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The Cayley isomorphism property for
Z3

p × Zq

Gábor Somlai & Mikhail Muzychuk

Abstract For every pair of distinct primes p, q, where q > 2 we prove that Z3
p × Zq is a

CI-group with respect to binary relational structures.

1. Introduction
Let H be a finite group and S a subset of G. The Cayley digraph Cay(H,S) is de-
fined by having the vertex set H and g is adjacent to h if and only if gh−1 ∈ S. The
set S is called the connection set of the Cayley digraph Cay(H,S). An undirected
Cayley digraph will be referred to as a Cayley graph. Recall that a Cayley digraph
Cay(H,S) is undirected if and only if S = S−1, where S−1 =

{
s−1 | s ∈ S

}
. Every

right multiplication via elements of H is an automorphism of Cay(H,S), so the auto-
morphism group of every Cayley graph over H contains a regular subgroup denoted
by Ĥ isomorphic to H. Moreover, this property characterises the Cayley graphs of H.

By a binary Cayley structure (or a colored Cayley digraph) over H we mean an
ordered tuple (Cay(H,S1), . . . ,Cay(H,Sr)) of Cayley digraphs, where Si ∩ Sj = ∅ if
i 6= j, which we will abbreviate as Cay(H, (S1, . . . , Sr)). An isomorphism between two
tuples Cay(H, (S1, . . . , Sr)) and Cay(H, (T1, . . . , Tr)) is a permutation f ∈ Sym(H)
satisfying Cay(H,Si)f = Cay(H,Ti), i = 1, . . . , r. With this definition, the auto-
morphism group of the binary Cayley structure Cay(H, (S1, . . . , Sr)) coincides with⋂r
i=1 Aut(Cay(H,Si)).
It is clear that every automorphism µ of the group H induces an isomorphism

between Cay(H, (S1, . . . , Sr)) and Cay(H, (Sµ1 , . . . , Sµr )). Such an isomorphism is called
a Cayley isomorphism. A colored Cayley digraph Cay(G,S), where S ∈ (2H)r has
the CI-property (or is a colored CI-digraph) if, for each T ∈ P(2H)r the colored
Cayley digraph Cay(H,T) is isomorphic to Cay(G,S) if and only if they are Cayley
isomorphic, i.e. there is an automorphism µ of H such that Sµ = T. In this case we
say that H has the CI-property for binary relational structures, or, it is a CI(2)-group.
Note that the notion of CI(2)-groups was defined in a slightly different way in [12]
but the two definitions are equivalent. Furthermore, a group H is called a DCI-group
if every Cayley digraph of H is a CI-digraph and it is called a CI-group if every
undirected Cayley digraph of H is a CI-graph.
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Investigation of the isomorphism problem of Cayley graphs started with Ádám’s
conjecture [1]. Using our terminology, it was conjectured that every cyclic group is a
DCI-group. This conjecture was first disproved by Elspas and Turner [8] for directed
Cayley graphs of Z8 and for undirected Cayley graphs of Z16.

Analyzing the spectrum of circulant graphs Elspas and Turner [8], and indepen-
dently Djoković [5] proved that every cyclic group of order p is a CI-group if p is a
prime. Also, a lot of research was devoted to the investigation of circulant graphs.
One important result for our investigation is that Zpq is a DCI-group for every pair
of primes p < q. This result was first proved by Alspach and Parsons [2] and indepen-
dently by Pöschel and Klin [13] using the theory of Schur rings, and also by Godsil
[11]. Finally, Muzychuk [18, 19] proved that a cyclic group Zn is a DCI-group if and
only if n = k or n = 2k, where k is square-free. Furthermore, Zn is a CI-group if and
only if n is as above or n = 8, 9, 18.

It is easy to see that every subgroup of a (D)CI-group is also a (D)CI-group so it
is natural to investigate p-groups which are the Sylow p-subgroups of a finite group.
Babai and Frankl [4] proved that if H is a p-group, which is a CI-group, then H can
only be an elementary abelian p-group, the quaternion group of order 8 or one of a
few cyclic groups Z4, Z8, Z9 or Z27. The known results about cyclic groups show that
Z27 is not a CI-group and Z9,Z8 are not DCI-groups. Babai and Frankl also asked
whether every elementary abelian p-group is a (D)CI-group.

