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Nemanja Poznanović & Cheryl E. Praeger

Abstract Let OG(4) denote the family of all graph-group pairs (Γ, G) where Γ is 4-valent,
connected and G-oriented (G-half-arc-transitive). Using a novel application of the structure
theorem for biquasiprimitive permutation groups of the second author, we produce a description
of all pairs (Γ, G) ∈ OG(4) for which every nontrivial normal subgroup of G has at most two
orbits on the vertices of Γ, and at least one normal subgroup has two orbits. In particular we
show that G has a unique minimal normal subgroup N and that N ∼= T k for a simple group
T and k ∈ {1, 2, 4, 8}. This provides a crucial step towards a general description of the long-
studied family OG(4) in terms of a normal quotient reduction. We also give several methods
for constructing pairs (Γ, G) of this type and provide many new infinite families of examples,
covering each of the possible structures of the normal subgroup N .

1. Introduction
All graphs considered in this paper are simple, undirected and finite. A graph Γ is said
to be G-oriented with respect to some group G 6 Aut(Γ), and some edge-orientation
∆, if G acts transitively on the vertices and edges of Γ and G preserves the edge-
orientation ∆. Thus, although the group G will act transitively on the vertices and
edges, it will not be transitive on the arcs of Γ, where an arc is an ordered pair of
adjacent vertices. Conversely, any graph Γ admitting a vertex- and edge- but not arc-
transitive group G of automorphisms will admit some G-invariant edge-orientation:
simply take one of the two G-arc-orbits ∆ and orient an edge {α, β} from α to β if
and only if (α, β) ∈ ∆.

Every G-oriented graph necessarily has even valency and all connected components
of a G-oriented graph are pairwise isomorphic. It is thus natural to restrict attention
to G-oriented graphs which are connected. For each even integer m > 2, we let
OG(m) denote the family of graph-group pairs (Γ, G) where Γ is connected, m-valent
and G-oriented. Throughout this paper we will represent G-oriented graphs as pairs
(Γ, G) contained in some family OG(m). Our notation suppresses the orientation
∆. Technically therefore the pairs (Γ, G) ∈ OG(m) are G-orientable rather than G-
oriented, as the orientation ∆ has not been chosen yet. However this orientation is
determined by the pair (Γ, G) up to possibly reversing the orientation of all edges.
The term G-oriented graph was suggested by B. D. Mckay and has been used, for
example in [1, 2, 3, 20] for pairs in OG(m) with an understanding that this choice
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between two orientations is yet to be made. A detailed discussion of G-oriented graphs
is given in [3, Section 1].

It is easy to see that the family OG(2) consists only of oriented cycle graphs.
On the other hand, study of the family OG(4) has been an active area of research for
several decades and has taken a number of different directions (especially because of its
connection with the embedding of graphs into Riemann surfaces). For a good summary
of this research up to 1998 see [12], for a more recent overview see [3, Section 2].

A particularly useful tool for studying OG(4) was given in [11], where several
important combinatorial parameters were defined for graphs in this family based on
certain cyclic subgraphs called G-alternating cycles. This led to the formulation of an
approach to studying OG(4) by considering various quotients defined in terms of the
G-alternating cycles, see [14].

The combined results of [11, 14] provide a complete classification of some subfam-
ilies of OG(4) and prove that pairs (Γ, G) ∈ OG(4) not contained in these subfamilies
are covers of other members of OG(4) satisfying certain combinatorial conditions. In
particular, this approach naturally identifies two subfamilies of OG(4) as “alternating-
cycle-basic” in the sense that all 4-valent G-oriented graphs (other than those already
classified) are covers of these basic members. However the analysis in [11, 14] provided
no tools for studying the “basic” graphs relative to this reduction.

More recently, a new framework for studying the family OG(4) was proposed in [3]
and developed further in [1, 2]. This new approach aims to analyse OG(4) using a
normal quotient reduction, a method which has been successfully used to study other
families of graphs with prescribed symmetry conditions, see for instance [15, 22, 23],
but has never been applied to oriented graphs. The aim of this approach (explained
in detail below) is to describe the family OG(4) in terms of graph quotients arising
from normal subgroups of the groups contained in this family. In particular, it is again
possible to identify three subfamilies of OG(4) which are “normal-quotient-basic” in
the sense that all pairs (Γ, G) ∈ OG(4) are normal covers of at least one of these basic
pairs (see Section 2.2).

It is likely that these two approaches may converge in a significant proportion
of cases. The quotient graph ΓB constructed in [14, Section 3] from a given pair
(Γ, G) ∈ OG(4), related to the G-alternating cycles, has been studied again recently
by Ramos Rivera and Šparl [26, Construction 5.4]. Provided a mild condition on
parameters is satisfied (the attachment number should be less than the radius), they
prove that ΓB is a normal quotient [26, Theorem 5.6] and hence may be studied using
the powerful theory developed in [1, 2, 3], supplemented by the results of this paper.

In this paper we answer [3, Problem 1.2] and provide a description of the pairs
(Γ, G) ∈ OG(4) of biquasiprimitive type (one of the three families of pairs defined
to be “basic” with respect to normal quotients). Our solution provides an important
step towards a description of OG(4) in terms of normal quotients. For a detailed
description of this programme and definitions of all basic pairs see Section 2.2.

Biquasiprimitive Basic Pairs. A pair (Γ, G) ∈ OG(4) is said to be basic of bi-
quasiprimitive type if every nontrivial normal subgroup of G has at most two orbits
on the vertices of Γ, and G contains at least one normal subgroup, say N , with exactly
two orbits on the vertices of Γ. In such a case, it is easy to see that Γ is bipartite:
since Γ is connected there is an edge joining vertices in different N -orbits, and since G
normalises N and Γ is G-edge-transitive, each edge joins vertices in different N -orbits.
Thus the two orbits of N form a bipartition of Γ.

It follows that there is an index two subgroup G+ of G which fixes the two parts
of the bipartition of Γ setwise. The main result of this paper is the following theorem
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which describes the biquasiprimitive basic pairs (Γ, G) ∈ OG(4) in a manner analogous
to [3, Theorem 1.3] for the quasiprimitive case.

Theorem 1.1. Suppose that (Γ, G) ∈ OG(4) is basic of biquasiprimitive type. Then G
has a unique minimal normal subgroup N = soc(G), and N is contained in a unique
intransitive index 2 subgroup G+ 6 G. Furthermore, N ∼= T k where T is a finite
simple group and exactly one of the following holds:

(a) T is abelian and k 6 2, or
(b) T is nonabelian, k ∈ {1, 2, 4}, and N is the unique minimal normal subgroup

of G+, or
(c) T is nonabelian, k = 2` with ` ∈ {1, 2, 4}, G+ has exactly two minimal normal

subgroups each isomorphic to T `, and N is the direct product of these two
subgroups.

Moreover, there are infinitely many biquasiprimitive basic pairs (Γ, G) ∈ OG(4) de-
scribed by each of the cases (a)–(c) and each value of k in each case.

The first part of this paper establishes that cases (a)–(c) of Theorem 1.1 must hold
in two steps. In Section 3 we show that if (Γ, G) ∈ OG(4) is basic of biquasiprim-
itive type then G has a unique minimal normal subgroup N and one of the three
cases (a), (b) or (c) holds for some k > 1. For this we use the structure theorem
for biquasiprimitive groups given in [24]. Then in Section 4 we use combinatorial ar-
guments to obtain the various possibilities for the value of k (the number of simple
direct factors of soc(G)) in each case.

In the second part of this paper (Section 5), we provide two detailed methods
for constructing basic biquasiprimitive pairs (Section 5.1), and we also discuss the
possibility of a third method for doing this which uses the separated box product
of two digraphs as studied in [19], and which produces some, but not all, examples
(Section 5.2). We conclude the paper by providing an infinite family of basic pairs
for each of the cases described in Theorem 1.1, and for each possible value of k. This
proves the final assertion of Theorem 1.1.

