicitly stated each time.

Rather than using ordered or unordered r–tuples, as in Examples 3.13 and 3.14, it
is possible to care about only some of the order data.

Example 3.15. For any fixed r > 0 and subgroup H of the symmetric group Sr,
define each graph Gn to have vertices indexed by orbits of r–tuples of elements of [n]
under the action of H. As in Examples 3.13 and 3.14, edges are placed between each
pair of vertices labelled by disjoint r–tuples.
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Other FI–graphs may be defined with the same vertex sets as in Exam-
ples 3.13, 3.14, or 3.15, but with different sets of edges. There may be multiple
orbits of edges, and they may only exist from a certain degree onwards.

Example 3.16. Let the vertex set of Gn be indexed by r–element subsets of [n], and
let a0 to ar be positive integers or infinity. In Gn, there is an edge between two vertices
which share exactly l elements if and only if n > al.

This example has r + 1 orbits of pairs of vertices, determined by the size i of the
intersection of the two labelling sets. For each of these orbits, there is an edge joining
those two vertices from degree ai onwards.

If the vertices are described by (ordered) r–tuples as in Example 3.14, then there
are many more orbits of pairs of vertices — rather than these orbits being defined
just by the size of the intersection, they also take into account which positions any
equal entries occupy. As in Example 3.16, though, all that is required is to choose
when edges appear in each vertex orbit. In this example, the orbits of pairs of vertices
are a little more complicated.

Example 3.17. Let the vertex set of Gn be indexed by r–tuples of elements of [n].
For each integer l between 0 and r and each injection s from any l–element subset of
[r] to [r], fix als to be either a nonnegative integer or infinity. Because we are working
with undirected graphs, we require that als−1 = als.

In Gn, there is an edge between two vertices whose labelling r–tuples have l entries
in common in positions given by s exactly if n > als.

The number of parameters ai or als required by Examples 3.16 and 3.17 is the
number of orbits of pairs of vertices, in the sense of the minimal number of pairs of
vertices required for any pair of vertices in any degree to be in their image under some
transition map. Effectively, for each orbit i of pairs of vertices, we need to decide in
which degree ai pairs of vertices in this orbit are first connected by an edge. Once
this happens, all other pairs of vertices in the same orbit in the graph Gai must also
be connected by an edge, and likewise pairs of vertices in the image of these pairs in
later graphs Gr, for r > ai.

Disjoint sums of FI–sets are FI–sets, so the preceding examples may be combined
to give larger ones. Such a construction will have additional orbits of pairs of vertices,
allowing additional edges as in the following example.

Example 3.18. Choose nonnegative integers r, l, a11, a12, and a22. Each graph Gn has
a vertex for each subset of [n] of size r and another vertex for each subset of size l.
Color these vertices red and blue, respectively. There is an edge between

• two red vertices if their subsets have intersection of size a11
• a red vertex and a blue vertex if their subsets have intersection of size a12
• two blue vertices if their subsets have intersection of size a22

Example 3.18 is the disjoint sum of two instances of Example 3.16, with additional
edges added between red vertices and blue vertices. A more general example could
be constructed with more parameters, both those used in Example 3.16, and new
parameters for each orbit of pairs of vertices with one red and one blue.

Because the conditions on an FI–graph only involve maps from Gn to Gm with
m > n, an FI–graph may be edited by removing all vertices and edges before a certain
point.

Example 3.19. Let G• be an FI–graph. Modify it by replacing each Gi by the empty
graph, for i = 0 to k−1. Transition maps from these graphs are trivial. The resulting
object is an FI–graph.
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It is not possible to remove all vertices and edges from any graph after a nonempty
graph Gn, because transition maps to the empty graph cannot be defined. The closest
we can come is to crush the entire graph to a point, perhaps with a self–edge.

