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Random walk on the symplectic forms over
a finite field

Jimmy He

Abstract Random transvections generate a walk on the space of symplectic forms on F2n
q .

The main result is to establish cutoff for this Markov chain. After n + c steps, the walk is
close to uniform while before n − c steps, it is far from uniform. The upper bound is proved by
explicitly finding and bounding the eigenvalues of the random walk. The lower bound is found
by showing that the support of the walk is exponentially small if only n − c steps are taken.
The result can be viewed as a q-deformation of a result of Diaconis and Holmes on a random
walk on matchings.

1. Introduction
In this paper a random walk on the Gelfand pair GL2n(Fq)/ Sp2n(Fq), which may be
identified with the space of symplectic forms on F2n

q , is analyzed. This walk is a q-
deformation of a walk on random matchings studied by Diaconis and Holmes [4]. The
eigenvalues of the random walk are obtained through a connection with the random
transvection walk studied by Hildebrand [10] and cutoff is obtained.

A good overview of the use of Gelfand pairs to analyze Markov chains can be
found in [3] or [2]. The theory of Gelfand pairs was previously used to study the
Bernoulli–Laplace model [7]. There are also analogues in the continuous setting, see
for example [13] where cutoff for Brownian motion on Riemannian symmetric spaces
is proven. While this work analyzes just one family of Markov chains on the space of
symplectic forms, comparison techniques developed in [5] allow upper bounds to be
obtained for other walks on the same space.

A transvection on a vector space V is a linear map of the form I + vf for v ∈ V
and f ∈ V ∗. Fix some symplectic form ω on F2n

q and let K ⊆ GL2n(Fq) denote the
subgroup preserving ω. Then the transvections that do not preserve ω form a single
double coset, denoted KgµK.

Let U denote the uniform measure on GL2n(Fq), P denote the uniform measure on
KgµK, and D denote the uniform measure on matrices of the form diag(α, 1, . . . , 1),
for α ∈ F∗q . Use ‖·‖ to denote the total variation norm for measures. The main results
are the following theorems.
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Theorem 1.1. There exist constants A,B > 0 such that the upper bound

‖P ∗(n+c) ∗D − U‖ 6 Ae−Bc

holds for all c > 0 and for all sufficiently large n.

Theorem 1.2. There exist constants A,B > 0 such that the lower bound

‖P ∗(n−c) ∗D − U‖ > 1−Ae−Bc

holds for all c > 0 and for all sufficiently large n.

Together, these theorems establish cutoff for the Markov chain at n. These results
are a q-analogue of a result for the random walk on matchings analyzed in [4]. The
relationship between the results in [10] and the results of this paper mirror the re-
lationship between the random transposition walk in [6] and the random walk on
matchings in [4], which can be viewed as the Gelfand pair S2n/Bn (Bn denotes the
hyperoctahedral group).

Specifically, the random transposition walk of [6], generated by the uniform dis-
tribution on transpositions in Sn, is related through the representation theory of Sn
with Schur functions. The random walk on matchings studied in [4] is related through
the representation theory of the Gelfand pair S2n/Bn with Jack polynomials of pa-
rameter 2, and the eigenvalues of the two walks are related. The mixing times of the
two walks are both at 1/2n logn.

The random transvection walk studied in [10] is naturally seen as a q-deformation of
the random transposition walk on Sn, as evidenced by the similarity of the formulas for
the eigenvalues of the random walk. However, the representation theory of GLn(Fq)
is still connected with Schur functions. The random walk studied in this paper is
related through the representation theory of the Gelfand pair GL2n(Fq)/ Sp2n(Fq)
with Macdonald polynomials of parameter (q, q2), as explained in [9]. The Macdonald
polynomials are a two parameter deformation of Schur functions and as q → 1, the
Macdonald polynomials of parameter (q, qα) become the Jack polynomials of param-
eter α. The eigenvalues of the walk are also related to the eigenvalues of the random
transvection walk in [10], mirroring what happens in [4] (compare Proposition 3.2
with Proposition 1 of [4]). Finally, the mixing time for the walk occurs at n, the same
as for the random transvection walk, again mirroring what occurs for matchings.

The random walk on matchings in [4] had various manifestations, including a ran-
dom walk on phylogenetic trees and on partitions. It is hoped that the walk analyzed
in this paper can find similar applications.

The paper is organized as follows. In Section 2, the notation used in the paper and
the necessary background material on Markov chains and Gelfand pairs is reviewed.
In Section 3, the eigenvalues of the random walk are computed. In Sections 4 and 5,
the upper and lower bounds are established.

2. Preliminaries
2.1. Representation theory of GLn(Fq). To fix notation, the representation the-
ory of GLn(Fq) is briefly reviewed. The representation theory of GLn(Fq) was devel-
oped by Green in [8] but this section follows Macdonald [12] and his conventions are
used. Let M denote the group of units of Fq and let Mn denote the fixed points of
Fn, where F the Frobenius endomorphism F (x) = xq. Let L be the character group
of the inverse limit of the Mn with norm maps between them. Note that Mn can be
identified with F∗qn . The Frobenius endomorphism F acts on L in a natural manner,
and there is a natural pairing of Ln with Mn for each n.
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The F -orbits of M can be viewed as irreducible polynomials over Fq under O 7→∏
α∈O(x−α). Denote by O(M) and O(L) the F -orbits in M and L respectively. Use
P to denote the set of partitions. Then the conjugacy classes of GLn(Fq) are indexed
by partition-valued functions µ : O(M)→ P such that

‖µ‖ =
∑

f∈O(M)

d(f)|µ(f)| = n,

where d(f) denotes the degree of f . This is because µ contains the information neces-
sary to construct the Jordan canonical form. That is, given µ, construct a matrix in
GLn(Fq) in Jordan form by taking for each orbit f ∈ O(M), l(µ(f)) blocks, of sizes
µ(f)i, for each root of f . The resulting matrix has d(f) blocks of size µ(f)i for each
f and i, and adding this all up gives ‖µ‖ = n.

