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Combinatorial, piecewise-linear, and
birational homomesy for products of two

chains

David Einstein & James Propp

Abstract This article illustrates the dynamical concept of homomesy in three kinds of dy-
namical systems – combinatorial, piecewise-linear, and birational – and shows the relationship
between these three settings. In particular, we show how the rowmotion and promotion op-
erations of Striker and Williams [16] can be lifted to (continuous) piecewise-linear operations
on the order polytope of Stanley [14], and then lifted to birational operations on the positive
orthant in R|P | and indeed to a dense subset of C|P |. When the poset P is a product of a
chain of length a and a chain of length b, these lifted operations have order a+ b, and exhibit
the homomesy phenomenon: the time-averages of various quantities are the same in all orbits.
One important tool is a concrete realization of the conjugacy between rowmotion and promo-
tion found by Striker and Williams; this recombination map allows us to use homomesy for
promotion to deduce homomesy for rowmotion.

1. Introduction
Many authors [2, 3, 6, 12, 16] have studied an operation ρ on the set of order ideals
of a poset P that, following Striker and Williams, we call rowmotion. In exploring the
properties of rowmotion, Striker and Williams also introduced and studied a closely
related operation π they call promotion on account of its ties with promotion of
Young tableaux, which depends on the choice of an rc embedding (a particular kind of
embedding of P into the poset Z× Z that sharpens the idea of a Hasse diagram). In
this article (an expanded version of a 2014 FPSAC presentation [5]) we mostly focus
on a very particular case, where P is of the form [a]× [b] and the rc embedding sends
(i, j) ∈ P to (j− i, i+ j− 2) ∈ Z2 (the standard Hasse embedding; see Figure 2), and
we explore how the cardinality of an order ideal I behaves as one iterates rowmotion
and promotion. Indeed, we find regularities for the average cardinality of sets of the
form I ∩ S` as I varies over the elements of a rowmotion-orbit or promotion-orbit,
where {S1, S2, . . . , Sa+b−1} is a partition of [a]× [b] into special sets called files (which
Striker and Williams call columns).

Let I(P ) denote the set of order ideals of a poset P (usually written as J(P ) in the
literature). It has long been known [2] that the order of π or ρ acting on I([a]× [b])
is a+ b. Propp and Roby [13] showed that the average of |I| as I varies over an orbit
in I([a]× [b]) is ab/2, and sketched a proof of a more detailed claim:
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Theorem 1.1. Fix a, b > 1, let n = a+ b, let P = [a]× [b], and for 1 6 ` 6 n− 1 let
S` = {(i, j) ∈ P | j − i+ a = `}. Then for every order ideal I in I(P ),

1
n

n−1∑
k=0
|πk(I) ∩ S`| =

1
n

n−1∑
k=0
|ρk(I) ∩ S`| =

{
b`/n if ` 6 a,
a(n− `)/n if ` > a.

Summing over `, we obtain

1
n

n−1∑
k=0
|πk(I)| = 1

n

n−1∑
k=0
|ρk(I)| = ab/2.

(Here as elsewhere in the article, overlap between cases is intentional; it is easily
checked that the answers given in borderline cases are consistent.)

It is no accident that the same averages are seen for the promotion operation π
and the rowmotion operation ρ; the recombination principle discussed in Section 6
explains why we get same averages for both actions. In some cases we will only
state our results for promotion, but in every case considered here (specifically, in
Theorems 3.4, 3.5, 4.4, and 5.3) one may replace promotion by rowmotion without
changing the common value of the orbit-averages.

The notion of looking at the average of a quantity over an orbit was an outgrowth
of the second author’s work on chip-firing and rotor-routing [8, 9]; see in particular
Proposition 3 of [13]. Further inspiration came from conjectures of Panyushev [12]
(later proved by Armstrong, Stump, and Thomas [1]).

This article presents a new proof of Theorem 1.1 (see Section 7) which, although less
direct than the Propp–Roby proof, indicates that the constant-averages-over-orbits
phenomenon (also called the homomesy phenomenon) applies not just for actions on
order ideals but also for dynamical systems of a different sort. Specifically, we define
(continuous) piecewise-linear maps from the order polytope of P to itself (piecewise-
linear rowmotion and promotion) that exhibit homomesy, and birational maps from a
dense open subset of Cab to itself (birational rowmotion and promotion) that exhibit a
multiplicative version of homomesy. (See Subsection 2.1 for definitions of these terms.)

Our main result is Theorem 5.3, whose proof involves three main ingredients. The
first is the main result of Grinberg and Roby (Theorem 30 in [7]), showing that
birational rowmotion on the poset [a] × [b] has period a + b. The second ingredient
is the recombination operation explained in Section 6. Recombination equivariantly
takes birational rowmotion to birational promotion, giving a concrete way of chopping
up rowmotion-orbits and reassembling the pieces to obtain promotion-orbits, and vice
versa; the recombination picture tells us that birational promotion has the same orbit
structure (and hence the same period) as birational rowmotion. Recombination has
its roots in the work of Striker and Williams (see Theorem 5.4 in [16]), but the more
detailed combinatorial picture presented here is required if we want to prove not just
results about periodicity but also results about homomesy. The third ingredient is
Lemma 5.1 in which the specific nature of promotion and the specific structure of the
poset [a]×[b] play crucial roles. The lemma concretizes and exploits the intuition that,
viewed from the correct perspective, promotion can be seen as a form of rotation, but
in a different manner than in the work of Grinberg–Roby.

The plan of the article is as follows. In Section 2, after introducing needed prelimi-
naries and notation, including the definition of (additive) homomesy, we review some
of the background on the rowmotion and promotion operations ρ, π : I(P ) → I(P ).
We then define (in Section 3) piecewise-linear maps ρP , πP : R|P | → R|P | and show
that ρP and πP specialize to ρ and π if one restricts attention to the vertices of the
order polytope O(P ) (replacing order ideals by filters as required). Changing vari-
ables, we obtain slightly different piecewise-linear maps ρP , πP : R|P | → R|P | that
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are homogeneous versions of ρP , πP . Then we show (in Section 4) how ρP , πP can in
turn each be viewed as a tropicalization of a birational map ρB, πB from a dense open
subset U of Cab to itself; we call the elements of U P -arrays. In Section 5, invoking
Grinberg and Roby’s theorem about birational rowmotion and using the recombina-
tion method to show that birational promotion (like birational rowmotion) is of order
a + b, we give a proof of Theorem 4.4: for v = (v1, . . . , vab) ∈ U , the product of
the coordinates of v associated with elements of the file S` (denoted by |v|`) has the
property that |v|` |π(v)|` |π2(v)|` · · · |πn−1(v)|` = 1. In Section 6, we describe recom-
bination and prove its basic properties. In Section 7, we use tropicalization to deduce
from Theorem 4.4 a piecewise-linear analogue (Theorem 3.5) that by an affine change
of variables yields the homomesy result for the action of promotion on O(P ) (Theo-
rem 3.4). This last result then yields homomesy for the action of promotion on I(P )
(Theorem 1.1). That is, ignoring the use of recombination for passing back and forth
between rowmotion and promotion, the logic of the argument is that we first prove
birational homomesy, we then deduce piecewise-linear homomesy by tropicalization,
and we finally deduce combinatorial homomesy by specialization. For completeness,
in Section 8 we use the reciprocity principle of Grinberg–Roby [7] to prove that the
function that sends f to f(x)f(x′) with x = (i, j) and x′ = (a + 1 − i, b + 1 − j) is
multiplicatively homomesic.

The philosophy of lifting combinatorial actions to piecewise-linear actions and
thence to birational actions (called “geometric actions” by some authors, as in the
phrase “geometric Robinson–Schensted–Knuth”) is not original, and in particular Kir-
illov and Berenstein’s work on operations on Gel′fand–Tsetlin patterns [10] has some
parallels with our constructions. For more background on homomesy, including sev-
eral examples different in nature from the ones considered here but philosophically
similar, see [13].

The authors are grateful to Arkady Berenstein, Darij Grinberg, Michael Joseph,
Tom Roby, Richard Stanley, and Jessica Striker for helpful conversations and detailed
comments on the manuscript.

2. Background
2.1. Homomesy. Given a set X, an operation T : X → X of finite order n (so that
Tn is the identity map on X), and a function F from X to a field K of characteristic
0, we say that F is additively homomesic relative to (or under the action of) T , or
that the triple (X,T, F ) exhibits additive homomesy, if, for all x ∈ X, the average of
F on the T -orbit of x equals some constant c (independent of x); that is, if (F (x) +
F (T (x)) + F (T 2(x)) + · · · + F (Tn−1(x)))/n = c. We also say in this situation that
the function F (which in this context we will sometimes call a statistic on X) is
c-mesic relative to the map T . We will apply this notion in situations where T is
piecewise-linear (or when X is finite).