The cyclic group of order p, which is a CI-group, can also be considered as an
elementary abelian p-group of rank 1. Currently, the best general result is due to
Feng and Kovács [10] who proved that Z5

p is a CI-group for every prime p. The proof
using elementary tools for Z4

p is due to Morris [17]. It was shown by Somlai [22] that
Zrp is not a DCI-group if r > 2p+ 3.

Severe restrictions on the structure of DCI-groups were given by Li and Praeger
and then a more precise list of candidates for DCI-groups was given by Li, Lu and
Pálfy [16]. A new family of CI-groups was found by Kovács and Muzychuk [14], that is,
Z2
p×Zq is a DCI-group for every prime p and q. One example of DCI-groups connected

to the question treated in this paper is Z3
2 × Zp, see [6]. It was also conjectured in

[14], that the direct product of DCI-groups of coprime order is a DCI-group(1). Note
that the conjecture is not true for CI-groups as it was shown recently by Dobson
[7]. Dobson also proved that the product of relatively prime order elementary abelian
DCI-groups is a DCI-group by posing a serious assumption on the prime divisors of
the order of the group [6].

In this paper we prove the following result which supports this conjecture.
Theorem 1.1. For every pair of primes p, q, where q > 2 the group Z3

p × Zq is a
DCI-group.

In fact we prove here a more general fact: the above group is a CI(2)-group. Our
paper is organized as follows. In Section 2 we introduce the basic notation from Schur
rings theory that is needed in this paper. In Section 3 we prove general results about
Schur rings over abelian groups of special order. Finally, Section 4 contains the proof
of Theorem 1.1.

2. Schur rings
This section is devoted to presenting a standard approach for dealing with the CI-
problem via Schur rings so the results collected here are not new.

The result below is a direct consequence of Babai’s lemma [3].

(1)The cited paper deals in fact with DCI-groups while it talks about CI-groups.
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Lemma 2.1. A colored Cayley graph Cay(H,S),S ∈ P(H)r has the CI-property if and
only if any H-regular subgroup(2) of the full automorphism group Aut(Cay(H,S)) is
conjugate to Ĥ inside Aut(Cay(H,S)).

According to this result, in order to prove the CI-property for binary Cayley struc-
tures, it is sufficient to go through the whole set of automorphism groups of all col-
ored Cayley graph over H. This could be done using the method of Schur rings.
Let G := Aut(Cay(H,S)),S = (S1, . . . , Sr) denote the full automorphism group
of a colored digraph Cay(H,S). Its intersection with Aut(H) will be denoted as
AutH(Cay(H,S)). Let us order the orbits of Ge in an arbitrary way, say O1, . . . , Ot.
Since Aut(Cay(H, (S1, . . . , Sr))) = Aut(Cay(H, (O1, . . . , Ot))), we have to analyze only
those colored Cayley graphs which correspond to overgroups G 6 Sym(H) of Ĥ. It
turns out that these colored Cayley graphs are closely related to Schur rings.

2.1. Schur rings over finite groups. We start with the basic definitions [23].
Given a group H, we denote its group algebra over the rationals as Q[H]. If S ⊆ H,
then by S we denote the element

∑
s∈S s ∈ Q[H]. Following [23] we call elements of

this type simple quantities.
A subalgebra A of the group ring Q[H] is called a Schur ring, an S-ring for short,

if it satisfies the following conditions.
(1) There exists a partition T = {T0, T1, . . . , Tl} of H such that A is generated

as a vector space by the elements of the following form: T =
∑
t∈T t.

(2) T0 = {e}.
(3) For each 0 6 i 6 l the subset T (−1)

i := {t−1 | t ∈ Ti}(3) belongs to T .
The elements of the partition T are called basic sets of A and T i’s are called basic
quantities. In what follows the notation Bsets(A) will stand for T and any partition
satisfying the above conditions will be referred to as a Schur partition. We say that a
Schur ring is non-trivial if H r {e} is the union of at least two basic sets.