Example 3.20. Let G• be an FI–graph. Modify it by replacing each Gi by a single
vertex, for i > k. If there are any edges in any prior graph, then this vertex must
have a self–edge. Transition maps to these single–vertex graphs map every vertex to
the only vertex. The resulting object is an FI–graph.

Our desire to in general allow non–injective behavior of the sort described in Ex-
ample 3.20 is why we allow graphs to have self–edges. If self–edges are forbidden,
then this example is only allowed when there are no edges earlier in the FI–graph
and in general vertices would only be able to map to the same vertex if they were not
connected by an edge.

3.4. Proof of Theorem 1.1. We now prove Theorem 1.1. Let X• be a finitely
generated FI–set. For eachO inX•/S, we get an FI–subsetX(O) ofX• corresponding
to the elements which map to O under the maps Xn −→ Xn/Sn −→ X•/S, and we
have X• =

⊔
OX(O). So it is enough to prove the theorem for each X(O). In other

words, we may, and do, reduce to the case that X•/S is a singleton.
By Proposition 3.6, for n large enough, the maps Xn/Sn → Xn+1/Sn+1 are

bijective. So, for n large enough, the action of Sn on Xn is transitive.
Choose some k large enough for the action of Sn on Xn to be transitive for all

n > k. Choose some particular element x ∈ Xk. Let Gk be the stabilizer of x in the
Sk action on Xk. For all n > k, let ιkn be the obvious inclusion of [k] into [n] and
let Gn be the stabilizer of ιkn(x) in Sn. We want to show that there is a nonnegative
integer m and a subgroup H ⊆ Sm such that, for n sufficiently large, the subgroup
Gn of Sn is conjugate to H ×Sn−m. Note that for σ ∈ H and τ ∈ Sn−m we write
σ × τ for the permutation of Sn which applies σ to [m] and τ to [n]− [m].

Lemma 3.21. For all n > ` > k, we have G` ×Sn−` ⊆ Gn.

Proof. For any σ ∈ S` and τ ∈ Sn−`, we have (σ × τ) ◦ ι`n = ι`n ◦ σ. Now, suppose
σ ∈ Gl so σ(ιk`(x)) = ιk`(x). Then

(σ × τ) (ιkn(x)) = (σ × τ) ◦ ι`n ◦ ιk`(x) = ι`n ◦ σ (ιk`(x)) = ι`n ◦ ιk`(x) = ιkn(x).
So σ × τ stabilizes ιkn(x), and thus lies in Gn. �

Define An ⊆ [n] to be the orbit of n under Gn.

Lemma 3.22. For n > k, we have An+1 ⊇ An ∪ {n+ 1}.

We remark that the statement is meaningful for k = n but need not be true in
that case.

Proof. By definition, n+ 1 ∈ An+1. So the task is to show that An ⊂ An+1.
By Lemma 3.21, Gn+1 contains Gn−2 ×S2 and, in particular, contains the trans-

position (n n + 1). So n + 1 and n are in the same Sn+1 orbit and n ∈ An+1. But
also by Lemma 3.21, Gn+1 contains Gn × {e}. So the Gn+1 orbit of n contains the
Gn orbit of n. In other words, An ⊂ An+1 as required. �

Let Bn = [n]\An. Then Lemma 3.22 shows that [k] ⊇ Bk+1 ⊇ Bk+2 ⊇ Bk+3 ⊇ · · · .
For n large enough, therefore, the subset Bn stabilizes at some subset B of [k]. Let
m = |B|.

For a subset P of [n], let SP be the subgroup of Sn which fixes all elements of
[n]\P . Here is our final, key, lemma:

Algebraic Combinatorics, Vol. 3 #5 (2020) 1090



FI–sets with relations

Lemma 3.23. Let n be large enough that 2(n− k) > (n−m) and |An| = n−m. Then
SAn ⊆ Gn.

Proof. Let a ∈ An. It is enough to show that Gn contains the transposition (a n).
Let [k + 1, n] = {k + 1, k + 2, . . . , n}. By Lemma 3.21, we have S[k+1,n] ⊆ Gn.