2. Preliminaries
Unless otherwise stated we will let V Γ, EΓ and AΓ denote the vertex-, edge-, and
arc-set of a given graph Γ (an arc is an ordered pair of adjacent vertices). Given a
vertex α ∈ V Γ we let Γ(α) denote the neighbourhood of α in Γ. For fundamental
graph-theoretic concepts we refer the reader to [7], and for group-theoretic concepts
not defined here, please refer to [25].

Given a group G acting on a set X, we will always let GX denote the subgroup of
Sym(X) induced by the group G. Given elements g ∈ G and x ∈ X, we let xg denote
the image of x under g. A permutation group GX is said to be semiregular if only the
identity element of G fixes a point in X, and is said to be regular if it is semiregular
and transitive.

2.1. G-oriented graphs. If Γ is a G-oriented graph then the group G is transitive
on the vertices and edges but not on the arcs of Γ. It follows that the group G has
two orbits on the arc set of Γ and these two orbits are paired. (Every arc (u, v) in one
orbit will have its reverse arc (v, u) in the other orbit.) Either of these two G-orbits
on the arc set of Γ naturally gives rise to a G-invariant orientation of the edges of Γ:
simply take any arc (u, v) of Γ and then orient each edge {x, y} from x to y if and
only if (u, v)g = (x, y) for some g ∈ G.

Given a pair (Γ, G) ∈ OG(4), any vertex v0 ∈ V Γ and any G-invariant orientation
of EΓ, we will say that an in-neighbour of v0 is any neighbour u for which the edge
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{v0, u} is oriented from u to v0, and an out-neighbour of v0 is any neighbour w for
which the edge {v0, w} is oriented from v0 to w. The vertex v0 will always have exactly
two in-neighbours and two out-neighbours, and the stabiliser Gv0 of the vertex v0 will
always have two orbits of length two on the neighbourhood of v0 corresponding to the
in-neighbours and out-neighbours of v0 with respect to the given orientation.

Given a connected, 4-valent, G-vertex-transitive graph Γ, we may show that
(Γ, G) ∈ OG(4) by showing that Gv0 has two orbits of size 2 on Γ(α), and that no
element of G can reverse an edge of Γ.

An oriented s-arc of a G-oriented graph with a fixed G-invariant orientation is a
sequence of vertices (v0, v1, . . . , vs) of Γ, such that for each i ∈ {0, . . . , s− 1}, vi and
vi+1 are adjacent, and each edge {vi, vi+1} is oriented from vi to vi+1. We will make
use of the following important fact concerning oriented s-arcs of G-oriented graphs,
the proof of which can be found in the first part of the proof of [3, Lemma 6.2].

Lemma 2.1. Let (Γ, G) ∈ OG(4) and let s > 1 be the largest integer such that G acts
transitively on the oriented s-arcs of Γ. Then G acts regularly on the oriented s-arcs
of Γ.

Now let (Γ, G) ∈ OG(4) and take a vertex α ∈ V Γ. Let s be as in the statement of
Lemma 2.1 and consider an oriented s-arc (α, v1, . . . , vs) of Γ. Since G is regular on the
oriented s-arcs of Γ, it follows that the vertex-stabiliser Gα is regular on the oriented
s-arcs starting at α. From this it follows that Gα has order 2s, and for each i with
0 6 i < s, the subgroup Gα,v1,...,vs−i has order 2i. In particular, |Gα,v1,...,vs−1 | = 2,
and the stabiliser of a vertex Gα is a 2-group.

Note that the vertex stabilisers of pairs (Γ, G) ∈ OG(4) have been studied in several
papers. See for instance [13, 18].

2.2. Normal Quotients. Given a pair (Γ, G) ∈ OG(4) and a normal subgroup N
of G, we define a new graph ΓN called a G-normal-quotient of Γ. The vertices of ΓN
are the N -orbits on the vertices of Γ, with an edge between two distinct N -orbits
{B,C} in ΓN if and only if there is an edge of the form {α, β} in Γ, with α ∈ B and
β ∈ C. The group G induces a group GN = G/K of automorphisms of ΓN , where K
is the kernel of the G-action on ΓN . By definition N 6 K, and hence the K-orbits
are the same as the N -orbits so ΓK = ΓN . However K may be strictly larger than N .

If (ΓN , GN ) is itself a member ofOG(4), that is, ΓN is a 4-valentGN -oriented graph,
then Γ is said to be a G-normal cover of ΓN . In general however, the pair (ΓN , GN )
need not lie in OG(4), and the various possibilities for such normal quotient pairs
(ΓN , GN ) were identified in [3, Theorem 1.1]. In particular, it was proved that for
any (Γ, G) ∈ OG(4), and any nontrivial normal subgroup N of G, either (ΓN , GN ) is
also in OG(4) and Γ is a G-normal cover of ΓN , or ΓN is isomorphic to K1, K2 or a
cycle Cr, for some r > 3. A pair (ΓN , GN ) where ΓN is isomorphic to one of K1, K2
or Cr is defined to be degenerate, while a pair (Γ, G) ∈ OG(4) for which (ΓN , GN ) is
degenerate relative to every non-trivial normal subgroup N of G is defined to be basic.

Since [3, Theorem 1.1] ensures that every member of OG(4) is a normal cover of a
basic pair, this result suggests a framework for studying the familyOG(4) using normal
quotient reduction. The goal of this framework is to improve understanding of this
family by developing a theory to describe the basic pairs in OG(4), and subsequently
developing a theory to describe the G-normal covers of these basic pairs.

Work in this direction was initiated in [3] where the basic pairs were further
divided into three types and the basic pairs of quasiprimitive type were analysed.
A pair (Γ, G) ∈ OG(4) is said to be basic of quasiprimitive type if all G-normal
quotients ΓN of Γ are isomorphic to K1. This occurs precisely when all non-trivial
normal subgroups of G are transitive on the vertices of Γ. A permutation group with
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this property is said to be quasiprimitive, and there is a general structure theorem
available for quasiprimitive groups analogous to the O’Nan–Scott Theorem for prim-
itive permutation groups in [22]. Using this tool, as well as combinatorial properties
of the family OG(4), it was shown [3, Theorem 1.3] that if (Γ, G) ∈ OG(4) is basic of
quasiprimitive type, then G has a unique minimal normal subgroup N ∼= T k where
T is a nonabelian finite simple group and k 6 2.

Of course, every pair (Γ, G) ∈ OG(4) will have at least one normal quotient ΓN
isomorphic to K1 since we may take the quotient with respect to the full group G.
If the only normal quotients of a pair (Γ, G) ∈ OG(4) are the graphs K1 or K2,
and Γ has at least one G-normal quotient isomorphic to K2, then (Γ, G) is basic of
biquasiprimitive type. The group G here is biquasiprimitive: it is not quasiprimitive
but each nontrivial normal subgroup has at most two orbits. Again, there is a structure
theorem for biquasiprimitive groups available in [24].

The basic pairs in OG(4) which are neither quasiprimitive nor biquasiprimitive
must have at least one normal quotient isomorphic to a cycle graph Cr, and hence
are said to be of cycle type. Work towards describing the basic pairs of cycle type was
initiated in [2] where several important families of these graphs, which have already
been discussed in the literature, were analysed from a normal quotient point of view.
A more general analysis of these pairs was done in [1], however further work is required
to understand this type.

The above discussion outlining the three types of basic pairs (Γ, G) ∈ OG(4) is
summarised in Table 1. This table also includes references to the papers where the
corresponding basic pairs were previously studied. The objective of this paper is to
describe the basic pairs (Γ, G) ∈ OG(4) of biquasiprimitive type, several families of
which were constructed in [20].

