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Embedding

Alexander Heaton, Songpon Sriwongsa & Jeb F. Willenbring

Abstract Let S be a principally embedded sl2-subalgebra in sln for n > 3. A special case of
results of the third author and Gregg Zuckerman implies that there exists a positive integer b(n)
such that for any finite-dimensional irreducible sln-representation, V , there exists an irreducible
S-representation embedding in V with dimension at most b(n). In a 2017 paper (joint with
Hassan Lhou), they prove that b(n) = n is the sharpest possible bound, and also address
embeddings other than the principal one.

These results concerning embeddings may be interpreted as statements about plethysm.
Then, in turn, a well known result about these plethysms can be interpreted as a “branching
rule”. Specifically, a finite dimensional irreducible representation of GL(n,C) will decompose
into irreducible representations of the symmetric group when it is restricted to the subgroup
consisting of permutation matrices. The question of which irreducible representations of the
symmetric group occur with positive multiplicity is the topic of this paper, applying the previous
work of Lhou, Zuckerman, and the third author.

A complex irreducible representation V of sl2(C) defines a homomorphism
π : sl2 → End(V ).

Fixing an ordered basis we obtain an identification End(V ) ∼= gln. Since sl2 is a simple
Lie algebra, the kernel is trivial and the image of π, denoted s, is therefore isomorphic
to sl2. We will refer to s as a principal sl2-subalgebra of gln. In fact, since s is simple
it intersects the center of gln trivially and hence s ⊆ sln (except when n = 1). There
are other embeddings of sl2 when V is not irreducible, but we will only discuss the
principal embedding in this paper.

Restricting the adjoint representation of a simple Lie algebra to a principal sl2-
embedding, we can decompose and find multiplicities. In 1958, Bertram Kostant in-
terpreted these multiplicities topologically in [3], yielding the Betti numbers of the
compact form of the corresponding Lie group. People have been interested in the
principal embedding ever since. In future work we hope to consider the analogs of our
results for other Lie types and other embeddings. In this paper we show a relationship
between the principal embedding and branching from GLn to the symmetric group.
Our main tool is the following theorem proved in [4] which was anticipated in [11]:

Proposition 1. Fix n > 3 and a principal sl2-subalgebra, s, of sln. Let V denote
an arbitrary finite dimensional complex irreducible representation of sln. Then, there
exists 0 6 d < n such that upon restriction to s, V contains the irreducible s repre-
sentation Fd in the decomposition.
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The expository aspects of this paper should be put in context by mentioning some
previous work, both old and new. Certainly, any work related to branching rules has
benefited from the older extensive work of R. C. King, specifically [2]. From another
point of view, a well-known approach is to study the action of a Weyl group on the
weight spaces in a finite dimensional irreducible representation of the corresponding
Lie algebra. The special case of the zero weight space is of particular interest and
addressed in [6] for the case of the symmetric group. More recently, the combinatorics
of this problem are related to the stable Kronecker coefficients in [7].

Structure of this paper. In this paper, we try to make some progress toward
understanding the branching problem: Can we describe how representations of GLn
decompose upon restriction to the permutation matrices Sn? We attack the branch-
ing problem by realizing its equivalence to certain instances of plethysm. Section 2
describes a well-known algorithm that allows us to compute these branching multiplic-
ities in any specific case. Section 3 provides some motivation by connecting branching
with dynamical systems. Section 4 explains the connection between plethysm and
branching. Section 5 gives a known combinatorial description of branching for one-
row shapes (symmetric powers). Finally, Section 6 proves our main Theorem 6.5,
which guarantees the existence of all Sn irreducible representations inside certain
two-row irreducible representations of GLn. In the next section we provide a few def-
initions and notation followed by brief and explicit examples of the results of this
paper, including a statement of the main theorem.