Since a ∈ An, there is some element ρ ∈ Gn mapping n to a. Then ρS[k+1,n]ρ
−1 =

Sρ([k+1,n]) is in Gn as well. We have [k + 1, n] ⊆ An, so ρ([k + 1, n]) ⊆ An and, since
2(n− k) > n−m = |An|, the sets [k+ 1, n] and ρ([k+ 1, n]) must overlap. So there is
some b ∈ [k + 1, n] ∩ ρ([k + 1, n]). Then the transpositions (b n) and (a b) are in Gn,
so the transposition (a b)(b n)(a b) = (a n) is as well. �

We are now ready to finish the proof. For n large enough that Lemma 3.23 holds,
we know that SAn ⊆ Gn ⊆ SAn × SB . This means that Gn must be of the form
SAn ×Hn for some subgroup Hn of SB . Moreover, by Lemma 3.21, we have Hn ⊆
Hn+1 ⊆ Hn+2 ⊆ · · · ⊆ SB

∼= Sm so, for n large enough, the subgroup Hn stabilizes.
We take H to be this stable limit. �

Remark 3.24. The results of this section actually constrain the behavior of the sta-
bilizer groups Gn quite severely, even when n is not yet ‘large enough’. As we move
from Xn to Xn+1, the groups Gn and Gn+1 are related in one of the following ways.

• It may be that SAn+1 ⊆ Gn+1, in which case the subgroup H(n+1) of SBn+1

contains the intersection H(n) ∩ SBn+1 , bearing in mind that Bn+1 may be
smaller than Bn.

• Alternatively, it is possible that Gn+1 does not contain SAn+1 . This can only
happen when the hypotheses of Lemma 3.23 are not yet satisfied. If this
happens, then SAn+1∪{n+2} is contained in Gn+2. Example 3.25 gives an
example of this behavior.

The second case of Remark 3.24 is why Lemma 3.23 requires that 2(n−k) > (n−m).
The following example illustrates what may happen when n is not yet this large.

Example 3.25. Let Xn be empty for n < 5. Take the groups Gn for n > 5 to be
• Generated by the symmetric groups S2 acting on [2], S3 acting on {3, 4, 5}

and Sn−5 acting on [n]\[5] for n ∈ {5, 6, 7}
• Generated by S2 acting on [2], S3 acting on {3, 4, 5}, S3 acting on {6, 7, 8},
and the permutation (3 6)(4 7)(5 8) for n = 8.

• Generated by S2 acting on [2] and Sn−2 acting on [n]\[2] for n > 8
Observe the failure of Lemma 3.23 for G8. The orbit A8 is {3, 4, 5, 6, 7, 8}, but not all
of SA8 is contained in G8. We do not give a complete construction of an FI–set with
these stabilizer groups — the vertices may be taken to be appropriate cosets of the
groups Gn.

The gist of Remark 3.24 and Example 3.25 is that to go from Gn to Gn+1, one may
remove elements from Bn or increase the subgroup H(n). When n is small, it is also
possible to have a wreath product factor appear in Gn+1. This factor is temporary,
in that it will always further increase to a large symmetric group in Gn+2.

4. Relations of FI–sets
4.1. Elementary definitions and properties. In this section we turn our atten-
tion to relations defined by FI–sets. We recall the definition from the introduction:

Definition 4.1. Let X• and Y• denote two FI–sets. Then a relation between X• and
Y• is an FI–subset of the product (X × Y )•.
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In Section 3.3 we examined a large collection of examples of FI–sets and relations.

Proposition 4.2. Let X•, Y• be finitely generated FI–sets, and let R• be a relation
between X• and Y•. Then R• is finitely generated.