One of the most natural examples of Schur rings are the transitivity modules. Let
Ĥ 6 Sym(H) be the right regular representation of a finite group H and G 6 Sym(H)
its overgroup, i.e. Ĥ 6 G. Then the orbits of the stabilizer Ge are the basic sets of
a Schur ring over H [21]. Such a Schur ring will be called the transitivity module of
H induced by G and denoted by V (H,Ge). If G = ĤM for some M 6 Aut(H), then
the Schur ring V (H,Ge) is called cyclotomic. In this case, the basic sets of V (H,Ge)
coincide with the orbits of M .

Every Schur partition (equivalently every S-ring) T = {T0, . . . , Td} gives rise
to an association scheme Cay(H, T ) whose basic graphs are the Cayley graphs
Cay(H,T ), T ∈ T . Two Schur partitions (Schur rings) A ⊆ Q[H],B ⊆ Q[F ] are
called (combinatorially) isomorphic if the corresponding association schemes are
isomorphic, i.e. there exists a bijection f : H → F which maps the basic Cayley
graphs Cay(H,T ), T ∈ T bijectively onto the set {Cay(F, S)}S∈Bsets(B). The bijection
f is called a combinatorial isomorphism between A and B. The isomorphism f is
called normalized if f(eH) = eF . If f is a normalized isomorphism between A and B,
then Bsets(A)f = Bsets(B).

We denote by Iso(A,B) the set of all combinatorial isomorphisms between A,B
and by Isoe(A,B) its subset consisting of the normalized ones. It is easy to see that
Iso(A,B) = ĤIsoe(A,B) = Isoe(A,B)F̂ .

Note that Iso(A,B) is empty if and only if A,B are not combinatorially isomorphic.

(2)An H-regular subgroup is any regular subgroup of the symmetric group isomorphic to H.
(3)The notation T (−1) is a particular case of a more general one T (m) introduced later.
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In what follows we write Iso(A, ∗) for the union of Iso(A,B), where the second
argument runs among all S-rings over the group H. As before,
Iso(A, ∗) = ĤIsoe(A, ∗) = Isoe(A, ∗)Ĥ.

Two S-rings A ⊆ Q[H] and B ⊆ Q[F ] are Cayley isomorphic if there exists a group
isomorphism ϕ : H → F such that ϕ(A) = B. Note that Cayley isomorphic S-rings
are always combinatorially isomorphic but not vice versa.

An S-ring A is a CI -S-ring if for any S-ring A′ ⊆ Q[H] and arbitrary f ∈ Isoe(A,A′)
there exists ϕ ∈ Aut(H) such that f(S) = ϕ(S) for all S ∈ Bsets(A). It follows
directly from the definition that an S-ring A is a CI-S-ring if and only if Iso(A, ∗) =
Aut(A)Aut(H), or, equivalently, Isoe(A, ∗) = Aut(A)eAut(H). Note that the definition
of a CI-S-ring given in [12] was based on the first equality.

As an application of Babai’s lemma [3] we have the following statement [12].

Proposition 2.2. Let Γ := Cay(H,Σ) be a colored Cayley graph over H and G :=
Aut(Γ). The following are equivalent

(1) Γ has the CI-property;
(2) any H-regular subgroup of G is conjugate to Ĥ in G;
(3) the transitivity module V (H,Aut(Γ)e) is a CI-S-ring.

This implies the following result.

Theorem 2.3. A group H has a CI-property for binary relational structures (CI(2)-
group, for short) if and only if every transitivity module over H is a CI-S-ring.

Thus one has to check all transitivity modules over the group H. To reduce the
number of checks we use the following partial order on the set Sup(Ĥ) consisting of
all overgroups of Ĥ.

Given two overgroupsX,Y ∈ Sup(Ĥ), we writeX �Ĥ Y if anyH-regular subgroup
of Y may be conjugated into X by an element of Y , i.e.

∀g∈Sym(H) : Ĥg 6 Y ⇒ ∃y ∈ Y : (Ĥg)y 6 X.

One can easily check that �Ĥ is a partial order on the set of all overgroups of Ĥ.
Note that any two H-regular subgroups of X ∈ Sup(Ĥ) are conjugate inside X if and
only if Ĥ �Ĥ X.

The statement below allows us to consider transitivity modules of �Ĥ -minimal
groups only.

Proposition 2.4. Let G1 6 G2 be two overgroups of Ĥ and Ai := V (H, (Gi)e) their
transitivity modules. Then A1 ⊇ A2. If G1 �Ĥ Aut(A2) and A1 is CI, then A2 is also
a CI-S-ring.