For example, the partition-valued function corresponding to the set of transvec-
tions, which have Jordan form 

1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...
0 0 0 . . . 1

 ,

correspond to the partition-valued function µ with µ(f1) = (21n−2) and µ(f) = 0 for
f 6= f1 (here f1 denotes the minimal polynomial of 1). Use qf to denote qd(f). There
is a formula for the sizes of conjugacy classes given by

|Cµ| =
|GLn(Fq)|
aµ(q) ,

where

aµ(q) = qn
∏

f∈O(M)

q
2n(µ(f))
f

∏
i>1

mi(µ(f))∏
j=1

(1− q−jf ),

with n(λ) =
∑

(i− 1)λi and mi(λ) denoting the number of i’s occurring in λ.
Similarly, the irreducible characters of GLn(Fq) are indexed by functions λ :

O(L)→ P such that
‖λ‖ =

∑
ϕ∈O(L)

d(ϕ)|λ(ϕ)|,

where d(ϕ) denotes the size of the orbit α. The dimension of the irreducible represen-
tation corresponding to λ is given by

dλ = ψn(q)
∏

ϕ∈O(L)

qn(λ(ϕ)′)
ϕ Hλ(ϕ)(qϕ)−1,

where ψn(q) =
∏n
i=1(qi − 1), qϕ = qd(ϕ) and Hλ(t) =

∏
x∈λ(th(x) − 1), h(x) denoting

the hook length. Note that with this convention, the trivial representation corresponds
to the partition-valued function λ(χ1) = (1n) (χ1 being the trivial character) and 0
otherwise.

2.2. Gelfand pairs. A (finite) Gelfand pair is a finite group G, with a subgroup
K ⊆ G such that inducing the trivial representation from K to G gives a multiplicity-
free representation (or equivalently by Frobenius reciprocity, the restriction of any
irreducible representation fromG toK has at most a 1-dimensionalK-fixed subspace).
This property means the harmonic analysis on G/K is simplified, allowing the random
walk to be analyzed. See [3] or [2] for basic facts about Gelfand pairs and their
application to Markov chains.
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For a Gelfand pair G/K, any representation ρ of G has either no non-zero K-
fixed vectors, or a 1-dimensional subspace fixed pointwise by K. Say that ρ is a
spherical representation if it has a K-fixed vector, and define the corresponding
spherical function to be φ(g) = 〈vρ, ρ(g)vρ〉, where vρ is a unit K-fixed vector. The
spherical functions can also be computed by averaging characters over K. That is,
φ(g) = |K|−1∑

k∈K χ(kg) for χ the character of ρ (if ρ is not a spherical representa-
tion, then this average is 0).

Let
J =

(
0 I
−I 0

)
and define the standard symplectic form on F2n

q to be ω(x, y) = xTJy. Then Sp2n(Fq)
denotes the subgroup of GL2n(Fq) which preserves ω, or in other words, for which
gTJg = J . To simplify the notation, write GLn for GLn(Fq) and Sp2n or K for
Sp2n(Fq).

The relevant Gelfand pair for this paper is GL2n(Fq)/ Sp2n(Fq), whose double
cosets can be identified with the set of conjugacy classes in GLn(Fq) [1].

Denote by φλ the spherical function corresponding to the partition-valued function
λ (see [1], although note a different convention is used in this paper so all partitions
labeling representations are transposed). For a partition λ, let λ∪λ denote the parti-
tion which contains every part of λ twice. The double cosets of Sp2n(Fq) are indexed
by µ : O(M)→ P, with ‖µ‖ = n, with the matrices

gµ =
(
Mµ 0
0 I

)
being double coset representatives, where Mµ an n× n matrix in the conjugacy class
of GLn(Fq) corresponding to µ.

Bannai, Kawanaka and Song worked out the representation theory of the Gelfand
pair GL2n(Fq)/ Sp2n(Fq), including a formula for the spherical functions. However,
the formula given is an alternating one unsuitable for asymptotic analysis. The formula
obtained in this paper can be proven using the results in [1] with some work, see [9],
but a probabilistic proof is preferred to minimize the technical machinery needed.

The key result from [1] that is needed is reproduced below. It relates the sizes of
double cosets in GL2n(Fq)/ Sp2n(Fq) to the sizes of conjugacy classes in GLn(Fq).

If f(q) is a rational function in q, define f(q)q 7→q2 = f(q2). For example,

|GLn(Fq)|q 7→q2 =
n−1∏
i=0

(q2n − q2i).

Proposition 2.1 (Bannai, Kawanaka, and Song, [1, Proposition 2.3.6]). Let

µ : O(M)→ P with ‖µ‖ = n.

Then
|KgµK| = |K||Cµ|q 7→q2 ,

where KgµK denotes the double coset indexed by µ in GL2n(Fq) and Cµ denotes the
conjugacy class indexed by µ in GLn(Fq).