Proof. It suffices to prove that the linearization kR• is finitely generated (for any
choice of k). It is easily seen that

k(X × Y )• ∼= kX• ⊗ kY•.
Proposition 2.7 implies that kX• ⊗ kY• is finitely generated, whence the same is true
of k(X × Y )•. The proposition now follows from Theorem 2.6. �

Example 4.3. Let G• denote an FI–graph (see [14]). That is, G• is a functor from
FI to the category of simple graphs and graph homomorphisms. Then the FI–set
encoding the edges of G•, E(G•), can be viewed as a symmetric relation between the
vertex FI–set and itself. In fact, understanding properties of E(G•) is one of the main
motivations of the present work. Theorem 1.5 can be seen as a vast generalization of
Theorem H of [14] (see Section 4.4). Section 3.3 focused on giving a large collection
of examples of specific FI–graphs.

Example 4.4. Let P• denote an FI–poset with partial orderings 6• (see [7]). Then
one has an FI–relation defined by

Rn = {(x, y) | x 6n y}.
FI–posets were used by Gadish in [7], where he showed that they have a variety
of applications in studying representation stability phenomena arising from linear
arrangements.

Given a relation R• between two FI–sets X• and Y• one may associated a collection
of maps rn : kXn → kYn. Namely, for any x ∈ Xn,

rn(ex) =
∑

(x,y)∈Rn

ey.

Critically, the collection {rn}n does not necessarily extend to a morphism of FI–
modules k[X•] → k[Y•]. This can be seen, for instance, by having Xn = Yn = [n],
and Rn = {(x, y) | x 6= y}. Despite this fact, we want to prove the maps rn display a
regularity as n varies.

Example 4.5.Once again let G• be an FI–graph, and assume that the vertex set
V (G)• is finitely generated. If we chose our relation to be the edge relation, then
the associated maps rn : QV (Gn) → QV (Gn) are given by multiplication by the
adjacency matrices of the associated graphs. These maps are studied in [14], where it
is pointed out that they usually do not form a morphism of FI–modules.

Example 4.6. If we assume that P• is an FI–poset, then the associated maps rn
are sometimes called the incidence matrix of the poset Pn. These are the matrices
with rows and columns indexed by elements of Pn which have a 1 in position (x, y)
whenever x 6 y, and a 0 otherwise. Note that unlike in the previous case, this matrix
is not symmetric (unless the poset is trivial). The inverse of rn is the Möbius function
of the poset rn.

4.2. A key diagram. In this section, we begin to detail the main construction used
in the proof of Theorem 1.5. This construction does not make use of the FI–set
structure in its early stages, and can be accomplished at the level of FI–modules.
In the next section, we will specialize to the FI–set case, and complete the proof of
Theorem 1.5.
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Let V• be a finitely generated FI–module and λ a partition. As explained in Sec-
tion 2.2, we define (V•)λ to be limn→∞HomFI−mod(M(λ[n])•, V•). As we showed
there, for n sufficiently large, the maps in this inductive limit are isomorphisms, so
(V•)λ is canonically isomorphic to (Vn)λ[n] for any sufficiently large n. Any n which
is sufficiently large for this purpose will be said to be in the stable range. We recall
that the definition of (V•)λ required fixing once and for all embeddings Sp(λ[n]) ↪→
Indnm Sp(λ[m]); we will use those same embeddings throughout this section.

By Frobenius reciprocity, the inclusion Sp(λ[n]) ↪→ Indnm Sp(λ[m]) corresponds to
an inclusion Sp(λ[m]) ↪→ Resnm Sp(λ[n]). We will denote this inclusion ηm,n.
Remark 4.7. Because it will be important later, we note that the η maps can be
chosen to satisfy the following composition property:

ηj,n ◦ ηi,j = ηi,n.

For instance, one may always start by only choosing the maps ηi,i+1, and defining
the general ηi,j by composition. We assume that this choice has been made in what
follows.

