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Idempotent systems

Kazumasa Nomura & Paul Terwilliger

Abstract In this paper we introduce the notion of an idempotent system. This linear algebraic
object is motivated by the structure of an association scheme. We focus on a family of idempo-
tent systems, said to be symmetric. A symmetric idempotent system is an abstraction of the
primary module for the subconstituent algebra of a symmetric association scheme. We describe
the symmetric idempotent systems in detail. We also consider a class of symmetric idempotent
systems, said to be P -polynomial and Q-polynomial. In the topic of orthogonal polynomials
there is an object called a Leonard system. We show that a Leonard system is essentially the
same thing as a symmetric idempotent system that is P -polynomial and Q-polynomial.

1. Introduction
In this paper we introduce the notion of an idempotent system. This linear algebraic
object is motivated by the structure of an association scheme. We focus on a family
of idempotent systems, said to be symmetric. As we will see, a symmetric idempotent
system is an abstraction of the primary module for the subconstituent algebra of a
symmetric association scheme. Before we go into more detail, we recall the notion
of a symmetric association scheme. A symmetric association scheme is a sequence
(X, {Ri}di=0), whereX is a finite nonempty set, and {Ri}di=0 is a sequence of nonempty
subsets of X ×X such that

(i) X ×X = R0 ∪R1 ∪ · · · ∪Rd (disjoint union);
(ii) R0 = {(x, x) |x ∈ X};
(iii) (x, y) ∈ Ri implies (y, x) ∈ Ri;
(iv) there exist integers phij (0 6 h, i, j 6 d) such that for any (x, y) ∈ Rh the

number of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj is equal to phij .
The integers phij are called the intersection numbers. By (iii) they satisfy phij = phji
for 0 6 h, i, j 6 d. The concept of a symmetric association scheme first arose in
design theory [2–4,13] and group theory [18]. A systematic study began with [7,9]. A
comprehensive treatment is given in [1, 5].

Let (X, {Ri}di=0) denote a symmetric association scheme. As we study this object,
the following concepts and notation will be useful. Let R denote the real number field.
Let MatX(R) denote the R-algebra consisting of the matrices with rows and columns
indexed by X, and all entries in R. Let I (resp. J) denote the identity matrix (resp. all
1’s matrix) in MatX(R). Let V denote the vector space over R consisting of the column
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vectors with coordinates indexed by X, and all entries in R. The algebra MatX(R)
acts on V by left multiplication. We define a bilinear form 〈 , 〉 : V×V→ R such that
〈u, v〉 =

∑
y∈X uyvy for u, v ∈ V. We have 〈Bu, v〉 = 〈u,Btv〉 for B ∈ MatX(R) and

u, v ∈ V. Here Bt denotes the transpose of B. For y ∈ X define ŷ ∈ V that has y-entry
1 and all other entries 0. Note that {ŷ | y ∈ X} form an orthonormal basis of V.

We now recall the Bose–Mesner algebra. For 0 6 i 6 d define Ai ∈ MatX(R) that
has (y, z)-entry 1 if (y, z) ∈ Ri and 0 if (y, z) 6∈ Ri (y, z ∈ X). The matrix Ai is
symmetric. We have

A0 = I, AiAj =
d∑

h=0
phijAh (0 6 i, j 6 d).

The {Ai}di=0 form a basis for a commutative subalgebra M of MatX(R). We call
M the Bose–Mesner algebra of the scheme. Each matrix in M is symmetric. By [5,
Section 2.2] there exists a basis {Ei}di=0 for M such that

E0 = |X|−1J, I =
d∑
i=0

Ei, EiEj = δi,jEi (0 6 i, j 6 d).

We have

V =
d∑
i=0

EiV (orthogonal direct sum).

For 0 6 i 6 d, EiV is the ith common eigenspace forM , and Ei is the orthogonal pro-
jection from V onto EiV. There exist real numbers pi(j), qi(j) (0 6 i, j 6 d) such that

Ai =
d∑
j=0

pi(j)Ej , Ei = |X|−1
d∑
j=0

qi(j)Aj

for 0 6 i 6 d.
We now recall the Krein parameters. Note that Ai◦Aj = δi,jAi (0 6 i, j 6 d), where

◦ denotes entry-wise multiplication. ThereforeM is closed under ◦. Consequently there
exist real numbers qhij (0 6 h, i, j 6 d) such that

Ei ◦ Ej = |X|−1
d∑

h=0
qhijEh (0 6 i, j 6 d).

By [1, Theorem 3.8], qhij > 0 for 0 6 h, i, j 6 d. The qhij are called the Krein parameters
of the scheme.

We now recall the dual Bose–Mesner algebra. For the rest of this section fix x ∈ X.
For B ∈M let Bρ denote the diagonal matrix in MatX(R) that has (y, y)-entry Bx,y
for y ∈ X. Roughly speaking, Bρ is obtained by turning column x of B at a 45
degree angle. For 0 6 i 6 d define E∗i = Aρi . For y ∈ X the (y, y)-entry of E∗i is 1 if
(x, y) ∈ Ri and 0 if (x, y) 6∈ Ri. Note that E∗0 has (x, x)-entry 1 and all other entries
0. The matrices {E∗i }di=0 satisfy

I =
d∑
i=0

E∗i , E∗i E
∗
j = δi,jE

∗
i (0 6 i, j 6 d).

Therefore {E∗i }di=0 form a basis for a commutative subalgebra M∗ of MatX(R). We
call M∗ the dual Bose–Mesner algebra with respect to x. We have

V =
d∑
i=0

E∗i V (orthogonal direct sum).
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For 0 6 i 6 d, E∗i V has basis {ŷ | y ∈ X, (x, y) ∈ Ri}. Moreover E∗i V is the ith

common eigenspace for M∗, and E∗i is the orthogonal projection from V onto E∗i V.
The map ρ : M → M∗, B 7→ Bρ is R-linear and bijective. For 0 6 i 6 d define

A∗i = |X|Eρi . The {A∗i }di=0 form a basis of M∗, and

A∗0 = I, A∗iA
∗
j =

d∑
h=0

qhijA
∗
h (0 6 i, j 6 d).

For 0 6 i 6 d,

A∗i =
d∑
j=0

qi(j)E∗j , E∗i = |X|−1
d∑
j=0

pi(j)A∗j .

We now recall the subconstituent algebra T and the primary T -module. Let T
denote the subalgebra of MatX(R) generated by M and M∗. We call T the subcon-
stituent algebra (or Terwilliger algebra) with respect to x. The algebra T is closed
under the transpose map. By [15, Lemma 3.4] the algebra T is semisimple. Moreover
by [15, Lemma 3.4] the T -module V decomposes into an orthogonal direct sum of
irreducible T -modules. Among these modules there is a distinguished one, said to be
primary. We now describe the primary T -module. Let 1 denote the vector in V that
has all entries 1. So 1 =

∑
y∈X ŷ. For 0 6 i 6 d,

Aix̂ = E∗i 1, |X|−1A∗i 1 = Eix̂.

Therefore Mx̂ = M∗1; denote this common vector space by V . By construction V is
a T -module with dimension d+ 1. By [15, Lemma 3.6] the T -module V is irreducible.
The T -module V is said to be primary. For 0 6 i 6 d define

1i = Aix̂ = E∗i 1.

The vector 1i is a basis of E∗i V . Moreover {1i}di=0 is a basis of V . This basis is
orthogonal and ||1i||2 = ki where ki = rank(E∗i ) (0 6 i 6 d). The basis {1i}di=0
diagonalizes M∗. For 0 6 i, j 6 d,

E∗i 1j = δi,j1j , Ai1j =
d∑

h=0
phij1h.

For 0 6 i 6 d define
1∗i = |X|−1A∗i 1 = Eix̂.

The vector 1∗i is a basis of EiV . Moreover {1∗i }di=0 is a basis of V . This basis is
orthogonal and ||1∗i ||2 = k∗i where k∗i = rank(Ei) (0 6 i 6 d). The basis {1∗i }di=0
diagonalizes M . For 0 6 i, j 6 d,

Ei1∗j = δi,j1∗j , A∗i 1∗j =
d∑

h=0
qhij1∗h.

The bases {1i}di=0 and {1∗i }di=0 are related by

1i =
d∑
j=0

pi(j)1∗j , 1∗i = |X|−1
d∑
j=0

qi(j)1j

for 0 6 i 6 d. The following bases for V are of interest:
(i) {1i}di=0, (ii) {k−1

i 1i}di=0, (iii) {1∗i }di=0, (iv) {|X|(k∗i )−11∗i }di=0.

The bases (i), (ii) are dual with respect to 〈 , 〉. Moreover the bases (iii), (iv) are dual
with respect to 〈 , 〉.
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The algebras M and M∗ are related as follows. For 0 6 h, i, j 6 d,
E∗i AjE

∗
h = 0 if and only if phij = 0,

EiA
∗
jEh = 0 if and only if qhij = 0.

For 0 6 i 6 d,
AiE

∗
0E0 = E∗i E0, A∗iE0E

∗
0 = EiE

∗
0 .

For 0 6 i 6 d,
E0E

∗
i 6= 0, E∗0Ei 6= 0, E∗i E0 6= 0, EiE

∗
0 6= 0.

We summarize the above description with four statements about V :
(i) the {Ei}di=0 act on V as a system of mutually orthogonal rank 1 idempotents;
(ii) the {E∗i }di=0 act on V as a system of mutually orthogonal rank 1 idempotents;
(iii) E0E

∗
i E0 is nonzero on V for 0 6 i 6 d;

(iv) E∗0EiE∗0 is nonzero on V for 0 6 i 6 d.
The above statements (i)–(iv) have the following significance. We will show that (i)–
(iv) together with the symmetry of the matrices {Ei}di=0, {E∗i }di=0 are sufficient to
recover the T -module V at an algebraic level.

We now turn our attention to idempotent systems. An idempotent system is defined
as follows. Let F denote a field. Let d denote a nonnegative integer, and let V denote a
vector space over F with dimension d+1. Let End(V ) denote the F-algebra consisting
of the F-linear maps from V to V . An idempotent system on V is a sequence Φ =
({Ei}di=0; {E∗i }di=0) such that

(i) {Ei}di=0 is a system of mutually orthogonal rank 1 idempotents in End(V );
(ii) {E∗i }di=0 is a system of mutually orthogonal rank 1 idempotents in End(V );
(iii) E0E

∗
i E0 6= 0 (0 6 i 6 d);

(iv) E∗0EiE∗0 6= 0 (0 6 i 6 d).
The above idempotent system Φ is said to be symmetric whenever there exists an
antiautomorphism † of End(V ) that fixes each of Ei, E∗i for 0 6 i 6 d. The map †
corresponds to the transpose map.

Let Φ = ({Ei}di=0; {E∗i }di=0) denote a symmetric idempotent system on V . Using
Φ we will define some elements {Ai}di=0, {A∗i }di=0 in End(V ) and some scalars

(1) ν, ki, k∗i , phij , qhij , pi(j), qi(j)

in F. The scalar ν corresponds to |X|. We will endow V with a nondegenerate sym-
metric bilinear form 〈 , 〉. We will define four orthogonal bases of V that correspond to
the four earlier bases of interest. We will show that the resulting construction matches
the primary T -module at an algebraic level.