2.3. Random walk on groups. For any finite group G, a random walk can be
created from a probability measure on G given by multiplying random elements
from this distribution. That is, if P is a probability measure on G, then the ran-
dom walk generated by P , starting from the identity, is the sequence of random
variables g0, g0g1, g0g1g2, . . . , where g0 = e and the gi are independent copies with
distribution P .
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The most well-studied class of random walks on groups are the ones generated
by conjugacy-invariant measures, with the prototypical example being the random
transposition walk on the symmetric group. An example that will be important in the
eigenvalue computations is the random transvection walk studied by Hildebrand [10].

The random transvection walk is a walk on GLn(Fq) generated by the uniform
measure on the conjugacy class of transvections. In the course of establishing cutoff
for this random walk, Hildebrand found a formula for the eigenvalues of its transition
matrix through the character theory of GLn(Fq).

Another class of interesting random walks on groups are bi-invariant walks. If
G is a finite group and K a subgroup, then P is a bi-invariant measure on G if
P (x) = P (kxk′) for all x ∈ G and k, k′ ∈ K. This walk naturally descends to the
quotient G/K in two distinct ways. Namely, there is the more obvious left walk given
by the sequence g0K, g1g0K, . . . in G/K, but there is also a right walk given by
g0K, g0g1K, . . . despite the fact that there is no right action by G. In many settings,
the right walk is the more natural walk.

It is important to note that although the two walks are distinct in general, if
P is invariant under inversion then at the group level the left and right walks are
identical. The marginal distributions (of the current state) of both the left and right
walks are identical even though the transition probabilities are very different, and so
in particular the mixing times are identical.

Let V be a vector space over Fq and let ω be a symplectic form on V (that is, a non-
degenerate alternating form). Note that any transvection in GL(V ) can be written in
the form I + vf for v ∈ V and f ∈ V ∗ with f(v) = 0. Since ω is a non-degenerate
form, a transvection can always be written as I + vω(w, ·). A symplectic transvection
is a transvection in Sp2n. These are of the form I + αvω(v, ·) for α ∈ Fq and v ∈ V
(see [14, 1.4.12]).

The random walk generated by non-symplectic transvections is the random walk
generated by the uniform measure on the set of non-symplectic transvections. This
measure is bi-invariant under Sp2n(Fq). The random walk is most naturally desc-
cribed using the right walk on the space GL2n(Fq)/ Sp2n(Fq), which can be viewed as
the space of symplectic forms on F2n

q . The random walk moves from one symplectic
form ω to another by picking a transvection X uniformly from those not fixing ω
(i.e. non-symplectic ones). The left walk can be described as picking a non-symplectic
transvection with respect to a fixed symplectic form ω0, and acting on ω. Thus, the
right walk always moves at every step while the left walk can remain stationary.

Some initial randomness is needed as otherwise only matrices with determinant
1 would be reached so the walk is started from g0, the diagonal matrix with all
1 except for one entry, which is uniformly chosen from F∗q . Of course, a walk on
SL2n(Fq)/ Sp2n(Fq) with the same mixing properties could be analyzed instead, but
because the representation theory of GL2n(Fq) is crucial, the walk on GL2n(Fq) is
analyzed at the cost of some initial randomness.

Example 2.2 (Transition matrices for GL4(F2)/ Sp4(F2)). This example gives the
explicit transition matrices for GL4(F2)/ Sp4(F2). Note that n = 2 is the first non-
trivial case because Sp2(Fq) ∼= SL2(Fq) and so the walk is trivial. The computations
are done on the double-coset space to minimize the number of states, but they can
be done on the coset space or even the group as well.

Note that the double cosets are labeled by partition-valued functions such that
‖µ‖ = 2. This implies that µ is non-zero only at degree 1 and 2 polynomials. There is
one degree one irreducible polynomial, x+ 1, and one irreducible degree two polyno-
mial, x2 + x+ 1. A partition-valued function may send x+ 1 to a partition with two
boxes, so there are two choices, and must send x2 + x+ 1 to one box, so there is one
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choice. Thus, there are 3 double cosets. The following elements gi,

g1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

g2 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

g3 =


0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 ,

give representatives for the double cosets coming from the representatives for the
conjugacy classes in GL2n(F2).

First note that since the field is F2, there is no need to randomize the determinant.
The walk is generated by g2, and so if the current position is at g1, it will always move
to g2. For the other states, the GAP computer algebra system was used to compute
the transition probabilities. To compute the probability of moving from KgiK to
KgjK, compute the proportion of elements in Kg2KgiK which lie in KgjK. This
gives the following transition matrix:

S =

 0 1 0
1
15

6
15

8
15

0 2
3

1
3

 .

2.4. Cutoff for Markov chains. Given two measures P,Q on a probability space
Ω, let the total variation distance be defined by

‖P −Q‖ = sup
A
|P (A)−Q(A)|.

The cutoff phenomenon is a particularly sharp convergence of a Markov chain to
its stationary distribution within a certain window. More precisely, define the mixing
time of a Markov chain P with stationary distribution U by

tmix(ε) = max
x∈Ω

min{t ∈ N|‖P t(x, ·)− U‖ 6 ε},

where P t(x, ·) denotes the measure given by taking t steps in the Markov chain,
starting at x. A family of Markov chains Pn is said to have cutoff if t(n)

mix(ε)/t(n)
mix(1−

ε) → 1 as n → ∞ for all ε ∈ (0, 1). Note that in the setting of interest on a group,
left-invariance implies that the mixing time is independent of the starting state. For
a more comprehensive overview on cutoff for Markov chains, see [11].

