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Chromatic symmetric functions via the

group algebra of S,

Brendan Pawlowski

ABSTRACT We prove some Schur positivity results for the chromatic symmetric function X of
a (hyper)graph G, using connections to the group algebra of the symmetric group. The first
such connection works for (hyper)forests F: we describe the Schur coefficients of X in terms of
eigenvalues of a product of Hermitian idempotents in the group algebra, one factor for each edge
(a more general formula of similar shape holds for all chordal graphs). Our main application of
this technique is to prove a conjecture of Taylor on the Schur positivity of certain X, which
implies Schur positivity of the formal group laws associated to various combinatorial generating
functions. We also introduce the pointed chromatic symmetric function Xqg , associated to a
rooted graph (G,v). We prove that if Xg, and Xp ., are positive in the generalized Schur
basis of Strahov, then the chromatic symmetric function of the wedge sum of (G, v) and (H, w)
is Schur positive.

1. INTRODUCTION

Let G be a finite simple graph with vertices V and edges E. A coloring of G is a
function k : V' — N, and « is proper if (v,w) € E implies k(v) # k(w).

DEFINITION 1.1 ([9]). The chromatic symmetric function of G is the formal power

series
Xg = § Ly
K

where K runs over proper colorings of G and xx = [],cy Tr(w)-

k

—

The specialization X¢(1,...,1,0,0,...) recovers the more classical chromatic poly-
nomial x¢ (k). Being a symmetric function, X¢ is a linear combination of Schur func-
tions, and the question we are concerned with here is when these coefficients are
nonnegative, i.e. when X¢ is Schur positive. We will often say “G is Schur positive”
to mean that X is Schur positive.

The best-known result of this type is due to Gasharov [3]: if P is a (3 + 1)-free
poset (does not contain the disjoint union of a 3-chain and a 1-chain as a subposet),
and G is its incomparability graph (the graph on P with an edge (z,y) whenever x
and y are incomparable in P), then Xq is Schur positive. Stanley and Stembridge
conjectured a stronger claim, that such X are positive in the basis of elementary
symmetric functions, and this conjecture remains open [12].
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Let A be the ring of symmetric functions over C, and C[S,] be the complex group
algebra of the symmetric group S,,. Write cyc(o) for the cycle type of o € S, i.e. the
partition of n whose parts are the lengths of the cycles of o.

DEFINITION 1.2. The Frobenius characteristic map ch : C[S,,] — A s the linear map
with o +— %pcyc(g), where py is a power sum symmetric function.

Here is our first tool for proving Schur positivity.

LEMMA 1.3 (cf. Lemma 2.6). Let a € CIS,,], viewed as the operator C[S,] — C[Sy],
x — azx. If a acts with nonnegative trace on the irreducible submodules of C[Sy], then
ch(a) is Schur positive.

Lemma 1.3 is most familiar in the case when « is central. The Frobenius charac-
teristic ch : Z(C[S,]) — A is a linear isomorphism sending the characters of S, to
the Schur functions of degree n, and the eigenvalues of o € Z(C[S,]) are essentially
the same as the Schur coefficients of ch(a)). We will apply Lemma 1.3 to a which are
usually not central, but which have nice factorizations that sometimes let us deduce
nonnegativity of their eigenvalues using standard linear algebra techniques.

In particular, given a forest F' with vertex set [n] 2t {1,2,...,n} and edge set E,
define the operator
ap=nl [[ (1-(ij)) € Sn.
(i,J)€E
where the product is taken in some unspecified linear order.

THEOREM 1.4 (cf. Theorem 2.5). Let F' be a forest. Then ch(ap) = X, regardless of
the choice of edge ordering used to define ap.

This theorem can be generalized: in Section 2 we will see that there is a partition
Eq, ..., E, of the edges of any chordal graph G with the property that

ag=n] 1= D @)

(i.)€Ep
maps to X¢q under ch.

EXAMPLE 1.5. The operator 1 — (i j) is positive semidefinite with respect to the Her-
mitian inner product on C[S,] having S, as an orthonormal basis. Thus, if Ps is
the path with edges (1,2),(2,3), then ap, = (1 — (12))(1 — (23)) is the product
of two positive semidefinite operators, and therefore has nonnegative eigenvalues [5,
Corollary 7.6.2]. It follows from Lemma 1.3 and Theorem 1.4 that Ps is Schur positive.

The argument of Example 1.5 can be easily modified to show that any path P,
is Schur positive, although this fact is not new: Stanley [9, Proposition 5.3] showed
by a direct computation that Xp, has the stronger e-positivity property. Our main
new application of Theorem 1.4 will be to prove a conjecture of Taylor [14] on the
Schur positivity of certain path-like hypergraphs G (Section 2.3). Taylor showed that
this conjecture would imply the Schur positivity of the formal group law f(f~*(z1) +
f7Y(x2) + ---) associated to the generating function f(z) = Y, ana™ of various
interesting families of combinatorial objects.

The wedge sum GV H of two graphs G and H with distinguished vertices v and w
is their disjoint union modulo the identification of the two distinguished vertices. In
Section 3 we define the pointed chromatic symmetric function Xq,, € Alt], and show
it has the following properties.

e The A-linear function defined by ¢ + p; 11 sends X¢ , to Xg.
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e X, satisfies a deletion-contraction recurrence.

L4 XG7’UXH,’LU = XG\/H,'U-

o If X¢, and Xy, expand nonnegatively in the pointed Schur basis of Aft]
(called the generalized Schur basis in [13]), then G V H is Schur positive.

EXAMPLE 1.6. We will show that Xp, ; is pointed Schur positive, as is X¢, where C'
is a cycle graph. Thus any graph

is Schur positive.

In Section 4 we investigate the expansion of X¢ , in a pointed analogue of the ele-
mentary symmetric functions. Pointed e-positivity of X , implies e-positivity of X¢,
and we describe a version of the Stanley-Stembridge conjecture for pointed chromatic
symmetric functions.

Our analysis of pointed chromatic symmetric functions will again rely on repre-
sentation theory. Up to predictable positive scalars, the eigenvalues of some 3 in the
center Z(C[S,]) of C[S,,] are also the coefficients of § in the basis of characters, or the
Schur coefficients of ch(3). Now let Z¢(s, (C[S,—1]) denote the centralizer of C[S,, 1]
in C[S,]. The algebra Zc(g,)(C[S,—1]) turns out to be commutative and semisim-
ple, so by Wedderburn’s theorem it again has a distinguished basis of “generalized
characters”. Strahov [13] defined an analogue ch’ : Zg(g,)(C[Sn—1]) — Alt] of the
Frobenius characteristic, and defined the pointed Schur functions mentioned above as
the images of the generalized characters under ch’. The pointed chromatic symmetric
function Xp,, is ch’(3) for a certain 5 € Zg(s,)(C[Sn—1]), and the cigenvalues of 3
are essentially the pointed Schur coefficients of ch’(3).