Before proceeding, we note that G-oriented graphs may also be divided into two
types depending on the action of their full automorphism group. For a pair (Γ, G) ∈
OG(m), the graph Γ is said to be half-arc-transitive if (Γ,Aut(Γ)) ∈ OG(m). If this is
not the case then Aut(Γ) preserves neither of the G-orientations of Γ, and therefore
Aut(Γ) is transitive on the arc-set of Γ, that is, Γ is arc-transitive. The 4-valent half-
arc-transitive graphs form a heavily studied yet elusive subfamily of OG(4), see [12,
13, 16, 26] for instance.

For a pair (Γ, G) ∈ OG(4) and a nondegenerate normal quotient (ΓN , GN ), the
graph ΓN may be either half-arc-transitive or arc-transitive, [2, Proposition 3.1]. If Γ
is arc-transitive and NAut(Γ)(N) is arc-transitive, then ΓN is definitely arc-transitive,
see [21, Lemma 1.1]. On the other hand, by considering the census of all 4-valent
G-oriented graphs of order at most 1000 (see [17]), one can check that the half-arc-
transitive graph HAT[168,9] has two normal quotients, one of which is the half-arc-
transitive graph HAT[84,1], the other being an arc-transitive 4-valent graph of order
12. These normal quotients both arise from subgroups of the cyclic normal subgroup
related to G-alternating cycles described in [26, Theorem 5.2, Theorem 5.6].

Half-arc-transitivity is thus difficult to discern when studying OG(4) via normal
quotients. Still, once we have a good description of all basic pairs in OG(4) it would
be interesting to study which of these pairs are arc-transitive and yet are normal
quotients of half-arc transitive graphs.

2.3. Bi-Cayley Graphs. A bi-Cayley graph Γ is a graph which admits a semiregular
group of automorphisms H with two orbits on the vertex set of Γ. These graphs are
important for our purposes as for many of the pairs (Γ, G) ∈ OG(4) studied in this
paper, the group G will have a normal subgroup N contained in G+ which acts
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Basic Type Possible ΓN for 1 6= N CG Conditions on
G-action on
vertices

Reference

Quasiprimitive K1 only quasiprimitive [3]
Biquasiprimitive K1 and K2 only biquasiprimitive –
Cycle At least one Cr (r > 3) at least one

quotient action
D2r or Zr

[1, 2]

Table 1. Types of Basic Pairs (Γ, G) ∈ OG(4).

semiregularly with two orbits on V Γ. In such cases, Γ is a bi-Cayley graph and the
two N -orbits coincide with the two parts of the bipartition of Γ.

Every bi-Cayley graph of a groupH may be constructed in the following way. Let R
and L be inverse-closed subsets of H which do not contain the identity, and let S be a
subset of H. Define the graph Γ = BiCay(H,R,L, S) to be the graph whose vertex set
is the union of the sets H0 = {h0 : h ∈ H} and H1 = {h1 : h ∈ H} (two copies of the
group H), and whose edge set is the union of the right edges {{h0, g0} : gh−1 ∈ R},
the left edges {{h1, g1} : gh−1 ∈ L}, and the spokes {{h0, g1} : gh−1 ∈ S}. Note that
if Γ is connected then H is generated by R ∪ L ∪ S (however the converse does not
necessarily hold). The group H then acts by right multiplication on the vertices of Γ,
and this action is semiregular with two orbits H0 and H1. See for instance [5, 27].

3. Biquasiprimitive Basic Pairs: two types.
Suppose now that (Γ, G) ∈ OG(4) is a basic pair of biquasiprimitive type and recall
that this implies that Γ is bipartite. Let X denote the vertex set of Γ with {∆,∆′}
the bipartition of X, and let G+ be the index 2 subgroup of G fixing the two biparts
∆ and ∆′ setwise. Since Γ is G-vertex-transitive it follows that G+ is transitive on
both ∆ and ∆′.

In this section we will begin working towards the proof of Theorem 1.1. We start
with a lemma about the intransitive normal subgroups of G.

Lemma 3.1. Let (Γ, G) ∈ OG(4) be basic of biquasiprimitive type, and let X denote
the vertex set of Γ. Let G+ be the subgroup of G of index two with orbits ∆,∆′ (the
biparts of X). Then

(a) G+ is faithful on ∆ (and ∆′), and
(b) any non-trivial intransitive normal subgroup N of G must have the sets ∆

and ∆′ as its two orbits on X. In particular, N is contained in G+.

Proof. (a). Let K be the subgroup of G+ fixing ∆ pointwise and suppose that K 6= 1,
and hence that K acts non-trivially on ∆′. If g ∈ G\G+ then Kg is the pointwise
stabiliser of ∆′ in G+, and hence K ∩Kg = 1, so 〈K,Kg〉 ∼= K ×Kg.

Now since both K and Kg are normal in G+, and since g2 ∈ G+ (because |G :
G+| = 2), it follows that (K ×Kg)g = K ×Kg, and so K ×Kg is a normal subgroup
of G contained in G+. Thus K × Kg has two orbits ∆ and ∆′ as (Γ, G) is basic of
biquasiprimitive type. But this implies that K is transitive on ∆′, which is impossible
since for any α ∈ ∆ we have K 6 Gα, and Gα is not transitive on Γ(α) ⊂ ∆′. Thus
part (a) holds.

(b). Since |V Γ| > |{α} ∪ Γ(α)| = 5, it follows that |N | > 1
2 |V Γ| > 2, hence

N ∩G+ 6= 1 since |N : N ∩G+| 6 2. Thus N ∩G+ is a nontrivial intransitive normal
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subgroup of G contained in G+, so its orbits are ∆ and ∆′, and these must also be
the orbits of the intransitive normal subgroup N . �

Next we introduce a convenient framework for investigating these graphs, based
on the Imprimitive Wreath Embedding Theorem [25, Theorem 5.5] which identifies
the vertex set X with {vi | v ∈ V, i ∈ {0, 1}}, and G with a transitive subgroup of
Sym(V ) o Sym(2) in its natural imprimitive action, so that ∆ = {v0 | v ∈ V } and
∆′ = {v1 | v ∈ V }. Since G is transitive, its subgroup G+ induces transitive subgroups
(G+)∆ and (G+)∆′ on ∆ and ∆′, each of which we identify with a transitive subgroup
of Sym(V ).

Let τ ∈ Sym(V ) oSym(2) generate the top group, that is, τ : vε 7→ v1−ε for each v ∈
V, ε ∈ {0, 1}, and note that τ conjugates each element (h1, h2) ∈ Sym(V ) × Sym(V )
to its reverse (h2, h1). For a group H, y ∈ H, and ϕ ∈ Aut(H), we denote by ιy the
inner automorphism of H induced by y, that is h 7→ y−1hy, and by Diagϕ(H ×H) =
{(h, hϕ) | h ∈ H} the diagonal subgroup of H ×H corresponding to ϕ.

Proposition 3.2. Let (Γ, G) ∈ OG(4) be basic of biquasiprimitive type, and let X
denote the vertex set of Γ. Let G+ be the subgroup of G of index two with orbits
∆,∆′ in X, and let H be the permutation group induced by G+ on ∆. Let α ∈ ∆ and
β ∈ Γ(α) ⊆ ∆′. Then, if necessary, by replacing (Γ, G) with the pair (Γg, Gg), where
Γg ∼= Γ has edge-set (EΓ)g, for some g ∈ Sym(X), we may take X = {vi | v ∈ V, i ∈
{0, 1}},∆,∆′ and α = u0 as above, for some u ∈ V , and we may identify H with a
transitive subgroup of Sym(V ), such that

(a) G 6 H o Sym(2), so H = (G+)∆ = (G+)∆′ ; and
(b) for some y ∈ H and ϕ ∈ Aut(H) with ϕ2 = ιy, we have G+ = Diagϕ(H×H),

and G = 〈G+, g〉, where g := (y, 1)τ , and β = αg = (uy)1. Also Gα = G+
α
∼=

Hu is a 2-group.