Proof. First we note that the inclusion A1 ⊇ A2 is obvious.
To show the CI-property of A2 we have to verify that Iso(A2, ∗) ⊆ Aut(A2)Aut(H)

(the converse inclusion is obvious). Pick an arbitrary f ∈ Iso(A2, ∗). Then Af2 = B for
some S-ring B over H. Then Ĥ 6 Aut(B) = Aut(A2)f implying Ĥf−1

6 Aut(A2). It
follows from the assumption that there exists g ∈ Aut(A2) such that (Ĥf−1)g 6 G1.
Combining this with G1 6 Aut(A1) we conclude that Ĥf−1g 6 Aut(A1). Since
A1 is a CI-S-ring, there exists g1 ∈ Aut(A1) such that Ĥg1 = Ĥf−1g. This im-
plies f−1gg−1

1 ∈ ĤAut(H), or, equivalently, g1g
−1f ∈ ĤAut(H). It follows from

A1 ⊇ A2 that Aut(A1) ⊆ Aut(A2). Therefore g1g
−1 ∈ Aut(A2), and, consequently,

f ∈ Aut(A2)Aut(H), as required. �
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Sylow’s theorem shows that if H is a p-group, then any �Ĥ -minimal overgroup of
Ĥ is a p-group. In this case we are left to investigate transitivity modules whose basic
sets have a p-power cardinality. These Schur rings are called p-Schur rings.

2.2. Structural properties of Schur rings. As before, H is a finite group and
Q[H] is its group algebra. For an element of the group algebra U =

∑
g∈H agg let

U (m) =
∑
g∈H agg

m. We extend this notation to an arbitrary subset T of H by
T (m) = {tm | t ∈ T}.

The two lemmas below are taken from [23].

Lemma 2.5. Let A be an S-ring over an abelian group H. If gcd(m, |H|) = 1, then
T (m) ∈ A for every T ∈ A.

A similar statement holds if m divides |H|.

Lemma 2.6. Let T be a simple quantity and m a prime divisor of |G| and let Tm =∑
h∈H ahh. Then for any integer i the simple quantity

∑
h∈H|ah≡i (mod m) h belongs

to A.

A subgroup L 6 H is called an A-subgroup if L ∈ A. We say that A is primitive if
the only A-subgroups are {e} and H. A Schur ring A is called imprimitive if L ∈ A
for some non-trivial and proper subgroup L 6 H.

If T is an A-set, then we may define its radical Rad(T ) = {g ∈ T | Tg = gT = T}.
It is well known that the radical of an A-set T is an A-subgroup [23].

It is a simple observation that a trivial S-ring is always primitive. The converse is
not true (e.g. [23, Theorem 25.7]). The result below proved by Wielandt ([23, Theorem
25.4]) provides a sufficient condition for the converse implication.

Theorem 2.7. A primitive S-ring over an abelian group H of a composite order is
trivial if H has a cyclic Sylow subgroup.

For an A-subgroup U one can define AU as the restriction of A to U spanned by
the basic sets of A contained in U . For a pair of A-subgroups L E U we define AU/L
as a subring of Q[U/L] spanned by {Xπ | X ⊂ U, X ∈ Bsets(A)}, where π denotes
the canonical epimorphism from U to U/L [9].

We say that the Schur ring A is a generalized wreath product if there exists A-
subgroups L 6 U such that L is a normal subgroup in H and every basic set outside
of U is the union of L-cosets. Such a wreath product is called trivial if L = {e} or
U = H. In the case of L = U we obtain the usual wreath product of Schur rings.

Let K and L be two A-subgroups. We say that A is the star product of AK and
AL (or A admits a star decomposition) if the following conditions hold:

(1) K ∩ LE L
(2) each basic set T of A with T ⊆ (LrK) is the union of K ∩ L-cosets
(3) for each basic set T ⊆ Hr(K∪L) there exists R,S ∈ Bsets(A), where R ⊆ K,

S ⊆ L such that T = RS.
Note that in order to verify (3) it is enough to find A-sets R′ and S′ with T = R′S′.

In this case we write A = AK ? AL. A star-decomposition is called trivial if K =
{e} or H. In the case of L = H a star decomposition coincides with the wreath
product of AK and A/K.