2. CHROMATIC OPERATORS

2.1. FORrRESTS. The following lemma of Dénes provides the basic connection between
trees and permutation factorization which we will exploit.

LEMMA 2.1 ([2]). Let G be a graph with vertex set [n]. Then

II G esn,

(1.4)EE(G)
the product being taken in any order, is an n-cycle if and only if G is a tree.

Proof. See [7, § 2], or Lemma 2.27 below. O

Write type(G) for the partition whose parts are the sizes (number of vertices) of
the connected components of G. Recall that cyc(o) is the partition consisting of the
lengths of the cycles of o.

COROLLARY 2.2. If F is a forest, then cyc (H(Lj)eE(F)(i j)) = type(F).

Stanley showed how to expand X¢ in the power sum basis of A. Given S C E(G),
let Gg be the graph with vertex set V(G) and edge set S.

THEOREM 2.3 ([9, Theorem 2.5]). Xo = > (—=1)!¥Ipype(as)-
SCE(G)

Algebraic Combinatorics, Vol. 5 #1 (2022) 3
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DEFINITION 2.4. Given a forest F with vertex set [n] and a linear ordering w of its
edges, define the associated chromatic operator

ape=nl [ (1-(4)€C[S,

(4,9)€E(F)

where the product is taken in the order prescribed by .

The dependence on 7 will often be unimportant, in which case we write ap. Corol-
lary 2.2 and Theorem 2.3 immediately give:

THEOREM 2.5. chap, = X for any edge ordering m of a forest F.

If G is not a forest, then ch ag  usually does not equal X¢, and may depend on
the choice of 7. For instance, if G is a length 4 cycle with the two edge orderings
= ((1,2),(2,3),(3,4),(4,1)) and 7" = ((1,2),(3,4),(2,3),(4,1)), then chag, #
ch ag, -

We now recall a little representation theory of finite groups. Let I" be a finite group.
The center Z(C[I']) consists of the conjugation-invariant elements of C[I'], so has a
natural basis {>_ geC g} where C runs over the conjugacy classes of I'. On the other
hand, because C[I'] is a semisimple ring, Wedderburn’s theorem says that Z(C[I'])
has a unique (up to ordering) basis of idempotents adding to 1, which are necessarily
orthogonal (distinct idempotents multiply to 0). Explicitly, these idempotents are

Ex et % >4 X(9)g where x runs over the irreducible characters of I. The group

algebra C[I'] decomposes as a direct sum @X(VX)@X(U, where VX is the irreducible
module with character x, and multiplication by the idempotent e, is the unique
I-equivariant projection onto (VX)®x(1),

In the case I' = S,, symmetric functions appear because the transition matrix
between the conjugacy class basis and idempotent basis described above is the
transition matrix between rescalings of the power sum basis and Schur basis. More
specifically, the Frobenius characteristic ch : Z(C[S,]) — A,, is a linear isomorphism
sending ) ¢ XMoo = XAL(!1)5>\ to sx; here and below we abbreviate 1 to ) and
VX to V.

Write [s)]f for the coefficient of sy in f € A. One can deduce from basic character
identities that [s\]p, = x*(u) [6, L.7].

LEMMA 2.6. The trace of a € C[S,,] acting on V* is tr(aey) = nl[s)] ch(a).

Proof. As described above, € is a projection onto the irreducible representation V*,
so tr(alys) = tr(aey). To see that this equals n![sy] ch(«), it suffices by linearity to
assume « € S,,. Now

tr(alya) = X’\(OZ) = [Sx]Pcyc(a) = nl[sy] ch(a). U
COROLLARY 2.7. If o € R[S,,] is positive semistable (all eigenvalues have nonnegative
real part), then ch « is Schur positive.

Proof. The irreducible representations of S,, are defined over R and a € R[S,,], so the
eigenvalues of «|yx come in complex conjugate pairs. By the positive semistability
assumption, their sum is nonnegative, and this sum is tr(aly») = nl[sy] ch(a). O

For our purposes, Theorem 2.5 allows us to work with any convenient edge ordering.
We conjecture that the spectrum of ap . does not depend on 7, and that there is a
nice family of forests with positive semistable chromatic operators.

CONJECTURE 2.8. Let F' be a forest.
(a) The characteristic polynomial of ap . does not depend on the edge ordering .

Algebraic Combinatorics, Vol. 5 #1 (2022) 4
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(b) The number of forests on n wvertices whose chromatic operator is posi-
tive semistable is fni1, where f, is the nth Fibonacci number (using the
convention that f1 = fo =1).

The eigenvalues of ap ¢ are the disjoint union of the eigenvalues of ar and of ag,
S0 ap is positive semistable if and only if a¢ is for all connected components C' of
F. Figure 1 shows the other trees T' on at most 10 vertices for which ar is positive
semistable, omitting the paths for brevity (ap is positive semistable for any path P,
as per the proof of Theorem 2.31).

S

*—0—!
*—
*—
*—
P—

FicURE 1. The trees with at most 10 vertices whose chromatic op-
erator is positive semistable, not including the paths.

We have checked part (b) of Conjecture 2.8 up to 10 vertices. The operators ap .
for different m need mot be similar to each other, or even have the same minimal
polynomial. For example, if F = P, is the path on vertices {1,2,3,4} with two
edge orderings m = ((1,2),(2,3), (3,4)) and 7 = ((1,2),(3,4),(2,3)), then ap, 5 is
diagonalizable while ap, r is not.

For a € C[S,], let [1]a denote the coefficient of the identity permutation in .
Conjecture 2.8(a) would follow from the more combinatorial conjecture that [1]af, -
is independent of 7 for every positive integer k (or just & < n!). Indeed, for o € C[S,,]
one has tr(a) = n![1]a, so the numbers n![1]af, are the power sum symmetric func-
tions pj evaluated on the eigenvalues of ap,. These numbers determine the ele-
mentary symmetric functions ej, evaluated on the eigenvalues of ar -, which are the
coefficients of the characteristic polynomial of ap, (up to a predictable sign). This
combinatorial conjecture holds when k = 1,2: Lemma 2.1 implies that X [1]apr = 1
and that %[1]0@;17r is the number of matchings of the forest F. It appears that more
generally, the symmetric function ch(a’}m) is independent of m, although it need not

be monomial-positive for £ > 1.