In situations where T is birational, we will use a multiplicative analogue of this
notion. If F is positive throughout X, then we say F is multiplicatively homomesic if
its geometric mean is the same on every orbit. More generally, F is multiplicatively
homomesic if (F (x)F (T (x))F (T 2(x)) · · · F (Tn−1(x)))1/n is independent of x. (In
some settings it is more natural to relax the assumption of positivity and merely
assert that F (x)F (T (x))F (T 2(x)) · · · F (Tn−1(x)) is independent of x, but we will
not take that course here.) We say F is multiplicatively c-mesic if the geometric mean
of F on every orbit is c.

We will usually omit the qualifiers “additive” and “multiplicative”, since the context
should make clear which meaning is intended (additive homomesy in the combinatorial
and piecewise-linear realms, multiplicative homomesy in the birational realm).
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2.2. Posets and toggling. We assume readers are familiar with the definition of
a finite poset (P,6), as for instance given in Ch. 3 of [15]. For the most part, we are
studying the case P = [a] × [b] = {(i, j) ∈ N × N : 1 6 i 6 a, 1 6 j 6 b} with
ordering defined by (i, j) 6 (i′, j′) iff i 6 i′ and j 6 j′. We put n = a+ b.

We write x l y (“x is covered by y”) or equivalently y m x (“y covers x”) when
x < y and no z ∈ P satisfies x < z < y. We call S ⊆ P a filter (or upset or dual order
ideal) of P when x ∈ S and y > x imply y ∈ S. We call S ⊆ P an order ideal (or ideal
or downset) of P when x ∈ S and y 6 x imply y ∈ S. The set of filters (resp. order
ideals) of P is denoted by F(P ) (resp. I(P )).

Following Cameron and Fon-Der-Flaass [3] and Striker and Williams [16] we define
toggle operations on F(P ) and I(P ). We treat I(P ) first.

Given x ∈ P and I ∈ I(P ), let τx(I) (“I toggled at x” in Striker and Williams’
terminology) denote the set I 4 {x} if this set is in I(P ) and I otherwise (where
X 4 Y denotes the symmetric difference of the sets X and Y ). Equivalently, τx(I) is
I unless y ∈ I for all y l x and y 6∈ I for all y m x, in which case τx(I) is I 4 {x}.
(We will sometimes say “toggling x turns I into τx(I).”) Clearly τx is an involution.
It is also easy to show that τx and τy commute unless x l y or x m y. Cameron and
Fon-Der-Flaass proved that if x1, x2, . . . , x|P | is any linear extension of P (that is, a
listing of the elements of P such that xi < xj implies i < j), then the composition
τx1◦τx2◦· · ·◦τx|P | (“toggling from top to bottom”) is independent of the choice of linear
ordering; we denote it by ρ. In the case where the poset P is graded (that is, where
the elements can be partitioned into integer-indexed ranks such that x l y implies
that the rank of x is 1 less than the rank of y), one natural way to linearly extend
P is to list the elements by rank, starting with the lowest rank and working upward.
Given the right-to-left order of composition of τx1 ◦τx2 ◦ · · · ◦τx|P | , this corresponds to
toggling the top rank first, then the next-to-top rank, and so on, lastly toggling the
bottom rank. Note that when x, y belong to the same rank of P , the toggle operations
τx and τy commute, so even without availing ourselves of the theorem of Cameron
and Fon-Der-Flaass we can see that this composite operation on I(P ) (“toggling by
ranks from top to bottom”) is well-defined. Striker and Williams, in their theory of rc
posets, use the term “row” as a synonym for “rank”, and they refer to ρ as rowmotion.

For example, let P = [2] × [2], and write (1, 1), (2, 1), (1, 2), (2, 2) as w, x, y, z for
short, with w < x < z and w < y < z in P , and with the rc embedding shown in
Figure 1. Under the action of τz, τy, τx, and τw, the order ideal {w, x} gets successively
mapped to {w, x}, {w, x, y}, {w, y}, and {w, y}. Thus ρ({w, x}) = {w, y}.

z

x y

w

Figure 1. The poset [2]× [2].

We will not go into the general theory of rc posets, as most of our work concerns
the special case of rc posets of the form [a]× [b]. We define the rank of (i, j) ∈ [a]× [b]
to be i + j − 1, so that in particular the bottom element (1, 1) has rank 1 and the
top element (a, b) has rank a + b − 1 = n − 1 (later we will introduce an extension
of P whose bottom element 0̂ has rank 0 and whose top element 1̂ has rank n). As
an rc poset [a] × [b] admits an embedding in the plane that maps (i, j) to the point
(j − i, i + j − 2); all poset-elements of rank m are mapped into the horizontal line
at height m − 1 above the origin. We refer to elements of P that lie on a common
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files: 1 2 3 4 5 6

ranks:

6

5

4

3

2

1

(3,1)

(2,1)

(3,2)

(2,2)

(3,3)

(1,2)

(2,3)

(3,4)

(1,3)

(2,4)

(1,4)

(1,1)

Figure 2. The standard rc embedding of the poset P = [3]×[4], and
the associated partitions of P into ranks and files. Diagonal edges are
associated with the covering relation in P .

vertical line as belonging to the same file. In particular, we say (i, j) belongs to the
(j− i+a)th(1) file of P . See Figure 2. Note that if x and y belong to the same file, the
toggle operations τx and τy commute, since neither of x, y can cover the other. Thus
the composite operation of toggling the elements of P from left to right is well-defined;
Striker and Williams call this operation promotion, and we denote it by π.

We have explained rowmotion and promotion as toggling by ranks (from top to
bottom) and by files (from left to right). A different way to understand these opera-
tions is by toggling fibers(2) of [a]× [b], that is, sets of the form [a]× {j} or {i} × [b].
(This view of rowmotion and promotion goes back to Striker and Williams; see the
proof of Theorem 5.4 in [16].) We refer to fibers as being positive or negative according
to whether their slope in the rc embedding is +1 or −1.

We illustrate these ideas in the context of P = [3] × [3]. We consider two orders
(both linear extensions of P ) in which one can toggle all the elements of P to obtain
ρ. The first order is just the standard order for rowmotion (from top to bottom rank
by rank, from left to right within each rank). The second order toggles the elements
in the topmost positive fiber from top to bottom, then the elements in the middle
positive fiber from top to bottom, and then the elements in the bottommost positive
fiber from top to bottom. Since the element of P marked 3 in the left frame neither
covers nor is covered by the element of P marked 4, the associated toggles commute,
and the same goes for the two toggles associated with the elements of P marked 6
and 7. Hence the composite operation on the left (“rowmotion by ranks”) coincides
with the composite operation on the right (“rowmotion by fibers”). This holds for all
a, b by the theorem of Cameron and Fon-Der-Flaass [3].

(1)Note that as i ranges from 1 to a and j ranges from 1 to b, j − i + a ranges from 1 to
a+ b− 1 = n− 1; this is slightly different from the indexing in [13].

(2)We prefer to avoid words like “row”, “column” and “diagonal” since each of these words has
two different meanings according to whether one imbeds [a]× [b] as an rc poset or as a subposet of
the first quadrant.
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1 1

2 3 2 4

4 5 6 3 5 7

7 8 6 8

9 9

Figure 3. Rowmotion by ranks and fibers.

There is a similar picture for promotion. Here we consider two other orders (not
linear extensions of P ) in which one can toggle all the elements of P . The first is just
the standard order for promotion (from left to right file by file, from top to bottom
within each file). The second toggles the elements in the topmost positive fiber from
left to right, then the elements in the middle positive fiber from left to right, and
then the elements in the bottommost positive fiber from left to right. As before, the
3 and the 4 can be swapped, as can the 6 and the 7. Hence the composite operation
on the left (“promotion by files”) coincides with the composite operation on the right
(“promotion by fibers”).

4 3

2 7 2 6

1 5 9 1 5 9

3 8 4 8

6 7

Figure 4. Promotion by ranks and fibers.

Note that for both rowmotion and promotion we divide the poset into positive
fibers and toggle them from top to bottom; the only difference is whether we toggle the
elements within each fiber from left to right (promotion) or right to left (rowmotion).
The proof that promotion by files and promotion by fibers coincide for all a, b uses the
same commutation results as in the case of rowmotion; it is just a matter of turning
the picture on its side.