3. Computation of eigenvalues
In this section, the eigenvalues of the transition matrix for the random walk which
are needed to compute the upper bound on the total variation distance are computed.
First, a connection is made between the walk on symplectic forms and the random
transvection walk in [10]. This gives a way to compute the eigenvalues directly from
the character values found in [10], analogous to how the eigenvalues for a random
walk on matchings can be found using the ones for random transposition [4]. First,
the claim made when defining the random walk that the non-symplectic transvections
form a single double coset is shown.
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Random walk on the symplectic forms over a finite field

Lemma 3.1. The non-symplectic transvections form a single double coset KgµK.

Proof. Notice that any transvection which is not symplectic is of the form I+vω(w, ·)
for v, w linearly independent and ω(w, v) = 0. Then for any map L such that Le1 = v
and Len+2 = w and which is symplectic,

L−1(I + vω(w, ·))L = I + L−1vwTJL

= I + L−1vwT (L−1)TJ
= I + e1e

T
n+2J

= gµ.

But such L can always be found because ω(v, w) = 0, and so v, w can be extended to
a symplectic basis. Thus, any non-symplectic transvection lies in KgµK. �

Proposition 3.2. Let T denote the transition matrix for the random walk on
GL2n(Fq)/ Sp2n(Fq) induced by the random transvection walk on GL2n(Fq) and S
denote the transition matrix for the random non-symplectic transvection walk on
GL2n(Fq)/ Sp2n(Fq). Then T = aS + bI, where a is the proportion of transvections
which are non-symplectic and b denotes the proportion which are symplectic, and

a = q(q2n−2 − 1)
q2n−1 − 1

and
b = q − 1

q2n−1 − 1 .

Proof. If a random transvection is picked uniformly, one in Sp2n(Fq) is picked with
probability b, and if not, then it must lie in KgµK and this happens with probability
a. Thus, T = aS + bI.

The number of transvections in GL2n(Fq) is

|GL2n(Fq)|
aµ(q) = qn(2n−1)∏(qi − 1)

q2n+(2n−1)(2n−2)(1− q−1)
∏2n−2
i=1 (1− q−i)

= (q2n − 1)(q2n−1 − 1)
q − 1 .

The number of symplectic transvections (transvections in Sp2n(Fq)) is (q2n − 1). To
see this, write it as I+αvω(v, ·) and note that (α, v) and (α/β2, βv) give the same map
(note if v and w are linearly independent, then (α, v) and (β,w) must give different
maps because they have different kernels). This gives the stated proportions. �

For a partition λ, and a box s ∈ λ, define the arm length aλ(s) to be the number
of boxes to the right of the box s in λ, and similarly define the leg length lλ(s) to be
the number of boxes below s (when the partition is clear, λ will be omitted). Now let

cλ(q, t) =
∏
s∈λ

(1− qa(s)tl(s)+1),

c′λ(q, t) =
∏
s∈λ

(1− qa(s)+1tl(s)).

Also, for partitions µ ⊆ λ, define

ψ′λ/µ =
∏

s∈Cλ/µrRλ/µ

bλ(s; q, t)
bµ(s; q, t) ,
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where

bλ(s; q, t) = 1− qa(s)tl(s)+1

1− qa(s)+1tl(s)
,

and where Cλ/µ denotes the columns of λ intersecting λ/µ and similarly Rλ/µ but
for rows. This notation comes from the theory of Macdonald polynomials, although
nothing more than these definitions will be needed.

The following formula for the eigenvalues of the random walk may now be proven.
This also gives a combinatorial formula for the spherical functions evaluated on a
non-symplectic transvection.

Proposition 3.3. The eigenvalues of S, the transition matrix for the random walk
on symplectic forms, are indexed by λ : O(L)→ P such that ‖λ‖ = n, with
(1)

φλ = q2n−2(q2 − 1)
(q2n − 1)(q2n−2 − 1)

(∑
λ1

c′λ(q, q2)ψ′λ/λ1

c′λ1
(q, q2)(1− q)q

n(λ′1)−n(λ′) − q2n − 1
q2n−2(q2 − 1)

)
,

where the sum is over λ1 ⊆ λ obtained by removing a single box from some λ(ϕ) with
d(ϕ) = 1. The eigenvalue φλ has multiplicity dλ∪λ.

Proof. First, note that the group GL2n(Fq) acts transitively on the space of symplectic
forms, and there is a multiplicity-free decomposition

C(GL2n(Fq)/Sp2n(Fq)) ∼=
⊕
‖λ‖=n

Vλ∪λ,

where Vλ∪λ is the irreducible representation of GL2n(Fq) indexed by λ ∪ λ [1, Theo-
rem 4.1.1]. This implies that the random walk given by random transvection on the
space of symplectic forms has eigenvalues χλ∪λ/dλ∪λ with multiplicity dλ∪λ. Then by
Proposition 3.2, the eigenvalues of S are given by

1
a

χλ∪λ(gµ)
dλ∪λ

− b

a

with multiplicity dλ∪λ.
The corresponding character ratio value at a transvection for GLn(Fq), which can

be found in [10], is given by

χλ(gµ)
dλ

= q2n−1(q − 1)
(q2n − 1)(q2n−1 − 1)

(∑
λ1

δ(Sλ1)
(q − 1)δ(Sλ) −

q2n − 1
q2n−1(q − 1)

)
,

where δ(Sλ) =
∏
ϕ∈O(L) q

n(λ(ϕ)′)
ϕ Hλ(ϕ)(qϕ)−1. Then compute

1
a

χλ∪λ(gµ)
dλ∪λ

− b

a
= q2n−2(q2 − 1)

(q2n − 1)(q2n−2 − 1)

(∑
λ1

δ(Sλ1)
(q2 − 1)δ(Sλ∪λ) −

q2n − 1
q2n−2(q2 − 1)

)
.