Algebraic Combinatorics, Vol. 5 #1 (2022) 5
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2.2. CHORDAL GRAPHS. In this section we note that the product definition of ap
(Definition 2.4) can be generalized to a broader class of graphs. Put a total ordering
on the edges of G. A circuit of G is the set of edges in a cycle, and a broken circuit
is a circuit minus the edge with the largest label. The broken circuit complex Bg of
G is the collection of all sets of edges which contain no broken circuit of G.

DEFINITION 2.9. The join of two simplicial complexes A1 and Ay is the complex
A1« Ay ={FUFy: F; € Ay, F5 € Ay} A complex A factors completely if it is the
join of zero-dimensional complezes.

EXAMPLE 2.10. Take G to be the complete graph K3, with edges a < b < ¢. There
is one broken circuit, namely {a, b}, and the broken circuit complex By, is the sim-
plicial complex with groundset {a,b, ¢} and facets {a, c}, {b, ¢}. This complex factors
completely: it is the join {{c}} * {{a}, {0}}.

Stanley gave the following alternative formula for X in terms of power sums.
THEOREM 2.11 ([9, Theorem 2.9]). X¢ = > g p.. (—1)¥peype(cs)-
COROLLARY 2.12. If Bg factors completely as Ay x -+ - x Ay, define
q
ag=n!] 1= > Gj)
p=1 (i,9)€A,
Then ch(ag) = X¢.

Proof. If S € Bg, then G|g is a forest, given that if S contained a circuit it would
contain a broken circuit. Corollary 2.2 then implies that

type(Gls) =cye [ ] (i4)
(i,4)€S

Thus ch maps n! Z:SEBG(—l)‘S| 1 j)es(i j) to X¢. But this sum factors into the
form agq if Bg factors completely. d

EXAMPLE 2.13. Since By, factors completely as {{(2,3)}} = {{(1,2)},{(1,3)}}, we
can write X, as the image under ch of

6(1—(23))(1—(12)—(13)).

Finally, there is a nice characterization of the graphs whose broken circuit complex
factors completely.

THEOREM 2.14 ([1]). The broken circuit complex Bg factors completely if and only if
G is chordal, i.e. has no induced cycles of size larger than 3.

2.3. HYPERFORESTS.
DEFINITION 2.15. A hypergraph is a pair (V, E) where V is a set and E C 2V ~ {2},

We think of hypergraphs as graphs whose edges may contain more than two ver-
tices.

DEFINITION 2.16 ([10, § 3.3]). A coloring of a hypergraph G = (V, E) is again a func-
tion k: V — N, and & is proper if |k(e)| > 1 for all e € E with |e| > 1. That is, there
are no monochromatic edges under k except perhaps singletons. The chromatic sym-
metric function of G is again Xg =), x where k runs over proper colorings of G.

Algebraic Combinatorics, Vol. 5 #1 (2022) 6
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As pointed out in [10], one might at first want to a define a coloring of a hypergraph
G to be proper if k(v) # k(w) whenever v # w are contained in a common edge, but
this would lead to nothing new: such colorings are simply proper colorings of the
graph on V with an edge (v, w) whenever v, w are contained in a common edge of G.

EXAMPLE 2.17.If G is the hypergraph with vertices [n] and a single edge [n], then
Xa = p!' — pn. This is not the chromatic symmetric function of any graph: such a
graph would have to have all non-constant colorings proper, hence no edges, but then
the constant colorings would also be proper.

DEFINITION 2.18. The line graph of a hypergraph G is the graph L(G) with vertex set
E(G), and an edge (e, €e') if and only if eNe’ # & for distinct edges e, e’ € E(G). Say
G is edge k-colorable if L(G) admits a proper k-coloring.

EXAMPLE 2.19. Suppose G is a linear interval hypergraph, meaning that L(G) is a
disjoint union of paths and if e,e¢’ € E(G) are distinct, then |e N e/| < 1. Then
G is edge 2-colorable. By contrast, the graph G with edges {1,2},{1,3},{1,4} has
L(G) = K3, and is not edge 2-colorable.

Taylor conjectured that linear interval hypergraphs are Schur positive [15,
Conjecture B]. In this section we prove Taylor’s conjecture, and more generally
that edge 2-colorable hyperforests are Schur positive—the hypergraph with edges
{1,2,3},{1,1'},{2,2'},{3,3'} being an example of an edge 2-colorable hyperforest
which is not a linear interval hypergraph. Once we check that the machinery of
§ 2.1 still works for hypergraphs, the proof will be essentially the short argument of
Example 1.5.

DEFINITION 2.20. A path in a hypergraph is a sequence vy, e1,va, €, . .., Vk, €k, Vk+1
where the v; are vertices and the e; are edges with v; € e; Ne;_1, all entries in the
sequence are distinct except perhaps that vg41 = v, and k > 1. If v1 = vgy1 then
the path is a cycle. A hypergraph with no cycles is a hyperforest, and a connected
hyperforest is a hypertree. (A hypergraph G is connected if there is no nontrivial
disjoint union V(G) = V4 U Va such that every edge is contained in either Vi or Vs.)

EXAMPLE 2.21. The hypergraph G with edges e; = {1,2,3} and e; = {2,3,4} is not
a hypertree even though L(G) is a tree, because it contains the cycle 2, ey, 3, €2, 2.

The support of o € Sy, is supp(o) = {i € [n] : 0(3) # i}.

LEMMA 2.22. If T' is a hypertree on [n] and X C S, is a collection of cycles whose
supports are exactly the edges of T, then [[.cx, 0 is an n-cycle, regardless of the order
in which the product is taken.

Proof. Any hypertree has a leaf, as can be seen using the same argument one would
use for a tree: starting at an arbitrary vertex and trying to follow a path for as long
as possible, we are eventually forced to repeat a vertex or edge that has already been
used; in the former case we have found a cycle, and in the latter we have found a leaf.

So, let v be a leaf of T. Form a new hypergraph T” by removing v from V(T and
from the edge {v1,..., vk, v} it was in, and deleting the modified edge if it becomes
a singleton. Evidently T” is still a hyperforest, and is connected because v was a leaf.
Write the product of cycles associated to T as o(vy - -+ v, v)T where o and T are
products of cycles. By induction, p = o(vy -+ vg)7 is an (n — 1)-cycle with support
[n] \ {v}. Now

o(vy - vpv)T = pr g )T = p(7 o) T (V)

= p(t7 (k) v) (since v ¢ supp(7))

Algebraic Combinatorics, Vol. 5 #1 (2022) 7
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Since p is an (n — 1)-cycle with support containing 7=1(v;) but not v, the product
p(771(vg) v) is an n-cycle as desired. O

COROLLARY 2.23. If F' is a hyperforest and ¥ is a collection of cycles with supports
E(F), then cyc (I],es, o) = type(F).