1. Notation, brief examples, and main theorem
We define a partition λ of a nonnegative integer a as a sequence (λ1, . . . , λk) ∈ Nk,
satisfying λ1 > · · · > λk > 0 and

∑
λi = a. We say such a λ has k parts and size a,

writing `(λ) = k and |λ| = a. Any λi = 0 is considered irrelevant, so we could identify
λ with the infinite sequence (λ1, . . . , λk, 0, 0, . . .). For a partition λ with at most n
parts let Fλn be the irreducible GLn representation with highest weight indexed by
λ. Throughout the paper we will sometimes write irrep instead of irreducible repre-
sentation. If λ has size s, let Y λs denote the irreducible complex representation of
the symmetric group, Ss, paired with Fλn by Schur–Weyl duality (see for example [1]
or [10]) so that ⊗sCn ∼=

⊕
Fλn ⊗ Y λs

where the sum is over all partitions of s with at most n parts (the symmetric group
action commutes with the GLn diagonal action and the decomposition is multiplicity-
free). We take this as our definition of Y λs . The following example illustrates our
main result.

Example 1.1. Consider the symmetric group on 10 letters S10. Its 42 irreps Y µ10 are
in correspondence with partitions µ of size 10. Our main result shows that every irrep
Y µ10 has non-zero multiplicity in the decomposition of certain two-row partitions λ
of 10m, for m ∈ {2, 3, . . .}. Choosing m = 2 our results state that every irrep Y µ10
appears in at least one of the following two irreps of GL10:

F
(10,10)
10 or F (11,9)

10

Choosing m = 3, we can guarantee that every irrep Y µ10 of the symmetric group occurs
in one of the following irreps of GL10:

F
(15,15)
10 or F (16,14)

10
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Choosing m = 4 we find that every Y µ10 appears with non-zero branching multiplicity
inside at least one of

F
(20,20)
10 or F (21,19)

10 or F (22,18)
10 .

Given any irrep of Sn, we guarantee its non-zero multiplicity in certain short-
tail two-row irreps of the general linear group GLn. The main Theorem 6.5 reads as
follows:

Main Theorem. Choose any irreducible representation Y µn of Sn and choose any
m ∈ {2, 3, 4, . . .}. Consider the set of irreducible representations of GLn denoted Fλn
where λ = (p + d, p), where p, d are integer solutions of 2p + d = nm restricted to
d ∈ {0, 1, 2, . . . ,m}, p ∈ N. Then the multiplicity[

Y µn : Fλn
]
6= 0

for at least one of the Fλn .

Remark. Taking m = 2 these irreps come near the boundary of a certain interest-
ing phenomenon which we do not yet understand, and which our theorem does not
explain. Consider Figure 1.

Figure 1. A curious curve emerges

The colorful points represent λ from our main Theorem 6.5, with each distinct
color corresponding to a distinct choice of m. The phenomenon is a discrete curve (in
the λ1, λ2 plane) dividing irreps of GLn which contain every symmetric group irrep
from those that are missing at least one symmetric group irrep. The points marked
with an X are the GLn irreps which, upon restriction to the symmetric group, fail to
contain every Sn irrep. As can also be seen in the figure, this discrete curve has a
jump for GL6. In fact a similar jump occurs for GL10 (not pictured). We do not know
the pattern. Our results only capture the phenomenon in a very limited sense: Given
a fixed irreducible representation, and a fixed color (choice of m) its multiplicity will
be nonzero in at least one position marked by that color. Explaining the other points
in these diagrams is an important topic for future research and outside the results of
the current article.
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Another example of our results. Below is a (partial) list of multiplicities of the
irreps of S10 which appear in the decomposition of the GL10 irrep (11, 9) (only 12
of the 42 required numbers are listed). You will notice the last multiplicity is zero.
The irreducible S10 representation indexed by (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) does not occur
in the decomposition.

4789, 25466, 61323, 88744, 157620, . . . , 676, 2302, 4058, 2132, 459, 32, 0.

Our theorem predicts that we can find every irreducible representation of the sym-
metric group S10 inside either (11, 9) or (10, 10). In fact, decomposing (10, 10) via the
algorithm described in Section 2 we indeed find the irrep (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) oc-
curring with multiplicity 1. This is one example where our theorem finds the boundary
of the phenomenon depicted in Figure 1. Below the curve we have GLn irreps which
are missing at least one Y µn . Above the curve we have GLn irreps using every Y µn . Our
theorem, taking m = 2, guarantees the appearance of every Y µn in one of two GLn
irreps near that boundary.