Our definitions are summarized as follows. Note that {Ei}di=0 form a basis for a
commutative subalgebra M of End(V ). We show that for 0 6 i 6 d there exists a
unique Ai ∈M such that

AiE
∗
0E0 = E∗i E0.

We show that {Ai}di=0 is a basis for the vector spaceM. Similarly, the {E∗i }di=0 form
a basis for a commutative subalgebra M∗ of End(V ). We show that for 0 6 i 6 d
there exists a unique A∗i ∈M∗ such that

A∗iE0E
∗
0 = EiE

∗
0 .

We show that {A∗i }di=0 is a basis for the vector spaceM∗.
Concerning the scalars (1), we show that tr(E0E

∗
0 ) 6= 0. The scalar ν is defined by

ν = tr(E0E
∗
0 )−1.
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The scalars ki, k∗i are defined by

ki = ν tr(E0E
∗
i ), k∗i = ν tr(E∗0Ei) (0 6 i 6 d).

We show that
∑d
i=0 ki = ν =

∑d
i=0 k

∗
i , and each of ki, k∗i is nonzero for 0 6 i 6 d.

The scalars phij , qhij are defined by

AiAj =
d∑

h=0
phijAh, A∗iA

∗
j =

d∑
h=0

qhijA
∗
h (0 6 i, j 6 d).

The scalars pi(j), qi(j) are defined by

Ai =
d∑
j=0

pi(j)Ej , A∗i =
d∑
j=0

qi(j)E∗j (0 6 i 6 d).

We define a bilinear form 〈 , 〉 on V as follows. By linear algebra, there exists
a nondegenerate bilinear form 〈 , 〉 on V such that 〈Bu, v〉 = 〈u,B†v〉 for all B ∈
End(V ) and u, v ∈ V . The bilinear form 〈 , 〉 is unique up to multiplication by a
nonzero scalar in F. The bilinear form 〈 , 〉 is symmetric.

Fix nonzero ξ, ζ in E0V and nonzero ξ∗, ζ∗ in E∗0V . We show that each of the
following (i)–(iv) is an orthogonal basis for V :

(i) {E∗i ξ}di=0, (ii) {k−1
i E∗i ζ}di=0, (iii) {Eiξ∗}di=0, (iv) {(k∗i )−1Eiζ

∗}di=0.

The bases (i), (ii) are dual if and only if 〈ξ, ζ〉 = ν, and the bases (iii), (iv) are dual
if and only if 〈ξ∗, ζ∗〉 = ν.

We just summarized our definitions. In the main body of the paper, we show that
the resulting defined objects are related in a manner that matches the primary T -
module. To describe this relationship, we use some equations involving the {Ei}di=0,
{E∗i }di=0, {Ai}di=0, {A∗i }di=0 called the reduction rules.

Near the end of the paper we introduce the P -polynomial and Q-polynomial prop-
erties for symmetric idempotent systems. We show that a symmetric idempotent sys-
tem that is P -polynomial and Q-polynomial is essentially the same thing as a Leonard
system in the sense of [16, Definition 4.1].

The paper is organized as follows. In Section 2 we recall some basic results from
linear algebra. In Section 3 we introduce the concept of an idempotent system. In
Section 4 we introduce the scalar ν and discuss some related topics. In Section 5 we
introduce the symmetric idempotent systems. In Sections 6, 7 we introduce a certain
linear bijection ρ :M→M∗ and use it to define the elements Ai, A∗i . In Sections 8, 9
we introduce the scalars ki, k∗i and obtain some reduction rules involving these scalars.
In Sections 10, 11 we introduce the scalars phij , qhij and obtain some reduction rules
involving these scalars. In Sections 12, 13 we introduce the scalars pi(j), qi(j) and
obtain some reduction rules involving these scalars. In Section 14 we put some of our
earlier results in matrix form. In Sections 15–17 we introduce the four bases of interest
and discuss their properties. In Section 18 we obtain the transition matrices between
these four bases, and the inner products between these four bases. We also obtain the
matrices representing Ai, A∗i , Ei, E∗i with respect to these four bases. In Section 19
we introduce the P -polynomial and Q-polynomial properties. In Section 20 we recall
the notion of a Leonard pair and a Leonard system. In Section 21 we show that a
Leonard system is essentially the same thing as a symmetric idempotent system that
is P -polynomial and Q-polynomial.

The reader might wonder how the concept of a symmetric idempotent system is
related to the concept of a character algebra [10]. Roughly speaking, a symmetric
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idempotent system is obtained by gluing together a character algebra and its dual;
we will discuss this in a future paper.

2. Preliminaries
In this section we fix some notation and recall some basic concepts. Throughout this
paper F denotes a field. By a scalar we mean an element of F. All algebras and vector
spaces discussed in this paper are over F. All algebras discussed in this paper are
associative and have a multiplicative identity. For an algebra A, by an automorphism
of A we mean an algebra isomorphism A → A, and by an antiautomorphism of A we
mean an F-linear bijection τ : A → A such that (Y Z)τ = ZτY τ for Y,Z ∈ A. For the
rest of this paper, fix an integer d > 0 and let V denote a vector space with dimension
d+1. Let End(V ) denote the algebra consisting of the F-linear maps from V to V . Let
Matd+1(F) denote the algebra consisting of the d+ 1 by d+ 1 matrices that have all
entries in F. We index the rows and columns by 0, 1, . . . , d. The identity of End(V ) or
Matd+1(F) is denoted by I. For A ∈ End(V ), the dimension of AV is called the rank of
A. A matrixM ∈ Matd+1(F) is said to be tridiagonal whenever the (i, j)-entryMi,j =
0 if |i − j| > 1 (0 6 i, j 6 d). Assume for the moment that M is tridiagonal. Then
M is said to be irreducible whenever Mi,j 6= 0 if |i − j| = 1 (0 6 i, j 6 d). We recall
how each basis {vi}di=0 of V gives an algebra isomorphism End(V )→ Matd+1(F). For
A ∈ End(V ) andM ∈ Matd+1(F), we say thatM represents A with respect to {vi}di=0
whenever Avj =

∑d
i=0 Mi,jvi for 0 6 j 6 d. The isomorphism sends A to the unique

matrix in Matd+1(F) that represents A with respect to {vi}di=0. Next we recall the
transition matrix between two bases of V . Let {ui}di=0 and {vi}di=0 denote bases of V .
By the transition matrix from {ui}di=0 to {vi}di=0 we mean the matrix T ∈ Matd+1(F)
such that vj =

∑d
i=0 Ti,jui for 0 6 j 6 d. Let T denote the transition matrix from

{ui}di=0 to {vi}di=0. Then T is invertible and T−1 is the transition matrix from{vi}di=0
to {ui}di=0. Let T ′ denote the transition matrix from {vi}di=0 to a basis {wi}di=0 of V .
Then the transition matrix from {ui}di=0 to {wi}di=0 is TT ′. For A ∈ End(V ) let M
denote the matrix representing A with respect to {ui}di=0. Then T−1MT represents A
with respect to {vi}di=0. Let A ∈ End(V ). A subspace W ⊆ V is called an eigenspace
of A wheneverW 6= 0 and there exists a scalar θ such thatW = {v ∈ V |Av = θv}; in
this case θ is the eigenvalue of A associated with W . We say that A is diagonalizable
whenever V is spanned by the eigenspaces of A. We say that A is multiplicity-free
whenever A is diagonalizable and its eigenspaces all have dimension one.

Definition 2.1. By a decomposition of V we mean a sequence {Vi}di=0 consisting of
one-dimensional subspaces of V such that V =

∑d
i=0 Vi (direct sum).

Definition 2.2 ([6, Section 6A]). By a system of mutually orthogonal rank 1 idem-
potents in End(V ) we mean a sequence {Ei}di=0 of elements in End(V ) such that

EiEj = δi,jEi (0 6 i, j 6 d),
rank(Ei) = 1 (0 6 i 6 d).

Lemma 2.3. The following hold.
(i) Let {Vi}di=0 denote a decomposition of V . For 0 6 i 6 d define Ei ∈ End(V )

such that (Ei − I)Vi = 0 and EiVj = 0 if j 6= i (0 6 j 6 d). Then {Ei}di=0 is
a system of mutually orthogonal rank 1 idempotents in End(V ).

(ii) Let {Ei}di=0 denote a system of mutually orthogonal rank 1 idempotents in
End(V ). Then {EiV }di=0 is a decomposition of V .
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Definition 2.4. Let A denote a multiplicity-free element in End(V ), and let {Vi}di=0
denote an ordering of the eigenspaces of A. Then {Vi}di=0 is a decomposition of V . Let
{Ei}di=0 denote the corresponding system of mutually orthogonal rank 1 idempotents
from Lemma 2.3(i). We call {Ei}di=0 the primitive idempotents of A.

For the rest of this section, let {Ei}di=0 denote a system of mutually orthogonal
rank 1 idempotents in End(V ). The next two lemmas are routinely verified.

Lemma 2.5. The following hold:
(i) tr(Ei) = 1 (0 6 i 6 d), where tr means trace.
(ii) I =

∑d
i=0 Ei;

(iii) {Ei}di=0 form a basis for a commutative subalgebra of End(V ).

Lemma 2.6. For A = End(V ),
(i) the sum A =

∑d
i=0
∑d
j=0 EiAEj is direct;

(ii) dimEiAEj = 1 for 0 6 i, j 6 d.

3. Idempotent systems
Recall the vector space V with dimension d+1. In this section we introduce the notion
of an idempotent system on V .

Definition 3.1. By an idempotent system on V we mean a sequence

({Ei}di=0; {E∗i }di=0)

such that
(i) {Ei}di=0 is a system of mutually orthogonal rank 1 idempotents in End(V );
(ii) {E∗i }di=0 is a system of mutually orthogonal rank 1 idempotents in End(V );
(iii) E0E

∗
i E0 6= 0 (0 6 i 6 d);

(iv) E∗0EiE∗0 6= 0 (0 6 i 6 d).

Let Φ = ({Ei}di=0; {E∗i }di=0) denote an idempotent system on V . Define

Φ∗ =
(
{E∗i }di=0; {Ei}di=0

)
.

Then Φ∗ is an idempotent system on V , called the dual of Φ. We have (Φ∗)∗ = Φ. For
an object f attached to Φ, the corresponding object attached to Φ∗ is denoted by f∗.

Let Φ′ = ({E′i}di=0; {E∗′i }di=0) denote an idempotent system on a vector space V ′. By
an isomorphism of idempotent systems from Φ to Φ′ we mean an algebra isomorphism
End(V ) → End(V ′) that sends Ei 7→ E′i, E∗i 7→ E∗′i for 0 6 i 6 d. We say that Φ
and Φ′ are isomorphic whenever there exists an isomorphism of idempotent systems
from Φ to Φ′. By the Skolem–Noether theorem (see [14, Corollary 7.125]), a map
σ : End(V ) → End(V ′) is an algebra isomorphism if and only if there exists an
F-linear bijection S : V → V ′ such that Aσ = SAS−1 for all A ∈ End(V ).