The power sum expansion of X¢ for hypergraphs can be described in exactly the
same way as for graphs.

THEOREM 2.24 ([10, Theorem 3.5]). Xg = Z (71)‘S|ptype(gs) for any hypergraph G.
SCE(G)

DEFINITION 2.25. Given e C [n], let

1
Qe =1— —— o,
(=1 &

where o runs over all cycles in S,, with support e. Given a hyperforest F' on [n] and
an ordering w of its edges, define the hyperforest operator

I o

e€E(F)
with the product being taken in the order dictated by .
EXAMPLE 2.26. If F has vertices {1,2,3,4} and edges {1,2,3} and {3,4}, then

1 1
ap =4! (1 — 5(123) — 2(132)> (1—(34)).
LEMMA 2.27. chap = X for any edge ordering m of a hyperforest F.

Proof. ap , is the sum over all subsets S = {e1 < --- < e,} C E(F) of the expressions

1) SIS SRANTS | Py

ecS
where 04,...,0, range over the cycles with supports ey, ...,e,. By Corollary 2.23,
the image under ch of (1) is
s s
1)l8] Z ptype (Fs) H €| S =(=1)! ‘ptype(Fs)~
The lemma now follows by Theorem 2.24. U

In what follows, we consider C[S,,] as an inner product space by taking the elements
of S,, to form an orthonormal basis, writing (-,-) for the inner product. Given o =

>, oo €C[S,], let a* =3 cyo L.
PROPOSITION 2.28. Viewed as the operator x — ax, the adjoint of a € C[S,] is a*.

Proof. Tt suffices to check that the adjoint of o € S, is 0!, which follows from the
computation

(O’p7 T) = 60/},7’ = 5p,a*1'r = (p70,717,)
for all p, 7 € S,. O

LEMMA 2.29. For any e C [n], the operator a. is positive semidefinite.

Algebraic Combinatorics, Vol. 5 #1 (2022) 8
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Proof. Using, say, the Murnaghan-Nakayama rule, one can obtain the explicit expan-

sions
m

Pm = Z(—l)ks(k,lwk) and P = Z s,

k=1 AFm

where f* = x*(1) is the number of standard Young tableaux of shape A. These

le|

expansions make it clear that |e|'ch(ac) = p;' — pje| is Schur positive, and since
a € Z(C[S,)), this implies o, has nonnegative eigenvalues. Proposition 2.28 shows
that o, is Hermitian, so it is positive semidefinite. ]

REMARK 2.30. The proof of Lemma 2.27 actually shows that ch(ap,) = Xp holds

for any choice of e = 1 — " c,0 where o ranges over cycles with support e and

Yo Co = 1. For our applications we want a. to be positive semidefinite, and we made

the choice of o, we did because it allows for the proof of Lemma 2.29 given above,

which seems natural in our setting. However, it is worth noting that a more direct
1

computation will show that 1 — %0 - 50*1 is also positive semidefinite for any cycle o.

We can now prove one of the main theorems of this section.
THEOREM 2.31. Any edge 2-colorable hyperforest G is Schur positive.

Proof. Choose a proper 2-coloring of the edges of G by colors “even” and “odd”. Define

Qodd = H Qe and Qeven = H Qe.

e€E(G) e€E(G)

e odd e even
By Lemma 2.27, ch(®odd®even) = X The factors of apqq commute because the odd
edges e are pairwise disjoint. Since each factor of a,qq is positive semidefinite by
Lemma 2.29, so is ayqq itself—as of course is aeyen. But the product of two positive
semidefinite operators has nonnegative eigenvalues [5, Corollary 7.6.2], so X is Schur
positive by Lemma 1.3. O

Suppose f(x) is a formal power series over a field K with f(0) = 0 and f'(0) # 0,
so that the compositional inverse f~!(x) exists as a formal power series. The formal
power series f(f~(z1) + f~(x2) +--+) € K[[x1,22,...]] is called the formal group
law associated to f(x); by f~!(z;) we mean f~! written as a power series in the
indeterminate x; rather than z. Evidently f(f~!(x1) + f~'(z2) +--+) is symmetric
in x1,xs,..., although it may lie in the completion of A rather than A itself.

Taylor [14] showed that if f(z) is the exponential or ordinary generating function of
an appropriate family of combinatorial objects—more precisely, of a species equipped
with an operation satisfying certain axioms—then f(f~!(xq1) + f~!(z2) +---) is an
explicit positive linear combination of chromatic symmetric functions Xy for some
hypergraphs H. These hypergraphs often turn out to be linear interval hypergraphs,
so that the associated formal group law is Schur positive by Theorem 2.31. The next
theorem records some such cases.

THEOREM 2.32. If a,, counts any of the following, the formal group law associated to
the ordinary generating function Y. | a,z™ is Schur positive:

(a) Permutations of [n].

(b) Plane trees where no node has exactly one child, with leaves labeled by [n]
from left to right.

(¢) L-admissible lattice paths with n steps: here L C 7Z is a finite set, and an
L-admissible lattice path is a sequence si,...,s, where s; = s, = 0 and
Si+1 — S; € L for each i.

Algebraic Combinatorics, Vol. 5 #1 (2022) 9



BRENDAN PAWLOWSKI

Likewise, if b,, counts any of the following, the formal group law associated to the

exponential generating function ), _; %x” is Schur positive:

(a’) Permutations of [n].
(b’) Rooted trees in which no node has exactly one child, with leaves labeled by
[n].

(¢’) Posets with a minimum and a maximum whose elements are labeled by [n].

The same Schur positivity statement also holds for the Hadamard product of any
two of these exponential generating functions, the Hadamard product of Y o an oy
and Y0 by L being Y07 anby Ly

Proof. If f is the ordinary generating function of what is called a contractible L-
species in [14], then [14, Theorem 6.1] shows how to write f~1(f(z1) + f(a2) + )
in the form ), X, where H runs over a certain set of hypergraphs. The ordinary
generating functions (a), (b), and (c) all correspond to contractible L-species, and as
noted in [14, § 9.2], all of the associated hypergraphs H are linear interval hypergraphs,
so the theorem in these cases follows from Theorem 2.31.