Another subtle, but important point is that the image of ηm,n in Sp(λ[n]) will
necessarily be invariant under the action of Sn−m, thought of as the symmetric group
on the set {m + 1, . . . , n}. Indeed, the usual branching rule implies that there is a
unique copy of Sp(λ[m]) inside Resnm Sp(λ[n]). This unique copy of Sp(λ[m]) must
be the image of ηm,n. On the other hand, Pieri’s rule implies that the restriction
of Sp(λ[n]) to the product group Sm × Sn−m contains a unique copy of the tensor
product of Sp(λ[m]) with the trivial representation. These two facts in tandem imply
that the image of ηm,n must be fixed by the action of Sn−m, as desired.

As in Section 2.2, we define V >λ
n to be the subrepresentation of Vn spanned by the

µ[n]–isotypic pieces, where |µ| > |λ|. We define V >λn to be the subrepresentation of
V >λ
n spanned by the µ[n]–isotypic components with µ 6= λ. As observed in Section 2.2,

the vector spaces V >λ
n span a sub–FI–module of V•, and the V >λn form a sub–FI–

module of those.
Let ιmn : [m] → [n] be the standard inclusion r 7→ r. Then we have transition

maps (ιnm)∗ : V >λ
m → V >λ

n and (ιnm)∗ : V >λm → V >λn and hence we have a map on
the subquotients (ιnm)∗ : V >λ

m /V >λm → V >λ
n /V >λn .

Let V• and W• be two finitely generated FI–modules and suppose that, for all n,
we have a map rn : Vn → Wn of Sn representations. Then, by Schur’s lemma, the
rn induce linear maps rn,λ : (Vn)λ[n] → (Wn)λ[n] and hence, for n sufficiently large,
induce maps (V•)λ → (W•)λ. Our subject in this section is how to compute those
maps. We abbreviate A = (V•)λ and B = (W•)λ. Finally, we recall the notation αλ[n]
for the inclusion A⊗ Sp(λ[n])→ Vn and βλ[n] for the surjection Wn → B ⊗ Sp(λ[n]).

The key technical lemma of this section is the following.
Lemma 4.8.With V•,W•, λ as above, and with m 6 n 6 q in the stable range, all
four maps obtained through composition from A ⊗ Sp(λ[m]) to B ⊗ Sp(λ[q]) in the
following diagram are equal.

(1)

Wq −−−−→
βλ[q]

B ⊗ Sp(λ[q])x(ιnq)∗

xId⊗ηn,q

A⊗ Sp(λ[n])
αλ[n]−−−−→ Vn −−−−→

rn
Wn −−−−→

βλ[n]
B ⊗ Sp(λ[n])xId⊗ηm,n

x(ιmn)∗

A⊗ Sp(λ[m])
αλ[m]−−−−→ Vm
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Remark 4.9. The two squares in the diagram (1) need not be commutative. Moreover,
one should once again be aware that while A and B technically have n dependence,
there are canonical isomorphisms between subsequent vector spaces so long as n
is within the stable range. We therefore abuse notation in this and all following
arguments.

Proof. The two maps arising from the bottom left square are equal modulo V >λn . On
the other hand, rn maps V >λn to W>λ

n , which is annihilated by βλ[n], and is mapped
to W>λ

q by (ιnq)*. All of these facts imply that the choice of map from A⊗ Sp(λ[m])
does not effect the overall composition.

Similarly, the two maps arising from the upper right square agree when restricted
to W>λ

n . Starting from A⊗ Sp(λ[m]), all choices of maps land in this subspace. �

Definition 4.10. Let V•,W•, λ be as above, and let m 6 n 6 q be in the stable range.
Then we write δm,n,q : A ⊗ Sp(λ[m]) → B ⊗ Sp(λ[q]) to denote the equal maps of
Lemma 4.8.

Our next goal will be to relate the map δm,n,q to rn,λ. Composition in (4.8) along
the path up–right–right–right–up yields the equality

δm,n,q = rn,λ ⊗ ηm,q.