The theorems below provide us sufficient conditions for these products to have
the CI-property. Although the first statement was originally proved for elementary
abelian groups only [12], the proof works for a more general class of groups, namely:
the abelian groups with elementary abelian Sylow subgroups. In what follows we refer
to these groups as E-groups.
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Theorem 2.8 ([14, Theorem 3.2]). Let H be an E-group and let G 6 Sym(H) be an
overgroup of Ĥ. Assume that the transitivity module A := V (H,Ge) admits a non-
trivial star-decomposition AK ? AL. If AK and AL/K∩L are CI-S-rings, then A is a
CI-S-ring.

Note that the above theorem implies that if A admits a usual wreath product
decomposition, then A is a CI-S-ring. In the case of a generalized wreath product we
have the following result.
Theorem 2.9 ([15]). Let H be an E-group and let G 6 Sym(H) be an overgroup of Ĥ.
Assume that A := V (H,Ge) is a non-trivial generalized wreath product with respect
to A-subgroups {e} 6= L 6 U 6= H. Assume that AU and AH/L are CI-S-rings and
AutU/L(AU/L) = AutU (AU )U/L AutH/L(AH/L)U/L. Then A is a CI-S-ring.

3. Schur rings over abelian group of non-powerful order
Recall that a number n is call powerful if p2 divides n for every prime divisor p of
n. In this section and in what follows we assume that H is an abelian group of a
non-powerful order, i.e. there exists a prime divisor q of |H| such that |H| = nq where
n is coprime to q. In what follows we call such q a simple prime divisor of |H|. We
assume that q > 2.

Let P and Q denote the unique subgroups of H of orders n and q, respectively and
let Q# = Qr {1}. Let ` be the exponent of P . The group Z∗`q ∼= Z∗` × Z∗q acts on H
via raising to the power as h 7→ ht, where t ∈ Z∗`q. Denote Mq := {t ∈ Z∗`q | t ≡ 1
(mod `)}. Clearly Mq

∼= Z∗q .
Every element h ∈ H has a unique decomposition into the product h = hq′hq where

hq′ ∈ P and hq ∈ Q. Notice that two elements h, f ∈ H belong to the same Q-coset
if and only if hq′ = fq′ . Let q∗ ∈ Z∗`q be an element satisfying q∗q ≡ 1 (mod `) and
q∗ ≡ 1 (mod q). Then hq′ = hqq

∗ .
Given a subset T ⊆ H. We write Tq′ for the set {hq′ | h ∈ T}. Notice that Tq′

is always contained in P . We always have the decomposition T =
⋃
s∈Tq′

sRs where
Rs := s−1T ∩Q.

In what follows A stands for a non-trivial S-ring over H. Let P1 be the maximal
A-subgroup contained in P while Q1 is the minimal A-subgroup which contains Q.

The statement below describes the structure of Mq-invariant basic sets.
Proposition 3.1. Let T be a basic set of A which is Mq-invariant. Denote S := Tq′ .
There exists a partition(4) S = S1 ∪ S−1 ∪ S0 such that T = S1 ∪ S−1Q

# ∪ S0Q
and S1, S−1 are A-subsets (not necessarily basic). In addition the sets S1, S−1 and S0
satisfy the following conditions

(1) If S1 6= ∅, then S−1 = S0 = ∅ and T ⊆ P1;
(2) If S1 = ∅ and S−1 6= ∅, then T = S−1(Q1 r P1);
(3) If S1 = S−1 = ∅, then Q1T = T .

Proof. Write T =
⋃
s∈S sRs where Rs := s−1T ∩Q. Since T is Mq-invariant, the sets

Rs are Z∗q-invariant. Therefore Rs ∈ {{1}, Q#, Q}. Now the sets

S1 := {s | Rs = {1}}, S−1 := {s | Rs = Q#}, S0 := {s | Rs = Q}
produce the required partition. Raising the simple quantity T = S1 +S−1 ·Q# +S0 ·Q
to the q-th power modulo q we obtain

T q ≡ (S1)q − (S−1)q ≡ (S(q)
1 )− (S(q)

−1) (mod q).