Now there is a bijection between boxes which can be removed from λ and boxes
which can be removed from λ ∪ λ (the first copy of any part can never have a box
removed), and so the sum can be rewritten from being over λ1 having one box removed
from λ ∪ λ, to summing over λ1 having one box removed from λ (see Figure 1 for an
example).
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•

•

•

←→
•

•
•

Figure 1. Correspondence between removable boxes in λ ∪ λ and λ

Then note that the hook length polynomial can be broken up into two factors,
coming from even and odd parts, and this corresponds to the two cases aλ(s) +
2lλ(s) + 1 and aλ(s) + 2lλ(s) + 2 (the 2 in front of the lλ corresponds to doubling the
number of boxes in a column, the 1 or 2 at the end corresponds to the even and odd
boxes).

That is, fix a removable box s ∈ λ(ϕ), which corresponds to a removable box
s ∈ λ ∪ λ(ϕ), and then write (noting that in the ratio, the only factors which matter
lie in either the column or row of the removed box)

δ(Sλ1)
(q2 − 1)δ(Sλ∪λ) = qn(λ1(ϕ)′)

qn((λ(ϕ)∪λ(ϕ))′)(1− q)(q2 − 1)

×
∏

s∈CrR

1− qaλ∪λ(ϕ)(s)+lλ∪λ(s)+1

1− qaλ∪λ(s)+lλ∪λ(s)

∏
s∈RrC

1− qaλ∪λ(s)+lλ∪λ(s)+1

1− qaλ∪λ(s)+lλ∪λ(s) .

Here C and R denote the column and row in λ∪λ. By the discussion above there is a
correspondence between removed boxes in λ and λ∪λ. Then compute all expressions
involving λ ∪ λ in terms of λ, writing λ1 = λ ∪ λ2, giving

qn(λ′1)

qn((λ∪λ)′)(1− q)
∏

s∈CrR

(1− qaλ(s)+2lλ(s)+2)(1− qaλ(s)+2lλ(s)+1)
(1− qaλ(s)+2lλ(s)+1)(1− qaλ(s)+2lλ(s))

×
∏

s∈RrC

1− qaλ(s)+laλ(s)+1

1− qaλ(s)+2lλ(s)

= qn(λ′2)

qn(λ′)(1− q)
∏

s∈CrR

(1− qaλ(s)+2lλ(s)+2)
(1− qaλ(s)+2lλ(s))

∏
s∈RrC

1− qaλ(s)+2lλ(s)+1

1− qaλ(s)+2lλ(s)

with qn(λ′1)−n((λ∪λ)′) = qn(λ′2)−n(λ′) because n(λ) can be computed by placing i− 1 in
the ith row of λ and summing all these values and so it is clear that the extra boxes
do not matter. Then

(2)

δ(Sλ1)
(q2 − 1)δ(Sλ∪λ)

= qn(λ′2)

qn(λ′)(1− q)
∏

s∈CrR

(1− qaλ(s)+2lλ(s)+2)
(1− qaλ(s)+2lλ(s))

∏
s∈RrC

1− qaλ(s)+2lλ(s)+1

1− qaλ(s)+2lλ(s) .
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Now compute
(3)

c′λ(q, q2)
c′λ2

(q, q2)(1− q)ψ
′
λ/λ2

= (q − 1)−1
∏

s∈C∪R

1− qaλ(s)+2lλ(s)+1

1− qaλ2 (s)+2lλ2 (s)+1

×
∏

s∈CrR

1− qaλ(s)+2lλ(s)+2

1− qaλ2 (s)+2lλ2 (s)+2
1− qaλ2 (s)+2lλ2 (s)+1

1− qaλ(s)+2lλ(s)+1

=
∏
CrR

1− qaλ(s)+2lλ(s)+2

1− qaλ2 (s)+2lλ2 (s)+2

∏
s∈RrC

1− qaλ(s)+2lλ(s)+1

1− qaλ2 (s)+2lλ2 (s)+1 ,

where C and R denote the column and row that the removed box is contained in.
Note here aλ(s) denotes the arm length of s in λ(ϕ), and similarly for lλ(s) (strictly

speaking, λ is not a partition but a function into the set of partitions, but because
only one box is removed, only one partition is relevant to the ratio).

Finally, from (3) and (2) the result follows. �

Remark 3.4. The combinatorial formula given by Proposition 3.2 was also obtained
in [9] using the theory of Macdonald polynomials and some formulas for spherical
function values due to Bannai, Kawanaka and Song [1]. Here, a combinatorial proof is
preferred to reduce the necessary background and highlight the similarities with the
Weyl group case studied in [4] where a similar proof was found.

Example 3.5 (Eigenvalues for GL4(F2)/ Sp4(F2)). To make Proposition 3.3 more
concrete, return to the setting of Example 2.2. The eigenvalues for the transition
matrix computed there are 1,− 1

3 ,
1
15 , which match the values given by Equation (1)

as shown below.
There are three partition-valued functions O(L)→ P with ‖λ‖ = 2, two supported

at an orbit of degree 1 and one at an orbit of degree 2. If the eigenvalues are labeled
φ1, φ2, φ3 (with φ1 being the trivial one), then

φ1 = 1,

φ2 = 1
15 ,

φ3 = −1
3 .