On the other hand, composition along the path right–up–right–up–right gives:

δm,n,q = βλ[q] ◦ (ιnq)∗ ◦ rn ◦ (ιmn)∗ ◦ αλ[m].

So we have:

(2) rn,λ ⊗ ηm,q = βλ[q] ◦ (ιnq)∗ ◦ rn ◦ (ιmn)∗ ◦ αλ[m].

We will find that in the case of FI–sets, the right hand side of the above equality is
straight forward to compute. This will allow us to give an explicit description of rn,λ.

Once and for all, fix some m in the stable range along with a vector x ∈ Sp(λ[m]).
For any n > m, choose some integer q such that m 6 n 6 q, and pick a linear func-
tional ψ : Sp(λ[q])→ Q such that ψ(ηm,q(x)) = 1. We further impose the requirement
that ψ is invariant with respect to the action of Sq−m, thought of as the automor-
phism group of the set {m + 1, . . . , q}. Note that this can be done via an averaging
trick — where one replaces ψ with the function measuring ψ’s average value along all
Sq–conjugates — because Sq−m acts trivially on the image of ηm,q (see Remark 4.7).

Let {bj} be any fixed basis of B and {ai} a fixed basis for A. If we write {b∨j } to
denote the dual basis of {bi}, then we find that the (i, j)–th entry of rn,λ with respect
to these bases is

(3) 〈b∨j ⊗ ψ, δ(ai ⊗ x)〉 = 〈b∨j ⊗ ψ, βλ[q] ◦ (ιnq)∗ ◦ rn ◦ (ιmn)∗ ◦ αλ[m](ai ⊗ x)〉.

Our goal in the next section will be to specialize this setup to FI–modules which
arise from linearizations of FI–sets. We will see that in this setting the right hand side
of (2) is computable enough for us to conclude Theorem 1.5.

4.3. The proof of Theorem 1.5. In this section we specialize the setup in the
previous section to FI–modules arising from linearizations of FI–sets. Let X• and Y•
be finitely generated FI–sets, and let R• be a relation between these sets. We will
write V• = kX•, W• = kY• and we write rn for the map Vn → Wn induced by the
relation Rn. For x ∈ Xn and y ∈ Yn we will write x ∼ y to indicate (x, y) ∈ Rn.

Our first reduction will be to limit the total number of stable orbits of our FI–sets.
The stable orbits of the relation R• are subsets of products of stable orbits, one from
X• and one from Y•. It follows that the map rn will split along such products. Thus,
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it suffices to understand the map rn restricted to a chosen pair of orbits. We therefore
may and do assume that X• and Y• have a unique stable orbit.

With this assumption in mind, Theorem 1.1 implies that for n� 0,
Xn = M(C)n, Yn = M(D)n,

where C is an Sr–set for some r and similarly D is an St–set for some t. In particular,
by Remark 3.9 we may think of Vn as having a basis of pairs (K, c), where K is an
r–element subset of [n], and c ∈ C (see Definition 3.8 for how the action is defined on
this basis). A similar description exists for Wn, which will have a basis of pairs (T, d),
where d ∈ D and T is a t–element subset of [n].

For the remainder of this section, it will go without saying that K denotes a set of
size r and T denotes a subset of size t.

We may write αλ[m](ai ⊗ x) =
∑

(K,c) γK,c(K, c), for some scalars γK,c, where
K ⊆ [m]. Our job will be to compute

〈b∨j ⊗ ψ, βλ[q] ◦ (ιnq)∗ ◦ rn ◦ (ιmn)∗(K, c)〉.

By definition we have (ιmn)∗(K, c) = (K, c), where on the right hand sideK is thought
of as a subset of [n], and

rn(K, c) =
∑

(K,c)∼(T,d), T⊂[n]

(T, d).