(4)Notice that some of its parts may be empty.
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Now Lemma 2.6 applied to T q with m = q and i = ±1 (−1 6= 1, because q > 2)
implies that S(q)

1 , S
(q)
−1 are A-subsets. Applying q∗ we conclude that S1 and S−1 are

A-subsets too.
If S1 6= ∅, then S1 = T because T is basic and S1 is a nonempty A-subset contained

in T . Hence S−1 = S0 = ∅.
Assume now that S1 = ∅ and S−1 6= ∅. Since Q1 r P1 = Q1 r (Q1 ∩ P1) is an

A-subset which contains Q#, we conclude that S−1(Q1 rP1) is an A-subset which in-
tersects T non-trivially (the part S−1Q

# is in common). Therefore S−1(Q1rP1) ⊇ T .
The union S−1 ∪ T = (S−1 ∪ S0)Q is an A-subset the radical of which contains Q.

Therefore, by the minimality of Q1, we have Q1 6 Rad(S−1 ∪ T ). This implies
Q1S−1 ∪Q1T = S−1 ∪ T so S−1Q1 ⊆ S−1 ∪ T . Thus T ⊆ S−1(Q1 r P1) ⊆ S−1 ∪ T .
If S−1(Q1 r P1) ∩ S−1 6= ∅, then st = s′ for some s, s′ ∈ S−1 and t ∈ Q1 r P1. But
in this case we would obtain t = s′s−1 ⊆ S−1S

(−1)
−1 ⊆ P1, a contradiction. Hence

S−1(Q1 r P1) ∩ S−1 = ∅ implying that T = S−1(Q1 r P1).
If S1 = S−1 = ∅. then T = S0Q so Rad(T ) contains Q By the minimality of Q1

we have Q1 6 Rad(T ) so Q1T = T . �

Corollary 3.2. A is a generalized wreath product with respect to Q1 and P1Q1.

Proof. There is nothing to prove if Q1P1 = H. So, in what follows we assume that
Q1P1 6= H.

We have to show that Q1T = T holds for each A-basic set T outside of P1Q1. Let T
be such a basic set, that is, T ∩ P1Q1 = ∅.

If T contains a q′-element, then T is Mq-invariant, and therefore, T fits one of the
cases described in Proposition 3.1. The cases (a) and (b) contradict T ∩ P1Q1 = ∅,
since in both of them T ⊆ P1Q1. Therefore the case 3 of Proposition 3.1 occurs and
TQ1 = T , as required.

It remains to show that every basic A-set disjoint with P1Q1 contains q′-elements.
Assume that there exists one, say T , which does not contain a q′-element. Denote
R := Tq′ . Then T can uniquely be written as T = ∪h∈RhQh, where Q# ⊇ Qh 6= ∅.
Then by Lemma 2.6 T (q) = R(q) is an A-set, implying that R(q) ⊆ P1 and R ⊆ P1.
Again we have T ⊆ RQ ⊆ P1Q1, contrary to the choice of T . �

3.1. The structure of the section AP1Q1 . In what follows we abbreviate H1 :=
P1Q1 and A1 := AH1 . We start with the following simple statement.

Proposition 3.3. P1 is an A1-maximal subgroup.

Proof. Let P̃1 denote a proper A1-maximal subgroup which contains P1. If q divides
P̃1, then Q1 is contained in P̃1 implying P1Q1 6 P̃1 = H1, a contradiction. Hence P̃1
is a p-group, which is an A1-subgroup. Therefore, P̃1 = P1. �

Proposition 3.4. If |H1/P1| 6= q, then A1/P1 has rank two and A1 = (A1)P1?(A1)Q1 .

Proof. P1 is an A1-maximal subgroup, by Proposition 3.3. Thus the quotient S-ring
is primitive. The Sylow q-subgroup of H1/P1 is cyclic. Therefore by Wielandt’s The-
orem 2.7 either the quotient S-ring has rank two or H1/P1 is of prime order. In the
latter case, |H1/P1| = q, which contradicts our assumptions.

The quotient S-ring A1/P1 has rank two iff TP1 = H1 rP1 holds for each basic set
T ∈ Bsets(A1) outside of P1.