Proof. The assertion in part (a), that we may choose a conjugate of G and correspond-
ing identifications of X,∆,∆′, so that the transitive subgroups (G+)∆ and (G+)∆′

determine the same subgroup H of Sym(V ), follows from the embedding theorem [25,
Theorem 5.5]. Thus G 6 H o Sym(2) = (H × H) o 〈τ〉, with τ as above, and G+ is
a subdirect subgroup of H ×H. By Lemma 3.1, G+ is faithful on each of ∆ and ∆′,
and hence G+ is a diagonal subgroup of H ×H, so G+ = Diagϕ(H ×H), for some
ϕ ∈ Aut(H). Since α ∈ ∆, we have α = u0 for some u ∈ V . Also, since Gα < G+ < G,
we have Gα = G+

α , and since G+ is a diagonal subgroup of H ×H, projection to the
first coordinate induces a monomorphism G+

α → H with image Hu. Thus G+
α
∼= Hu,

and we know already that Gα is a 2-group.
Since G is transitive on X, there exists g = (h1, h2)τ ∈ G such that β = αg,

and G = 〈G+, g〉. Set s := (1, h2) ∈ H × H. Then s induces a graph isomor-
phism from Γ to the graph Γs with vertex set X and arc set consisting of
all pairs (vsε , ws1−ε) = (vε, (wh2)1−ε), where (vε, w1−ε) is an arc of Γ. Moreover
(Γs, Gs) ∈ OG(4), the group Gs is equal to 〈(Diagϕ(H × H))s, gs〉, and we have
(Diagϕ(H ×H))s = Diagϕιh2

(H ×H) and

gs = (1, h−1
2 )(h1, h2)τ(1, h2) = (h1h2, 1)τ.

Set y := h1h2. Then gs maps αs to its out-neighbour βs in Γs, and we have αs = α,
and βs = (αg)s = (αs)gs = αg

s = (u0)(y,1)τ = (uy)1.
Now replace Γ, G, g, ϕ, α, β by Γs, Gs, gs, ϕιh2 , α, β

s. Then all assertions are proved
apart from the equality ϕ2 = ιy, which we now prove (for the new ϕ). Since
g = (y, 1)τ normalises G+ = Diagϕ(H × H), it follows that, for all h ∈ H, G+
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contains (h, hϕ)g = (h, hϕ)(y,1)τ = (hϕ, hy) and hence we must have hy = (hϕ)ϕ for
all h ∈ H, that is to say, ϕ2 = ιy. �

Now we apply the structure theorem from [24] for biquasiprimitive groups. It turns
out that only two of the various possible structures given in Theorem 1.1 of [24] can
arise as groups of automorphisms of 4-valent oriented graphs of basic biquasiprimitive
type. Note that the stabiliser Gα = {(h, hϕ) | h ∈ Hu} ∼= Hu.

Proposition 3.3. Under the assumptions of Proposition 3.2, the automorphism ϕ
is nontrivial, and G has a unique minimal normal subgroup N = soc(G). Moreover
N = Diagϕ(M ×M) ∼= M where M = soc(H) ∼= T k for some simple group T and
k > 1, and either

(a) H is quasiprimitive and M is its unique minimal normal subgroup, or
(b) H is not quasiprimitive andM = R×Rϕ where R,Rϕ are intransitive minimal

normal subgroups of H. In this case G+ has two minimal normal subgroups,
namely K := Diagϕ(R × R) and L = Diagϕ(Rϕ × Rϕ), and these are the
only minimal normal subgroups if T is nonabelian. Moreover, N = K×L (so
k = 2` and K ∼= L ∼= R ∼= T `).

Proof. We examine the possibilities for the structure of G given in [24, Theorem 1.1].
Since Gα is a 2-group, cases (a)(iii), (b) and (c)(ii) do not arise, and since G+ is
faithful on ∆, the possible cases are (a)(i) and (c)(i).

Consider first case (a)(i). Since |X| > 4, it follows from [24, Lemma 3.1] that the
element g = (y, 1)τ does not centralise G+. A straightforward computation shows
that CG+(g) consists of all pairs (h, hϕ) such that h ∈ CH(ϕ). Thus ϕ is nontrivial,
since g does not centralise G+. Moreover in case (a)(i), H is quasiprimitive on V and
the stabiliser Hu

∼= Gα is a 2-group. We now apply the O’Nan–Scott Theorem for
quasiprimitive groups from [22]. This theorem tells us that if H has more than one
minimal normal subgroup then the stabiliser Hu is not solvable. Thus H has a unique
minimal normal subgroup M = soc(H) ∼= T k where T is a simple group and k > 1.
Since G+ ∼= H, it follows that N = Diagϕ(M×M) ∼= M is the unique minimal normal
subgroup of G+. Moreover, by [24, Lemma 3.1], no element of GrG+ centralises G+,
and hence G 6∼= C2 ×G+, so N is the unique minimal normal subgroup of G.

It remains to consider case (c)(i). By [24, Theorem 1.1], G again has a unique
minimal normal subgroup N = soc(G), and N has the form N = Diagϕ(M ×M),
where in this case M = soc(H) = R × Rϕ with R,Rϕ distinct intransitive minimal
normal subgroups of H. Thus R ∼= Rϕ ∼= T ` for some simple group T and ` >
1, so that N ∼= M ∼= T k with k = 2`. Since Rϕ 6= R, the map ϕ is nontrivial.
Since G+ ∼= H, the subgroups K := Diagϕ(R × R) and L = Diagϕ(Rϕ × Rϕ) are
minimal normal subgroups of G+, each isomorphic to T `, and soc(G) = soc(G+) =
K × L (since N = soc(G) 6 G+). If T is a nonabelian simple group, then each
minimal normal subgroup of K = T ` is one of the ` simple direct factors of this direct
decomposition, and G+ permutes these ` simple groups transitively by conjugation.
The same holds for L, and as soc(G) = K × L, it follows that K and L are the
only minimal normal subgroups of G+ (and are interchanged by g, noting that, for
(h, hϕ) ∈ K, the conjugate (h, hϕ)g = (hϕ, hy) ∈ L, since ϕ2 = ιy, and vice versa).
On the other hand, if T = Cp, then as an H-module, M has two composition factors
isomorphic to R as H-modules. In particular, H may have other minimal normal
subgroups. However, for any such subgroup S we have S ∼= R (as groups) since there
are just two composition factors and both are isomorphic to R as H-modules. Also
since N is the unique minimal normal subgroup of G it follows that we would have
M = S × Sϕ also. �
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In summary if (Γ, G) ∈ OG(4) is basic and biquasiprimitive, then N := soc(G) is
the unique minimal normal subgroup of G, and is contained in G+. In particular N
is transitive on the two G+-orbits ∆ and ∆+, and since Gα = G+

α , it follows that
G+ = NGα.

Using the framework of Proposition 3.2, we can specify the neighbours of α = u0
and of αg−1 = u1. We denote by Γout(γ) and Γin(γ) the 2-subsets of out-neighbours
and in-neighbours of a vertex γ, respectively. Each of these two sets is an orbit of the
stabiliser Gγ , and we can always choose an element of Gγ that acts fixed-point-freely
on Γ(γ) (whether the induced group has order 2 or 4). For the vertex α, such an
element is of the form (zϕ−1

, z) for some z ∈ (Hu)ϕ. Since we did not specify above,
let us now choose the G-orientation such that the vertex β = (uy)1 in Proposition 3.2
is an in-neighbour of α, that is, β ∈ Γin(α).

Lemma 3.4. Use the notation of Proposition 3.2 (in particular that g = (y, 1)τ and
α = u0), and let (zϕ−1

, z) ∈ Gα be fixed-point-free on Γ(α), for some z ∈ (Hu)ϕ.
Then

(a) Γin(α) = {(uy)1, (uyz)1} and Γout(α) = {u1, (uz)1}; and
(b) for γ :=αg

−1 =u1, Γin(γ) = {u0, (uyzy
−1)0} and Γout(γ) = {(uy−1)0, (uzy

−1)0}.