If f is the exponential generating function of a contractible species, then there is
again an expression f~1(f(z1) + f(@2)+-) =D g WXH' The H appearing in
the sum are not always edge 2-colorable hypertrees, but in the cases (a’), (b’), and (¢’)
they are linear interval hypergraphs. Since this fact is not explicitly mentioned in [14],
we verify it here, although nothing in the rest of the paper relies on the present
theorem. We use the descriptions of the relevant hypergraphs H from, respectively,
§ 3.4, § 3.2, and § 3.5 of [14].

(a’) H runs over the set of path graphs [14, § 3.4].
(b") H is always a hypergraph with disjoint edges [14, § 3.2].
(¢’) Let P be a finite poset with minimum and maximum elements. Define I'(P)
to be the set of non-singleton intervals U = [a,b] C P such that if p € P\ U
and v € U, then p < v if and only if p < a, and p > wu if and only if p > b. Let
I(P) be the set of elements of I’(P) which are minimal under containment.
Then H can be taken to run over a set of hypergraphs whose edge sets have
the form I(P) [14, § 3.5].
Suppose H is such a hypergraph. Let us first see that |eNne’| < 1 for distinct
e,e’ € E(H). Suppose [a,b], [c,d] € I(P) are distinct and that x € [a, b]N]c, d].
By minimality we cannot have [a,b] C [c, d], so either a ¢ [c,d] or b ¢ [c,d].
Similarly, either ¢ ¢ [a, b] or d ¢ [a, b]. It suffices to consider the following two
cases.
e Assume a ¢ [¢,d] and ¢ € [a,b]. Then a < x € [¢,d] implies a < ¢, and
¢ < x € [a,b] implies ¢ < a. Thus a = ¢, but this contradicts a ¢ [c, d].

e Assume a ¢ [c,d] and d ¢ [a,b]. Then a < ¢ as before, while now d >
x € [a,b] implies d > b. If b ¢ [¢,d], then b > x € [¢,d] implies b > d, a
contradiction. Thus a < ¢ < b < d, so [a,b] N [¢,d] = [¢,b]. One checks
that [c,b] has the property required for membership in I’(P) so long
as it is not a singleton, but this would contradict minimality of [a, b].
Therefore ¢ = b, and [a,b] N [¢,d] = {b}.

A path in L(H) is a sequence of edges [a1,b1],. .., [ak, bx] of H such that
[a;, b)) N a;—1,bi—1] # @ for each i. The previous paragraph shows that a; =
b;_1 for each i, so a; < -+ < ag. The acyclicity of < therefore implies that
L(H) is a forest. If [a, b], [b, c], [¢, d] and [a, b], [b, ¢], [c, €] are two paths of length
3 in L(H), then [c,d] N [c,e] # @ implies d = ¢, so L(H) has no vertices of
degree more than two. Thus, H is a linear interval hypergraph.
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Finally, suppose f(z) = Y oo Oanbn r is the Hadamard product of two of the
exponential generatlng functions descrlbed above As described in [14, § 5], there is an
expression 1 (f(z1)+ f(xa)+) =Dy e ‘,XH where H runs over hypergraphs
with edge sets of the form E(Hl) N E(Hy), w1th H, and H; being two hypergraphs
of the types described in (a’), (b’), or (¢’). We saw that such H; and Hy are linear
interval hypergraphs, which implies H is. O

3. POINTED CHROMATIC SYMMETRIC FUNCTIONS

A pointed graph is a pair (G,v) with v € V(G). Write type, (G) for the partition
whose parts are the sizes of the connected components of G not containing v, and
type, (G) for the size of the component containing v. Recall that if S C E(G), then
G denotes the graph with vertices V(G) and edges S.

DEFINITION 3.1. The pointed chromatic symmetric function of a pointed graph
(G,v) is

Xeo= Z (_1)|S|ptype;(Gs)ttype (Gs)-1 ¢ e Aft].
SCE(G)

EXAMPLE 3.2.If G = P, =], then
S =@~ type; (Gs) = (1), typel (Gs) =1
S ={(1,2)} ~ type; (Gs) = @,  type] (G2) =2
so Xp,1 =p1 —t.

ExXAMPLE 3.3. If G is a disjoint union G; UG and v € Gy, then X¢ ., = X, 0 XG,-
In particular, if v is an isolated vertex of G then X¢ , = X¢.

The wedge sum (G,v) V (H,w) is the pointed graph obtained from G U H by
identifying v and w, with v = w as the distinguished vertex. The next proposition is
analogous to the fact that Xquy = X¢Xg-

PROPOSITION 3.4. Xy = XgowXmw for any pointed graphs (G,v) and (H,w).

Proof. For subsets S C E(G) and S' C E(H), we have (GV H)gus: = Gs V Hgr,
which implies

type, (G V H)sus') = type, (Gs) + type] (Hg/) — 1
type, (G V H)sus') = type, (Gs) Utype, (Hs'),

where \ U p is the partition whose parts are the parts of A together with the parts
of u. 0

Pointed chromatic symmetric functions satisfy a deletion-contraction recurrence.
Given e € E(G), let G \ e be the graph obtained from G by deleting the edge e, and
G /e the graph obtained by contracting it.

LEMMA 3.5. If e is incident to v € V(G), then Xg.v = Xgwew — tXG/e,0-

Proof. In Definition 3.1, sum separately over those sets S C FE(G) in which e
does not appear and those in which it does. These two sums are, respectively,
Xgwew and —tXg/e,. To be precise, the second sum is —tXg/., where G/e is
considered as a multigraph—for instance, if e = (v,w) and G contains a triangle
(v, w), (u,v), (u,w) € E(G), then the edge (u,v) appears twice in G/e. However, one
can check by inclusion-exclusion that if H is a multigraph and H’ is its underlying
graph, then Xy, = Xg 4. O
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COROLLARY 3.6. After applying the A-linear map A[t] — Alt] sending t — —t, Xa v
becomes nonnegative in the monomial basis {mxt'} of A[t].

Proof. Induct using the deletion-contraction recurrence. The base case is when v is
an isolated vertex, in which case X, = X¢ € A is monomial-positive. d

Given Corollary 3.6, it would be interesting to find a combinatorial description of
the monomial expansion of Xq .

Our goal in the rest of this section is to prove that if Xz, and Xpg ,, are positive
in the pointed Schur basis, then X¢gvp, is Schur positive. Defining this basis and
proving the necessary lemmas requires a small detour into representation theory. For
v € [n], let Z, , be the centralizer of C[S,,—1] in C[S,], where we identify S,,_; with
the subgroup of S,, fixing v.