4. Upper Bounds
The goal of this section is to establish Theorem 1.1. By the upper bound lemma
(see [7], and also [3] or [2]),

‖P ∗k ∗D − U‖2 6 1
4
∑
ρ

dρ Tr
(
D̂(ρ)D̂(ρ)∗(P̂ (ρ)k)∗P̂ (ρ)k

)
,

where for a probability measure Q, Q̂(ρ) =
∑
Q(g)ρ(g) is the Fourier transform

(which turns convolution into a product). Let hα denote the matrix diag(α, 1, . . . , 1).
Then

Tr
(
D̂(ρλ)D̂(ρλ)∗(P̂ (ρλ)k)∗P̂ (ρλ)k

)
= |φ(gµ)|2k〈vρλ , D̂(ρλ)D̂(ρλ)∗vρλ〉

= |φ(gµ)|2k(q − 1)−2
∑

α,β∈F∗q

〈vρλ , ρλ(hαh−1
β )vρλ〉

= (q − 1)−1|φλ(gµ)|2k
∑
α∈F∗q

φλ(hα)
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by picking a basis v1, . . . , vn for the representation with v1 = vρλ a unit vector
fixed by Sp2n (if no such vector exists, then P̂ (ρλ) = 0), such that P̂ (ρλ)k =
diag(φλ(gµ)k, 0, . . . , 0) (see for example, [2, Proposition 4.7.2]). Here the φλ are the
spherical functions associated to the representations indexed by λ, and can be com-
puted as φλ(g) = 〈vρλ, ρ(g)vρλ〉. The inner product is chosen so that ρ is a unitary
representation.

Now |φλ(hα)| 6 1 (spherical functions are pointwise bounded as |〈vρλ , ρ(g)vρλ〉| 6 1
since ρ(g) is unitary), and so

Tr
(
D̂(ρλ)D̂(ρλ)∗(P̂ (ρλ)k)∗P̂ (ρλ)k

)
6 |φλ(gµ)|2k

giving the bound

(4) ‖P ∗k ∗D − U‖2 6 1
4
∑
λ

dλ∪λ|φλ|2k,

where from now on φλ will be used to denote the eigenvalue φλ(gµ).
From [10], Tr

(
D̂(ρλ)∗D̂(ρλ)

)
= 0 (and thus D̂(ρλ) = 0) if λ is a partition-valued

function taking the value (12n) for some α of degree 1 so these terms may be ig-
nored. Actually these terms should be thought of as measuring the randomness of the
determinant and explain why the initial randomness is needed.

The strategy and estimates to bound this sum are similar to those in [10], with
the appropriate modifications. The sum is split into three parts and each one is
bounded individually. First, bound the spherical functions attaining negative values,
then bound the the ones with small length, and finally bound the rest.

First, begin with some preliminary estimates which will be useful later. The fol-
lowing is a trivial bound for the negative terms.

Lemma 4.1. For all λ : O(L)→ P, φλ > − 1
q2n−2−1 .

Proof. The first term in equation 1 is positive (even though the c′λ are potentially
negative, there are an equal number of factors so the signs cancel) and the second
term is −1

q2n−2−1 . �

Lemma 4.2. Let λ : O(L)→ P. Then

(5) φλ 6
q2n−2(q2 − 1)

(q2n − 1)(q2n−2 − 1)
∑

d(ϕ)=1

∑
(i,j)∈C(λ(ϕ))

(q2i − 1)(qj − 1)
qj−1(q − 1)(q2 − 1) ,

where C(λ) denotes the set of removable boxes of λ.

Proof. First, suppose that λ1 ⊆ λ is obtained by removing the box in row i and
column j. Then the inequality

c′λ(q, q2)
c′λ1

(q, q2)(1− q)ψ
′
λ/λ1

6
(q2i − 1)(qj − 1)
(q − 1)(q2 − 1) .

holds. To see this, first note that for z 6 x 6 y,

qy+z − 1
qy − 1 6

qx+z − 1
qx − 1
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and so
c′λ(q, q2)

c′λ1
(q, q2)(1− q)ψ

′
λ/λ1

=
∏
CrR

1− qaλ(s)+2lλ(s)+2

1− qaλ1 (s)+2lλ1 (s)+2

∏
s∈RrC

1− qaλ(s)+2lλ(s)+1

1− qaλ1 (s)+2lλ1 (s)+1

6
(q4 − 1) · · · (q2i − 1)

(q2 − 1) · · · (q2(i−1) − 1)
(q2 − 1) · · · (qj − 1)

(q − 1) · · · (qj−1 − 1) ,

where Equation (3) is used.
Finally, since

qn(λ1(ϕ))−n(λ(ϕ)) = 1/qj−1

if (i, j) is removed from λ(ϕ) to obtain λ1(ϕ), the result follows. �

Lemma 4.3. For the negative eigenvalues, the bound∑
φλ60

dλ∪λ|φλ|2(n+c) 6 Ae−Bc

holds for constants A,B > 0, and for sufficiently large n.

Proof. Note that |φλ| 6 (q2n−2 − 1)−1 and∑
φλ60

dλ∪λ 6
∑
φλ60

d2
λ∪λ

6 |GL2n(Fq)/ Sp2n(Fq)|

6 q2n2

and so ∑
φλ60

dλ∪λ|φλ|2(n+c) 6 q2n2
(q2n−2 − 1)−2(n+c).

The exponential bound is an easy consequence. �

Next, consider the terms with small length. To establish the bound, the following
lemmas are useful.