Definition 3.2. LetM denote the subalgebra of End(V ) generated by {Ei}di=0. Note
thatM is commutative, and {Ei}di=0 form a basis of the vector spaceM.

4. The scalars mi, ν
Let Φ = ({Ei}di=0; {E∗i }di=0) denote an idempotent system on V . In this section we
use Φ to introduce some scalars {mi}di=0, ν.

Definition 4.1. For 0 6 i 6 d define

mi = tr(E∗0Ei).(2)
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Lemma 4.2. For 0 6 i 6 d the following hold:
(i) E∗0EiE∗0 = miE

∗
0 ;

(ii) E0E
∗
i E0 = m∗iE0.

Proof. (i) Abbreviate A = End(V ). By Lemma 2.6(ii), E∗0 is a basis for the vector
space E∗0AE∗0 . So there exists a scalar αi such that E∗0EiE∗0 = αiE

∗
0 . In this equation,

take the trace of each side and simplify the result using Lemma 2.5(i) and tr(MN) =
tr(NM) to obtain αi = mi. The result follows.

(ii) Apply (i) to Φ∗. �

Lemma 4.3. For 0 6 i 6 d the following hold:
(i) EiE∗0Ei = miEi;
(ii) E∗i E0E

∗
i = m∗iE

∗
i .

Proof. Similar to the proof of Lemma 4.2. �

Lemma 4.4. The following hold:
(i) mi 6= 0 (0 6 i 6 d);
(ii)

∑d
i=0 mi = 1.

Proof. (i) Use Definition 3.1(iv) and Lemma 4.2(i).
(i) By Lemma 2.5(ii),

∑d
i=0 Ei = I. In this equation, multiply each side on the

left by E∗0 to get
∑d
i=0 E

∗
0Ei = E∗0 . In this equation, take the trace of each side, and

evaluate the result using Lemma 2.5(i) and Definition 4.1. �

Definition 4.5. Setting i = 0 in (2) we find that m0 = m∗0; let ν denote the multi-
plicative inverse of this common value. We emphasize ν = ν∗ and

(3) tr(E0E
∗
0 ) = ν−1.

Lemma 4.6. We have

νE0E
∗
0E0 = E0, νE∗0E0E

∗
0 = E∗0 .(4)

Proof. To get the equation on the left in (4), set i = 0 in Lemma 4.2(ii) and use
Definition 4.5. Applying this to Φ∗ we get the equation on the right in (4). �

Lemma 4.7. Each of the following is a basis of the vector space End(V ):
(i) {EiE∗0Ej | 0 6 i, j 6 d};
(ii) {E∗i E0E

∗
j | 0 6 i, j 6 d}.

Proof. (i) In view of Lemma 2.6, it suffices to show that EiE∗0Ej 6= 0 for 0 6 i, j 6 d.
Let i, j be given, and suppose EiE∗0Ej = 0. Using Lemmas 4.2(i) and 4.4(i),

0 = E∗0 (EiE∗0Ej)E∗0 = mimjE
∗
0 6= 0

for a contradiction. The result follows.
(ii) Apply (i) to Φ∗. �

Lemma 4.8. Each of the following is a generating set for the algebra End(V ):
(i) E∗0 andM;
(ii) E0 andM∗;
(iii) M andM∗.

Proof. (i) By Definition 3.2 and Lemma 4.7(i).
(ii) Apply (i) to Φ∗.
(iii) By (i) above and Definition 3.2. �

Algebraic Combinatorics, Vol. 4 #2 (2021) 336



Idempotent systems

5. Symmetric idempotent systems
We continue to discuss an idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .

Definition 5.1. We say that Φ is symmetric whenever there exists an antiautomor-
phism † of End(V ) that fixes each of Ei, E∗i for 0 6 i 6 d.

Recall the algebraM from Definition 3.2.

Lemma 5.2. Assume that Φ is symmetric, and let † denote an antiautomorphism of
End(V ) from Definition 5.1. Then the following hold:

(i) † is unique;
(ii) (A†)† = A for A ∈ End(V );
(iii) † fixes every element inM and every element inM∗.

Proof. (iii) By Definitions 3.2 and 5.1.
(ii) The composition †◦† is an automorphism of End(V ) that fixes everything inM

and everything inM∗. This automorphism is the identity in view of Lemma 4.8(iii).
(i) Let µ denote an antiautomorphism of End(V ) that fixes each of Ei, E∗i for

0 6 i 6 d. We show µ = †. The composition † ◦µ is an automorphism of End(V ) that
fixes everything in M and everything in M∗. So this automorphism is the identity.
We have † = †−1 by (ii) above, so µ = †. �

6. The map ρ

Let Φ = ({Ei}di=0; {E∗i }di=0) denote a symmetric idempotent system on V . Recall the
algebraM from Definition 3.2. In this section we introduce a certain map ρ :M→
M∗ that will play an essential role in our theory. As we will see, ρ is an isomorphism
of vector spaces but not algebras.

Lemma 6.1. For A = End(V ),
(i) the elements {EiE∗0}di=0 form a basis of AE∗0 ;
(ii) the elements {E∗i E0}di=0 form a basis of AE0.

Proof. (i) By Lemmas 2.5(ii) and 2.6(i) the sum AE∗0 =
∑d
i=0 E

∗
iAE∗0 is direct.

Each summand has dimension one by Lemma 2.6(ii), so AE∗0 has dimension d + 1.
The elements {EiE∗0}di=0 are contained in AE∗0 . We show that these elements are
linearly independent. For scalars {αi}di=0 suppose 0 =

∑d
i=0 αiEiE

∗
0 . For 0 6 r 6 d,

multiply each side of this equation on the left by Er to obtain 0 = αrErE
∗
0 . We

have ErE∗0 6= 0 by Definition 3.1(iv), so αr = 0. We have shown that {EiE∗0}di=0 are
linearly independent, and hence a basis of AE∗0 .

(ii) Apply (i) to Φ∗. �

Lemma 6.2. For A = End(V ),
(i) the mapM→AE∗0 , Y 7→ Y E∗0 is an F-linear bijection;
(ii) the mapM∗ → AE0, Y 7→ Y E0 is an F-linear bijection.

Proof. (i) Clearly the map is F-linear. By Lemma 6.1(i), the map sends the basis
{Ei}di=0 ofM to the basis {EiE∗0}di=0 of AE∗0 . So the map is bijective.

(ii) Apply (ii) to Φ∗. �

Lemma 6.3. There exists a unique F-linear map ρ :M→M∗ such that for Y ∈M,

Y E∗0E0 = Y ρE0.(5)
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Proof. Abbreviate A = End(V ). Concerning existence, consider the F-linear map
g :M→AE0, Y 7→ Y E∗0E0. Let µ denote the map in Lemma 6.2(ii). The composition

ρ :M g−−−→ AE0
µ−1

−−−−→M∗

satisfies (5). We have shown that ρ exists. The map ρ is unique by Lemma 6.2(ii). �

Lemma 6.4. The maps ρ and νρ∗ are inverses. In particular, the maps ρ, ρ∗ are
bijective.

Proof. Pick Y ∈M. Using Lemma 4.6 and applying (5) to both Φ and Φ∗,

(Y ρ)ρ
∗
E∗0 = Y ρE0E

∗
0 = Y E∗0E0E

∗
0 = ν−1Y E∗0 .

By this and Lemma 6.2(i) we get (Y ρ)ρ∗ = ν−1Y . Applying this to Φ∗, (Zρ∗)ρ = ν−1Z
for Z ∈M∗. Thus the maps ρ and νρ∗ are inverses. �

Lemma 6.5. The map ρ sends I 7→ E∗0 and E0 7→ ν−1I.

Proof. Using Lemma 6.3, E∗0E0 = IE∗0E0 = IρE0. This forces E∗0 = Iρ by
Lemma 6.2(ii). Using Lemmas 4.6 and 6.3, Eρ0E0 = E0E

∗
0E0 = ν−1E0. This forces

Eρ0 = ν−1I by Lemma 6.2(ii). �

7. The elements Ai

We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .

Definition 7.1. For 0 6 i 6 d define
(6) Ai = ν(E∗i )ρ

∗
.

Lemma 7.2. For 0 6 i 6 d, ρ sends Ai 7→ E∗i and Ei 7→ ν−1A∗i .

Proof. By Lemma 6.4 and Definition 7.1, Aρi = ν((E∗i )ρ∗)ρ = E∗i . Applying (6) to Φ∗,
Eρi = ν−1A∗i . �

Lemma 7.3. The antiautomorphism † from Definition 5.1 fixes each of Ai, A∗i for
0 6 i 6 d.
Proof. By Lemma 5.2(iii) and since Ai ∈M, A∗i ∈M∗ for 0 6 i 6 d. �

Lemma 7.4. For 0 6 i 6 d the following hold:
(i) AiE∗0E0 = E∗i E0;
(ii) A∗iE0E

∗
0 = EiE

∗
0 ;

(iii) E0E
∗
0Ai = E0E

∗
i ;

(iv) E∗0E0A
∗
i = E∗0Ei.

Proof. (i) Use Lemmas 6.3, 7.2.
(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side and use Lemma 7.3.

�

Lemma 7.5. We have A0 = I.

Proof. By Lemma 6.5, Iρ = E∗0 . In this equation, apply ρ∗ to each side and evaluate
the result using Lemma 6.4 and Definition 7.1. �

Lemma 7.6. We have
∑d
i=0 Ai = νE0.

Proof. In the equation
∑d
i=0 E

∗
i = I, apply ρ∗ to each side and evaluate the result

using Definition 7.1 along with Lemma 6.5 applied to Φ∗. �
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Lemma 7.7. The elements {Ai}di=0 form a basis of the vector spaceM.

Proof. By Lemmas 6.4, 7.2 and since {E∗i }di=0 form a basis of the vector spaceM∗. �

8. The scalars ki

We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .
In this section we use Φ to define some scalars ki that will play a role in our theory.

Definition 8.1. For 0 6 i 6 d let ki denote the eigenvalue of Ai corresponding to E0.

Lemma 8.2. For 0 6 i 6 d the following hold:
(i) AiE0 = E0Ai = kiE0;
(ii) A∗iE∗0 = E∗0A

∗
i = k∗iE

∗
0 .

Proof. (i) By Definition 8.1.
(ii) Apply (i) to Φ∗. �

Lemma 8.3. For 0 6 i 6 d the following hold:
(i) ki = νm∗i ;
(ii) k∗i = νmi.

Proof. (i) By Lemma 7.4(i), E0AiE
∗
0E0 = E0E

∗
i E0. In this equation, evaluate the

left-hand side using Lemmas 4.6, 8.2(i), and evaluate the right-hand side using
Lemma 4.2(ii). This gives kiν−1E0 = m∗iE0. The result follows.

(ii) Apply (i) to Φ∗. �

Lemma 8.4. The following hold:
(i) ki 6= 0 (0 6 i 6 d);
(ii) ν =

∑d
i=0 ki;

(iii) k0 = 1.