LEMMA 3.7 ([16, Theorem 2.1]). Every = € R[S,] N Z,, , is Hermitian, and Z,, , is a
semisimple commutative algebra.

Being semisimple, Wedderburn’s theorem says that the algebra Z, , has a unique
basis of orthogonal idempotents which add to 1. These idempotents can be described
as follows. Given a part i of A - n, let A¥ be A with one copy of i replaced by i —1 (or

deleted if ¢ = 1). Let ) = XATL(!I) Y ses, X (0)o € Sy be the idempotent in Z(C[Sy])

associated to the character x*. Define Exi def Exli€r, viewing ey € C[Sp—1] as an
element of C[S,,]. The €y, lie in Z,, and are again idempotents, and one can show
that ),y exs = e (this is basically the branching rule for restricting representations
from S,, to S,,_1), which implies that they are the basis of primitive orthogonal
idempotents of Z,, ,,. Strahov [13] introduced the pointed Frobenius characteristic and
pointed Schur functions defined below to study these idempotents in the same way
that one studies the irreducible characters of S,, via the Frobenius characteristic map
and Schur functions.

DEFINITION 3.8. For v € [n], let cyc) (o) be the size of the cycle of o containing v,
and cyc, (o) the partition of cycle sizes of the cycles not containing v. The pointed
Frobenius characteristic ch, : C[S,] — A[t] is the linear map sending o € S, to

1

cyct(o)—1
o Peves @O

DEFINITION 3.9. The pointed Schur function associated to A+ n and i € X is
n!

——¢C

X (1)

Pointed Schur functions form a basis of A[t] because the idempotents €, ; form a
basis of Z, ,. Note that sy ; has degree |A| — 1.

Sxi = by, (ex.4)-

LEMMA 3.10. s(1n)1 = Y py (=) Ly

Proof. Since x'") (o) = sgn(c) we have

1
8(171)71 = 5(171,—1)6(171) = m Z Sgn(a)a Z Sgn(T)T

’ 0ESn_1 TESK
1
= PP Z sgn(o) sgn(o) Z sgn(7)T
’ T 0€Sn_1 TESH
1
= Z sgn(7)T.
" T€ES,
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Thus,

n!
(2) S0 =~y ch, (e(in-1yg(1n)) = chy, Z sgn(7)7 | .
X (1) TESK
Letting z) be the size of the centralizer of a permutation of cycle type A (so there
are n!/z) permutations in S, of cycle type \), one verifies similarly that the number
of permutations o € S, with cyc, (¢) = Ais (n — 1)!/z5. Applying this fact, and
breaking up the sum (2) according to the size k of the cycle containing n,
- - Px h
S(1my,1 = Z(—l)k ! Z sgn(\) =2 th L

z
=1 Arn—k A

Here sgn(\) = (—1)"_5(’\) is the sign of a permutation of cycle type A. The lemma

now follows from the symmetric function identity >y, sgn(A\)2 = ey, [11, Propo-

sition 7.7.6]. O

Let Sx be the group of permutations of a set X, and let [a, b] def {a,a+1,...,b}.
Define a bilinear product o : C[S,] X C[S}nntm—1)] = Zntm—1,n Dy

def 1 -1
(a,B) = aof = = Dl(m—1)! Z cafo”".
G’GSn+m_1
o(n)=n
PROPOSITION 3.11. ch, (o ) = ch,(«) ch,(8).
Proof. 1t suffices to assume o € S, and 8 € S}, 4m—1], in which case the proposition
follows from the identities

cye, (aB) = eyc, (a) Ucye, (B)
cyel (aB) = cyc) (a) + cyct(B) — 1. O
Let ¢ : Alt] — A be the linear map with Y(pati™t) = paus for i > 1. It can be

shown that ¥(sx;) = (n—l)_lfA“sA, so if f is pointed Schur positive then (f) is
Schur positive. The products sy ;s, ; are usually not pointed Schur positive, but a
weaker result holds.
LEMMA 3.12.9(sx,;5,,5) is Schur positive.
Proof. Using Proposition 3.11 and the fact that ch = 4 o ch,,

AL Jpf!
V(sxiSpu;) = ch(ex;0e,;).
A1) xm (1) "
By Lemma 2.6, it is enough to show that tr((ex; © €,,5)e,) is nonnegative for all
v E A+ |u] — 1. Now,

(n—1)!m —1)tr((exioepnj)en) = Z tr(oex e, ;0 tey)
0ESntm—1
o(n)=n

= Z tr(EA,iau’jo_lal,a)
ag

(3) = Z tr(en,ipu,j€v) (as €, is central).

Since the characters of S, are real-valued, Lemma 3.7 shows that €5 ; and €, ;
(and of course ,) are Hermitian. Being idempotent, they are therefore positive semi-
definite, as is €, ¢, since €, is central. It follows that ey ;e je, has nonnegative
eigenvalues and that the sum (3) is nonnegative. O
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We now come to the main result of this section.

THEOREM 3.13. Let (G,v) and (H,w) be pointed graphs. If X, and X g . are pointed
Schur positive, then Xgvg is Schur positive.

Proof. 1t is clear from the definitions that ¥(Xgvu.) = Xeva. Since Xavh, =
XG,vXHw by Proposition 3.11, the theorem follows from Lemma 3.12. O

In Section 4 we will obtain explicit expressions for pointed chromatic symmetric
functions of paths (when the distinguished vertex is a leaf) and cycles, which in
particular will be pointed Schur positive. Even without such expressions we can obtain
a stronger result for paths than pointed Schur positivity. First, a lemma analogous to
Lemma 2.6.

A
LEMMA 3.14. For any a € C[S,)], the coefficient of sx; in ch,(a) is W&?mw(asm).
Proof. First suppose o € Z,, ,. Since the ) ; are commuting orthogonal idempotents
spanning Z, ., the coefficient of €, ; in « is tr(aey ;)/ rank(ey ;). By definition of sy ;,
this coefficient is equal to XA"—('U[SM] ch, (), so the lemma holds when « € Z,, ,,.

Given an arbitrary a € C[S,,], define 3 = (n%l), Yoes, 0o ' Then € Z,,
and ch,(8) = chy(a). On the other hand,

1 1
tr(Ben,i) = m Z tr(oom*ls)\,i) = m Z tr(aails,\icr)
c€Sn_1 0ESH_1
1
= W Z tr(oeni) (since ex,; € Zpv)
0€Sn_1
= tr(aex;).
Therefore the lemma holds by applying the previous paragraph to §. O

THEOREM 3.15. Let G be a graph on [n,n +m — 1] and P the path on [n], both with
distinguished vertex n. If Xq , s pointed Schur positive, then Xgvp,1 s also pointed
Schur positive.