2. An algorithm for branching
Branching from GLn to Sn is among the class of problems which have an algorithm
we can use to find the answer in any specific (finite) case, but unfortunately lacks a
general description, formula, or combinatorial explanation. Already well-known is a
combinatorial description in the special case of one-row diagrams (symmetric powers).
For a description of this see Section 5. The results of this paper are therefore a step
towards the next case: two-row diagrams (λ1, λ2). We now give a brief description of
the algorithm which, given any specific irrep, will output its decomposition.

Algorithm. We can decompose representations of the general linear group into irreps
of the symmetric group by the following (roughly sketched) algorithm. The input is a
symmetric function corresponding to the character of a fixed GLn representation. The
output is a list of multiplicities for each irrep of Sn. The permutation matrices are
a subgroup of GLn and, diagonalized, they have certain eigenvalues (roots of unity)
corresponding to their cycle type. Diagonalizable elements are dense in GLn and so
we know the character of an irreducible representation of the general linear group
is given by evaluating a Schur function in n variables corresponding to parameters
of the maximal torus inside GLn. Replacing these variables with the corresponding
eigenvalues (of correct multiplicities) for a permutation matrix of each cycle type,
we create the trace of the operator of an element of the symmetric group acting on
that same vector space (the representation of GLn whose character we have taken). By
doing this over all possible cycle types, we find the character viewed as a representation
of the symmetric group. By taking the inner product with irreducible characters of
the symmetric group we can find the multiplicities of each irreducible representation
of Sn inside the original GLn representation.

3. Some motivation
There are many reasons to study the decomposition of GLn representations under
restriction to the symmetric group Sn. In this section we briefly present one reason,
although we believe there are reasons yet to be discovered as well.

Repeatedly pressing the cosine button on your calculator is a good example of a
dynamical system. Since your calculator presumably has finite memory, this is a dy-
namical system on a finite set. For example, Figure 2 provides a list of all 7 dynamical
systems on a 3 element set.
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Figure 2. Dynamical systems on a three element set

Counting the number of such dynamical systems can (surprisingly!) be accom-
plished simply by summing up the appropriate branching multiplicities for the de-
composition of a certain representation. We will briefly sketch this story for this
particular example (counting the 7 dynamical systems listed in Figure 2) although
it applies to dynamical systems on any finite set. Here we define a finite dynamical
system to be a finite simple graph where every vertex has one out arrow.

Consider C3 ⊗ C3 ⊗ C3 under the action of the symmetric group S3 permuting
tensor factors, and one copy of GL3 acting diagonally on each C3. This decomposes
under Schur–Weyl duality as

C3 ⊗ C3 ⊗ C3 =
⊕
Fλ ⊗ Yλ.

Restricting to the permutation matrices S3 sitting inside GL3 the representation
decomposes further with branching multiplicity coefficients we will call bλµ, which are
of course non-negative integers and the subject of this paper. We write this as follows:

C3 ⊗ C3 ⊗ C3 =
⊕
λ

Fλ ⊗ Yλ

=
⊕
λ

(⊕
µ
bλµY

µ

)
⊗ Yλ

=
⊕
λ,µ

bλµ (Y µ ⊗ Yλ) .

In order to find the relationship between these bλµ and dynamical systems on a finite
state space, first consider all functions from {1, 2, 3} to {1, 2, 3}. Call the resulting set
X, then there are |X| = 27 = dim(C3⊗C3⊗C3) such functions. In fact, consider one
function f ∈ X where f sends 1 7→ 1, 2 7→ 1, 3 7→ 2.