Proof. (i) Apply Lemma 4.4(i) to Φ∗ and use Lemma 8.3(i).
(ii) Apply Lemma 4.4(ii) to Φ∗ and use Lemma 8.3(i).
(iii) By Definition 4.5 and Lemma 8.3(i). �

9. Some reduction rules
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .
In this section we obtain some reduction rules for Φ. Recall the antiautomorphism †
of End(V ) from Definition 5.1.

Lemma 9.1. For 0 6 i 6 d the following hold:
(i) EiE∗0E0 = ν−1A∗iE0;
(ii) E∗i E0E

∗
0 = ν−1AiE

∗
0 ;

(iii) E0E
∗
0Ei = ν−1E0A

∗
i ;

(iv) E∗0E0E
∗
i = ν−1E∗0Ai.

Proof. (i) Set Y = Ei in (5) and use Lemma 7.2.
(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 9.2. For 0 6 i, j 6 d the following hold:
(i) E∗jAiE∗0 = δi,jAiE

∗
0 ;

(ii) EjA∗iE0 = δi,jA
∗
iE0;

(iii) E∗0AiE∗j = δi,jE
∗
0Ai;

(iv) E0A
∗
iEj = δi,jE0A

∗
i .
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Proof. (i) For the equation in Lemma 9.1(ii), multiply each side on the left by E∗j
to get δi,jE∗i E0E

∗
0 = ν−1E∗jAiE

∗
0 . In this equation, evaluate the left-hand side using

Lemma 9.1(ii).
(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 9.3. For 0 6 i, j 6 d the following hold:
(i) E0E

∗
jAiE

∗
0 = δi,jkiE0E

∗
0 ;

(ii) E∗0EjA∗iE0 = δi,jk
∗
iE
∗
0E0;

(iii) E∗0AiE∗jE0 = δi,jkiE
∗
0E0;

(iv) E0A
∗
iEjE

∗
0 = δi,jk

∗
iE0E

∗
0 .

Proof. (i) Using Lemmas 9.2(i), 8.2(i) in order,

E0E
∗
jAiE0 = δi,jE0AiE

∗
0 = δi,jkiE0E

∗
0 .

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 9.4. For 0 6 i, j 6 d the following hold:
(i) AiE∗0Aj = νE∗i E0E

∗
j ;

(ii) A∗iE0A
∗
j = νEiE

∗
0Ej.

Proof. (i) Using Lemmas 9.1(iv), 7.4(i) in order,

AiE
∗
0Aj = νAiE

∗
0E0E

∗
j = νE∗i E0E

∗
j .

(ii) Apply (i) to Φ∗. �

Lemma 9.5. For 0 6 i, j 6 d the following hold:
(i) EiE∗0Aj = A∗iE0E

∗
j ;

(ii) E∗i E0A
∗
j = AiE

∗
0Ej;

(iii) AjE∗0Ei = E∗jE0A
∗
i ;

(iv) A∗jE0E
∗
i = EjE

∗
0Ai.

Proof. (i) Using Lemmas 9.1(iv), 9.1(i) in order,

EiE
∗
0Aj = νEiE

∗
0E0E

∗
j = A∗iE0E

∗
j .

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

10. The scalars ph
ij, qh

ij

We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .

Lemma 10.1. There exist scalars phij (0 6 h, i, j 6 d) such that

AiAj =
d∑

h=0
phijAh (0 6 i, j 6 d).(7)

Proof. By Lemma 7.7. �

Definition 10.2. Referring to Lemma 10.1, the scalars phij are called the intersection
numbers of Φ.

Definition 10.3. For 0 6 h, i, j 6 d define qhij = (phij)∗. We call these scalars the
Krein parameters of Φ.
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Lemma 10.4. For 0 6 i, j 6 d,

A∗iA
∗
j =

d∑
h=0

qhijA
∗
h.(8)

Proof. Apply Lemma 10.1 to Φ∗ and use Definition 10.3. �
Lemma 10.5. For 0 6 h, i, j 6 d the following hold:

(i) phij = phji;
(ii) qhij = qhji.

Proof. (i) By (7) and since the algebraM is commutative.
(ii) Apply (i) to Φ∗. �

Lemma 10.6. For 0 6 h, i 6 d the following hold:
(i) phi0 = δh,i;
(ii) ph0i = δh,i;
(iii) qhi0 = δh,i;
(iv) qh0i = δh,i.

Proof. (i) In (7) set j = 0 and use Lemmas 7.5, 7.7.
(ii) By (i) and Lemma 10.5(i).
(iii), (iv) Apply (i), (ii) to Φ∗. �

Lemma 10.7. For 0 6 h, i, j, t 6 d the following hold:
(i)
∑d
r=0 p

t
hrp

r
ij =

∑d
s=0 p

s
hip

t
sj;

(ii)
∑d
r=0 q

t
hrq

r
ij =

∑d
s=0 q

s
hiq

t
sj.

Proof. (i) Expand Ah(AiAj) = (AhAi)Aj in two ways using (7), and compare the
coefficients using Lemma 7.7.

(ii) Apply (i) to Φ∗. �
Lemma 10.8. For 0 6 h, i 6 d the following hold:

(i) ki =
∑d
j=0 p

h
ij;

(ii) k∗i =
∑d
j=0 q

h
ij.

Proof. (i) Using Lemmas 7.6 and 8.2(i),

Ai

d∑
j=0

Aj = ki

d∑
h=0

Ah.

By (7),

Ai

d∑
j=0

Aj =
d∑

h=0

d∑
j=0

phijAh.

Compare the above two equations using Lemma 7.7.
(ii) Apply (i) to Φ∗. �

Lemma 10.9. For 0 6 i, j 6 d the following hold:
(i) p0

ij = δi,jki;
(ii) q0

ij = δi,jk
∗
i .

Proof. (i) For the equation (7), multiply each side on the left by E0E
∗
0 and on the

right by E∗0E0. Evaluate the result using Lemma 7.4(i),(iii) along with Lemmas 4.2,
8.3.

(ii) Apply (i) to Φ∗. �
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Lemma 10.10. For 0 6 i, j 6 d the following hold:
(i) kikj =

∑d
h=0 p

h
ijkh;

(ii) k∗i k∗j =
∑d
h=0 q

h
ijk
∗
h.

Proof. (i) In (7), multiply each side by E0, and simplify the result using Lemma 8.2(i).
(ii) Apply (i) to Φ∗. �

Lemma 10.11. For 0 6 h, i, j 6 d the following hold:
(i) khphij = kip

i
jh = kjp

j
hi;

(ii) k∗hqhij = k∗i q
i
jh = k∗j q

j
hi.

Proof. (i) In view of Lemma 10.5(i), it suffices to show that khphij = kjp
j
hi. To obtain

this equation, set t = 0 in Lemma 10.7(i), and evaluate the result using Lemma 10.9(i).
(ii) Apply (i) to Φ∗. �

11. Reduction rules involving ph
ij, qh

ij

We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on
V . In this section we give some reduction rules for Φ that involve the intersection
numbers and Krein parameters.

Lemma 11.1. For 0 6 i, j 6 d the following hold:
(i) AjE∗i E0 =

∑d
h=0 p

h
ijE
∗
hE0;

(ii) A∗jEiE∗0 =
∑d
h=0 q

h
ijEhE

∗
0 ;

(iii) E0E
∗
i Aj =

∑d
h=0 p

h
ijE0E

∗
h;

(iv) E∗0EiA∗j =
∑d
h=0 q

h
ijE
∗
0Eh.

Proof. (i) Using Lemmas 7.4(i), 10.1, 7.4(i) in order,

AjE
∗
i E0 = AjAiE

∗
0E0 =

d∑
h=0

phijAhE
∗
0E0 =

d∑
h=0

phijE
∗
hE0.

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 11.2. For 0 6 h, i, j 6 d the following hold:
(i) E∗hAjE∗i E0 = phijE

∗
hE0;

(ii) EhA∗jEiE∗0 = qhijEhE
∗
0 ;

(iii) E0E
∗
i AjE

∗
h = phijE0E

∗
h;

(iv) E∗0EiA∗jEh = qhijE
∗
0Eh.

Proof. (i) Using Lemma 11.1(i),

E∗hAjE
∗
i E0 =

d∑
s=0

psijE
∗
hE
∗
sE0 = phijE

∗
hE0.

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 11.3. For 0 6 h, i, j 6 d the following hold:
(i) EiA∗jEh = m−1

i qhijEiE
∗
0Eh;

(ii) E∗i AjE∗h = (m∗i )−1phijE
∗
i E0E

∗
h.
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Proof. (i) In Lemma 11.2(iv), multiply each side on the left by Ei. Simplify the result
using Lemma 4.3(i).

(ii) Apply (i) to Φ∗. �

Lemma 11.4. For 0 6 h, i, j 6 d the following hold:
(i) E∗i AjE∗h = 0 if and only if phij = 0;
(ii) EiA∗jEh = 0 if and only if qhij = 0.

Proof. By Lemmas 4.7 and 11.3. �

Lemma 11.5. For 0 6 h, i, j 6 d the following hold:
(i) phij = (m∗h)−1 tr(E0E

∗
i AjE

∗
h);

(ii) qhij = m−1
h tr(E∗0EiA∗jEh).

Proof. (i) In Lemma 11.2(iii), take the trace of each side, and simplify the result using
Definition 4.1.

(ii) Apply (i) to Φ∗. �

12. The scalars pi(j), qi(j)
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on
V . In this section we use Φ to define some scalars pi(j), qi(j) that will play a role in
our theory. Recall the algebraM from Definition 3.2.

Lemma 12.1. There exist scalars pi(j) (0 6 i, j 6 d) such that

Ai =
d∑
j=0

pi(j)Ej (0 6 i 6 d).(9)

Proof. By Definition 3.2 the elements {Ei}di=0 form a basis ofM. By Definition 7.1,
Ai ∈M for 0 6 i 6 d. The result follows. �

Definition 12.2. For 0 6 i, j 6 d define qi(j) = (pi(j))∗.

Lemma 12.3. For 0 6 i, j 6 d,

A∗i =
d∑
j=0

qi(j)E∗j (0 6 i 6 d).(10)

Proof. Apply Lemma 12.1 to Φ∗ and use Definition 12.2. �

Lemma 12.4. For 0 6 i, j 6 d the following hold:
(i) AiEj = EjAi = pi(j)Ej;
(ii) A∗iE∗j = E∗jA

∗
i = qi(j)E∗j .

In other words, pi(j) (resp. qi(j)) is the eigenvalue of Ai (resp. A∗i ) associated with
EjV (resp. E∗j V ).

Proof. (i) Use (9).
(ii) Apply (i) to Φ∗. �

Lemma 12.5. For 0 6 i 6 d the following hold:
(i) E∗i = ν−1∑d

j=0 pi(j)A∗j ;
(ii) Ei = ν−1∑d

j=0 qi(j)Aj.