Proof. Let 8 € Zp, pnym—1),n be such that ch,(8) = Xg . Define

n—1 n—1

A= JJ] Q- (@i+1) and B= ] (1—(ii+1)).
=1 =1
i odd i even

Observe that Wchl(AﬁB) = Xgvpa (cf. Lemma 2.1). By Lemma 3.14, it
suffices to see that tr(ex ;ASB) > 0 for each idempotent 5 ; € Zptm—11-

Both A and B are positive semidefinite, being the product of commuting positive
semidefinite operators. Both €); and 8 are also positive semidefinite: they are
Hermitian by Lemma 3.7, €y ; is an idempotent, and S has nonnegative eigenvalues
because ch,(8) = Xg, is pointed Schur positive (applying Lemma 3.14). Now
consider two cases:

e n odd: Here A is in C[S,_1], so commutes with 3 € C[Sp, ;4m—1)]- Simi-
larly, B € C[S}3,] while ex; is in Z,,1,n—1,1, the centralizer of Sjg 4m—1]-
Therefore both AS and Bey ; are positive semidefinite, so (A8)(Bex;) has
nonnegative trace.

e n even: Here # and B are both in C[Sj ], so commute with € ;. In fact,
B is in C[S[2,,—1)], so it also commutes with . Therefore B¢y ; is positive
semidefinite, so A(SBey ;) has nonnegative trace. O
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Taking G to be a single vertex shows that Xp, , is pointed Schur positive. As an-
other example, X¢, is pointed Schur positive where C'is a cycle graph (Theorem 4.8),

so any graph

is pointed Schur positive at the leaf, and any graph

is Schur positive.

The commutativity and semisimplicity of Z,, ,, arise from the fact that the branch-
ing rule for restricting irreducible representations from S, to S,_; is multiplicity
free, and is key in Vershik and Okounkov’s approach to S,, representation theory [16].
When restricting to S,,—x with & > 1, multiplicities can appear, and the centralizer
of C[S,—x] in C[S,,] is no longer semisimple. On the other hand, irreducible restric-
tions restricted to S,_o x Sa are multiplicity-free; indeed, the coefficient of S* x S*
in Resg:_]c>< S S” is the Littlewood-Richardson coefficient c§ W which is 0 or 1 when
|| < 2. To get an analogue of a pointed chromatic symmetric function in this setting,
we would choose two distinguished vertices v, w and record two partitions (for each
subset of edges): the unordered list of sizes of the connected components not contain-
ing v or w, and the unordered list of the sizes of the 1 or 2 components containing
v and w. However, it is unclear whether the product of two of these symmetric func-
tions would have a nice interpretation in the same way that the product of pointed
chromatic symmetric functions relates to wedge sum.

4. POINTED CHROMATIC SYMMETRIC FUNCTIONS OF PARTICULAR GRAPHS

In this section we give formulas for pointed chromatic symmetric functions of complete
graphs, cycle graphs, and paths (with the distinguished vertex being a leaf in the last
case). These formulas will be positive in a pointed analogue of the basis of elementary
symmetric functions {ey}. Pointed elementary symmetric functions will themselves
be pointed Schur positive, so this is a stronger property than pointed Schur positivity.

DEFINITION 4.1. Given a composition o and a part i € «, define the pointed elemen-
. . . d
tary symmetric function e, ; by first defining e; ; :efs(lim, and then

def
€a,i = Cii €j-

jEaNt
We will take ego to be 0. By o\ 7 we mean « with, say, the first instance of ¢
deleted—Dbut we only use this notation in cases where the order of the parts of a \ 4
is not relevant. Likewise, we use o U ¢ to mean « with a part ¢ added, and again the
position in which ¢ is added will never be relevant.

LEMMA 4.2. Let A\, v be partitions and j € p. Then sys, ; is pointed Schur positive.

Proof. Say A+ n—1 and p F m. Viewing €\ € C[S,_1] as a member of C[S,,], we
have chy(ex) = ch(ex) = sx. By Proposition 3.11, sxs,; = ch,(ex o€,;). Up to
multiplication by positive scalars, the pointed Schur coefficients of chy(ex o ¢, ;) are
the numbers tr(e, x(ex0€,,;)) for v = n+m —1, as per Lemma 3.14. But we already
showed that these traces are nonnegative in the proof of Lemma 3.12. g

COROLLARY 4.3. ey ; s pointed Schur positive.
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Recall from Lemma 3.10 that e, ,, = Zzzl(—t)k_len,k. Equivalently,

00 - 5 00 .,
W nz::len’nz T 11tz > ens

PROPOSITION 4.4.tey; = ex — exti 11 = €xul,1 — €xti 41 for any partition A and
i € X, where X' is the partition obtained from X by replacing one copy of the part i
with © + 1.

Proof. We need to see that te;; = e; — e;414+1. By (4), this is equivalent to the
identity

oo

(o)
z . 1 .
t- 2t =1- 2t O
1+tz;ezz ( 1+tz)zoeiz

i=

LEMMA 4.5. ¢(ex;) = iey.

Proof. Since 1 is a map of A-modules, it suffices to check that (e, ) = ne,. Indeed,

n

Y(enn) = Z(—l)k_lpken_k (by Lemma 3.10)
k=1

and Newton’s identity says that this equals ne,,. O
In particular, if X¢ , is pointed e-positive, then X¢ = ¢(Xq ) is e-positive.

4.1. COMPLETE GRAPHS. Let K, be the complete graph on [n], and let K(n, k) be K,
with the edges (1,n), (2,n), ..., (k,n) removed. Thus, K (n,0) = K,,, while K(n,n—1)
is K,,_1 plus the isolated vertex n.

THEOREM 4.6. Xk, n = (n— 1)ley .