This function corresponds to a basis element of C3⊗C3⊗C3, namely e1⊗e1⊗e2. If
e1, e2, e3 are a basis we have chosen for C3 then a choice of one ei in each tensor factor
is a choice of image f(x) ∈ {1, 2, 3} for each element of the domain x ∈ {1, 2, 3}. The
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permutation matrices inside GL3 are therefore acting by permuting the basis elements
e1, e2, e3 in the same way on each of the tensor factors. Thus they are permuting the
choices of image. For example the permutation σ = (2, 3) would send e1 ⊗ e1 ⊗ e2
to e1 ⊗ e1 ⊗ e3 which corresponds to an action on the function f , sending it to σ.f :
1 7→ 1, 2 7→ 1, 3 7→ 3. The other copy of S3 which is acting by permuting tensor
factors (rather than sitting inside the GL3) acts differently, simply by permuting the
domain. For example, σ acts by sending e1⊗ e1⊗ e2 to e1⊗ e2⊗ e1. This corresponds
to an action on the function f 7→ σ..f where σ..f(x) = f(σ−1x) so that σ..f sends
1 7→ 1, 2 7→ 2, 3 7→ 1.

If we consider ∆S3 ⊂ S3×S3 (the diagonal subgroup: take the same group element
in both factors of the direct product) acting on X then X splits into orbits

X = O1 ∪ · · · ∪ Or
where each orbit corresponds to one dynamical system. Thus, if we can count the
orbits, we have counted the dynamical systems on 3 points. To see this, realize that
∆S3 corresponds to letting both copies of the symmetric group act in the same way
on the domain and codomain. The function from {1, 2, 3} to {1, 2, 3} collapses and
becomes a dynamical system on 3 points. In fact, many different functions collapse
to the same dynamical system, namely all functions in the same orbit of ∆S3. For
example, consider Figure 3 for a depiction of this collapse for our function f .

Figure 3. Our function becomes a dynamical system.

Now, how do we count orbits? Instead of using Burnside’s formula which averages
the number of fixed points over the group, we can also use functions on X and simply
count the ∆S3-fixed vectors since

dimC[X]∆S3 = dimC[O1 ∪ · · · ∪ Or]∆S3

= dimC[O1]∆S3 ⊕ · · · ⊕ C[Or]∆S3 .

There will be one linearly-independent ∆S3-fixed vector per orbit, namely the sum
of basis elements taken to be delta functions on each point in the orbit under consid-
eration. But we also know that

C[X]∆S3 =
(
C3 ⊗ C3 ⊗ C3)∆S3

=
(⊕
λ,µ

bλµ (Y µ ⊗ Yλ)
)∆S3

=
∑

bλλ.

The last step above is explained by observing that the trivial representation of ∆S3
occurs exactly once in every copy of Y µ ⊗ Yλ where µ = λ and zero times elsewhere.
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Since irreps of the symmetric group are self-dual, we have:

(Y µ ⊗ Yλ)∆S3 = ((Y µ)∗ ⊗ Yλ)∆S3

= Hom(Y µ, Yλ)∆S3

= Hom∆S3 (Y µ, Yλ)

which is clearly 0 or 1, depending on if µ = λ. This shows that we can compute the
number of dynamical systems simply by summing branching multiplicities

∑
bλλ.

Now we finish finding the answer 7 by adding up all possible bλλ for λ ∈ , ,

. Consider first b , which corresponds to decomposing the GL3

representation F of degree 3 homogeneous polynomials in 3 variables. Finding
the multiplicity of the trivial representation Y of the symmetric group is the
same as finding the number of linearly independent S3-fixed vectors. These are
clearly

x3 + y3 + z3, x2y + x2z + y2x+ y2z + z2x+ z2y, xyz

and so the coefficient b = 3.

Consider . As a representation of GL3 this is sometimes referred to as the
eightfold way or octet representation, since it is also a representation of the subgroup
SU(3) and finds application in particle physics. This representation decomposes as:

F = + 3 +

which means that b = 3. Lastly, consider . As a GL3 representation this is the

determinant, and upon restriction to S3 we do in fact obtain the sign representation

Y with multiplicity 1, so b = 1. Thus we have our result:

b + b + b = Number of dynamical systems on 3 points.