Proof. (i) In (9), apply ρ to each side and use Lemma 7.2.
(ii) Apply (i) to Φ∗. �
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Lemma 12.6. For 0 6 i, j 6 d the following hold:
(i)
∑d
h=0 pi(h)qh(j) = δi,jν;

(ii)
∑d
h=0 qi(h)ph(j) = δi,jν.

Proof. (i) By (9), Ai =
∑d
h=0 pi(h)Eh. In this equation, eliminate Eh using

Lemma 12.5(ii), and compare the coefficients of each side.
(ii) Apply (i) to Φ∗. �

Lemma 12.7. For 0 6 j 6 d the following hold:
(i) p0(j) = 1;
(ii) q0(j) = 1.

Proof. (i) Set i = 0 in (9) and recall that A0 = I.
(ii) Apply (i) to Φ∗. �

Lemma 12.8. For 0 6 i 6 d the following hold:
(i) pi(0) = ki;
(ii) qi(0) = k∗i .

Proof. (i) Set j = 0 in Lemma 12.4(i) and compare the result with Lemma 8.2(i).
(ii) Apply (i) to Φ∗. �

Lemma 12.9. For 0 6 j 6 d the following hold:
(i)
∑d
h=0 ph(j) = δ0,jν;

(ii)
∑d
h=0 qh(j) = δ0,jν.

Proof. (i) Set i = 0 in Lemma 12.6(ii), and evaluate the result using Lemma 12.7(ii).
(ii) Apply (i) to Φ∗. �

Lemma 12.10. For 0 6 i 6 d the following hold:
(i)
∑d
h=0 mhpi(h) = δi,0;

(ii)
∑d
h=0 m

∗
hqi(h) = δi,0.

Proof. (i) Set j = 0 in Lemma 12.6(i), and evaluate the result using Lemmas 8.3(ii),
12.8(ii).

(ii) Apply (i) to Φ∗. �

Lemma 12.11. For 0 6 i, j, r 6 d the following hold:
(i) pi(r)pj(r) =

∑d
h=0 p

h
ijph(r);

(ii) qi(r)qj(r) =
∑d
h=0 q

h
ijqh(r).

Proof. (i) In (7), multiply each side by Er, and simplify the result using Lemma 12.4(i).
(ii) Apply (i) to Φ∗. �

Lemma 12.12. For 0 6 h, i, j 6 d the following hold:
(i) phij = ν−1∑d

r=0 pi(r)pj(r)qr(h);
(ii) qhij = ν−1∑d

r=0 qi(r)qj(r)pr(h).

Proof. (i) Expand the sum
∑d
r=0 pi(r)pj(r)qr(h) using Lemma 12.11(i), and simplify

the result using Lemma 12.6(i).
(ii) Apply (i) to Φ∗. �
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13. Reduction rules involving pi(j), qi(j)
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .

Lemma 13.1. For 0 6 i, j 6 d the following hold:
(i) E0A

∗
iAj = pj(i)E0A

∗
i ;

(ii) E∗0AiA∗j = qj(i)E∗0Ai;
(iii) AjA∗iE0 = pj(i)A∗iE0;
(iv) A∗jAiE∗0 = qj(i)AiE∗0 .

Proof. (i) Using Lemmas 12.1 and 9.2(iv) in order,

E0A
∗
iAj =

d∑
h=0

pj(h)E0A
∗
iEh =

d∑
h=0

pj(h)δi,hE0A
∗
i = pj(i)E0A

∗
i .

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 13.2. For 0 6 i, j 6 d the following hold:
(i) E0E

∗
i Ej = ν−1pi(j)E0A

∗
j ;

(ii) E∗0EiE∗j = ν−1qi(j)E∗0Aj;
(iii) EjE∗i E0 = ν−1pi(j)A∗jE0;
(iv) E∗jEiE∗0 = ν−1qi(j)AjE∗0 .

Proof. (i) Using Lemmas 12.5(i) and 9.2(iv) in order,

E0E
∗
i Ej = E0

(
ν−1

d∑
h=0

pi(h)A∗h

)
Ej = ν−1

d∑
h=0

pi(h)δh,jE0A
∗
h = ν−1pi(j)E0A

∗
j .

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 13.3. For 0 6 i, j 6 d the following hold:
(i) E0A

∗
iAjE

∗
0 = pj(i)k∗iE0E

∗
0 ;

(ii) E∗0AiA∗jE0 = qj(i)kiE∗0E0;
(iii) E∗0AiA∗jE0 = pi(j)k∗jE∗0E0;
(iv) E0A

∗
iAjE

∗
0 = qi(j)kjE0E

∗
0 .

Proof. (i) Using Lemmas 13.1(i), 12.4(ii), 12.8(ii) in order,

E0A
∗
iAjE

∗
0 = pj(i)E0A

∗
iE
∗
0 = pj(i)qi(0)E0E

∗
0 = pj(i)k∗iE0E

∗
0 .

(ii) Apply (i) to Φ∗.
(iii), (iv) For the equations in (i) and (ii), apply † to each side. �

Lemma 13.4. For 0 6 i, j 6 d the following hold:
(i) E0E

∗
i EjE

∗
0 = pi(j)mjE0E

∗
0 ;

(ii) E∗0EiE∗jE0 = qi(j)m∗jE∗0E0.

Proof. (i) Using Lemmas 13.2(i), 12.4(ii), 12.8(ii) in order,

E0E
∗
i EjE

∗
0 = ν−1pi(j)E0A

∗
jE
∗
0 = ν−1pi(j)qj(0)E0E

∗
0 = ν−1pi(j)k∗jE0E

∗
0 .

Now use Lemma 8.3(ii).
(ii) Apply (i) to Φ∗. �
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Lemma 13.5. For 0 6 i, j 6 d,

(11) pi(j)
ki

= qj(i)
k∗j

.

Proof. By Lemma 13.3(ii),(iii), pi(j)k∗jE∗0E0 = qj(i)kiE∗0E0. The result follows since
E∗0E0 6= 0 by Definition 3.1(iii). �

Lemma 13.6. For 0 6 i, j 6 d the following hold:
(i) pi(j) = νm−1

j tr(E0E
∗
i EjE

∗
0 );

(ii) pi(j) = νm−1
j tr(E∗0EjE∗i E0);

(iii) qi(j) = ν(m∗j )−1 tr(E∗0EiE∗jE0);
(iv) qi(j) = ν(m∗j )−1 tr(E0E

∗
jEiE

∗
0 ).

Proof. (i) Using Lemma 13.4(i) and Definition 4.5,

tr(E0E
∗
i EjE

∗
0 ) = pi(j)mj tr(E0E

∗
0 ) = ν−1pi(j)mj .

(iii) Apply (i) to Φ∗.
(ii) In (iii), exchange i, j, and use Lemmas 8.3, 13.5.
(iv) Apply (ii) to Φ∗. �

14. Some matrices
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .
In the previous sections we used Φ to define several kinds of scalars, and we described
how these scalars are related. In this section we express these relationships in matrix
form.

Definition 14.1. Let K (resp. K∗) denote the diagonal matrix in Matd+1(F) that
has (i, i)-entry ki (resp. k∗i ) for 0 6 i 6 d. Let P (resp. Q) denote the matrix in
Matd+1(F) that has (i, j)-entry pj(i) (resp. qj(i)) for 0 6 i, j 6 d.

Lemma 14.2. The following hold:
(i) PQ = QP = νI;
(ii) P tK∗ = KQ;
(iii) K∗P = QtK.

Proof. (i) By Lemma 12.6.
(ii) By Lemma 13.5.
(iii) In (ii), take the transpose of each side. �

Definition 14.3. Note by Lemma 14.2 that K−1P t = Q(K∗)−1 and (K∗)−1Qt =
PK−1; we define

U = K−1P t = Q(K∗)−1, U∗ = (K∗)−1Qt = PK−1.(12)

Lemma 14.4. The following hold:
(i) P = U∗K;
(ii) P t = KU ;
(iii) Q = UK∗;
(iv) Qt = K∗U∗.

Proof. Immediate from Definition 14.3. �
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Lemma 14.5. We have Ui,0 = 1 and U∗i,0 = 1 for 0 6 i 6 d. Moreover U0,j = 1 and
U∗0,j = 1 for 0 6 j 6 d.

Proof. Use Lemmas 8.4(iii), 12.7, 12.8. �

Lemma 14.6. The following hold:
(i) U t = U∗;
(ii) UK∗U∗K = νI;
(iii) U∗KUK∗ = νI.

Proof. (i) By Definition 14.3.
(ii), (iii) By Lemma 14.4(i),(iii) and Lemma 14.2(i). �

Definition 14.7. For 0 6 i 6 d let Bi and B∗i denote the matrices in Matd+1(F) that
have entries

(Bi)h,j = phij , (B∗i )h,j = qhij (0 6 h, j 6 d).

We call Bi (resp. B∗i ) the ith intersection matrix (resp. ith dual intersection matrix)
of Φ.

Definition 14.8. For 0 6 i 6 d let Hi and H∗i denote the diagonal matrices in
Matd+1(F) that have diagonal entries

(Hi)j,j = pi(j), (H∗i )j,j = qi(j) (0 6 j 6 d).

Lemma 14.9. For 0 6 r 6 d,
HrP = PBr, H∗rQ = QB∗r ,(13)
QHr = BrQ, PH∗r = B∗rP,(14)
KBr = (Br)tK, K∗B∗r = (B∗r )tK∗,(15)
UHr = BrU, U∗H∗r = B∗rU

∗.(16)

Proof. To get the equation on the left in (13), compare the entries of each side using
Lemma 12.11(i). In the equation on the left in (13), multiply each side on the left
and on the right by Q and simplify the result using Lemma 14.2(i). This gives the
equation on the left in (14). To obtain the equation on the left in (15), compare the
entries of each side using Lemma 10.11(i). The equation on the left in (16) follows
from QHr = BrQ and Lemma 14.4(iii) together with the fact that Hr, K∗ commute
since they are both diagonal. To get the equations on the right in (13)–(16), apply
the equations on the left in (13)–(16) to Φ∗. �

Lemma 14.10. For 0 6 i, j 6 d the following hold:
(i) BiBj =

∑d
h=0 p

h
ijBh;

(ii) B∗iB∗j =
∑d
h=0 q

h
ijB
∗
h;

(iii) HiHj =
∑d
h=0 p

h
ijHh;

(iv) H∗i H∗j =
∑d
h=0 q

h
ijH

∗
h.

Proof. (i), (ii) By Lemma 10.7.
(iii), (iv) By Lemma 12.11. �

15. The Φ-standard basis
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .
In this section we introduce the notion of a Φ-standard basis.
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Lemma 15.1. For 0 6 i 6 d, E∗i V = E∗i E0V .

Proof. The vector space E∗i V has dimension 1 and contains E∗i E0V . By Defini-
tion 3.1(iii), E∗i E0V 6= 0. The result follows. �
Lemma 15.2. Let ξ denote a nonzero vector in E0V . Then for 0 6 i 6 d the vector E∗i ξ
is nonzero and hence a basis of E∗i V . Moreover the vectors {E∗i ξ}di=0 form a basis of V .