It follows from |H1/P1| 6= q that P1 6= (H1)q′ . Pick an arbitrary T ∈ Bsets(A1)
with T ∩ P1 = ∅. Then TP1 = H1 r P1 ⊇ (H1)q′ r P1 implying T ∩ (H1)q′ 6= ∅.
Thus T contains q′-elements, and, therefore, is Mq-invariant and Proposition 3.1 is
applicable.
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The first case of the Proposition is not possible because T ∩ P1 = ∅.
In the second case we obtain that T is the product of two A1-sets S−1 ⊂ P1 and

Q1 r P1 ⊂ Q1 so T fits the definition of star decomposition.
Finally, if Q1T = T , then T is the union of Q1-cosets. Since P1Q1 = H1 we have

that P1 intersects every Q1-coset. Hence T ∩ P1 6= ∅, contradicting the choice of T .
Thus, we have proven that any basic set T of A1 disjoint to P1 has the form

S(Q1 r P1) where S ⊆ P1 is an A1-subset so is a union of P1 ∩ Q1-cosets. This
immediately implies that Q1 r P1 is a basic set of A1 and A1 = (A1)P1 ? (A1)Q1 . �

Note that it follows from the Corollary 3.2 that if H1 = Q1, then A is a wreath
product with respect to P1.
P1 is a maximal A1-subgroup by Proposition 3.3, and the order ofH1/P1 is divisible

by q but not divisible by q2. Thus by Theorem 2.7 if A1/P1 is non-trivial, then A1/P1
is a non-trivial S-ring over a cyclic group of order q. In particular, [H1 : P1] = q.
Although the structure of S-rings over Cq is known [20] we do not need it, because for
our purposes we need to settle the case when A1/P1 coincides with full group algebra.

From now on we denote the cyclic group of order m by Cm in order to make the
notation more readable.

Proposition 3.5. If A1/P1 ∼= Z[Cq], then A1 = (A1)P1 ? (A1)Q1 .

Proof. It follows from the assumption that cosets hP1, h ∈ Q# are A1-subsets. There-
fore hP1 is partitioned into a disjoint union of basic sets yielding a partition Σh of P1:

S ∈ Σh ⇐⇒ hS ∈ Bsets(A1).

Since Mq permutes basic sets and acts transitively on Q#, the partitions Σh does not
depend on the choice of h ∈ Q# by Lemma 2.5. So, in what follows we write just Σ
without an index.

Pick a basic set T outside of P1. Then T = hS for some h ∈ Q# and S ∈ Σ. Now
it follows from T q ≡ S(q)(mod q) that S(q) is an A1-subset contained in P1. Applying
q∗ to S(q) we conclude that S is an A1-subset.

Since 〈T | T ∈ Bsets(A1) ∧ T ⊆ hP1〉 is an (A1)P1-invariant subspace, the linear
span Σ := 〈S〉S∈Σ is an ideal of (A1)P1 . Let Se ∈ Σ be a class containing e.

We claim that Se is an Ae-subgroup and every class of Σ is a union of Se-cosets.
This will imply our claim.

Pick a basic set T of (A1)P1 contained in Se. Then e appears in the product
T (−1)Se with coefficient |T |. Therefore Se appears |T | times in this product. This
implies T (−1)Se = |T |Se and, consequently, T (−1)Se = Se. Since this equality holds
for any basic set T contained in Se, we conclude that S(−1)

e Se = Se, hereby proving
that Se is a subgroup of P1.

Pick now an arbitrary S ∈ Σ. Then S(−1)S ∈ Σ. The identity e appear in the
product |S| times. Therefore Se appears in the product S(−1)S with coefficient |S|.
Therefore S is a union of Se-cosets.

It is easy to see that Seh generates an A1-subgroup, whose order is divisible by q
so it contains Q1. On the other hand Seh is a basic set intersecting Q non-trivially
so it is contained in Q1. Thus Se = Q1 ∩ P1, which gives that A1 admits a star
decomposition. �

4. Proof of the main result
In this section we show that every transitivity module over the groupH ∼= C3

p×Cq, p 6=
q are primes, is a CI-S-ring. Since q is a simple prime divisor of |H|, the structural
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results from the previous section are applicable. We also keep the notation P1 and Q1
defined in Section 3.

For the rest of the section A = V (H,Ge) is a transitivity module of an �Ĥ -minimal
subgroup G.

In this section we prove the following.