So far we have limited ourselves to toggling, rowmotion, and promotion of order
ideals; the definitions for filters are very similar. Given x ∈ P and F ∈ F(P ), let
τx(F ) be F 4 {x} if this set is in F(P ) and F otherwise. Rowmotion is defined as
toggling from top to bottom and promotion is defined as toggling from left to right.
When we wish to be ultra-clear about context we may write order-ideal rowmotion
and promotion as ρI and πI and write filter rowmotion and promotion as ρF and πF ,
but often we will omit the subscripts.

Figure 5 shows what ρF looks like as a map on the six-element set F (we represent
each filter by its indicator function).

The matching ||: and :|| symbols, borrowed from music notation, indicate the orbit
structure; applying the map ρ to the last listed filter (preceding the :||) brings us back
to the first (following the ||:).
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1 1 1 0

||: 1 1
ρF7→ 1 1

ρF7→ 0 0
ρF7→ 0 0

ρF7→ :||

1 0 0 0

1 1

||: 1 0
ρF7→ 0 1

ρF7→ :||

0 0

Figure 5. The orbits of ρF on the filters of [2]× [2].

3. Piecewise-linear toggling
Given a poset P with elements x1, . . . , x|P |, let RP denote the set of functions f : P →
R; we can represent such an f as a P -array (or array for short) in which the values of
f(x) (for all x ∈ P ) are arranged according to a Hasse diagram for P . We will assume
that the elements of P are listed in order of rank (from lowest to highest), and when
P has an rc embedding, we will assume for convenience that the elements within each
rank are listed from left to right. We will sometimes identify RP with R|P |, associating
f ∈ RP with v = (f(x1), . . . , f(x|P |)). (We will use “f” when we want to view P -arrays
as functions that take arguments and return values, and “v” when we want to view P -
arrays as points in Euclidean space.) Let P̂ denote the augmented poset obtained from
P by adding two extra elements 0̂ and 1̂ (which we sometimes denote by x0 and x|P |+1)
satisfying 0̂ < x < 1̂ for all x ∈ P . The order polytope O(P ) ⊂ RP (see [14]) is the set of
vectors (f̂(x1), . . . , f̂(x|P |)) arising from functions f̂ : P̂ → R that satisfy f̂(0̂) = 0 and
f̂(1̂) = 1 and are order-preserving (x 6 y in P̂ implies f̂(x) 6 f̂(y) in R). Note that
the vertices of the order polytope are the indicator functions of filters. In some cases
it is better to work with the augmented vector (f̂(x0), f̂(x1), . . . , f̂(x|P |), f̂(x|P |+1)).
In either case we have a convex compact polytope.

For example, if P = [2] × [2] = {w, x, y, z} as depicted in Subsection 2.2, so that
(x1, x2, x3, x4) = (w, x, y, z), then O(P ) is the set of vectors v = (v1, v2, v3, v4) ∈ R4

such that 0 6 v1, v1 6 v2 6 v4, v1 6 v3 6 v4, and v4 6 1. It can also be written as
the convex hull of the vectors (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1),
and (1, 1, 1, 1), which are precisely the vectors associated with the filters of P . It is
shown in [14] that for any poset P , the vertices of O(P ) correspond to the indicator
functions of the filters of P .

We begin our discussion of toggling informally; for formal definitions, see Defini-
tions 3.1, 3.2, and 3.3. Given a convex compact polytope K in R|P | (we are only
concerned with the case K = O(P ) here but the definition makes sense more gener-
ally), we define the piecewise-linear toggle operation φi (1 6 i 6 |P |) as the unique
map from K to itself whose action on the 1-dimensional cross-sections of K in the ith
coordinate direction is the affine map that switches the two endpoints of the cross-
section. (We sometimes call these cross-sections fibers, e.g. in our use of the term
fiber-toggle below, though this use of the word “fiber” should not be confused with
the use found in Subsection 2.2.) That is, given v = (v1, . . . , v|P |) ∈ K, we define

(1) φi(v) = (v1, . . . , vi−1, Li(v) +Ri(v)− vi, vi+1, . . . , v|P |),
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where the real numbers Li(v) and Ri(v) (usually L and R for short) are respectively
the left and right endpoints of the set {t ∈ R : (v1, . . . , vi−1, t, vi+1, . . . , v|P |) ∈ K},
which is a bounded interval because K is convex and compact.(3) Since L+R− (L+
R− vi) = vi, each toggle operation is an involution.

Similar involutions were studied by Kirillov and Berenstein [10] in the context of
Gel′fand–Tsetlin triangles. Indeed, one can view their action as an instance of our
framework, where instead of looking at the rectangle posets [a] × [b] one looks at
the triangle posets with elements {(i, j) : 1 6 i 6 j 6 n} and covering-relations
(i, j− 1)l (i, j) (1 6 i 6 j 6 n) and (i+ 1, j+ 1)l (i, j) (1 6 i 6 j 6 n− 1); Kirillov
and Berenstein, in their Definition 0.1, use the term “elementary transformations” for
what we call “fiber-toggles”.

In the case where K is the order polytope of P , and a particular element x ∈ P has
been indexed as xi, we write φi as φx. The L and R that appear in (1) are given by

(2) L = max{vj : 0 6 j 6 |P |+ 1, xj l xi}

and

(3) R = min{vj : 0 6 j 6 |P |+ 1, xj m xi}.

Using these definitions of L and R,(4) we see that equation (1) defines an involution on
all of RP , not justO(P ). It is easy to show that φx and φy commute unless xly or xmy.
These piecewise-linear toggle operations φx are analogous to the combinatorial toggle
operations τx (and indeed φx generalizes τx in a sense to be made precise below), so it
is natural to define piecewise-linear rowmotion ρP : O(P ) → O(P ) as the composite
operation accomplished by toggling from top to bottom (much as filter rowmotion
ρF : F(P ) → F(P ) can be defined as the composite operation obtained by toggling
from top to bottom). Likewise, if P comes equipped with an rc embedding (as is the
case for P = [a] × [b]), we can define piecewise-linear promotion πP : O(P ) → O(P )
as the composite operation accomplished by toggling from left to right.

Continuing the example P = [2] × [2] = {w, x, y, z} from Subsection 2.2, let v =
(.1, .2, .3, .4) ∈ O(P ), corresponding to the order-preserving function f that maps
w, x, y, z to .1, .2, .3, .4, respectively. Under the action of φz, φy, φx, and φw, the
vector v = (.1, .2, .3, .4) gets successively mapped to

φzv = (.1, .2, .3, max(.2, .3) + 1− .4)
= (.1, .2, .3, .9),

φyφzv = (.1, .2, .1 + .9− .3, .9)
= (.1, .2, .7, .9),

φxφyφzv = (.1, .1 + .9− .2, .7, .9)
= (.1, .8, .7, .9),

(3)It is in some ways unfortunate that for an interval [a, b], the greatest lower bound a (resp. least
upper bound b) is called the left endpoint (resp. right endpoint) rather than the lower endpoint
(resp. upper endpoint); in the Hasse diagram of P as we have drawn it, L should be thought as being
associated with the downward direction, while R should be thought as being associated with the
upward direction.

(4)For all v in O(P ) one also has L = max{vj : xj < xi} and R = min{vj : xj > xi}, but the
formulas (2) and (3)) turn out to be the right ones to use in the complement of the order polytope
in RP , as well as the right ones vis-a-vis lifting the action to the birational setting.
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and

φwφxφyφzv = (0 + min(.8, .7)− .1, .8, .7, .9)
= (.6, .8, .7, .9)
= ρPv.

Other examples of piecewise-linear rowmotion can be seen in Figure 5 (since com-
binatorial rowmotion of filters is just the special case of piecewise-linear rowmotion
in which all entries in the P -array are equal to 0 or 1, and the associated filter is the
preimage of the value 1).

Grinberg and Roby [7] have shown that ρP on P = [a]× [b] is of order n = a+ b,
and by applying recombination (see Section 6) we will conclude that πP is of order n
as well.