Proof. Let the integer i be given. We show E∗i ξ 6= 0. The vector space E0V has
dimension 1 and ξ is a nonzero vector in E0V , so ξ spans E0V . Therefore E∗i ξ spans
E∗i E0V . The vector space E∗i E0V has dimension 1 by Lemma 15.1 so E∗i ξ is nonzero.
The remaining assertions are clear. �
Definition 15.3. By a Φ-standard basis of V we mean a sequence {E∗i ξ}di=0, where ξ
is a nonzero vector in E0V .

We give a characterization of a Φ-standard basis.

Lemma 15.4. Let {ui}di=0 denote a sequence of vectors in V , not all 0. Then this
sequence is a Φ-standard basis if and only if both (i), (ii) hold below:

(i) ui ∈ E∗i V for 0 6 i 6 d;
(ii)

∑d
i=0 ui ∈ E0V .

Proof. To prove the lemma in one direction, assume that {ui}di=0 is a Φ-standard
basis of V . By Definition 15.3 there exists a nonzero ξ ∈ E0V such that ui = E∗i ξ for
0 6 i 6 d. By construction ui ∈ E∗i V for 0 6 i 6 d, so (i) holds. Recall I =

∑d
i=0 E

∗
i .

In this equation we apply each side to ξ, to find that ξ =
∑d
i=0 ui, and (ii) follows.

We have now proved the lemma in one direction. To prove the lemma in the other
direction, assume that {ui}di=0 satisfy (i) and (ii). Define ξ =

∑d
i=0 ui and observe

ξ ∈ E0V . Using (i) we find that E∗i uj = δi,jui for 0 6 i, j 6 d. It follows ui = E∗i ξ
for 0 6 i 6 d. Observe ξ 6= 0 since at least one of {ui}di=0 is nonzero. Now {ui}di=0 is
a Φ-standard basis of V by Definition 15.3. �

16. Bilinear forms
In this section we recall some basic facts concerning bilinear forms on V . See [14,
Section 8.5] for more information. By a bilinear form on V we mean a map 〈 , 〉 :
V × V → F that satisfies the following four conditions for u, v, w ∈ V and α ∈ F:
(i) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉; (ii) 〈αu, v〉 = α〈u, v〉; (iii) 〈u, v+w〉 = 〈u, v〉+ 〈u,w〉;
(iv) 〈u, αv〉 = α〈u, v〉. Let 〈 , 〉 denote a bilinear form on V . We abbreviate ||v||2 =
〈v, v〉 for v ∈ V . The following are equivalent: (i) there exists a nonzero u ∈ V such
that 〈u, v〉 = 0 for all v ∈ V ; (ii) there exists a nonzero v ∈ V such that 〈u, v〉 = 0
for all u ∈ V . The form 〈 , 〉 is said to be degenerate whenever (i), (ii) hold and
nondegenerate otherwise.

We recall from [8, Theorem 1.1] or [11, Ch. 1, Theorem. 4.2] how bilinear forms on
V are related to antiautomorphisms of End(V ). Let γ denote an antiautomorphism
of End(V ). Then there exists a nonzero bilinear form 〈 , 〉 on V such that

〈
Au, v

〉
=〈

u,Aγv
〉
for u, v ∈ V and A ∈ End(V ). The form is unique up to multiplication by a

nonzero scalar. The form is nondegenerate. We refer to this form as a bilinear form
on V associated with γ.

For the rest of this section let 〈 , 〉 denote a nondegenerate bilinear form on V .

Definition 16.1. For bases {ui}di=0 and {vi}di=0 of V , the inner product matrix from
{ui}di=0 to {vi}di=0 is the matrix in Matd+1(F) that has (i, j)-entry 〈ui, vj〉 for 0 6
i, j 6 d.
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Referring to Definition 16.1, the inner product matrix from {ui}di=0 to {vi}di=0 is
invertible.

Definition 16.2. The form 〈 , 〉 is said to be symmetric whenever 〈u, v〉 = 〈v, u〉 for
u, v ∈ V .

Definition 16.3. Assume that 〈 , 〉 is symmetric. Then two bases {ui}di=0, {vi}di=0 of
V are said to be dual with respect to 〈 , 〉 whenever 〈ui, vj〉 = δi,j for 0 6 i, j 6 d.

Lemma 16.4. Assume that 〈 , 〉 is symmetric. Then each basis of V has a unique dual
with respect to 〈 , 〉.

Lemma 16.5. Assume that 〈 , 〉 is symmetric. Let {ui}di=0 and {vi}di=0 denote bases
of V . Then the following are the same:

(i) the inner product matrix from {ui}di=0 to {vi}di=0;
(ii) the inner product matrix from {ui}di=0 to {ui}di=0, times the transition matrix

from {ui}di=0 to {vi}di=0.

Proof. Routine linear algebra. �

17. The dual Φ-standard basis
We return our attention to a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0)
on V . In this section we introduce the notion of a dual Φ-standard basis of V . Recall
the antiautomorphism † of End(V ) from Definition 5.1. For the rest of the paper 〈 , 〉
denotes a bilinear form on V associated with †. By the construction, for A ∈ End(V )
we have 〈

Au, v
〉

=
〈
u,A†v

〉
(u, v ∈ V ).(17)

Recall the algebraM from Definition 3.2.

Lemma 17.1. For A ∈M∪M∗,〈
Au, v

〉
=
〈
u,Av

〉
(u, v ∈ V ).(18)

Proof. By Definition 5.1 and (17). �

Lemma 17.2. For ξ ∈ E0V ,〈
E∗i ξ, E

∗
j ξ
〉

= δi,jν
−1ki||ξ||2 (0 6 i, j 6 d).(19)

Proof. Using (18) and E0ξ = ξ,〈
E∗i ξ, E

∗
j ξ
〉

=
〈
E∗i E0ξ, E

∗
jE0ξ

〉
=
〈
ξ, E0E

∗
i E
∗
jE0ξ

〉
= δi,j

〈
ξ, E0E

∗
i E0ξ

〉
.

By this and Lemmas 4.2(ii), 8.3(i) we get the result. �

Lemma 17.3. The bilinear form 〈 , 〉 is symmetric.

Proof. Consider a Φ-standard basis {E∗i ξ}di=0 of V , where 0 6= ξ ∈ E0V . By
Lemma 17.2,

〈
E∗i ξ, E

∗
j ξ
〉

=
〈
E∗j ξ, E

∗
i ξ
〉
for 0 6 i, j 6 d. Therefore 〈u, v〉 = 〈v, u〉 for

u, v ∈ V . �
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Lemma 17.4. The following hold for 0 6= ξ ∈ E0V and 0 6= ξ∗ ∈ E∗0V :
(i) each of ||ξ||2, ||ξ∗||2,

〈
ξ, ξ∗

〉
is nonzero;

(ii) E∗0ξ = 〈ξ,ξ∗〉
||ξ∗||2 ξ

∗;
(iii) E0ξ

∗ = 〈ξ,ξ∗〉
||ξ||2 ξ;

(iv) ||ξ||2||ξ∗||2 = ν
〈
ξ, ξ∗

〉2.

Proof. (i) Observe ||ξ||2 6= 0 by Lemma 17.2 and since 〈 , 〉 is nonzero. Applying this
to Φ∗ we get ||ξ∗||2 6= 0. To see that

〈
ξ, ξ∗

〉
6= 0, observe that ξ∗ is a basis of E∗0V

so there exists a scalar α such that E∗0ξ = αξ∗. Recall E∗0ξ 6= 0 by Lemma 15.2 so
α 6= 0. Using (18) and E∗0ξ

∗ = ξ∗ we routinely find that
〈
ξ, ξ∗

〉
= α||ξ∗||2 and it

follows
〈
ξ, ξ∗

〉
6= 0.

(ii) In the proof of part (i) we found E∗0ξ = αξ∗ where
〈
ξ, ξ∗

〉
= α||ξ∗||2. The result

follows.
(iii) Apply (ii) to Φ∗.
(iv) Using ξ = E0ξ and Lemma 4.6 one finds that ν−1ξ = E0E

∗
0ξ. To finish the

proof, evaluate E0E
∗
0ξ using (ii), (iii). �

Definition 17.5. By a dual Φ-standard basis of V we mean the dual of a Φ-standard
basis with respect to 〈 , 〉.

Shortly we will describe the dual Φ-standard bases. We will use the following
definition.

Definition 17.6. Note that for nonzero ξ, ζ ∈ E0V the following are equivalent:

(i)
〈
ξ, ζ
〉

= ν; (ii) ζ = νξ/||ξ||2; (iii) ξ = νζ/||ζ||2.

We say that ξ, ζ are partners whenever they satisfy (i)–(iii).

Lemma 17.7. For nonzero ξ, ζ in E0V the following are equivalent:
(i) the bases {E∗i ξ}di=0 and {k−1

i E∗i ζ}di=0 are dual with respect to 〈 , 〉;
(ii) ξ, ζ are partners.

Proof. The vector space E0V has dimension 1, so there exists a scalar α such that
ζ = αξ. By this and Lemma 17.2,〈

E∗i ξ, k
−1
j E∗j ζ

〉
= δi,jαν

−1||ξ||2.

So (i) holds if and only if α||ξ||2 = ν. By this and Definition 17.6 we obtain the
result. �

Lemma 17.8. A given basis of V is dual Φ-standard if and only if it has the form
{k−1
i E∗i ζ}di=0 for some nonzero ζ ∈ E0V .

Proof. Use Lemma 17.7. �

We mention a result for later use.

Lemma 17.9. For 0 6= ξ ∈ E0V and 0 6= ξ∗ ∈ E∗0V ,〈
E∗i ξ, Ejξ

∗〉 = ν−1pi(j)k∗j
〈
ξ, ξ∗

〉
(0 6 i, j 6 d).
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Proof. Using E0ξ = ξ, E∗0ξ∗ = ξ∗ and Lemma 13.4(i),〈
E∗i ξ, Ejξ

∗〉 =
〈
ξ, E0E

∗
i EjE

∗
0ξ
∗〉 = pi(j)mj

〈
ξ, ξ∗

〉
.

By this and Lemma 8.3(ii) we obtain the result. �

18. Four bases of V

We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on
V . Recall the elements Ai from Definition 7.1. Recall the matrices K, K∗, U , U∗ from
Definitions 14.1, 14.3, and the matrices Bi, B∗i , Hi, H∗i from Definitions 14.7, 14.8.
Recall the bilinear form 〈 , 〉 from above Lemma 17.1.

Throughout this section, we fix nonzero vectors ξ, ζ ∈ E0V and ξ∗, ζ∗ ∈ E∗0V , and
consider the following four bases of V .

(20)

basis type basis

Φ-standard {E∗i ξ}di=0

dual Φ-standard {k−1
i E∗i ζ}di=0

Φ∗-standard {Eiξ∗}di=0

dual Φ∗-standard {(k∗i )−1Eiζ
∗}di=0

In this section we display the matrices that represent {Ar}dr=0, {A∗r}dr=0, {Er}dr=0,
{E∗r}dr=0 with respect to these bases. We display the inner product matrices between
these bases. We display the transition matrices between these bases.