Proof. Letting e be the edge (k + 1,n), we have K(n,k) ~ e = K(n,k + 1) and
K(n,k)/e = K,_1. By the deletion-contraction recurrence (Lemma 3.5),

Xiwn = Xkm)m =t Xk, 11 = Xgm2)n = 20Xk, 1 n1="-"
= XK(n,n—l),n - (Tl - l)tXKn—hn—l'

We have Xg(nn-1)n = XK,_,, which is easily verified to be (n — 1)le,_1, and by
induction Xg, | n—1 = (n—2)ley_1,—1. Thus

XK, m = (n - 1)!en,1 - (n - 1)!t6n71,n717
which is (n — 1)le, ,, by Proposition 4.4. O
4.2. PATHS. Let
F(z) = Z Xp, 2"
n=0
Stanley [9, Proposition 5.3] showed that

Y€t
F(z) = i= N
(2) =1z S (i — 1)zt

Given a partition A, write m;(\) for the multiplicity of the part ¢ in A, and m(X)
for the list of multiplicities. The number of permutations of the list A is then the

multinomial coefficient (i((’\/\))). Let A~ i be A with one instance of the part i removed,

eg (4,2,2,2,1) 2= (4,2,2,1).
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THEOREM 4.7. 3> Xp, n2" = 25 F(2), and

14tz
AN 1)
5 Xp,on= _ i—1) | ex.
) ren= X (0O | T G- e
A JEANT
i€
Proof. The deletion-contraction recurrence applied to the edge (n — 1,n) of P, gives
(6) Xpyn=Xp, , —tXp, | n-1,
where we set Xp, o . Letting G(z) = Y. Xp, nz", the recurrence (6) gives
G(z) = zF(z) —tzG(z), i.e.
z
G(z) = F(z).
() = 2 F()
Using equation (4), this formula for G(z) gives
z 2izg i 2 i Cii?’

G(z) = == - = =2 -,
(2) T4+tzl =32 (i —1)ezt 1 =37 (i —1)ezt

From this generating function we see that the coefficient of ey; in Xp, , (where

n=|Al) is

XPn,n:Z H (=1 | ea,an

aFn [j€a~Nar

where « runs over compositions of n. This is equivalent to the formula given in the
statement of the theorem. d

It is often the case that Xp, , is pointed Schur positive when v is not a leaf, but
we have no general classification of when this happens. We originally conjectured that
Xp, i is pointed Schur positive if and only if one of k and n—k+1 is odd, together with
the exceptional cases that Xp, o is pointed Schur positive and Xp, 2 is (apparently)
not for n > 3. This holds for n < 17, but Xp,, 4 is not pointed Schur positive: its
pointed Schur expansion has 1025 nonzero terms, all of which have positive coefficients
save the single term 73—1:,)5(978,1)71.

4.3. CYCLES. Let C,, be the cycle graph on [n], with edges (1,2),(2,3),...,(n—1,n),
(n,1). In particular, C; is a vertex with a loop attached, and C5 is a pair of vertices

with two edges between them. Definition 3.1 still makes sense when G has loops or

multiple edges, and gives X¢, 1 =0 and X¢, 2 = p1 —t. We define X¢, o det

THEOREM 4.8.

> 1
S Xep o= (ZF<z> - ) ,
= ' 14+t2 \1+tz

where F(z) is defined as above. Also,

B LA\ 9) 0l er
(7) XCn,n - ZA: <m()\ N Z)> H(] 1) i+

JEA
IEA

Note that the only difference between expression (7) for X¢, , and expression (5)
for Xp, n in Theorem 4.7 is that [[;., ,(j—1) is replaced by [];c,(j—1). Thus,
Theorem 4.8 asserts that the linear map A[t] — A[t] sending ey ; to (i — 1)ey; maps
XPn,n to XCn,n-
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Proof of Theorem 4.8. Let H(z) = Yo", X¢, n2". The deletion-contraction recur-
rence gives

(8) XC'n,n = XPn,n - tXCn,l,nfl

forn > 2. Thus, H(z) =) .-, Xp, n2" —tzH(z), and solving for H(z) and applying
Theorem 4.7 gives

1 z
F(z)—=z).
14tz <1+tz () Z)

By induction on n and Proposition 4.4,

_tXCn,l,n—l = Z (:;f(i\i?)) [H(J—l)] (eATi,rL’Jrl - €>\U1,1)

i Jex
B AN 1) . - o
- () e oo
2<ien

s () e

JEA

B (AN 17) , )
-2 (mr o) [(22) 11 (‘71)] o

JEANT
2<ien

L(N) ) ,
- (=1 | exut1,
3 (o) [T o
where in the last line we have made the simplification

> (o)~ S50 (i) = (er)

1€ [P

But after reindexing,
L(X) ‘ LAN1) ‘
(=1 | exu1 = (G-=1)| ex,
2 <m<A>> [H ’ } 1= 2 <m<A\ 1>> [F} ’ ] 4

so actually

AN 1) ) .
—tX 1= -2 -1 i
Cp-1,n—1 ; <m()\ N 2)) |:(Z )]GTAI\Z(] )] €N,
iEX
Writing [ey ;] f for the coefficient of ey ; in f € Aft], we see

lexil X, n = lexil(Xp, n —tXc, yn-1)

LA ND) . . .
= (o) [ [IGv+6-2 ] (J—l)]

JEANG FEANG
LA ND) .
= -1
(i) -0,
JEX
and the theorem follows. O
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4.4. UNIT INTERVAL GRAPHS. If S is a finite set of bounded open intervals in R, the
associated interval graph is the graph with vertex set S and an edge from I; to I if
I, NI, # @. If the intervals all have length 1 then the graph is a unit interval graph.
The unit interval graphs are exactly the incomparability graphs of the (3 4+ 1)- and
(2 + 2)-free posets (a poset being (2 + 2)-free if it does not contain the disjoint union
of two chains of size two as an induced subposet).

Guay-Paquet [4] showed that if G is the incomparability graph of a (3 + 1)-free
poset, then X is a convex combination of Xy for some unit interval graphs H. In
particular, to prove the e-positivity of incomparability graphs of (3 4+ 1)-free posets
conjectured by Stanley and Stembridge, it would suffice to prove it for unit interval
graphs.

Suppose m = mq ---m, is a sequence of integers 1 < m; < --- < m, < n such
that m; > i for each . Associate to m the graph G(m) on [n] with an edge (i, ) if
and only if ¢ < j < m;. Up to isomorphism, the unit interval graphs on n vertices are
exactly the graphs G(m).

CONJECTURE 4.9. X (m),1 is pointed e-positive.

By Lemma 4.5, this conjecture would imply the e-positivity of Xg(,,) and hence
the Stanley-Stembridge conjecture. It holds for n < 7. One can use the deletion-
contraction recurrence to obtain various recurrences for X, 1, but these recurrences
do not a priori preserve pointed e-positivity, and the ones we have found have the
drawback of either requiring us to broaden our class of graphs, or of passing through
some X ¢ (m),» for v # 1. It is worth noting that G/(m) is a chordal graph, so the tools of
§ 2.2 apply, although we do not know whether these tools are useful for understanding
the e-expansion of Xg (-
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Richard Stanley [8] which led to some of the ideas here.
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