Thus, we have reduced the problem to needing to compute

(4)
〈
b∨j ⊗ ψ, βλ[q]

( ∑
(K,c)∼(T,d)
T⊂[n]⊆[q]

(T, d)
)〉

=
∑

(K,c)∼(T,d)
T⊂[n]⊆[q]

〈
b∨j ⊗ ψ, βλ[q]

(
(T, d)

)〉
.

We observe that ψ was constructed to be Sq−m–equivariant, and that βλ[q] is Sq–
equivariant. This implies that the summand on the right hand side of (4) is unchanged
by the action of Sq−m on pairs (T, d). In particular, we may gather together those
terms in the sum according to S = T ∩ [m] and d ∈ D. This yields the expression∑

S⊆[m]
d∈D

φS,d |{T ⊆ [n] | (K, c) ∼ (T, d) and T ∩ [m] = S}| ,

where φS,d is some constant. We conclude our proof with the following lemma.

Lemma 4.11.Using the notation of this section, the quantity |{T ⊆ [n] | (K, c) ∼
(T, d) and T ∩ [m] = S}| is either equal to 0 for all n � m or to

(
n−m
t−|S|

)
for all

n� m.

Proof. The key observation which will allow us to prove the lemma is the following.
If there is some (T, d) with (K, c) ∼ (T, d) and T ∩ [m] = S, then every choice of
T ′ ⊆ [n] with T ′ ∩ [m] = S and |T ′| = t has (K, c) ∼ (T ′, d). Indeed, one may find
a permutation σ ∈ Sn−m which maps T to T ′, and has σ(T, d) = (T ′, d) (choose σ
to map T to T ′ and to be strictly increasing on T ). Moreover, because σ fixed [m]
we must have σ(K, c) = (K, c). Thus, because our relation is equivariant under the
action of the symmetric group, we conclude that (K, c) ∼ (T ′, d). This implies that
the set in question either has size zero or

(
n−m
t−|S|

)
.

We have not quite proven our desired statement yet, however, as it is apriori pos-
sible that whether the relevant quantity is equal to zero or a polynomial at a given
n, might itself be changing in n. To conclude the proof, we must show that for n� 0
there exists some set T ′ ⊆ [n + 1] with |T ′| = t, (K, c) ∼ (T ′, d), and T ′ ∩ [m] = S
if and only if there exists some T ⊆ [n] with the same properties. Put another way,
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once the relevant quantity agrees with a polynomial coefficient, it is then stuck doing
so for all larger n. Indeed, this follows from the fact that the relation R• is finitely
generated and we have taken n to be in the stable range. �

Remark 4.12. In Section 4.2, it was noted that much of the groundwork for the proof
of Theorem 1.5 was not special to the context of a relation between FI–sets. Indeed,
if the linear maps rn happened to actually form a morphism of FI–modules, then it
can be shown that the entries of rn,λ will be constant in n. Therefore, the family of
linear maps arising from a relation between FI–sets can be thought of as the next
level of generality after morphisms of FI–modules. We therefore present the following
question: Given two finitely generated FI–modules V•,W• over k, and a collection of
Sn–linear maps for each n {rn : Vn → Wn}, is there some natural condition that
one can place on the maps rn such that for n � 0, the associated rn,λ satisfy the
conclusion of Theorem 1.5?

4.4. Applications of Theorem 1.5. In this section, we consider applications of
Theorem 1.5. In particular, we prove Corollary 1.6, and apply it to various cases.

The proof of Corollary 1.6. Let X• be a finitely generated FI–set, and let R• be a self
relation. For any partition λ we write rλ[n] for the restriction of rn to the λ[n]–isotypic
piece of QXn. Then, by Theorem 1.5, there exists a choice of bases such that for all
n� 0 the maps rλ[n] take the form,

Aλ(n) 0 0 . . . 0 0
0 Aλ(n) 0 . . . 0 0
...
0 0 0 . . . 0 Aλ(n)

 ,

where Aλ(n) is a square matrix of fixed (non–varying in n) dimension with entries
in Q[n], and the total number of blocks is precisely dimQ Sp(λ[n]). Moreover, rep-
resentation stability theory [2] implies that the total number of non–zero rλ[n] is a
constant independent of n. Therefore, to understand the eigenvalues of rn it suffices
to understand the eigenvalues of Aλ(n).