Proof. As mentioned above, we assume that the vertex β = αg = (uy)1 in Propo-
sition 3.2 lies in Γin(α). As (zϕ−1

, z) ∈ Gα is fixed-point-free on Γ(α), the second
vertex in Γin(α) is β(zϕ−1

,z) = (uyz)1. Note that g−1 = (1, y−1)τ . Applying g−1 to
{α}∪Γin(α) we find first that αg−1 = u1 and then that Γin(u1) consists of the vertices
(uy)g

−1

1 = u0 and (uyz)g
−1

1 = (uyzy−1)1. In particular u1 ∈ Γout(u0) and the second

vertex in this set is therefore u(zϕ−1
,z)

1 = (uz)1. This completes the proof of part (a).
Finally applying g−1 to {α} ∪ Γout(α) we find that Γout(u1) consists of the vertices
(u)g

−1

1 = (uy−1)0 and (uz)g
−1

1 = (uzy−1)0. �

4. Biquasiprimitive Basic Pairs: restricting the socle.
We will now show that for any biquasiprimitive basic pair (Γ, G) ∈ OG(4), the unique
minimal normal subgroup N of G is a direct product of k finite simple groups where
k takes one of only several possible values depending on the structure of G. We
deduce these values of k by separately considering the cases when N is abelian and
nonabelian.

We first consider the case where the minimal normal subgroup N = soc(G) is
abelian. Since N is contained in G+, this implies that N acts transitively and hence
regularly on ∆ (and ∆′). In particular, Γ is a bi-Cayley graph over N , that is, Γ =
BiCay(N,∅,∅, S) (as defined in Subsection 2.3), and N = Ckp for some k > 1. Since
Γ has valency 4, the cardinality |S| = 4. Moreover, by [5, Proposition 2.1], we may
assume that S contains the identity of N . We will write N additively so edges of Γ
are of the form (h0, g1) where g, h ∈ Ckp and g − h ∈ S, that is, g = h + s for some
s ∈ S. Note that this means that a vertex adjacent to g1 is of the form (h′)0 with
h′ = g− s′ = h+ (s− s′) for some s′ ∈ S. It follows that Γ is connected if and only if
S − S := {s− s′ | s, s′ ∈ S} generates N , and since we are assuming that the identity
0 ∈ S, this is equivalent to requiring that S r {0} generates N .

Lemma 4.1. Let (Γ, G) ∈ OG(4) be basic of biquasiprimitive type and suppose that
N = soc(G) is abelian. Then N = Ckp with k 6 2 and p an odd prime.

Proof. As discussed above, N = Ckp for some k > 1, and Γ ∼= BiCay(N,∅,∅, S), for
some subset S ⊆ N such that 0 ∈ S. Since Γ is connected, N is generated by the
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3-element subset S r {0}. Hence k 6 3. Suppose next that k = 3. Then since k is
odd, it follows from Proposition 3.3 that G+ = NGα is quasiprimitive on ∆ = N . In
particular since N is regular on ∆, no proper non-trivial subgroup of N is normal in
G+. Since N acts trivially on itself by conjugation, this implies that conjugation by
Gα fixes no proper non-trivial subgroup of N . However, Gα is a 2-group, and N has
exactly p2 + p + 1 subgroups of order p, which is odd. Thus some subgroup of order
p must be left fixed under conjugation by Gα and hence must be normal in G+, a
contradiction. Therefore k 6 2.

If p = 2 then the number of vertices is |X| = 2pk = 2k+1 and since |X| > 4 we
must have k = 2. However |G+| = |∆|.|Gα| = 22.|Gα| > 8, and G+ is a 2-group, while
by Proposition 3.2, |G+| = |H| for some transitive subgroup H 6 Sym(4). Hence
G+ ∼= D8, but then G+has a unique minimal normal subgroup of order 2 with four
orbits in X, which is a contradiction. �

The next lemma concerns the case when N = soc(G) is nonabelian. The proof
develops ideas used to prove a similar result for quasiprimitive basic pairs in [3,
Lemma 6.2].

Lemma 4.2. Let (Γ, G) ∈ OG(4) be basic of biquasiprimitive type and suppose that
N = soc(G) is nonabelian. Then either

(a) N is a minimal normal subgroup of G+ and N = T k, for some nonabelian
simple group T and k ∈ {1, 2, 4}; or

(b) N = K×Kg where g ∈ G\G+, and K = T ` is a minimal normal subgroup of
G+ with T a nonabelian simple group and ` ∈ {1, 2, 4}. In particular, N ∼= T k

with k = 2`.

Proof. Let (Γ, G) ∈ OG(4) and N = soc(G) be as in the statement of the theorem
and fix a G-invariant orientation of the edges of Γ. The possible cases (a) and (b) here
correspond directly to the two cases of Proposition 3.3. The group K in case (b) is the
subgroup K := {(r, rϕ) : r ∈ R} of Proposition 3.3, and so Kg = {(rϕ, ry) : r ∈ R},
where R is an intransitive minimal normal subgroup of H.

Since N = soc(G) is nonabelian, it follows that N is a direct product of isomorphic
nonabelian simple groups T . In particular, N = T k for k > 1, and in case (b), k = 2`
where K = T ` and ` > 1. We will now show that k divides 4 in case (a) and `
divides 4 in case (b). As N = soc(G), we will identify N with its group of inner
automorphisms Inn(N), and regard G as a subgroup of Aut(N) ∼= Aut(T ) o Sym(k).
The representations of elements will therefore be different from Proposition 3.3.

Let s be the largest integer such that G acts transitively on the oriented s-arcs
of Γ, so s > 1. By Lemma 2.1, this implies that G is regular on the oriented s-
arcs of Γ. Consider now an oriented s-arc (v0, v1, . . . , vs) of Γ, and suppose that the
pointwise stabiliser Gv0,...,vs−1 of order 2 is generated by the element h1, that is,
Gv0,...,vs−1 = 〈h1〉 ∼= C2.

Now let g ∈ G\G+ be an automorphism of Γ taking the oriented s-arc
(v0, v1, . . . , vs) to the oriented s-arc (v1, v2, . . . , vs, vs+1) where vs+1 is some out-
neighbour of vs. For each i = 2, . . . , s, define hi := hg

−1

i−1 . It is clear that for each i 6 s
we have

Gv0,...,vs−i
= 〈h1, . . . , hi〉.

We may write the automorphisms h1, g ∈ G as elements of Aut(N) ∼= Aut(T ) o
Sym(k), so that h1 = fσ and g = f ′τ where f, f ′ ∈ Aut(T )k and σ, τ ∈ Sym(k). In
fact in case (b), σ, τ ∈ Sym(`) oSym(2) (since in this case the `-subsets of simple direct
factors of the two minimal normal subgroups of G+ form a G-invariant partition of
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the set of k simple direct factors of N) with σ ∈ Sym(`) × Sym(`) (since h1 ∈ G+).
In either case, h2

1 = 1 implies that σ2 = 1.
Now let π denote the projection map π : Aut(N) → Sym(k), so that (h1)π = σ

and (g)π = τ , and let P := (G+)π = (NGv0)π = (Gv0)π. Note that P is a 2-group
since Gv0 is a 2-group, and moreover

P = (Gv0)π = 〈h1, h2, . . . , hs〉π = 〈σ, στ
−1
, . . . , στ

−(s−1)
〉.

We claim that σ is not contained in any proper τ -invariant subgroup of P . Suppose
to the contrary that P̄ is a proper τ -invariant subgroup of P containing σ. Since P̄
is τ -invariant it follows that στ−i ∈ P̄ for all i ∈ Z, implying that P 6 P̄ and hence
that P = P̄ , a contradiction.