The vertices ofO(P ) are precisely the 0,1-valued functions f on P with the property
that x 6 y in P implies f(x) 6 f(y) in {0, 1}. Each toggle operation acts as a
permutation on the set of vertices of O(P ). Indeed, if we think of each vertex O(P )
as determining a cut of the poset P into an upset (filter) Sup and a downset (order
ideal) Sdown (the pre-image of 1 and 0, respectively, under the order-preserving map
from P to {0, 1}), then the effect of the toggle operation φx (x ∈ P ) is just to move
x from Sup to Sdown (if x is in Sup) or from Sdown to Sup (if x is in Sdown) unless this
would violate the property that Sup must remain an upset and Sdown must remain a
downset. In particular, we can see that when our point v ∈ O(P ) is a vertex associated
with the cut (Sup, Sdown), the effect of φx on Sdown is just toggling the order ideal
Sdown at the element x ∈ P .(5)

It is not hard to show that each toggle operation preserves min{f(y) − f(x) :
x, y ∈ P̂ , x l y}. Therefore ρP (and πP , when P comes with an rc embedding)
preserve this quantity as well.

In our formal definitions we generalize the above construction by allowing f(0̂) and
f(1̂) to have fixed values in R other than 0 and 1 respectively.

Definition 3.1. Suppose P is a poset with P̂ = P ∪ {0̂, 1̂}, and fix α,ω in R. We
view each f ∈ RP as an element of f ∈ RP̂ by setting f(0̂) = α and f(1̂) = ω. For
x ∈ P , define φxf as the unique element of RP such that (φxf)(y) = f(y) for all
y 6= x in P and

(φxf)(x) = max{f(y) : y ∈ P̂ , y l x}+ min{f(y) : y ∈ P̂ , y m x} − f(x).

(Note that the sets in Definition 3.1 are guaranteed to be nonempty, so that the max
and min are well-defined.)

Definition 3.2. With P and P̂ as in Definition 3.1, and for f in RP , let ρP(f)
be the element of RP obtained by applying to f , in succession, the toggle operations
φ|P |,. . . ,φ2,φ1, where x1, x2, . . . , x|P | is some linear extension of P and φi = φxi

.
An easy adaptation of the proof of Cameron and Fon-Der-Flaass [3] shows that this
operation is independent of the linear ordering.

For example, returning to the example P = [2] × [2] = {w, x, y, z} from Subsec-
tion 2.2, let v = (.1, .2, .3, .4) ∈ O(P ) as before, but now set α = 1 and ω = 0
(rather than α = 0 and ω = 1). Under the action of φz, φy, φx, and φw, the vector

(5)This point of view is quite similar to the monotone Boolean functions point of view seen in
the original literature on what is now called rowmotion.
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v = (.1, .2, .3, .4) gets successively mapped to
φzv = (.1, .2, .3, max(.2, .3) + 0− .4)

= (.1, .2, .3, −.1),
φyφzv = (.1, .2, .1 + (−.1)− .3, −.1)

= (.1, .2, −.3, −.1),
φxφyφzv = (.1, .1 + (−.1)− .2, −.3, −.1)

= (.1, −.2, −.3, −.1),
and

φwφxφyφzv = (1 + min(−.2,−.3)− .1, −.2, −.3, −.1)
= (.6, −.2, −.3, −.1)
= ρPv.

Definition 3.3. Take P and P̂ as in Definition 3.1, and suppose we are given an rc
embedding of P . For f in RP , let πP(f) be the element of RP obtained by applying to
f , in succession, the toggle operations from left to right.

We call α = ω = 0 the homogeneous case and call α = 0, ω = 1 the order polytope
case. In the homogeneous case, we write the rowmotion operation as ρP (and likewise
we write the homogeneous piecewise-linear promotion operation as πP when P comes
with an rc embedding). We can always translate by α (replacing f(x) by f(x)−α for
all x ∈ P ) to reduce to the case α = 0. In the case where P is graded, the maps ρP
and ρP are related by an affine change of variables, as are the maps πP and πP in
the rc case. Suppose that P̂ has r + 1 ranks, numbered 0 (bottom) through r (top).
Given an arbitrary f in RP , define f̃(x) = f(x) − r−m

r α − m
r ω for x belonging to

rank m (0 6 m 6 r). Then f̃ sends 0̂ and 1̂ to 0, and each function from P̂ to R that
sends 0̂ and 1̂ to 0 arises as f̃ for a unique f in RP . Furthermore, the map f 7→ f̃
commutes with rowmotion,(6) so every homomesy for homogeneous rowmotion gives
rise to a (rank-adjusted) homomesy for order-polytope rowmotion, and vice versa; the
same goes for promotion in the rc case.

Using the homogenization/dehomogenization trick one can show that the following
two theorems are equivalent:
Theorem 3.4. Fix a, b > 1, let n = a + b, let P = [a] × [b], for 1 6 ` 6 n − 1 let
|v|` =

∑
x f(x) where x ranges over all (i, j) ∈ [a]× [b] satisfying j− i+a = `, and let

|v| be
∑n−1
`=1 |v|`, the sum of all the entries of v. Take α = 0, ω = 1. Then for every

v in RP , and for each k between 1 and n− 1,

1
n

n−1∑
k=0
|πkP(v)|` =

{
a`/n if ` 6 b,
b(n− `)/n if ` > b.

Summing over `, we obtain

1
n

n−1∑
k=0
|πkP(v)| = ab/2.

(The reason we have different formulas in Theorems 1.1 and 3.4 is that the former
concerns promotion of order ideals while the latter concerns promotion in the order
polytope. If we replaced order ideals by filters in the statement of Theorem 1.1, the
formula for the orbit-average would become what we see in Theorem 3.4.)

(6)More generally, this way of relating ρP and ρP works whenever the poset P is graded.
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Theorem 3.5. Fix a, b > 1, let n = a + b, let P = [a] × [b], for 1 6 ` 6 n − 1 let
|v|` =

∑
x f(x) where x ranges over all (i, j) ∈ [a] × [b] satisfying j − i + a = `, and

let |v| be
∑n−1
`=1 |v|`, the sum of all the entries of v. Take α = ω = 0. Then for every

v in RP , and for each k between 1 and n− 1,
n−1∑
k=0
|πkP(v)|` = 0.

Summing over `, we obtain
n−1∑
k=0
|πkP(v)| = 0.

We will obtain both Theorem 3.4 and Theorem 3.5 as consequences of Theorem 4.4.
(We do not state a fully general version of Theorem 3.4 with arbitrary values of α
and ω, but it is easy to obtain such a result by tropicalizing Theorem 5.3.)

Note that if a or b is 1, so that [a] × [b] is a chain with n − 1 elements, then our
piecewise-linear maps are all affine, and if we set v0 = vn = 0, then the effect of the
map φi (1 6 i 6 n − 1) is to swap the ith and i + 1st elements of the difference-
vector (v1 − v0, v2 − v1, . . . , vn − vn−1), a vector of length n whose entries sum to 0.
Consequently πP is a cyclic shift of a vector whose entries sum to 0, and the claim of
Theorem 3.5 follows in this special case.

It might be possible to prove Theorem 3.4 in the general case by figuring out
how the map πP dissects the order polytope into pieces and re-arranges them via
affine maps. Likewise, it might be possible to prove Theorem 3.5 by giving a precise
analysis of the piecewise-linear structure of the map πP . However, we will take a
different approach, proving the result in the piecewise-linear setting by proving it in
the birational setting and then tropicalizing.

4. Birational toggling
The definition of the toggling operation involves only addition, subtraction, min, and
max. One can define birational transformations on (R+)P that have some formal
resemblance to the toggle operations on O(P ). This transfer makes use of a dictio-
nary in which 0, addition, subtraction, max, and min are respectively replaced by 1,
multiplication, division, addition, and parallel addition (defined below), resulting in
a subtraction-free rational expression.(7) Parallel addition can be expressed in terms
of the other operations, but taking a symmetrical view of the two forms of addition
turns out to be fruitful. Indeed, in setting up the correspondence we have a choice to
make: by series-parallel duality, one could equally well use a dictionary that switches
the roles of addition and parallel addition.

For x, y satisfying x + y 6= 0, we define the parallel sum of x and y as x ‖− y =
xy/(x + y). In the case where x, y and x + y are all nonzero, xy/(x + y) is equal
to 1/( 1

x + 1
y ), which clarifies the choice of notation and terminology: if two electrical

resistors of resistance x and y are connected in parallel, the resulting circuit element
has effective resistance x ‖− y. Note that if x and y are in R+, then x+y and x ‖− y are
in R+ as well. Also note that ‖− is commutative and associative, so that a compound
parallel sum x ‖− y ‖− z ‖− · · · is well-defined; it is equal to product xyz · · · divided by
the sum of all products that omit exactly one of the variables, and in the case where

(7)The authors are indebted to Arkady Berenstein for pointing out the details of this transfer of
structure from the piecewise-linear setting to the birational setting. A key signpost pointing in the
correct direction was his remark that min(x, y) = −max(−x,−y).
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x, y, z, . . . are all nonzero, it can also be written as 1/( 1
x + 1

y + 1
z + · · · ). We thus have

the reciprocity relation

(4) (x ‖− y ‖− z ‖− · · · )
(

1
x

+ 1
y

+ 1
z

+ · · ·
)

= 1.