We introduce some notation. For 0 6 i, j 6 d define ∆i,j ∈ Matd+1(F) that has
(i, j)-entry 1 and all other entries 0.

Proposition 18.1. In the table below we give some matrix representations. For 0 6
r 6 d, each entry in the table is the matrix that represents the map in the given
column with respect to the basis in the given row.

basis Ar A∗r Er E∗r

{E∗i ξ}di=0 Br H∗r ν−1UK∗∆r,rU
∗K ∆r,r

{k−1
i E∗i ζ}di=0 Bt

r H∗r (U∗)−1∆r,rU
∗ ∆r,r

{Eiξ∗}di=0 Hr B∗r ∆r,r ν−1U∗K∆r,rUK
∗

{(k∗i )−1Eiζ
∗}di=0 Hr (B∗r )t ∆r,r U−1∆r,rU

Proof. We first consider the matrices representing Ar. The matrix representing Ar
with respect to {E∗i ξ}di=0 is obtained using Lemma 11.1(i) and Definition 14.7.
The matrix representing Ar with respect to {k−1

i E∗i ζ}di=0 is obtained using Lem-
mas 10.11(i) and 11.1(i). The matrices representing Ar with respect to {Eiξ∗}di=0 and
{(k∗i )−1Eiζ

∗}di=0 are obtained using Lemma 12.4(i) and Definition 14.8. Applying
these results to Φ∗ we obtain the matrices representing A∗r . Next we consider the
matrices representing Er. The matrix representing Er with respect to {E∗i ξ}di=0
is obtained using Lemmas 13.2(iii), 12.3, 14.4(i),(iii). Multiply this matrix on the
left (resp. right) by K (resp. K−1) and use Lemma 14.6(iii) to obtain the matrix
representing Er with respect to {k−1

i E∗i ζ}di=0. The matrices representing Er with
respect to {Eiξ∗}di=0 and {(k∗i )−1Eiζ

∗}di=0 are routinely obtained. Applying these
results to Φ∗ we obtain the matrices representing E∗r . �
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Proposition 18.2. In the table below we give the inner product matrices between the
bases in (20). Each entry of the table is the inner product matrix from the basis in
the given row to the basis in the given column.

{E∗i ξ}di=0 {k−1
i E∗i ζ}di=0 {Eiξ∗}di=0 {(k∗i )−1Eiζ

∗}di=0

{E∗i ξ}di=0
||ξ||2
ν K 〈ξ,ζ〉

ν I 〈ξ,ξ∗〉
ν KUK∗ 〈ξ,ζ∗〉

ν KU

{k−1
i E∗i ζ}di=0

〈ζ,ξ〉
ν I ||ζ||2

ν K−1 〈ζ,ξ∗〉
ν UK∗ 〈ζ,ζ∗〉

ν U

{Eiξ∗}di=0
〈ξ∗,ξ〉
ν K∗U∗K 〈ξ∗,ζ〉

ν K∗U∗ ||ξ∗||2
ν K∗ 〈ξ∗,ζ∗〉

ν I

{(k∗i )−1Eiζ
∗}di=0

〈ζ∗,ξ〉
ν U∗K 〈ζ∗,ζ〉

ν U∗ 〈ζ∗,ξ∗〉
ν I ||ζ∗||2

ν (K∗)−1

Proof. Note that ζ (resp. ζ∗) is a nonzero scalar multiple of ξ (resp. ξ∗). Using this
and Lemmas 17.2, 17.9 we represent the inner products in terms of P , Q, K, K∗.
Now eliminate P , Q using Lemma 14.4 to get the result. �

In the diagram below we display the inner product matrices between the four bases
in (20):
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is obtained using Lemmas 13.2(iii), 12.3, 14.4(i),(iii). Multiply this matrix on the
left (resp. right) by K (resp. K−1) and use Lemma 14.6(iii) to obtain the matrix
representing Er with respect to {k−1

i E∗
i ζ}d

i=0. The matrices representing Er with
respect to {Eiξ

∗}d
i=0 and {(k∗

i )−1Eiζ
∗}d

i=0 are routinely obtained. Applying these
results to Φ∗ we obtain the matrices representing E∗

r . �
Proposition 18.2. In the table below we give the inner product matrices between the
bases in (20). Each entry of the table is the inner product matrix from the basis in the
given row to the basis in the given column:

{E∗
i ξ}d

i=0 {k−1
i E∗

i ζ}d
i=0 {Eiξ

∗}d
i=0 {(k∗

i )−1Eiζ
∗}d

i=0

{E∗
i ξ}d

i=0
||ξ||2

ν K ⟨ξ,ζ⟩
ν I ⟨ξ,ξ∗⟩

ν KUK∗ ⟨ξ,ζ∗⟩
ν KU

{k−1
i E∗

i ζ}d
i=0

⟨ζ,ξ⟩
ν I ||ζ||2

ν K−1 ⟨ζ,ξ∗⟩
ν UK∗ ⟨ζ,ζ∗⟩

ν U

{Eiξ
∗}d

i=0
⟨ξ∗,ξ⟩

ν K∗U∗K ⟨ξ∗,ζ⟩
ν K∗U∗ ||ξ∗||2

ν K∗ ⟨ξ∗,ζ∗⟩
ν I

{(k∗
i )−1Eiζ

∗}d
i=0

⟨ζ∗,ξ⟩
ν U∗K ⟨ζ∗,ζ⟩

ν U∗ ⟨ζ∗,ξ∗⟩
ν I ||ζ∗||2

ν (K∗)−1

Proof. Note that ζ (resp. ζ∗) is a nonzero scalar multiple of ξ (resp. ξ∗). Using this
and Lemmas 17.2, 17.9 we represent the inner products in terms of P , Q, K, K∗.
Now eliminate P , Q using Lemma 14.4 to get the result. �

In the diagram below we display the inner product matrices between the four bases
in (20):

{Eiξ
∗}d

i=0

{E∗
i ξ}d

i=0 {k−1
i E∗

i ζ}d
i=0

{(k∗
i )−1Eiζ

∗}d
i=0

Inner products

{ui}d
i=0

M−−−−→ {vi}d
i=0 means Mij = ⟨ui, vj⟩ (0 6 i, j 6 d)

The direction arrow is left off if M is symmetric

⟨ξ∗,ζ∗⟩
ν I

⟨ξ∗,ζ⟩
ν K∗U∗

⟨ξ∗,ξ⟩
ν K∗U∗K

⟨ξ,ξ∗⟩
ν KUK∗

⟨ξ,ζ∗⟩
ν KU

⟨ξ,ζ⟩
ν I

⟨ζ∗,ζ⟩
ν U∗

⟨ζ,ζ∗⟩
ν U

⟨ζ∗,ξ⟩
ν U∗K

⟨ζ,ξ∗⟩
ν UK∗

||ξ||2
ν K

||ζ||2
ν K−1

||ξ∗||2
ν K∗ ||ζ∗||2

ν (K∗)−1
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Proposition 18.3. In the table below we give the transition matrices between the four
bases in (20). Each entry of the table is the transition matrix from the basis in the
given row to the basis in the given column.

{E∗i ξ}di=0 {k−1
i E∗i ζ}di=0 {Eiξ∗}di=0 {(k∗i )−1Eiζ

∗}di=0

{E∗i ξ}di=0 I 〈ξ,ζ〉
||ξ||2K

−1 〈ξ,ξ∗〉
||ξ||2 UK

∗ 〈ξ,ζ∗〉
||ξ||2 U

{k−1
i E∗i ζ}di=0

〈ζ,ξ〉
||ζ||2K I 〈ζ,ξ∗〉

||ζ||2 KUK
∗ 〈ζ,ζ∗〉

||ζ||2 KU

{Eiξ∗}di=0
〈ξ∗,ξ〉
||ξ∗||2U

∗K 〈ξ∗,ζ〉
||ξ∗||2U

∗ I 〈ξ∗,ζ∗〉
||ξ∗||2 (K∗)−1

{(k∗i )−1Eiζ
∗}di=0

〈ζ∗,ξ〉
||ζ∗||2K

∗U∗K 〈ζ∗,ζ〉
||ζ∗||2K

∗U∗ 〈ζ∗,ξ∗〉
||ζ∗||2 K

∗ I

Proof. Use Lemma 16.5 and Proposition 18.2. �
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In the diagram below we display the transition matrices between the four bases
in (20).

IDEMPOTENT SYSTEMS

Proposition 18.3. In the table below we give the transition matrices between the four
bases in (20). Each entry of the table is the transition matrix from the basis in the
given row to the basis in the given column:

{E∗
i ξ}d

i=0 {k−1
i E∗

i ζ}d
i=0 {Eiξ

∗}d
i=0 {(k∗

i )−1Eiζ
∗}d

i=0

{E∗
i ξ}d

i=0 I ⟨ξ,ζ⟩
||ξ||2 K−1 ⟨ξ,ξ∗⟩

||ξ||2 UK∗ ⟨ξ,ζ∗⟩
||ξ||2 U

{k−1
i E∗

i ζ}d
i=0

⟨ζ,ξ⟩
||ζ||2 K I ⟨ζ,ξ∗⟩

||ζ||2 KUK∗ ⟨ζ,ζ∗⟩
||ζ||2 KU

{Eiξ
∗}d

i=0
⟨ξ∗,ξ⟩
||ξ∗||2 U∗K ⟨ξ∗,ζ⟩

||ξ∗||2 U∗ I ⟨ξ∗,ζ∗⟩
||ξ∗||2 (K∗)−1

{(k∗
i )−1Eiζ

∗}d
i=0

⟨ζ∗,ξ⟩
||ζ∗||2 K∗U∗K ⟨ζ∗,ζ⟩

||ζ∗||2 K∗U∗ ⟨ζ∗,ξ∗⟩
||ζ∗||2 K∗ I

Proof. Use Lemma 16.5 and Proposition 18.2. �

In the diagram below we display the transition matrices between the four bases in
(20):

{Eiξ
∗}d

i=0

{E∗
i ξ}d

i=0 {k−1
i E∗

i ζ}d
i=0

{(k∗
i )−1Eiζ

∗}d
i=0

Transition matrices

{ui}d
i=0

M−−−−→ {vi}d
i=0 means vj =

∑d
i=0 Mijui (0 6 j 6 d)

⟨ξ∗,ζ∗⟩
||ξ∗||2 (K∗)−1

⟨ξ∗,ζ⟩
||ξ∗||2 U∗

⟨ξ∗,ξ⟩
||ξ∗||2 U∗K

⟨ξ,ξ∗⟩
||ξ||2 UK∗

⟨ξ,ζ∗⟩
||ξ||2 U

⟨ξ,ζ⟩
||ξ||2 K−1 ⟨ζ,ξ⟩

||ζ||2 K

⟨ζ∗,ξ∗⟩
||ζ∗||2 K∗

⟨ζ∗,ζ⟩
||ζ∗||2 K∗U∗

⟨ζ,ζ∗⟩
||ζ||2 KU

⟨ζ∗,ξ⟩
||ζ∗||2 K∗U∗K

⟨ζ,ξ∗⟩
||ζ||2 KUK∗

19. P -polynomial and Q-polynomial idempotent systems

We continue to discuss a symmetric idempotent system Φ = ({Ei}d
i=0; {E∗

i }d
i=0) on

V .