Notice that P is a subgroup of index 1 or 2 of (G)π, and the 2-group P is transitive
in case (a) or has two orbits of length ` in case (b), so k divides |P |, or ` divides |P |
respectively. Hence, if |P | 6 4 then the result follows. Thus we may assume that
|P | > 8, and since P is generated by conjugates of σ this means that σ 6= 1, so σ has
order 2. In particular, P 6= 〈σ〉, so there exists a maximal subgroupM of P containing
〈σ〉. Since P is a 2-group it follows that M is normal in P . If P = (G)π then τ ∈ P ,
and so M is τ -invariant, contradicting the fact that σ is not contained in any proper
τ -invariant subgroup of P .

Therefore P is an index 2 subgroup of (G)π, so τ ∈ (G)π\P and τ normalises P .
Since g2 ∈ G+, we have τ2 ∈ P . Now τ does not normalise the maximal subgroup
M of P containing σ, and so M2 := Mτ−1 is a maximal subgroup of P distinct
from M . Let L := Φ(P ), the Frattini subgroup of P (the intersection of all maximal
subgroups of P ). In particular L 6 M ∩M2, so P/L is elementary abelian of order
at least 4. Also L is τ -invariant since τ normalises P , so σ 6∈ L. Setting J := 〈L, σ〉,
it follows that J 6 M and J/L has order 2, and conjugation by τ−1 maps J/L to
(Jτ−1)/L. However, J is normal in P since P/L is elementary abelian. In particular,
since τ2 ∈ P , conjugation by τ2 fixes J and J/L. Therefore repeated applications
of conjugation by τ simply interchange the two (possibly equal) subgroups J/L and
(Jτ−1)/L of P/L and each generator στ−i of P , lies in either J or Jτ−1

. It follows that
P/L is generated by J/L and Jτ−1

/L, and it follows that P/L ∼= C2
2 , thatM = J , and

M2 = Jτ
−1 . ThusM = 〈L, σ〉, and it follows from [9, Satz III.3.2] thatM = 〈σ〉. This

implies that |P | = 2|M | = 4, which is a contradiction. This completes the proof. �

The first assertions of Theorem 1.1 now follow directly from Proposition 3.3 to-
gether with Lemmas 4.1 and 4.2.

5. Constructing Biquasiprimitve Pairs
In this section we complete the proof of Theorem 1.1. We do this by explicitly con-
structing examples of biquasiprimitive pairs corresponding to the different cases of
Theorem 1.1. In each of the three cases (a)–(c) of Theorem 1.1, the parameter k (the
number of simple direct factors of the socle of G) can take several different values. In
case (a) there are two possibilities for the value of k, while in each of the cases (b)
and (c) there are three possibilities.

Thus Theorem 1.1 gives a total of eight different possibilities for the structure of
soc(G) of a biquasiprimitive pair (Γ, G) where the number of simple direct factors is
taken into account. To complete the proof, we therefore provide eight infinite families
of biquasiprimitive basic pairs corresponding to these distinct cases.

In Subsection 5.1 we will describe two methods for constructing biquasiprimitive
basic pairs. In short, Method 5.1 uses the standard bi-Cayley graph construction de-
scribed in Subsection 2.3, while Method 5.7 is a more general coset graph construction
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developed from Proposition 3.2. All of our constructions of biquasiprimitive pairs will
use one of these two methods.

The examples constructed to complete the proof of Theorem 1.1 are given in Con-
structions 5.11–5.30 of this section. Table 2 shows all of these constructions along
with the explicit simple group T used in each case. The “Method Used” column refers
to one of the two methods developed in Subsection 5.1 for producing biquasiprimitive
pairs. The construction numbers are included for easy reference.

Case
described in
Theorem 1.1

Value of k Simple Group T Construction # Method Used

Case (a) k = 1 Zp, p ≡ 1 mod 4 Construction 5.11 Method 5.1
k = 2 Zp, p ≡ 3 mod 4 Construction 5.14 Method 5.1

Case (b) k = 1 Alt(n), n > 5, odd Construction 5.16 Method 5.1
k = 2 Alt(n), n > 5, odd Construction 5.19 Method 5.1
k = 4 PSL(2, p), p > 7 Construction 5.23 Method 5.7

Case (c) k = 2 Alt(n), n > 5, odd Construction 5.26 Method 5.1
k = 4 PSL(2, p), p > 7 Construction 5.28 Method 5.7
k = 8 PSL(2, p), p > 7 Construction 5.30 Method 5.7

Table 2. Constructions of basic biquasiprimitive pairs (Γ, G) with
soc(G) ∼= T k as described in the various cases of Theorem 1.1.

5.1. Two Methods for Constructing Biquasiprimitive Pairs. One way to
construct biquasiprimitive pairs is using the “standard” bi-Cayley construction de-
scribed in Subsection 2.3. Specifically, if (Γ, G) ∈ OG(4) is basic of biquasiprim-
itive type, and the unique minimal normal subgroup N of G contained in G+ is
semiregular (with two orbits) on V Γ, then we can take Γ to be a bi-Cayley graph
Γ := BiCay(N,∅,∅, S) (for some subset S of N of cardinality 4).

In our constructions involving bi-Cayley graphs presented in the form Γ =
BiCay(N,∅,∅, S) we will always use the natural labelling of the vertex set V Γ. That
is, we let V Γ = N0 ∪ N1 consisting of two copies of the group N with each vertex
labelled (n)ε for n ∈ N and ε ∈ {0, 1}.

Suppose now that Γ = BiCay(N,∅,∅, S) where S = S−1. Of course, such a graph is
bipartite withN0 andN1 forming the bipartition. In order to show that Γ is connected,
it suffices to show that the vertex set N0 lies in a single connected component of Γ,
or in other words that there is a path from (1N )0 to (n)0 for any n ∈ N (vertex-
transitivity then ensures that this holds for N1 also). Any such path must have even
length and consist of repeated left multiplication in N by an element of S followed
by an element of S−1 = S. In particular, the graph Γ is connected if 〈S2〉 = N .

Hence we have the following simple method for constructing biquasiprimitive basic
pairs (Γ, G).

Method 5.1. Take a group N = T k where T is a simple group and k > 1, and
construct a pair (Γ, G) with N = soc(G) as follows:

(1) Let Γ = BiCay(N,∅,∅, S), where S ⊂ N such that S = S−1, |S| = 4, and
〈S〉 = 〈S2〉 = N .

(2) Take a group G with N 6 G 6 NAut(Γ)(N) for which Γ is G-oriented. This
gives (Γ, G) ∈ OG(4).
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(3) Show that N is the unique minimal normal subgroup of G to get that (Γ, G)
is basic of biquasiprimitive type.

Note that NAut(Γ)(N) (the normaliser of N in Aut(Γ)) was determined in [27,
Theorem 1.1]. In fact, in our constructions we will only use the following fact which
follows from [27, Lemmas 3.2 and 3.3].

Proposition 5.2. Let Γ = BiCay(N,∅,∅, S) as defined in Subsection 2.3 with S =
S−1. Suppose α ∈ Aut(N) with Sα = S. Then the permutations δα and σα of V Γ
where δα : xε 7→ (xα)1−ε, and σα : xε 7→ (xα)ε for x ∈ N and ε ∈ {0, 1} are both
automorphisms of Γ. Moreover both δα and σα normalise the semi-regular subgroup
N 6 Aut(Γ).