The identity
(5) (x ‖− y)(x+ y) = xy

will also play an important role.
As in the previous section, we begin informally, preparing for Definitions 4.1, 4.2,

and 4.3. Recall formulas (1), (2) and (3) above. Instead of taking the maximum of the
vj ’s satisfying xj lxi, we take their ordinary (or “series”) sum, and instead of taking
the minimum of the vj ’s satisfying xj m xi, we take their parallel sum. Proceeding
formally, given a nonempty multiset S = {s1, s2, . . . }, let

∑+
S denote s1 + s2 + · · ·

and
∑ ‖−

S denote s1 ‖− s2 ‖− · · · . (To see why we must think of S as a multiset and
take multiplicity into account, consider for instance the series sum and parallel sum in
equations (7) and (8) respectively; if we happen to have vj1 = vj2 for some pair j1 6= j2,
both of the terms must be included.) Then for v = (v0, v1, . . . , v|P |, v|P |+1) ∈ (R+)P̂
with v0 = α = 1 and v|P |+1 = ω = 1 (recall that x0 = 0̂ and x|P |+1 = 1̂) and for
1 6 i 6 |P | we take
(6) φi(v) = (v0, v1, . . . , vi−1, LR/vi, vi+1, . . . , v|P |, v|P |+1),
with

(7) L =
∑+

{vj : 0 6 j 6 |P |+ 1, xj l xi}

and

(8) R =
∑ ‖−

{vj : 0 6 j 6 |P |+ 1, xj m xi}

where as in Section 3 the sets in question are guaranteed to be nonempty. We call the
maps φi given by (6) birational toggle operations, as opposed to the piecewise-linear
toggle operations treated in the previous section.(8) As the 0th and |P |+ 1st coordi-
nates of v are not affected by any of the toggle operations we can just omit those coor-
dinates, reducing our toggle operations to actions on (R+)P . Since LR/(LR/vi) = vi,
each birational toggle operation is an involution on the orthant (R+)P . The bira-
tional toggle operations are analogous to the piecewise-linear toggle operations (in
a sense to be made precise below), so it is natural to define birational rowmotion
ρB : (R+)P → (R+)P as the composite operation accomplished by toggling from top
to bottom, and to define birational promotion πB : (R+)P → (R+)P as the composite
operation accomplished by toggling from left to right in the rc case.

It is not hard to show that each birational toggle operation preserves∑+
{f(x)/f(y) : x, y ∈ P̂ , xl y}

(or, if one prefers, the reciprocal quantity
∑ ‖−{f(y)/f(x) : x, y ∈ P̂ , xl y}). There-

fore ρB also preserves this quantity, as does πB in the rc case. (We are indebted to
Arkady Berenstein for this observation.) One could define the birational toggle group
as the group generated by all birational toggles, and the piecewise-linear toggle group
analogously. These are related to the (combinatorial) “toggle group” earlier authors
have studied (the group induced by the action of all the toggles on I(P )), but unlike

(8)We use the same symbol φi for both, but this should cause no confusion.
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the combinatorial toggle group, these groups are in general infinite. It seems possi-
ble that, at least in some cases, the birational toggle group contains all birational
transformations that preserve

∑+{f(x)/f(y) : x, y ∈ P̂ , xl y}.
Continuing our running example P = [2]× [2] = {w, x, y, z} with f(0̂) = f(1̂) = 1,

let v = (1, 2, 3, 4) ∈ (R+)P , corresponding to the positive function f that maps
w, x, y, z to 1, 2, 3, 4, respectively. Under the action of φz, φy, φx, and φw, the vector
v = (1, 2, 3, 4) gets successively mapped to

φzv = (1, 2, 3, (2 + 3)(1)/4)
= (1, 2, 3, 5

4 ),
φyφzv = (1, 2, (1)( 5

4 )/3, 5
4 )

= (1, 2, 5
12 ,

5
4 ),

φxφyφzv = (1, (1)( 5
4 )/2, 5

12 ,
5
4 )

= (1, 5
8 ,

5
12 ,

5
4 ),

and

φwφxφyφz = ((1)( 5
8 ‖−

5
12 )/1, 5

8 ,
5

12 ,
5
4 )

= ( 1
4 ,

5
8 ,

5
12 ,

5
4 )

= ρB(v).

We can check that the quantity
∑+{f(x)/f(y) : x, y ∈ P̂ , x l y} retains the value

85
12 throughout the process.

For most of the purposes of this article, it suffices to take πB to be a map from
(R+)P to itself; since the variables take on only positive values and since the expres-
sions in those variables are all subtraction-free, all of the denominators are non-zero,
so none of the rational functions blow up. Alternatively, as in the work of Grinberg
and Roby, one can replace R+ by a ring of rational functions in formal indetermi-
nates indexed by the elements of P , thereby avoiding the singularity issue. A third
approach is to extend ρB and πB to maps from a dense open subset U of CP to itself
by avoiding the points where denominators vanish. This is slightly subtle, since one
needs to exclude all points whose orbits intersect the singular set. That is, we need
to avoid not merely those points where the map blows up, but also points where the
kth iterate of the map blows up. When the map is of finite order, this means avoiding
a finite union of Zariski-closed proper subsets. It should be possible to characterize
the resulting dense open set U , but we do not do this here; we merely point out that
such a dense open set must exist since there are only finitely many denominators.

We now give formal definitions. Fix α, ω in R+.

Definition 4.1. Suppose P is a poset with P̂ = P ∪{0̂, 1̂}. For f in (R+)P (extended
to an element of (R+)P̂ by putting f(0̂) = α and f(1̂) = ω) and for x ∈ P , define φxf
as the unique element of (R+)P such that (φxf)(y) = f(y) for all y 6= x in P and

(φxf)(x) =
(∑+

{f(y) : y∈ P̂ , y l x}
)(∑ ‖−

{f(y) : y∈ P̂ , y m x}
)
/f(x).

(Note that the sets in Definition 4.1 are guaranteed to be nonempty, so that the sum
and parallel sum are well-defined.)

Definition 4.2. With P and P̂ as in Definition 4.1, and for f in (R+)P , let ρB(f) be
the element of (R+)P obtained by applying to f , in succession, the toggle operations
φ|P |,. . . ,φ2,φ1, where x1, x2, . . . , x|P | is some linear extension of P and φi = φxi

.
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An easy adaptation of the proof of Cameron and Fon-Der-Flaass [3] shows that this
operation is independent of the linear ordering.

Definition 4.3. Take P and P̂ as in Definition 4.1, and suppose we are given an
rc embedding of P . For f in (R+)P , let πB(f) be the element of (R+)P obtained by
applying to f , in succession, the toggle operations from left to right.

We focus mostly on the monic case f(0̂) = f(1̂) = 1, since (just as in the piecewise-
linear setting) no generality is lost, if P is graded and we restrict to vectors v in the
positive orthant so that rth roots are globally well-defined, where r+ 1 is the number
of ranks of P̂ . Given an arbitrary f : P̂ → R+, let α = f(0̂) and ω = f(1̂), and define
f̃ by f̃(x) = f(x)/(α1−m/rωm/r) for x belonging to rank m (0 6 m 6 r). Then f̃

sends 0̂ and 1̂ to 1, and for any choice of α, ω ∈ R+, each function from P̂ to R+

that sends 0̂ and 1̂ to 1 arises as f̃ for a unique f : P̂ → R+ sending 0̂ to α and 1̂ to
ω. Furthermore, the map f 7→ f̃ commutes with rowmotion (and with promotion in
the rc case), so homomesy results for f̃ yield homomesy results for f as immediate
consequences. When we wish to emphasize that we are in the monic case α = ω = 1,
we will write ρB and πB as ρB and πB.

As in the piecewise-linear case, our proof-method will enable us to demonstrate
(multiplicative) homomesy of the action when P is a product of two chains.