Definition 19.1. We say that Φ is P -polynomial whenever ph
ij is zero (resp. nonzero)

if one of h, i, j is greater than (resp. equal to) the sum of the other two (0 6 h, i, j 6 d).

For the moment, assume that d > 1 and Φ is P -polynomial. Then the first inter-
section matrix B1 has the form

B1 =




a0 b0 0
c1 a1 b1

c2 · ·
· · ·

· · bd−1

0 cd ad




,
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19. P -polynomial and Q-polynomial idempotent systems
We continue to discuss a symmetric idempotent system Φ = ({Ei}di=0; {E∗i }di=0) on V .

Definition 19.1. We say that Φ is P -polynomial whenever phij is zero (resp. nonzero)
if one of h, i, j is greater than (resp. equal to) the sum of the other two (0 6 h, i, j 6 d).

For the moment, assume that d > 1 and Φ is P -polynomial. Then the first inter-
section matrix B1 has the form

B1 =


a0 b0 0
c1 a1 b1
c2 · ·
· · ·
· · bd−1

0 cd ad

 ,

where
ci = pi1,i−1 (1 6 i 6 d), ai = pi1,i (0 6 i 6 d), bi = pi1,i+1 (0 6 i 6 d− 1).

Moreover ci 6= 0 for 1 6 i 6 d and bi 6= 0 for 0 6 i 6 d− 1. So B1 is irreducible tridi-
agonal. Shortly we will show that this feature of B1 characterizes the P -polynomial
property.

Lemma 19.2. Assume that d > 1 and Φ is P -polynomial. Then
A1A0 = a0A0 + c1A1,

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1 (1 6 i 6 d− 1),
A1Ad = bd−1Ad−1 + adAd.

Proof. By Lemma 10.1 and the comments below Definition 19.1. �

For elements A, B in any algebra, we say that B is an affine transformation of A
whenever there exist scalars α, β such that α 6= 0 and B = αA+ βI.
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Proposition 19.3. Assume that d > 1. Then for A ∈ End(V ) the following are
equivalent:

(i) Φ is P -polynomial and A is an affine transformation of A1;
(ii) for 0 6 i 6 d there exists fi ∈ F[x] such that deg(fi) = i and Ai = fi(A).

Proof. (i) ⇒ (ii) By Lemma 19.2 and since A0 = I.
(ii) ⇒ (i) The elements {Ai}di=0 are linearly independent by Lemma 7.7, so the

elements {Ai}di=0 are linearly independent. Pick integers i, j (0 6 i, j 6 d) such that
i+ j 6 d. We show that

fifj =
d∑

h=0
phijfh.(21)

Define a polynomial g = fifj−
∑d
h=0 p

h
ijfh. The degree of g is at most d, and g(A) = 0.

Therefore g = 0. We have shown (21). In (21) we examine the degrees to find

i+ j = max{h | 0 6 h 6 d, phij 6= 0}.

By this and Lemma 10.11(i), we find that Φ is P -polynomial. Since A1 = f1(A) and
deg(f1) = 1, A is an affine transformation of A1. �

Proposition 19.4. Assume that d > 1 and Φ is P -polynomial. Then the following
hold:

(i) {Ai1}di=0 form a basis for the vector spaceM, whereM is from Definition 3.2;
(ii) {p1(j)}dj=0 are mutually distinct;
(iii) {EiV }di=0 are the eigenspaces of A1;
(iv) A1 is multiplicity-free;
(v) {Ei}di=0 are the primitive idempotents of A1.

Proof. (i) By Lemma 7.7 and Proposition 19.3(ii).
(ii) By Lemma 12.4, p1(j) is the eigenvalue of A1 corresponding to EjV for 0 6

j 6 d. So the characteristic polynomial of A1 is
∏d
j=0(x− p1(j)). By (i) the minimal

polynomial of A1 has degree d + 1. By these comments, the minimal polynomial of
A1 is

∏d
j=0(x− p1(j)). The result follows.

(iii) By Lemma 12.4(i) and (ii) above.
(iv) By (iii) above and since EiV has dimension one for 0 6 i 6 d.
(v) By (iii), (iv) above. �

Proposition 19.5. For d > 1 the following are equivalent:
(i) Φ is P -polynomial;
(ii) the first intersection matrix B1 is irreducible tridiagonal.

Proof. (i) ⇒ (ii) We saw this above Lemma 19.2.
(ii)⇒ (i) Since B1 is irreducible tridiagonal, we have the equations in Lemma 19.2.

So for 0 6 i 6 d there exists fi ∈ F[x] such that deg(fi) = i and Ai = fi(A1). By
Proposition 19.3 (with A = A1) we see that Φ is P -polynomial. �

Definition 19.6. We say that Φ is Q-polynomial whenever qhij is zero (resp. nonzero)
if one of h, i, j is greater than (resp. equal to) the sum of the other two (0 6 h, i, j 6 d).

Lemma 19.7. Φ is Q-polynomial if and only if Φ∗ is P -polynomial.

Proof. Immediate from Definitions 10.3, 19.1, 19.6. �
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20. Leonard pairs and Leonard systems
In this section we recall the notion of a Leonard pair and a Leonard system.

Definition 20.1 ([16, Definition 1.1]). By a Leonard pair on V we mean an ordered
pair A,A∗ of elements in End(V ) that satisfy the following (i), (ii).

(i) There exists a basis of V with respect to which the matrix representing A is
irreducible tridiagonal and the matrix representing A∗ is diagonal.

(ii) There exists a basis of V with respect to which the matrix representing A∗ is
irreducible tridiagonal and the matrix representing A is diagonal.

Let A,A∗ denote a Leonard pair on V . By [16, Lemma 1.3] each of A, A∗ is
multiplicity-free. Let {Ei}di=0 denote an ordering of the primitive idempotents of A.
For 0 6 i 6 d pick a nonzero vi ∈ EiV . Then {vi}di=0 form a basis of V . We say
that the ordering {Ei}di=0 is standard whenever {vi}di=0 satisfies Definition 20.1(ii).
In this case, the ordering {Ed−i}di=0 is standard and no further ordering is standard.
A standard ordering of the primitive idempotents of A∗ is similarly defined.

Definition 20.2 ([16, Definition 1.4]). By a Leonard system on V we mean a sequence

(22) (A; {Ei}di=0;A∗; {E∗i }di=0)

of elements in End(V ) that satisfy the following (i)–(iii):
(i) A,A∗ is a Leonard pair on V ;
(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A;
(iii) {E∗i }di=0 is a standard ordering of the primitive idempotents of A∗.

For the rest of this section let (A; {Ei}di=0;A∗; {E∗i }di=0) denote a Leonard system
on V . Note that (A∗; {E∗i }di=0;A; {Ei}di=0) is a Leonard system on V .

Lemma 20.3 ([17, Lemma 9.2]). The following hold:
(i) E0E

∗
i E0 6= 0 (0 6 i 6 d);

(ii) E∗0EiE∗0 6= 0 (0 6 i 6 d).

Lemma 20.4 ([17, Theorem 6.1 and Lemma 6.3]). There exists a unique antiautomor-
phism † of End(V ) that fixes each of A, A∗. Moreover † fixes each of Ei, E∗i for
0 6 i 6 d.

Lemma 20.5 ([17, Theorem 13.4]). There exist polynomials {fi}di=0 in F[x] such that
deg(fi) = i and fi(A)E∗0E0 = E∗i E0 for 0 6 i 6 d.

Lemma 20.6 ([12, Theorem 4.2]). For elements B, B∗ in End(V ) the following are
equivalent:

(i) (B; {Ei}di=0;B∗; {E∗i }di=0) is a Leonard system;
(ii) B (resp. B∗) is an affine transformation of A (resp. A∗).

21. Idempotent systems and Leonard systems
In this section we show that a Leonard system is essentially the same thing as a
symmetric idempotent system that is P -polynomial and Q-polynomial.

Theorem 21.1. Let Φ = ({Ei}di=0; {E∗i }di=0) denote a sequence of elements in End(V ).
Then the following are equivalent:

(i) Φ is a symmetric idempotent system that is P -polynomial and Q-polynomial;
(ii) there exist A, A∗ in End(V ) such that (A; {Ei}di=0;A∗; {E∗i }di=0) is a Leonard

system.
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Proof. We assume d > 1; otherwise the assertion is obvious.
(i)⇒ (ii) We show that (A1; {Ei}di=0;A∗1; {E∗i }di=0) is a Leonard system on V , where

A1, A∗1 are from Definition 7.1. By Proposition 18.1, with respect to a Φ-standard
basis of V the matrix representing A1 is B1 and the matrix representing A∗1 is H∗1 .
By Definition 14.7 the matrix H∗1 is diagonal, and by Proposition 19.5 the matrix
B1 is irreducible tridiagonal. Thus with respect to a Φ-standard basis the matrix
representing A1 is irreducible tridiagonal and the matrix representing A∗1 is diagonal.
Applying this to Φ∗, with respect to a Φ∗-standard basis the matrix representing A∗1 is
irreducible tridiagonal and the matrix representing A1 is diagonal. By these comments
A1, A

∗
1 is a Leonard pair on V . By Proposition 19.4(v) and the construction, {Ei}di=0

(resp. {E∗i }di=0) is a standard ordering of the primitive idempotents of A1 (resp. A∗1).
We have shown that (A1; {Ei}di=0;A∗1; {E∗i }di=0) is a Leonard system on V .

(ii) ⇒ (i) By Lemmas 20.3 and 20.4, Φ is a symmetric idempotent system on V .
By Lemma 20.5 there exist polynomials {fi}di=0 in F[x] such that deg(fi) = i and
fi(A)E∗0E0 = E∗i E0 for 0 6 i 6 d. By Lemmas 6.3, 6.4, 7.4(i), Ai is the unique
element inM such that AiE∗0E0 = E∗i E0 (0 6 i 6 d). By these comments fi(A) = Ai
for 0 6 i 6 d. By this and Proposition 19.3, Φ is P -polynomial. Apply this to the
Leonard system (A∗; {E∗i }di=0;A; {Ei}di=0) to find that Φ is Q-polynomial. �

Lemma 21.2. Assume that d > 1 and the equivalent conditions (i), (ii) hold in Theo-
rem 21.1. Then for A, A∗ in End(V ) the following are equivalent:

(i) (A; {Ei}di=0;A∗; {E∗i }di=0) is a Leonard system on V ;
(ii) A (resp. A∗) is an affine transformation of A1 (resp. A∗1), where A1, A∗1 are

from Definition 7.1.

Proof. (i) ⇒ (ii) By the proof of Theorem 21.1, (A1; {Ei}di=0;A∗1; {E∗i }di=0) is a
Leonard system on V . By this and Lemma 20.6, A (resp. A∗) is an affine transfor-
mation of A1 (resp. A∗1).

(ii) ⇒ (i) By Lemma 20.6. �
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