3 + 3 + 1 = 7.

4. Connecting branching with plethysm
Here we start to prove the results of this paper. First we will show that a certain
branching multiplicity will be equal to a certain plethysm multiplicity. Later, we will
use this fact to re-interpret the main theorem of [4] in terms of the branching from
GLn to Sn.

We regard Fλ as a functorial operator on the category of vector spaces – often
called the Schur functor. This point of view applies when vector spaces are infinite
dimensional. For example, if λ = (1, 1, 1, . . . , 1) (with j 1’s), then Fλ takes a vector
space to its j-th exterior power. This situation can be generalized to the situation
where λ is an arbitrary non-negative partition. In the finite dimensional case, the
situation is clear: if V is a vector space of dimension n, then Fλ(V ) ∼= Fλn .
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Given a partition λ with at most n parts, and a partition µ of n, we may consider
the multiplicity, denoted in short-hand by the coefficient bλµ, or in brackets as follows:

bλµ =
[
Y µn : Fλn

]
= dim HomSn

(Y µn , Fλn )

where the Fλn is regarded as a Sn-representation by restricting to the permutation
matrices. These multiplicities are impossible to compute in any general way, but as
we mentioned earlier there are algorithms.

We present here a way to describe
[
Y µn : Fλn

]
using Schur functors. That is, if V is

a complex vector space of dimension n we will use the notation of the Schur functor,
Fλ(V ) to denote the irreducible GL(V ) representation. So, for example if V is n-
dimensional then by identifying GL(V ) with GLn, we have Fλn ≡ Fλ(V ). Then recall
that Fλ(V ) can be defined for infinite dimensional V .

For a vector space W , let SymW denote the algebra of symmetric tensors on W ,
which is a graded GL(W ) representation. (Recall, if W is finite dimensional, SymW
is isomorphic, as a ring, to the polynomial functions on W ∗.) The following theorem
is well-known, but we include a sketch of it here to aid in the exposition. In fact,
this is an exercise in Stanley’s book [9, Exercise 7.74] with a (different) solution [9,
Page 534] sketched there as well. This equation also appears in [8, Theorem 5.1].

Proposition 4.1. Given positive integers k and n, fix a partition µ of n. Regard
SymCk as a graded GLk-representation. Then, the (infinite dimensional) represen-
tation Fµ(SymCk) decomposes into irreducible finite dimensional representations of
GLk with finite multiplicities, and for any partition λ with at most k parts,[

Y µn : Fλn
]

=
[
Fλk : Fµ(SymCk)

]
.

Sketch of proof. Let V = SymCk. The tensor product of n copies of V may be re-
garded as a GL(V )×Sn-representation with multiplicity free decomposition,

(1) V ⊗ · · · ⊗ V︸ ︷︷ ︸
n copies.

=
⊕
Fµ(V )⊗ Y µn

where the sum is over all partitions, µ, of size n (by Schur–Weyl duality(1) applied to
V ). On one hand, we can restrict from GL(V ) to GLk, which involves decomposing
the Fµ(V ) into irreducible representations, Fλk , of GLk. On the other hand, observe
that,

V ⊗ · · · ⊗ V ∼= Sym(Ck ⊗ Cn).

The right hand side carries an action of GLk ×GLn, which by Howe duality decom-
poses as

Sym(Ck ⊗ Cn) ∼=
⊕
Fλk ⊗ Fλn

where the sum ranges over all partitions λ with at most min(k, n) parts. We then
branch from the right-hand GLn to Sn to obtain

Sym(Ck ⊗ Cn) =
⊕
λ

Fλk ⊗

(⊕
µ

[
Y µn : Fλn

]
Y µn

)
.

(1)The concern here is that V is infinite dimensional. The reason that this proof is only a sketch
is because of this technical point, however, it is enough because all the representations considered in
this paper are graded finite-dimensional. For a very careful exposition of the foundations of plethysm
we recommend the paper by Loehr and Remmel [5].
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Reorganizing we have

(2) Sym(Ck ⊗ Cn) =
⊕
µ

(⊕
λ

[
Y µn : Fλn

]
Fλk

)
⊗ Y µn .