Theorem 4.4. Fix a, b > 1, let n = a + b, let P = [a] × [b], for 1 6 ` 6 n − 1 let
|v|` =

∏
x f(x) where x ranges over all (i, j) ∈ [a] × [b] satisfying j − i + a = `, and

let |v| be
∏n−1
`=1 |v|`, the product of all the entries of v. Then for every v in (R+)P

corresponding to an f : P̂ → R+ with f(0̂) = f(1̂) = 1,
n−1∏
k=0
|πkB(v)|` = 1.

Multiplying over `, we obtain
n−1∏
k=0
|πkB(v)| = 1.

In other words, the geometric mean of the values of |πB(v)|` as v traces out an
orbit in (R+)P is equal to 1 for every orbit. Theorem 4.4 also applies to a dense open
subset of RP , and indeed to a dense open subset of CP , but the paraphrase in terms
of geometric means does not hold in general since z 7→ z1/n is not single-valued on C.

We will derive Theorem 4.4 from Theorem 5.3.

5. File-toggling and promotion
In this section we assume P = [a]× [b]. We work in the birational realm, though we
switch to considering promotion rather than rowmotion for reasons that will soon be
clear. Earlier we defined S`, the `th file in [a]× [b] (with 1 6 ` 6 n− 1), as the set of
all (i, j) ∈ [a]× [b] with j − i+ a = `.

We start in the monic case (α = ω = 1), though later in the section we will consider
the general not-necessarily-monic case. Given f : P̂ → R+ with f(0̂) = f(1̂) = 1,
let p` = |v|` (1 6 ` 6 n − 1) be the product of the numbers f(x) with x belonging
to the `th file of P , let p0 = pn = 1, and for 1 6 ` 6 n let q` = p`/p`−1. Call
q1, . . . , qn the quotient sequence associated with f , and denote it by Q(f). This
is analogous to the difference sequence introduced in [13]. Note that the product
q1 · · · qn telescopes to pn/p0 = 1. For ` between 1 and n − 1, let φ∗` be the product
of the commuting involutions φx for all x belonging to the `th file. Lastly, given

Algebraic Combinatorics, Vol. 4 #2 (2021) 214



Combinatorial, piecewise-linear, and birational homomesy

a sequence of n numbers w = (w1, . . . , wn), and given 1 6 ` 6 n − 1, define
σ`(w) = (w1, . . . , w`−1, w`+1, w`, w`+2, . . . , wn); that is, σ` switches the `th and
`+ 1st entries of w.

Lemma 5.1. For all 1 6 ` 6 n− 1,

Q(φ∗`f) = σ`Q(f).

That is, toggling the `th file of f swaps the `th and ` + 1st entries of the quotient
sequence of f .

Proof. Let f ′ = φ∗`f , let p′` (1 6 ` 6 n− 1) be the product of the numbers f ′(x) with
x belonging to the `th file of P , let p′0 = p′n = 1, and for 1 6 ` 6 n let q′` = p′`/p

′
`−1.

We have p′`′ = p`′ for all `′ 6= ` (since only the values associated with elements of
P of the `th file are affected by φ`), so we have q′`′ = p′`/p

′
`−1 = p`/p`−1 = q`′ for

all `′ other than ` and ` + 1. The product q′1 · · · q′n telescopes to 1 as before. The
lemma asserts that q′` = q`+1 and q′`+1 = q`. It suffices to prove just one of the two
assertions, since the two previous sentences tell us that q′`q′`+1 = q`q`+1. Expressed in
terms of the p`′ ’s, the assertion q′` = q`+1 amounts to the claim p′`/p

′
`−1 = p`+1/p`,

or equivalently p`p′` = p′`−1p`+1, which is just the claim p`p
′
` = p`−1p`+1.

We write p`p′` as the product of f(x)f ′(x) as x varies over the `th file of P . For
each x in the `th file of P , f(x)f ′(x) = LxRx where Lx =

∑+{f(w) : w l x} and
Rx =

∑ ‖−{f(y) : ymx} (with w, y ∈ P̂ ). Now we note a key property of the structure
of P = [a] × [b]: if x+ and x− are vertically adjacent elements of the `th file, with
x+ above x−, the w’s that contribute to Lx+ are precisely the y’s that contribute to
Rx− . So, when we take the product of f(x)f ′(x) = LxRx over all x in the `th file, the
factors Lx+ and Rx− combine to give

∏
w f(w) where w varies over the (two) elements

satisfying x− lwl x+ (here we are using the identity (5)). The only factors that do
not combine in this way are Lx where x is the bottom element of the `th file and Rx
where x is the top element of the `th file. Both of these factors can be written in the
form f(z) where z is a single element of P̂ belonging to either the ` − 1st or ` + 1st
file. By examining cases, it is easy to check that every element of the ` − 1st file or
` + 1st file makes a single multiplicative contribution, so that p`p′` is the product of
f(z) as z varies over the union of the `− 1st and `+ 1st files of P . But this product
is precisely p`−1p`+1. So we have proved that p`p′` = p`−1p`+1, which concludes the
proof. �

Corollary 5.2.Q(πBf) is the leftward cyclic shift of Q(f).

Proof. Recall that πB is the composition φ∗n−1 ◦ · · · ◦ φ∗1. �

Proof of Theorem 4.4. For each ` between 1 and n, view q` as a function of f . Corol-
lary 5.2 tells us that the numbers q`(π0

Bf), q`(π1
Bf), q`(π2

Bf), . . . , q`(πn−1
B f) are re-

spectively equal to the numbers q`(f), q`+1(f), q`+2(f), . . . , q`−1(f), which multiply
to 1. Therefore q` (viewed as a function of f) is multiplicatively homomesic under the
action of πB (with average value 1 on all orbits), for all 1 6 ` 6 n. Hence the same
is true of p1 = q1, p2 = q1q2, p3 = q1q2q3, etc., so that for all ` 6 n − 1, p` = |v|` is
multiplicatively 1-homomesic, as claimed. �

In fact, switching now to the general (not necessarily monic) case, we have:

Theorem 5.3. Fix a, b > 1, let n = a+ b, let P = [a]× [b], and for 1 6 ` 6 n− 1 let
|v|` =

∏
x f(x) where x ranges over all (i, j) ∈ [a]× [b] satisfying j − i+ a = `. Also

take α, ω ∈ R+. Then for every v in (R+)P corresponding to an f : P̂ → R+ with
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f(0̂) = α and f(1̂) = ω,

n−1∏
k=0
|πkB(v)|` =


αb`ωa` if ` 6 min(a, b),
αa(n−`)ωa` if a 6 ` 6 b,
αb`ωb(n−`) if b 6 ` 6 a,
αa(n−`)ωb(n−`) if ` > max(a, b).

Multiplying over `, we obtain
n−1∏
k=0
|πkB(v)| = αnab/2ωnab/2.

Proof of Theorem 5.3. Suppose a > b (the proof for the case a 6 b is similar). Define f̃
by f̃(x) = f(x)/α(n−m)/nωm/n for x belonging to rank m. Since the statistic f̃ 7→ |f̃ |`
is multiplicatively 1-mesic under the action of πB, and since the map f 7→ f̃ intertwines
πB and πP , the statistic f 7→ |f |` is multiplicatively c`-mesic under the action of πB,
where c` is the nth root of the product of αn+1−i−jωi+j−1 as (i, j) ranges over S`.
Hence the product in the formula above is equal to cn` . It is slightly tedious but not
hard to check that for 1 6 ` 6 b 6 a we have cn` = αb`ωa`, for b 6 ` 6 a we have
cn` = αb`ωb(n−`), and for b 6 a 6 ` 6 n− 1 we have cn` = αa(n−`)ωb(n−`). We omit the
proof of the aggregate formula (obtained by multiplying over `). �

Note that Theorem 5.3 immediately implies Theorem 4.4 via the substitution α =
ω = 1.

Also note that, although the theorem asserts homomesy only for v’s in (R+)P , the
same holds for every v in a dense open subset of RP , whose complement consists of
points for which the orbit v, πB(v), . . . , πn−1

B (v) is not well-defined because of some
denominator vanishing. The same is true for CP .

6. Recombination
The ideas of this section apply in all three realms (combinatorial, piecewise-linear,
and birational) and apply to many posets, though we will restrict ourselves to the
the case P = [a]× [b]. For the sake of generality, we treat the general birational case,
where P -arrays f tacitly have f(0̂) = α and f(1̂) = ω.

The essential idea behind recombination is presented in Figure 6. This Figure shows
(at top) the four elements of a particular ρP orbit for P = [2]×[2] and (at bottom) the
four elements of a particular πP orbit for P = [2]× [2], with each element of the first
orbit being mapped via R (the recombination operation) to a corresponding element
of the second orbit: The sixteen numbers that appear in the ρP orbit are the same as
the sixteen numbers that appear in the πP orbit, in a different order. Specifically, if
f denotes a P -array, then the P -array Rf consists of the bottom and left entries of
f along with the right and top entries of ρPf .