Theorem 4.1. A is a CI-S-ring.

Combining this result with Theorem 2.3 we obtain the main result of the paper.

4.1. Proof of Theorem 4.1 in the case of P1Q1 6= H. If P1Q1 6= H, then by
Corollary 3.2 the S-ring A is a non-trivial generalized wreath product of AP1Q1 and
AH/Q1 . Therefore, the results of [15] are applicable.

Since H := H/Q1 is an elementary abelian p-group, we may assume that the basic
sets of A := A/Q1 are of p-power length. Such a Schur ring is called a p-S-ring and so
A is a transitivity module of the quotient group G := GH/Q1 . Since G is �H -minimal,
the group G is a �H -minimal.

If |P1Q1/Q1| 6 p, then AP1Q1/Q1 is the full group ring and we are done by
Proposition 4.1 of [15]. Thus we may assume that |P1Q1/Q1| = pa with a > 2.
Since q divides |P1Q1| and P1Q1 6= H, we conclude that |P1| = p2, |Q1| = q. Thus
AP1Q1/Q1

∼= Z[Cp] o Z[Cp] since if AP1Q1/Q1
∼= Z[C2

p ] we may apply Proposition 4.1
of [15] and these are the only p-Schur rings over Z2

p. Further it follows from |Q1| = q

that H̄ ∼= C3
p .

The S-ring AH̄ is a Schurian p-S-ring over the group H ∼= C3
p . The classification of

such S-rings is well-known [12]. They are

B1 = Z[C3
p ],

B2 = Z[C2
p ] o Z[Cp],

B3 = (Z[Cp] o Z[Cp])⊗ Z[Cp],
B4 = Z[Cp] o Z[C2

p ],
B5 = Z[Cp] o Z[Cp] o Z[Cp],
B6 = V (C3

p , (C3
p o 〈α〉)e)

Here α ∈ Aut(C3
p) is an automorphism of order p which has p fixed points. We can

exclude the S-ring B6, because in this case the group G is not �H -minimal.
It follows from AQ1P1/Q1

∼= Z[Cp] o Z[Cp] that there exists an A-subgroup of order
p2 on which the induced Schur ring is isomorphic to Z[Cp] o Z[Cp]. This excludes
A ∼= B1 or B2.

It remains to settle the cases A ∼= Bi, i = 3, 4, 5.
The inclusion AutH(A)P1 6 AutP1

(AP1
) is trivial. To prove the inverse inclusion

we note that each of the S-rings Bi, i = 3, 4, 5 is cyclotomic. In particular this implies
that AutH(A) acts transitively on each basic set of A. Therefore AutH(A)F is non-
trivial whenever the induced S-ring AF is non-trivial for any A-subgroup F . This
implies that AutH(A)P1 is non-trivial. Therefore, p 6 |AutH(A)P1 | 6 |AutP1

(AP1
)|.

On the other hand, AutP1
(AP1

) = AutC2
p
(Z[Cp] o Z[Cp]) is contained in a Sylow

p-subgroup of Aut(C2
p) ∼= GL2(p). Since the latter one has order p, we conclude that

|AutP1
(AP1

)| 6 p implying AutH(A)P1 = AutP1
(AP1

).
Therefore AutH(A)P1 = AutP1

(AP1
) and by Theorem 2.9 of [15] the corresponding

S-ring is CI.
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4.2. Proof of Theorem 4.1 in the case of P1Q1 = H. Note, first, that |H/P1|
is divisible by q.

If |H/P1| 6= q, then by Proposition 3.4 we have A = AP1 ?AQ1 . Since both P1 and
Q1/(P1 ∩ Q1) are E-groups with at most three prime factors, they are CI(2)-groups
by [12] and [14]. Therefore, AP1 and AQ1/(P1∩Q1) are CI-S-rings. By Theorem 2.8 A
is a CI-S-ring.

Assume now that |H/P1| = q. Since G is �H -minimal, its quotient GH/P1 is �H/P1 -
minimal too. Therefore GH/P1 ∼= Cq and AH/P1

∼= Z[Cq]. By Proposition 3.5 A =
AP1 ? AQ1 . As before, we conclude that A is a CI-S-ring.

Although the case of q = 2 is not considered in the paper, the main result remains
true also in this case.
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