Compare the decompositions (1) and (2). �

5. Branching for symmetric powers
In the previous section we saw that finding certain plethysm multiplicities was equiv-
alent to finding certain branching multiplicities.[

Fλk : Fµ(SymCk)
]

=
[
Y µn : Fλn

]
.

In this section we will consider what is already known in the literature (for example
in [9]) addressing the case when k = l(λ) = 1. In this case, we will see that the
branching multiplicities are already known for any irrep of GLn given by Fλn where
λ = (d, 0, 0, . . .) = (d). These irreps correspond to symmetric powers of the defining
representation of GLn, denoted Symd Cn.

As an example, consider decomposing irreps of GL4 into a direct sum of irreps of
S4. But as described above, only decompose the irreps of GL4 given by F (d)

4 , which
are equivalent to the dth symmetric power of C4. We have the symmetric group on
four letters S4 and its irreducible representations Y µ4 where µ is from the set

µ ∈ {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}

Consider the first few. How do they decompose into irreps of S4?

Sym0 C4 = F
(0,0,0,0)
4 = Y4

Sym1 C4 = F
(1,0,0,0)
4 = Y4 ⊕ Y4

Sym2 C4 = F
(2,0,0,0)
4 = 2Y4 ⊕ 2Y4 ⊕ Y4

Sym3 C4 = F
(3,0,0,0)
4 = 3Y4 ⊕ 4Y4 ⊕ Y4 ⊕ Y4 .

These results can be obtained using simple combinatorial rules. The multiplicity of a
given Y µ4 inside Symd C4 is given by the number of semi-standard tableaux (weakly
increasing along the row and strictly increasing down the column) with total weight
summing to d. For example, with Sym2 C4 we count the semi-standard tableaux with
total weight 2 for each shape µ. These are

0 0 0 2 , 0 0 1 1 , 0 0 1
1 , 0 0 0

2 , 0 0
1 1 .

This gives us the decomposition of F (2)
4 into irreps of S4. Of course, these rules only

apply to the one-row irreps Fλn where l(λ) 6 1. There are of course many more irreps
of GLn whose branching decompositions are unknown in general. In this paper, we
obtain results pertaining to the next simplest case, the irreps of GLn given as Fλn for
l(λ) 6 2, which is just another way of saying we will look at two-row shapes.

Remark. These results explain the location of the last X on the λ1 axis in Figure 1.
The multiplicity of Y µn in F (d)

n is nonzero for all µ if and only if d >
(
n
2
)
, so the X’s

stop there.
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Remark. In [9, page 475] the formula expressing
[
Y µn : F (d)

n

]
can be found by exam-

ining the coefficients of the identity∑
d>0

(ch Ψd)qd =
∑
µ`n

sµ(1, q, q2, . . .)sµ

where

sµ(1, q, q2, . . .) = qb(µ)∏
u∈µ[h(u)] .

More details are contained in [9] but briefly, Ψd is the character of the action of the
symmetric group induced on degree d homogeneous forms on an n-dimensional vector
space. As for the other pieces of notation, b(µ) =

∑
(i − 1)µi and u ∈ µ means that

we are identifying µ with its diagram {(i, j) : 1 6 j 6 µi} so that u is a square whose
hook length h(u) = µi + µ

′

j − i− j + 1. Finally [k] = 1− qk.

6. Using an existence result on the plethysm side
In the previous section we saw the results for one-row diagrams, what we also call
the k = `(λ) = 1 case, already known in the literature. This dealt with decomposing
certain irreps Fλn of GLn into irreps Y µn of Sn in the case that λ = (d, 0, 0, . . .). In
Section 4 we saw that finding the multiplicity of Fλk inside Fµ(SymCk) (plethysm)
was equivalent to finding the multiplicity of Y µn inside Fλn (branching). In this section
we will apply the main theorem from [4] on the plethysm side to guarantee non-zero
multiplicity of certain irreps when k = l(λ) = 2. Thus we will also have guaranteed
non-zero multiplicity of certain branching multiplicities as well.