Lemma 4.4. Let λ be a partition valued function with l(λ(ϕ)) = n− i for some d(ϕ) =
1. Let λ̃ be the partition valued function equal to λ except at ϕ, where the first column
is removed. Then

dλ∪λ 6
q2i∏2n

j=2i+1(qj − 1)∏2n−2i
j=1 (qj − 1)

d
λ̃∪λ̃.

Proof. This follows from [10, Lemma 5.3] applied to λ ∪ λ, since the spherical repre-
sentations are representations of GL2n(Fq). �

Lemma 4.5. Fix ϕ with d(ϕ) = 1 and i. Then∑
l(λ(ϕ))=n−i

dλ∪λ 6 Cq
2i+4in−2i2

with C > 0 independent of i.

Proof. For each λ with l(λ(ϕ)) = n − i, if λ̃ denotes the partition valued function
equal to λ except at ϕ, where the first column is removed, then∑

l(λ(ϕ))=n−i

d2
λ̃∪λ̃
6 |GL2i(Fq)/ Sp2i(Fq)| < q2i2 .

Next, note that there is C > 0 such that
q

q − 1
q2

q2 − 1 · · ·
qn

qn − 1 < C
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for all n, q.
Now

dλ∪λ 6
q2i∏2n

j=2i+1(qj − 1)∏2n−2i
j=1 (qj − 1)

d
λ̃∪λ̃

6 C
q2i∏2n

j=2i+1 q
j∏2n−2i

j=1 qj
d
λ̃∪λ̃

= Cq2i(q2i)2n−2id
λ̃∪λ̃

and thus ∑
l(λ(ϕ))=n−i

dλ∪λ 6 Cq
4in+2i−4i2

∑
l(λ(ϕ))=n−i

d
λ̃∪λ̃

6 Cq2i+4in−2i2 . �

Now the terms with small length can be bounded.

Lemma 4.6. Let F denote the set of partition valued functions λ such that l(λ(ϕ)) 6
n− n0.6 for all d(ϕ) = 1, and such that φλ > 0. Then∑

λ∈F

dλ∪λ|φλ|2(n+c) < Ae−Bc

for large enough n, with constants A,B > 0.

Proof. First, note that as a consequence of (5), the simpler inequality

φλ 6
q2n−1

(q2n − 1)(q2n−2 − 1)
∑

d(ϕ)=1

∑
(i,j)∈C(λ(ϕ))

(q2i − 1)
(q − 1)

holds. Then note that i 6 l(λ(ϕ)) and so for some ε > 0 this is bounded by∑
d(ϕ)=1

n
q2l(λ(ϕ))(1 + ε)

q2n−2 6 qn
q2 maxd(ϕ)=1 l(λ(ϕ))(1 + ε)

q2n−2 ,

where ε < 1 for large enough n.
Now sum over F to obtain∑

λ∈F

dλ∪λ(φλ)2n 6
∑

d(ϕ)=1

n∑
i=n0.6

∑
l(λ(ϕ))=n−i

dλ∪λ

(
qn(1 + ε)
q2i−2

)2n

and apply Lemma 4.5 to obtain the bound∑
λ∈F

dλ∪λ(φλ)2n 6
∑

d(α)=1

n∑
i=n0.6

Cq2i+4in−2i2(n(1 + ε))2n

(q2i−3)2n

6 C(q − 1)nqn(−2n0.2+8+C′ logn),

where C ′ is a positive constant. For large enough n this is exponentially small. �

Finally, bound the remaining case of large length.

Lemma 4.7. If F denotes the set of partition-valued functions λ such that φλ > 0 and
there is some ϕ with d(ϕ) = 1 and l(λ(ϕ)) > n− n0.6, then∑

λ∈F

dλ∪λ|φλ|2(n+c) 6 Ae−Bc

for constants A,B > 0 and sufficiently large n.
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Proof. Consider Equation (5), first bounding the term (n − i, 1) in C(λ(ϕ)) corre-
sponding to the ϕ witnessing λ(ϕ) > n0.6, so i 6 n0.6. This gives

q2n−2(q2n−2i − 1)
(q2n − 1)(q2n−2 − 1) 6

1 + q−n

q2i

for large enough n.
Now if D denotes all other terms in the sum over ϕ and C(λ(ϕ)) except for this

(n− i, 1) term, then ∑
D

(qj − 1)(q2i − 1)
qj−1(q − 1)(q2 − 1) 6 q

2n0.6

because the q2i in the remaining summands have
∑
i 6 n0.6 and so the sum is at

most q2n0.6 since qx + qy 6 qx+y for x, y > 1. Then for large enough n,
q2n−2(q2 − 1)

(q2n − 1)(q2n−2 − 1)q
2n0.6

6
q−n

q2i

and so
φλ 6

1 + 2q−n

q2i .

Now, use Lemma 4.5 to conclude∑
d(ϕ)=1

n0.6∑
i=1

∑
l(λ(ϕ))=n−i

dλ∪λφ
2(n+c)
λ 6

∑
d(ϕ)=1

n0.6∑
i=1

Cq2i+4in−2i2(1 + 2q−n)2(n+c)q−4i(n+c)

= (q − 1)
n0.6∑
i=1

C(1 + 2q−n)2(n+c)q2i−2i2−4ic

6
n0.6∑
i=1

C(1 + 2q−n)2(n+c)q3−2i−4ic.