Recombination is implicit in the work of Striker andWilliams [16]; they show (in the
combinatorial realm) that ρ and π are conjugate to one another. However, the study
of homomesies requires that the Striker–Williams conjugation map be expressed in a
more explicit form, as is done here. The discussion of recombination here is focused
on the case P = [a] × [b], but the notion applies more generally; a version of it is
discussed in [4] (see Section 6), and Vorland’s article [17] treats a multidimensional
version suitable for rowmotion and promotion in the case where P is a product of
more than two chains.
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.19 .92 .98 .97

||: .05 .11
ρP7→ .90 .84

ρP7→ .89 .95
ρP7→ .16 .10

ρP7→ :||
.03 .81 .08 .02

R

7→

R

7→

R

7→

R
7→

.92 .98 .97 .19

||: .05 .84
πP7→ .90 .95

πP7→ .89 .10
πP7→ .16 .11

πP7→ :||
.03 .02.81 .08

Figure 6. Recombination in [2]× [2].

Note that it is not immediately obvious that recombination as defined above carries
the order polytope to itself, or that it sends filters to filters and order ideals into order
ideals.

a7 b7

a4 a8 b4 b8

f = a1 a5 a9
ρB7→ b1 b5 b9

a2 a6 b2 b6

a3 b3

c7 d7

c4 c8 d4 d8

ρB7→ c1 c5 c9
ρB7→ d1 d5 d9

c2 c6 d2 d6

c3 d3

Figure 7. A partial orbit of ρB for P = [3]× [3].

c7 d7

b4 c8 c4 d8

g = a1 b5 c9
πB7→ b1 c5 d9

a2 b6 b2 c6

a3 b3

Figure 8. Recombination.

The link between rowmotion and promotion is seen mostly clearly if we look at the
negative fibers. It is helpful to consider the specific example P = [3] × [3], where we
implement rowmotion by toggling the P -array row by row from top to bottom and
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c7 d7

c4 c8 c4 c8

c1 b5 b9 b1 b5 c9

b2 b6 b2 b6

b3 a3

Figure 9. Key example: Toggling the middle entry of
τ(3,1)τ(2,3)τ(3,2)τ(3,3)ρB(f) (left) versus toggling the middle en-
try of τ(3,3)τ(2,1)τ(3,2)τ(3,1)g (right).

within each row from left to right (at (3, 3), (3, 2), (2, 3), (3, 1), (2, 2), (1, 3), (2, 1),
(1, 2), and (1, 1), respectively), and we implement promotion by toggling the P -array
file by file from left to right and within each file from top to bottom (at (3, 1), (3, 2),
(2, 1), (3, 3), (2, 2), (1, 1), (2, 3), (1, 2), and (1, 3), respectively).

Figure 7 shows a partial orbit of ρB for P = [3] × [3], depicting a generic P -array
f along with the associated arrays ρBf , ρ2

Bf , and ρ3
Bf . Consider the array g = Rf

formed by recombining the bottom negative fiber of f (consisting of a1, a2, a3), the
middle negative fiber of ρBf (consisting of b4, b5, b6), and the top negative fiber of
ρ2
Bf (consisting of c7, c8, c9), as shown in the left frame of Figure 8. We claim that
πBg coincides with the array formed by recombining the bottom negative fiber of
ρBf (consisting of b1, b2, b3), the middle negative fiber of ρ2

Bf (consisting of c4, c5, c6),
and the top negative fiber of ρ3

Bf (consisting of d7, d8, d9), as shown in the right
frame of Figure 8. For example, consider what happens when we compute the middle
(i.e. (2, 2)) entry of πBg, assuming that our claim applies to the previously-computed
entries. The left panel of Figure 9 shows the array four-ninths of the way through
the process of applying rowmotion to ρB(f) to compute ρ2

B(f); it consists of the five
entries b5, b9, b2, b6, b3 from ρB(f) (seen in the upper right panel of Figure 7) and the
four entries c7, c4, c8, c1 from ρ2

B(f) (seen in the lower left panel of Figure 7). The
right panel of Figure 9 shows the array four-ninths of the way through the process of
applying promotion to g to compute πB(g); it consists of the five entries b5, a3, c8, b6,
c9 from g (seen in the left panel of Figure 8) and the four entries b1, c4, b2, d7 from
πB(g) (seen in the right panel of Figure 8). In both cases, when one toggles the middle
entry and replaces b5 by c5, with c5 expressed in terms of previously-computed entries,
the governing relation is b5c5 = (b2 + b6)(c4 ‖− c8). (Indeed, the proof of Theorem 6.2
was found by thinking hard about why the four entries that adjoin b5 are the same
in both panels, and generalizing.)

Definition 6.1. Given a, b > 1 and P = [a]× [b], and given a P -array f : P → R+,
let

(9) (Rf)(i, j) = (ρj−1
B f)(i, j).

That is, Rf is the P -array whose b negative fibers, read from bottom to top, have
the same values as the corresponding negative fibers in f , ρBf , ρ2

Bf , . . . , ρ
b−1
B f . The

operation R can also be expressed as a product of toggles. Specifically, for 1 6 j 6 b
let Tj be the operation τ(1,j) ◦ τ(2,j) ◦ · · · ◦ τ(a−1,j) ◦ τ(a,j) that toggles the elements of
the jth negative fiber from left to right (or equivalently from top to bottom), and for
1 6 j 6 b let Uj be the operation Tb−j+1 ◦Tb−j+2 ◦ · · · ◦Tb−1 ◦Tb that toggles the top
j negative fibers from top to bottom; then R = U1 ◦ U2 ◦ · · · ◦ Ub−2 ◦ Ub−1. It is no
accident that a similar product of toggles can be found in Theorem 5.4 of [16]. Note
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that this representation of recombination as a composition of involutions makes it
clear that R is invertible. For a concrete formula for the inverse map, see Lemma 6.5.

Now we come to the main result of this section, a birational analogue of Striker
and Williams’ main result.
Theorem 6.2. Fix a, b > 1, let n = a+ b, and let P = [a]× [b]. Then for all f : P →
R+,
(10) RρBf = πBRf.

Proof. We will show that
(11) (RρBf)(i, j) = (πBRf)(i, j)
for all (i, j) ∈ [a]× [b] by left-to-right induction (starting with (a, 1) and ending with
(1, b)). The reader may find it helpful to consult Figure 10) which shows the vicinity
of a typical element x = (i, j) in the poset [a]× [b] (away from the boundary).

(i+1, j) (i, j+1)

(i, j)

(i, j−1) (i−1, j)

Figure 10. The local picture.

In the boundary cases where one or more of the ordered pairs (i + 1, j), (i, j +
1), (i, j − 1), (i − 1, j) does not belong to [a] × [b], the out-of-bounds ordered pair(s)
may be ignored.

Note that (i, j−1) and (i+1, j) are to the left of (i, j). If we now assume that (11)
holds for (i, j − 1) (which we take to be vacuously true if (i, j − 1) 6∈ [a]× [b]) and for
(i+ 1, j) (which we take to be vacuously true if (i+ 1, j) 6∈ [a]× [b]), then
(12) (RρBf)(i, j − 1) = (πBRf)(i, j − 1)
and
(13) (RρBf)(i+ 1, j) = (πBRf)(i+ 1, j).

Note that ρB can be described directly via the recurrence

(14) (ρBf)(x) = 1
f(x)

∑+
{f(y) : y ∈ x−}

∑ ‖−
{(ρBf)(y) : y ∈ x+}

for all x ∈ P , where in lieu of including 0̂ and 1̂ we interpret
∑+ and

∑ ‖− of the
empty set as α and ω respectively. We rewrite (14) for x = (i, j) as

(15) (ρBf)(i, j) = 1
f(i, j) ×

∑+
{f(i− 1, j), f(i, j − 1)}

×
∑ ‖−

{(ρBf)(i+ 1, j), (ρBf)(i, j + 1)},

where terms f(·, ·) and (ρBf)(·, ·) are to be ignored if the arguments do not belong to
[a]× [b]. Likewise, promotion can be described by the recurrence

(16) (πBf)(i, j) = 1
f(i, j) ×

∑+
{f(i− 1, j), (πBf)(i, j − 1)}

×
∑ ‖−

{(πBf)(i+ 1, j), f(i, j + 1)}.
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From (9) we obtain (Rf)(i, j+1) = (ρjBf)(i, j+1) and (Rf)(i, j−1) = (ρj−2
B f)(i, j−

1), which we will use presently.
One the one hand we have

(RρBf)(i, j) = (ρj−1
B ρBf)(i, j) (by (9))

= (ρBρj−1
B f)(i, j)

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (ρj−1

B f)(i, j − 1)}

×
∑ ‖−

{(ρBρj−1
B f)(i+ 1, j), (ρBρj−1

B f)(i, j + 1)} (by (15))

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (ρj−1

B f)(i, j − 1)}

×
∑ ‖−

{(ρjBf)(i+ 1, j), (ρjBf)(i, j + 1)}.