Lemma 6.1. Let Symm Ck be the degree m symmetric tensors on Ck. Applying the
Schur functor, we regard Fµ(Symm Ck) as a GLk-representation. If the multiplicity
of Fλk in Fµ(Symm Ck) is non-zero, then its multiplicity in Fµ(SymCk) is non-zero
as well.

Proof. Since we have the injection Symm Ck ↪−→ SymCk, we also have the injection
Fµ(Symm Ck) ↪−→ Fµ(SymCk). This follows by considering generalized Littlewood–
Richardson coefficients. The notation gets a bit trickier here, but briefly, when we
decompose an irrep of GL(V1 ⊕ V2) into irreducibles under the action of a sub-
group GL(V1) × GL(V2), the multiplicities that show up are Littlewood–Richardson
coefficients

Fµ(V1 ⊕ V2) =
⊕
cµλνF

λ(V1)⊗ F ν(V2).
Replacing V1 ⊕ V2 by the direct sum

⊕
1,...,r Symi(V ) in the left-hand side we obtain

an updated right-hand side⊕
cµ~µ
(
Fµ1(Sym0(V ))⊗ · · · ⊗ Fµr (Symr−1(V ))

)
where the sum is over all tuples of partitions ~µ = (µ1, µ2, . . . , µr) where, somewhat
confusingly, each µi is now a partition (rather than a natural number). Taking the
trivial representation in all tensor factors except the mth, where we take µm = µ,
we get one of the terms in this direct sum. Since we are assuming Fλk appears with
non-zero multiplicity in Fµ(Symm Ck), and since Littlewood–Richardson coefficients
also describe tensor product multiplicities, that particular coefficient is non-zero, and
our result follows. �

From here onwards, set k = 2. This allows us to look at the finite-dimensional
representation Fµ(Symm C2) for any m ∈ N. Thus for every choice of m ∈ N we can
hope for results to translate back to branching multiplicities.
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Lemma 6.2. Fix any partition µ of size n and any m ∈ N. Given the GL2 representa-
tion Fµ(Symm C2), the center of GL2 acts by

v 7−→ znmv

where v ∈ Fµ(Symm C2), z ∈ C×, and diag(z, z) ∈ Z(GL2).

Proof. This follows by homogeneity of the Schur function, sλ(t~x) = t|λ|sλ(~x). �

Lemma 6.3. Fix |µ| = n and m ∈ N. If Fλ2 has non-zero multiplicity inside
Fµ(Symm C2) then

λ = (d+ p, p) where 2p+ d = nm for some p, d ∈ N.

Proof. Recall the irreps of GL2 are given by detp⊗Symd C2 where the center Z(GL2)
acts by z2p+d. Then by Lemma 6.2 we must have 2p+ d = nm. �

Proposition 6.4. Choose any partition |µ| = n and any m ∈ {2, 3, . . .}. Consider
all (finitely many) irreducible representations Fλ2 where λ = (d + p, p) for some d ∈
{0, 1, 2, . . . ,m}, where 2p+ d = nm for some p ∈ N. For at least one such λ[

Fλ2 : Fµ(Symm C2)
]
6= 0.

Proof. We have Fµ(Symm C2) a representation of GL2 via composition, but it is also
an irrep of GLm+1 since the Schur functor is being applied to an m+ 1-dimensional
vector space. Restricting to SLm+1 it is again irreducible. By the main theorem of [4]
we are guaranteed the existence of some subrepresentation isomorphic to Symd C2, an
irrep of SL2, for some d ∈ {0, 1, 2, . . . ,m}. This works provided m > 2 because they
find principal embeddings of sl2 inside sla for a > 3. This extends to some irrep of
GL2, which is given by detp⊗Symd C2 for some p ∈ N. But by Lemma 6.2 we must
also have 2p+ d = nm. �

Remark. The parity of nm and d must match. Solving for p we see that p = nm−d
2 ,

but p ∈ N.