More generally, we may construct biquasiprimitive pairs (Γ, G) by using the coset
graph construction. For a group G, a proper subgroup S, and an element g ∈ G, the
coset graph Γ = Cos(G,S, g) is the undirected graph with vertex set {Sx : x ∈ G}
and edges {Sx, Sy} if and only if xy−1 or yx−1 ∈ SgS. The group G acting by
right multiplication on V Γ induces a vertex-transitive and edge-transitive group of
automorphisms of Γ, and this action is faithful if and only if S is core-free in G.
Furthermore, the graph Γ is connected if and only if 〈S, g〉 = G, and is G-oriented
and 4-valent if and only if g−1 /∈ SgS and |S : S ∩ Sg| = 2 (see discussion at the
beginning of [3, Section 5]). In summary, if Γ = Cos(G,S, g), then (Γ, G) ∈ OG(4) if
and only if

(1) S is core-free in G, g−1 /∈ SgS, |S : S∩Sg| = 2, and 〈S, g〉 = G.
Moreover, for each pair (Γ, G) ∈ OG(4) there exist S 6 G and g ∈ G such that
Γ = Cos(G,S, g) and (1) holds. Specifically, for a vertex α ∈ V Γ, take S := Gα and
take g to be an element of G mapping α to one of its neighbours with αg2 6= α.

We can use Proposition 3.2 on the structure of biquasiprimitive basic pairs (Γ, G) ∈
OG(4) together with the coset graph construction given above to find examples of
coset graphs of biquasiprimitive type. We begin by providing a general construction
which uses a permutation group H (with some prescribed properties) to produce a
pair (Γ, G) where Γ is a coset graph for G, and G has an index 2 subgroup isomorphic
to H. In the remainder of this section we will show that under certain conditions the
pairs (Γ, G) constructed in this way are basic of biquasiprimitive type.

Construction 5.3. Take a permutation group H, a proper subgroup V < H, a non-
identity element y ∈ H, and an automorphism ϕ ∈ Aut(H) such that ϕ2 = ιy, y

ϕ = y,
and ϕ 6= ιu for any u ∈ H such that u2 = y.

Now consider the group H oS2 and define two of its subgroups G+ := Diagϕ(H×H),
and S := Diagϕ(V × V ). Also define an element g := (y, 1)(12) ∈ H oS2. Finally con-
struct the graph-group pair (Γ, G) where G := 〈G+, g〉 6 H oS2 and Γ := Cos(G,S, g).

It is clear that the construction of the group G in this way corresponds to the
formulation of the biquasiprimitive permutation group G given in Proposition 3.2.
Notice in particular that using this construction, the pair (Γ, G) is completely deter-
mined by the choices of appropriate H,V, y and ϕ. Hence we will say that a tuple
(H,V, y, ϕ) is appropriate if H,V, y and ϕ satisfy the conditions of Construction 5.3.
In many of the constructions that follow, we will simply apply Construction 5.3 on an
appropriate (H,V, y, ϕ) to create pairs (Γ, G). The following lemma gives a sufficient
condition for (Γ, G) constructed in this way to be a member of OG(4).

Lemma 5.4. Let (Γ, G) be a graph-group pair constructed using Construction 5.3 on
an appropriate (H,V, y, ϕ). Then (Γ, G) ∈ OG(4) if

(2) V is core-free in H, y /∈ V V ϕ, |V : V ∩V ϕ| = 2, and 〈V, y〉 = H.
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Proof. Let G+ and S be the subgroups of G defined in the construction, and let
Γ = Cos(G,S, g). Suppose that (2) holds. We will show that (Γ, G) ∈ OG(4) by
showing that (1) holds also.

First, since H ∼= G+, S ∼= V , and V is core-free in H, it follows S is core-free
in G+ and hence is core-free in G. Next, we will show that y /∈ V V ϕ implies that
g−1 /∈ SgS. Notice that g−1 = (1, y−1)(12), while for any element z ∈ SgS, z =
(s, sϕ)(y, 1)(12)(t, tϕ) = (sytϕ, sϕt)(12) for some s, t ∈ V . Thus if g−1 = z for some
z ∈ SgS, then 1 = sytϕ and hence y ∈ V V ϕ.

For the last two conditions notice that if we take x ∈ G+ then xg = (h, hϕ)g =
(hϕ, hy) for some h ∈ H. In particular, for s ∈ S we have sg = (tϕ, ty) where t ∈ V .
So sg ∈ S if and only if tϕ ∈ V . Since V ∼= S we get that |S : S ∩ Sg| = |V : V ∩ V ϕ|.

Finally, it is easy to check that g2 = (y, y) and since yϕ = y it follows that g2 ∈ G+.
Hence if 〈V, y〉 = H, then 〈S, g2〉 = Diagϕ(〈V, y〉× 〈V, y〉) = Diagϕ(H×H) = G+ and
so 〈S, g〉 = G. �

Hence we have an easy condition for ensuring that pairs (Γ, G) formed using Con-
struction 5.3 are contained in OG(4). Our next goal is to provide a simple condition
under which such pairs are biquasiprimitive. For u ∈ H we denote by ιu the inner
automorphism of H induced by conjugation by u.

Lemma 5.5. Let (Γ, G) be a graph-group pair constructed using Construction 5.3
on an appropriate (H,V, y, ϕ). Let G+ and S be as defined in that construction.
Then every minimal normal subgroup of G is contained in G+. In particular, if
soc(G+) ∼= soc(H) is a minimal normal subgroup of G then it is the unique minimal
normal subgroup of G.

Proof. Notice that |G : G+| = 2 since G = 〈G+, g〉, g normalises G+, and g2 =
(y, y) ∈ G+. Suppose there exists a minimal normal subgroup N of G that is not
contained in G+. Then, by the minimality of N it follows that G+∩N = 1 and hence
G = G+×N . It follows that N = 〈x〉 ∼= C2, for some x ∈ GrG+. The element x has
the form

x = (u−1, (u−1)ϕ)g = (u−1y, (u−1)ϕ)(12), for some u ∈ H.

Now x centralises G+, and so, for all h ∈ H we have x(h, hϕ) = (h, hϕ)x, or equiva-
lently (

u−1yhϕ, (u−1)ϕh
)

(12) =
(
hu−1y, hϕ(u−1)ϕ

)
(12).

This holds if and only if, for all h ∈ H we have (u−1)ϕh = hϕ(u−1)ϕ (on equating
the second entries, and noting that equality in the first entries follows from this on
applying ϕ). This is equivalent to requiring h = (uhu−1)ϕ for all h ∈ H, that is to
say, ϕ is equal to ιu. In particular (u−1)ϕ = u−1 so x = (u−1y, u−1)(12), and since
x2 = (u−1yu−1, u−2y) = 1, we have y = u2. But by our choice of element y and
automorphism ϕ in Construction 1, no such u ∈ H exists. Therefore every minimal
normal subgroup of G is contained in G+ and hence if soc(G+) is a minimal normal
subgroup of G, then it is the unique minimal normal subgroup of G. �

The above result gives the following corollary.

Corollary 5.6. Suppose that (Γ, G) ∈ OG(4) where (Γ, G) arises from applying Con-
struction 5.3 to an appropriate (H,V, y, ϕ). Let G+, and S be as defined in that
construction. Suppose further that H = MV where M = soc(H) ∼= T k for some non-
abelian simple group T and k > 1. If soc(G+) ∼= soc(H) is a minimal normal subgroup
of G, then (Γ, G) is biquasiprimitive.
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Proof. The vertex set of Γ is the set of right cosets of S in G. Hence there are two G+-
orbits, namely ∆ = {Sx : x ∈ G+} and ∆′ = {Sgx : x ∈ G+}. If N = soc(G+) ∼= M is
a minimal normal subgroup of G then N is the unique such subgroup by Lemma 5.5.
Moreover, the condition H = MV implies that G+ ∼= NS so N is transitive on the
two G+-orbits ∆ and ∆′, and hence G is biquasiprimitive on V Γ. �

The above results now provide the following method for constructing biquasiprim-
itive pairs in OG(4).

Method 5.7. Take a group M = T k for some nonabelian simple group T and k > 1,
and define a group H := MV where M = soc(H) and V is a proper subgroup V 6
H. Also take a non-identity y ∈ H and an automorphism ϕ ∈ Aut(H), such that
(H,V, y, ϕ) is appropriate.