We may think of Aλ(n) as being a matrix over the field Q(n). With this perspective,
it becomes clear that we may factorize the characteristic polynomial of Aλ(n), over
some algebraic extension of Q(n), as

χλ(n, x) =
∏
i

(x− fi(n))ei ,

where ei > 1 are some integers, each fi(n) is some function which is algebraic over
Q(n), and all of the fi(n) are distinct. This allows us to deduce that the eigenvalues of
rn are algebraic functions over Q(n) (in fact, they are integral over Q[n]), as desired.

We next must argue that the functions fi(n), with i varying, only agree for finitely
many values of n. In other words, if f(n) and g(n) are distinct algebraic functions,
we must argue that f(n) = g(n) for only finitely many n. Indeed, let P (z, n) be the
polynomial of minimal z degree with P (f(n), n) = P (g(n), n) = 0. By the minimality
of the degree of P , the polynomial P is squarefree as a polynomial in z, as Q(n)
is a separable field, so the discriminant ∆(n) of P with respect to z is a nonzero
polynomial in n. For any n which is not a root of ∆(n), the roots of P (z, n) = 0 are
distinct, so f(n) 6= g(n) for such an n. Of course any non–zero polynomial in a single
variable can only have finitely many roots, and so f(n) 6= g(n) for all n� 0.

To conclude, we must show that the multiplicities of these distinct eigenvalues are
equal to polynomials in n. This follows from the fact that the eigenvalues of each
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Aλ(n) have constant multiplicity, while the total number of Aλ(n) which appear in
the above matrix is precisely dimQ S(λ)n, a polynomial in n. �

Remark 4.13.We note for future use that, in the previous proof, we have proved
that, even if we allow n to take real, non–integer values, there are only finitely many
n for which any two of the eigenvalues fi(n), fj(n) agree.

Once again calling upon the example of FI–graphs with the edge relation, we see
that Corollary 1.6 implies Theorem H of [14]. Recall that for a graph G the Laplacian
of G is the matrix D−A, where D is the diagonal matrix of degrees of vertices of G,
and A is the adjacency matrix.

Theorem 4.14 (Theorem H of [14]). Let G• be a vertex–stable FI–graph, and let rn
denote either the adjacency matrix or Laplacian of Gn. We may write the distinct
eigenvalues of rn as,

λ1(n) < λ2(n) < · · · < λl(n)(n),
for some function l(n). Then for all n� 0

(1) l(n) = l is constant. In particular, the number of distinct eigenvalues of rn is
eventually independent of n;

(2) for any i the function
n 7→ λi(n)

agrees with a function which is algebraic over Q(n).
(3) for any i the function

n 7→ the multiplicity of λi(n)
agrees with a polynomial.

Proof. Note that a vertex stable FI–graph is one whose vertex FI–set is finitely gener-
ated. To make sense of the theorem statement, note that in this case rn is symmetric,
whence our matrix must have real eigenvalues. In particular, the functions fi(n) from
the proof of Corollary 1.6 must be real–valued. Because we know that the fi(x) eval-
uate to distinct real numbers for all sufficiently large real numbers, x (Remark 4.13),
it follows that we may order them using the usual order on R. All of this put together
imply Theorem H of [14] for the adjacency matrix.

To prove this statement for the Laplacian matrix, we note that it is shown in [14]
that vertex–stable FI–graphs have vertex degrees which agree with polynomials in n
for n � 0. Therefore, the Laplacian can be expressed as a Q[n]–linear combination
of relations. It follows that the Laplacian will satisfy the conclusion of Theorem 1.5,
and therefore will also satisfy the conclusions of Corollary 1.6. �
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