Theorem 6.5. Choose any irreducible representation Y µn of Sn and choose any m ∈
{2, 3, 4, . . .}. Consider the set of irreducible representations of GLn denoted Fλn where
λ = (p+ d, p), d ∈ {0, 1, 2, . . . ,m}, p ∈ N and 2p+ d = nm. Then the multiplicity[

Y µn : Fλn
]
6= 0

for at least one of the Fλn .

Proof. This follows from Proposition 4.1 and Proposition 6.4. �

Acknowledgements. We would like to thank the organizers Mohammad Reza Daraf-
sheh and Manouchehr Misaghian of the AMS Special Session on Group Representa-
tion Theory and Character Theory held January 19, 2019 at the Joint Math Meetings,
where we presented this research. The authors would like to sincerely thank the two
anonymous referees whose comments both improved the results and the exposition.

References
[1] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vain-

trob, and Elena Yudovina, Introduction to representation theory, Student Mathematical Library,
vol. 59, American Mathematical Society, Providence, RI, 2011, With historical interludes by
Slava Gerovitch.

[2] R. C. King, Branching rules for GL(N) ⊃ Sm and the evaluation of inner plethysms, J. Math-
ematical Phys. 15 (1974), 258–267.

[3] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex
simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

Algebraic Combinatorics, Vol. 4 #2 (2021) 199



Alexander Heaton, Songpon Sriwongsa & Jeb F. Willenbring

[4] Hassan Lhou and Jeb F. Willenbring, Lowest sl(2)-types in sl(n)-representations, Represent.
Theory 21 (2017), 20–34.

[5] Nicholas A. Loehr and Jeffrey B. Remmel, A computational and combinatorial exposé of plethys-
tic calculus, J. Algebraic Combin. 33 (2011), no. 2, 163–198.

[6] Kyo Nishiyama, Restriction of the irreducible representations of GLn to the symmetric group
Sn, http://rtweb.math.kyoto-u.ac.jp/home_kyo/preprint/glntosn.pdf.

[7] Rosa Orellana and Mike Zabrocki, Products of symmetric group characters, J. Combin. Theory
Ser. A 165 (2019), 299–324.

[8] Thomas Scharf and Jean-Yves Thibon, A Hopf-algebra approach to inner plethysm, Adv. Math.
104 (1994), no. 1, 30–58.

[9] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math-
ematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo
Rota and appendix 1 by Sergey Fomin.

[10] HermannWeyl, The classical groups, their invariants and representations, Princeton Landmarks
in Mathematics, Princeton University Press, Princeton, NJ, 1997, Fifteenth printing, Princeton
Paperbacks.

[11] Jeb F. Willenbring and Gregg J. Zuckerman, Small semisimple subalgebras of semisimple Lie
algebras, in Harmonic analysis, group representations, automorphic forms and invariant theory,
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, World Sci. Publ., Hackensack, NJ,
2007, pp. 403–429.

Alexander Heaton, Max Planck Institute for Mathematics in the Sciences, Leipzig and Technische
Universität Berlin, Germany
E-mail : alexheaton2@gmail.com
E-mail : heaton@mis.mpg.de

Songpon Sriwongsa, Department of Mathematics, Faculty of Science, King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
E-mail : songpon.sri@kmutt.ac.th

Jeb F. Willenbring, Department of Mathematical Sciences, University of Wisconsin-Milwaukee,
United States
E-mail : jw@uwm.edu

Algebraic Combinatorics, Vol. 4 #2 (2021) 200

http://rtweb.math.kyoto-u.ac.jp/home_kyo/preprint/glntosn.pdf
mailto:alexheaton2@gmail.com
mailto:heaton@mis.mpg.de
mailto:songpon.sri@kmutt.ac.th
mailto:jw@uwm.edu

	Structure of this paper
	1. Notation, brief examples, and main theorem
	2. An algorithm for branching
	3. Some motivation
	4. Connecting branching with plethysm
	5. Branching for symmetric powers
	6. Using an existence result on the plethysm side
	References