On the other hand we have

(πBRf)(i, j) = 1
(Rf)(i, j) ×

∑+
{(Rf)(i− 1, j), (πBRf)(i, j − 1)}

×
∑ ‖−

{(πBRf)(i+ 1, j), (Rf)(i, j + 1)} (by (16))

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (πBRf)(i, j − 1)}

×
∑ ‖−

{(πBRf)(i+ 1, j), (ρjBf)(i, j + 1)} (by (9))

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (RρBf)(i, j − 1)}

×
∑ ‖−

{(RρBf)(i+ 1, j), (ρjBf)(i, j + 1)} (by (12) and (13))

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (ρj−2

B ρBf)(i, j − 1)}

×
∑ ‖−

{(ρj−1
B ρBf)(i+ 1, j), (ρjBf)(i, j + 1)} (by (9))

= 1
(ρj−1
B f)(i, j)

×
∑+

{(ρj−1
B f)(i− 1, j), (ρj−1

B f)(i, j − 1)}

×
∑ ‖−

{(ρjBf)(i+ 1, j), (ρjBf)(i, j + 1)}.

Comparing the final expressions in the two equation blocks, we conclude that
(RρBf)(i, j) = (πBRf)(i, j), which was to be proved. �

Corollary 6.3. For all k > 0,
(17) RρkBf = πkBRf.

Proof. Immediate. �

Corollary 6.4. The map πB (for P = [a]× [b]) is of order a+ b.

Proof. This follows from Grinberg–Roby periodicity, Corollary 6.3, and the fact that
R is bijective. �

Lemma 6.5. The map D defined by
(18) (Dg)(i, j) = (πn+1−j

B g)(i, j)
satisfies DRf = f and hence coincides with R−1.
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Proof.
(DRf)(i, j) = (πn+1−j

B (Rf))(i, j)

= (Rρn+1−j
B f)(i, j) (by Corollary 6.3 with k = n+ 1− j)

= (ρj−1
B ρn+1−j

B f)(i, j) (by (9) applied to ρn+1−j
B f)

= (ρnBf)(i, j)
which equals f(i, j) by the periodicity of ρB. �

Theorem 6.6. Fix a, b > 1, let n = a + b, and let P = [a] × [b]. For any statistic F
on (R+)P of the form Ff =

∏
x∈P f(x)ax with ax ∈ Z for all x ∈ P ,

n−1∏
k=0

F (ρkBf) =
n−1∏
k=0

F (πkBRf).

In particular, if F is homomesic with respect to promotion, F is homomesic with
respect to rowmotion.
Proof. Recall that ρnB and πnB are both the identity map. It will suffice to consider
F of the form Fxf = f(x)ax for some particular x ∈ P , say x = (i, j). Theorem 6.2
implies ρkBf = R−1πkBRf . Then setting gj = πn+1−j

B Rf we have
Fx(ρkBf) = ((ρkBf)(x))ax

= ((R−1πkBRf)(x))ax

= ((πn+1−j
B πkBRf)(x))ax (by Lemma 6.5)

= ((πkBπ
n+1−j
B Rf)(x))ax

= Fx(πkBgj)
so that

n−1∏
k=0

Fx(ρkBf) =
n−1∏
k=0

Fx(πkBgj)

=
n−1∏
k=0

Fx(πk+n+1−j
B Rf)

=
n−1∏
k=0

Fx(πkBRf)

(by reindexing and appealing to periodicity). Since this holds for all x, the claim
follows by multiplication. �

7. Tropicalization
Theorem 4.4 is nothing more than a complicated identity involving the operations
of multiplication, division, addition, and parallel addition. As such, Theorem 4.4 can
be tropicalized to yield an identity involving the operations of addition, subtraction,
min, and max. The resulting identity is Theorem 3.5. Here we provide details of the
tropicalization process.
Lemma 7.1. Suppose E1(t1, . . . , tr) and E2(t1, . . . , tr) are subtraction-free rational
functions, expressed in terms of the number 1 and the operations +, ‖− , ×, and
/, such that E1(t1, . . . , tr) = E2(t1, . . . , tr) for all t1, . . . , tr in R+. Let ei(t1, . . . , tr)
(for 1 6 i 6 2) be the result of replacing 1, +, ‖− , ×, and / by 0, min, max, +, and
−, respectively. Then e1(t1, . . . , tr) = e2(t1, . . . , tr) for all t1, . . . , tr in R.
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Proof. Write ei(t1, . . . , tm) = − limN→∞
1
N logEi(e−Nt1 , . . . , e−Ntm).(9) �

It is worth observing that the converse of the lemma is false. That is, there are
tropical identities like max(t, t) = t whose “detropicalization” is false. Thus, while
Theorem 3.5 is a consequence of Theorem 4.4, Theorem 4.4 cannot be derived as a
consequence of Theorem 3.5, at least not using any methods we are aware of.

At the same time, we should mention that in a certain sense, Theorem 3.5 can be
proved without relying on Theorem 4.4. Specifically, one can tropicalize each of the
steps in the proof of Theorem 4.4, using (for instance) the identity

(19) min(x, y) + max(x, y) = x+ y

in place of the identity (5).

Proof of Theorem 3.5. This is an immediate consequence of Theorem 4.4 via tropi-
calization. �

Proof of Theorem 3.4. Putting α = 1 in Theorem 5.3, we get
n−1∏
k=0
|πkB(v)|` =

{
ωa` if 1 6 ` 6 b,
ωb(n−`) if b 6 ` 6 n.

Tropicalizing this result gives Theorem 3.4. �

Proof of Theorem 1.1. Putting ω = 1 in Theorem 5.3, we get
n−1∏
k=0
|πkB(v)|` =

{
αb` if ` 6 a,
αa(n−`) if a 6 `n.

Tropicalizing this result gives a homomesy result for the promotion on the reverse
order polytope (the set of order-reversing maps from [a] × [b] to [0, 1]). Specializing
to the vertices of this polytope gives the desired homomesy for order ideals. �

8. Other homomesies
Recall that Pi (1 6 i 6 n − 1) denotes the ith file of P = [a] × [b]. We have shown
that for P = [a]× [b], the functions

pi : f 7→
∑

x ∈ Pi
f(x)

(and their analogues in the birational setting) are homomesic under the action of
rowmotion and promotion. These are not, however, the only combinations of the
local evaluation operations f 7→ f(x) (x ∈ P ) that exhibit homomesy. Specifically,
we now show that for all a, b, the functions f 7→ f(x) + f(x′) are homomesic under
rowmotion and promotion, where x = (i, j) and x′ = (i′, j′) are opposite elements of
P , that is, i + i′ = a + 1 and j + j′ = b + 1. We will prove the birational version,
since the PL version is an easy consequence. In the birational setting, the statistic is
f 7→ f(x)f(x′).

Theorem 8.1. Fix a, b > 1, let n = a+ b, and let P = [a]× [b]. Fix (i, j), (i′, j′) in P
satisfying i+ i′ = a+ 1 and j+ j′ = b+ 1. For f : P → R+ let F (f) = f(i, j)f(i′, j′).
Then F is multiplicatively αω-mesic under ρB.

(9)We are indebted to Colin McQuillan and Will Sawin for clarifying this point; see [11].
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Proof. Theorem 32 in [7] says that f(i′, j′)f ′(i, j) = αω with f ′ = ρi+j−1
B f , so

(αω)n =
n∏
k=1

(ρkBf)(i′, j′)(ρkBf ′)(i, j)

=
n∏
k=1

(ρkBf)(i′, j′)
n∏
k=1

(ρkBf ′)(i, j)

=
n∏
k=1

(ρkBf)(i′, j′)
n∏
k=1

(ρkBf)(i, j) (since ρB has period n)

=
n∏
k=1

F (ρkBf)

as claimed. �
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