Now note that (1 + 2q−n)2n → 1 as n→∞ and so for large enough n∑
d(ϕ)=1

n0.6∑
i=1

∑
l(λ(ϕ))=n−i

dλ∪λφ
2(n+c)
λ 6 C

n0.6∑
i=1

(1 + 2q−n)2cq3−2i−4ic

6 Cq3
n0.6∑
i=1

(q−2−3c)i

6 Cq1−3c

and this establishes the lemma. �

Finally, Theorem 1.1 follows easily from Lemmas 4.3, 4.6 and 4.7, noting that these
lemmas cover all non-zero terms in Equation (4).

5. Lower Bounds
This section is devoted to proving Theorem 1.2. This is done by showing that if
only n− c steps are taken, then the proportion of GL2n(Fq) which can be reached is
exponentially small, and so the walk cannot be mixed.

Similar ideas appear in [10], where it is shown that for the random walk on
GLn(Fq), after taking n − c steps the random element still has a large fixed sub-
space. This relies on results in an unpublished manuscript of Rudvalis and Shinoda
about the proportion of such elements in GLn(Fq). It will be shown that if only n− c
steps are taken, then gTJg − J has an isotropic subspace of dimension n + c (that
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is, a subspace where the form restricts to 0). This is done by using results in [1] to
reduce the problem to the computation in the GLn(Fq) case.

Proposition 5.1. Let

Ac = {g ∈ GL2n(Fq)|g = kg0,dim(ker(g0 − I)) > n+ c, k ∈ Sp2n(Fq)}.

Then
|Ac|

|GL2n(Fq)|
6
C

qc

for some constant C independent of n.

Proof. Note that if g ∈ Ac, then gTJg − J = gT0 Jg0 − J is an alternating form with
an isotropic subspace of dimension n + c, because g0 fixes a subspace of dimension
n+ c. Now, if I(ω) denotes a maximal isotropic subspace of the form ω, then

|Ac| 6
∑

dim(I(gTµ Jgµ−J))>n+c

|KgµK|

=
∑

dim(ker(gµ−I))>n+c

|KgµK|

because the set can be broken up into double cosets as it is Sp2n(Fq)-bi-invariant
since

dim(I(gTµ Jgµ − J)) = dim(I((k1gµk2)TJk1gµk2 − J)).
Thus the dimension of the maximal isotropic subspace of

gTµ Jgµ − J =
(
MT
µ 0

0 I

)(
0 I
−I 0

)(
Mµ 0
0 I

)
−
(

0 I
−I 0

)
=
(

0 MT
µ − I

I −Mµ 0

)
is just

2 dim(ker(Mµ − I)) + 1
2(2n− 2 dim(ker(Mµ − I))) = n+ dim(ker(Mµ − I))

and so dim(I(gTµ Jgµ − J)) > n+ c is equivalent to dim(ker(Mµ − I)) > c.
But |KgµK| = |Sp2n(Fq)||Cµ|q 7→q2 by Proposition 2.1 and so

|Ac| = |Sp2n(Fq)|
∑

dim(ker(Mµ−I))>c

|Cµ|q 7→q2 .

Next, write

|Cµ|q 7→q2 = |Cµ|
|Cµ|q 7→q2

|Cµ|
and note that

|Cµ|q 7→q2

|Cµ|
=
|GLn(Fq)|q 7→q2

|GLn(Fq)|
aµ(q)
aµ(q2)

=
|GLn(Fq)|q 7→q2

|GLn(Fq)|
qn+2n(µ)∏ψmi(µ)(q−1)
q2n+4n(µ)∏ψmi(µ)(q−2)

6
|GLn(Fq)|q 7→q2

|GLn(Fq)|
1

qn
∏
j

∏mj(µ)
i=1 (1 + q−i)

6
|GLn(Fq)|q 7→q2

|GLn(Fq)|
q−n.
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Then

|Sp2n(Fq)|
∑

dim(ker(Mµ−I))>c

|Cµ|q 7→q2

6 |Sp2n(Fq)|
|GLn(Fq)|q 7→q2

|GLn(Fq)|
q−n

∑
dim(ker(Mµ−I))>c

|Cµ|.

Now from [10, § 6] ∑
dim(ker(Mµ−I))>c

|Cµ| 6
4
qc
|GLn(Fq)|

and note that
|Sp2n(Fq)||GLn(Fq)|q 7→q2q−n

|GL2n(Fq)|
=
qn

2 ∏n
i=1(q2i − 1)qn2−n∏n

i=1(q2i − 1)
qnqn(2n−1)∏2n

i=1(qi − 1)

=
n∏
i=1

q2i − 1
q2i − q

and this is bounded (independent of n and q) by some C. Thus,
|Ac|

|GL2n(Fq)|
6

4C
qc
. �

Then Theorem 1.2 follows easily because P ∗(n−c) is supported on Ac.

Proof of Theorem 1.2. First, note that P ∗(n−c) is supported on Ac because the ran-
dom element may be written as

k0gµk1 · · · kn−1gµkn = k′0

n−c∏
i=1

(
(k′i)−1gµk

′
i

)
,

where k′n = kn, and k′i = kik
′
i+1, and note that each (k′i)−1gµk

′
i is a transvection, and

so
∏n−c
i=1 (k′i)−1gµk

′
i is the product of n − c transvections, and thus has an (n + c)-

dimensional 1-eigenspace. Thus, P ∗(n−c) is supported on Ac. Then as the support of
D has only q elements,

‖P ∗(n−c) ∗D − U‖ > |P ∗(n−c) ∗D(Ac · supp(D))− U(Ac · supp(D))|

> 1− q|Ac|
|GL2n(Fq)|

> 1− C

qc−1

by Proposition 5.1. �
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