(1) Apply Construction 5.3 on (H,V, y, ϕ) to create a pair (Γ, G).
(2) Show that H,V, y and ϕ satisfy condition (2) of Lemma 5.4 to get that (Γ, G) ∈
OG(4).

(3) Show that soc(G+) ∼= M is a minimal normal subgroup of G to get that (Γ, G)
is biquasiprimitive (by Corollary 5.6).

5.2. A Third Method: the separated box product. While all of our explicit
constructions in Subsection 5.3 use one of the two methods in Subsection 5.1, there is a
third way to construct basic biquasiprimitive pairs, namely by taking the “separated
box product” of quasiprimitive basic pairs (see [19]). However, as we show below
in Proposition 5.9, this third method fails to produce infinitely many of the basic
biquasiprimitive pairs.

Suppose that (Σ, H) ∈ OG(4) is basic of quasiprimitive type and let ∆ be the
2-valent H-arc-transitive orbital digraph obtained by taking one of the two paired
orbits of H on the arc-set of Σ. As in [19, Section 3], the separated box product Γ∆ :=
SBP(∆,∆) is defined to be the digraph with vertex set V Γ∆ = V∆× V∆× Z2, and
arcs being all ordered pairs

((α, γ, 0), (β, γ, 1)) with (α, β) an arc of ∆ and γ ∈ V Γ,
together with all ordered pairs

((β, γ, 1), (β, δ, 0)) with (γ, δ) an arc of ∆ and β ∈ V Γ.
Then Γ∆ is a (possibly disconnected) bipartite 2-valent digraph, and by [19, Corol-
lary 3.4], the group G ∼= H oS2 acts naturally on Γ∆ as a subgroup of automorphisms,
G is transitive on the arcs of Γ∆, and its index 2 subgroup H ×H fixes setwise the
two parts of the bipartition. A discussion of connectivity of Γ∆ is given in [19, Sec-
tion 3.3]. If Γ∆ is connected and Γ is its underlying graph, then our discussion shows
that (Γ, G) ∈ OG(4). Moreover, since (Σ, H) ∈ OG(4) is basic of quasiprimitive type,
it follows from [3, Theorem 1.3] that H has a unique minimal normal subgroup, say
N , and N is transitive on V Σ = V∆. Hence G also has a unique minimal normal
subgroup N ×N , and N ×N is transitive on each part of the bipartition of V Γ. This
implies that G is biquasiprimitive on V Γ, and so (Γ, G) is basic of biquasiprimitive
type. Thus we have the following method for constructing a basic pair (Γ, G) ∈ OG(4)
of biquasiprimitive type.

Method 5.8. Let (Σ, H) ∈ OG(4) be basic of quasiprimitive type, and let ∆ be the
2-valent H-arc-transitive orbital digraph obtained by taking as arc-set one of the two
paired orbits of H on the arc-set of Σ.

(1) Take Γ∆ := SBP(∆,∆), see [19, Section 3].
(2) Take G ∼= H o S2 as defined in [19, Corollary 3.4].
(3) Take Γ to be the underlying graph of Γ∆.
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(4) Show that Γ is connected, and if this is the case then return (Γ, G).

Our discussion shows that each pair (Γ, G) produced by Method 5.8 lies in OG(4)
and is basic of biquasiprimitive type. It turns out, however, that many families of basic
pairs of biquasiprimitive type cannot be constructed using Method 5.8. To explain
why, we note that, by [3, Theorem 1.3], if (Σ, H) ∈ OG(4) is basic of quasiprimitive
type, then H has a unique minimal normal subgroup N = T ` such that T is a
nonabelian simple group and ` 6 2. Hence for any basic biquasiprimitive pair (Γ, G)
constructed by Method 5.8, the group G will have a unique minimal normal subgroup
soc(G) = T 2` with ` 6 2. To start with, we will not obtain the examples (Γ, G) we
give in Constructions 5.11 and 5.14 where the group G has an abelian socle. More
than this is true. Our next result shows we will not obtain the examples arising from
Constructions 5.16 and 5.30 where the socle of G is T k with k = 1 and k = 8,
respectively.

Proposition 5.9. Suppose that (Γ,K) ∈ OG(4) is basic of biquasiprimitive type and
that soc(K) = T k where T is a nonabelian simple group and k ∈ {1, 8}. Then the
oriented graph Γ cannot be constructed using Method 5.8.

Proof. Let (Γ,K) be as in the statement of the proposition, let S := soc(K), and
note that S is the unique minimal normal subgroup of K, by Theorem 1.1. Now
suppose for a contradiction that Method 5.8, applied to a basic quasiprimitive pair
(Σ, H) ∈ OG(4) produces a basic biquasiprimitive pair (Γ, G) ∈ OG(4), where the
groups G = H o S2 and K preserve the same orientation of Γ. By the discussion
preceding the proposition U := soc(G) = L2`, where L is a nonabelian simple group
and 2` ∈ {2, 4}. In particular G 6= K. We will show that this leads to a contradiction.

As usual, we denote by K+ the index 2 subgroup of K which preserves the two
parts of the bipartition of Γ. Taking a vertex α ∈ V Γ we then have, K+ = SKα and
Kα is a 2-group, say |Kα| = 2a′ > 2. Hence |K| = 2|K+| = 2|S|.|Kα|/|Sα| = 2a|T |k
for some a such that 1 6 a 6 a′ + 1. Also |V Γ| = |K|/2a′ = 2a−a′ |T |k.

Now let X = 〈G,K〉, and note that X 6 Aut(Γ) and X preserves the same
orientation of Γ preserved by K and G. Since K 6= G, the group K is a proper
subgroup of X, and since Xα is a 2-group, it follows that |X| = |V Γ||Xα| = 2b|T |k
for some b > a+ 1.

Let Y be the last term in the derived series for X. Then X/Y is solvable, and
hence its subgroup SY/Y ∼= S/(S ∩ Y ) is soluble, which implies that S is contained
in Y . Now let N be a normal subgroup of X properly contained in Y , and suppose
that N is maximal with respect to these properties. Then Y/N is a minimal normal
subgroup of X/N . If Y/N is abelian then [Y, Y ] 6 N , while from the definition of Y
we have [Y, Y ] = Y , a contradiction. Hence Y/N is nonabelian and thus Y/N ∼= Rc

for some nonabelian simple group R and c > 1.
Since the index |Y : S| is a 2-power, it follows that S is not contained in N (as

otherwise Y/N would be a 2-group). Thus S∩N is a proper subgroup of S. Moreover,
since both S and N are K-invariant, it follows that S ∩ N is normalised by K.
However, since S is minimal normal in K we conclude that S ∩ N = 1. Therefore
S ∼= SN/N 6 Y/N ∼= Rc and so S = T k is isomorphic to a subgroup of Rc. Note that
since S ∩ N = 1 it also follows that N ∩K = 1, as S is the unique minimal normal
subgroup of K.

Now write Rc = R1 × · · · ×Rc, and for each i let πi : Rc → Ri denote the natural
projection map. Notice that if πi(S) 6= 1 for some i, then πi(S) ∼= T j for some j > 1,
and the index |Ri : πi(S)| is a power of 2. Thus it follows from [8, Theorem 1] that
j = 1 and either R = T ; or R = An, T = An−1 and |R : T | = n = 2d for some d. In
either case, since |Rc|/|T |k is a power of 2, it follows that k = c.
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We can apply exactly these arguments with G,U,L, 2` in place of K,S, T, k, and
this yields in particular that c = 2`. Thus we conclude that k = 2` which is a
contradiction as either k = 1 < 2` or k = 8 > 2`. �

Remark 5.10. The proof of Proposition 5.9 raises several questions about whether a
nonabelian group K, where (Γ,K) ∈ OG(4) is basic of biquasiprimitive type, could
be embedded into a larger group X 6 Aut(Γ) which preserves the same orientation
of Γ as K does. In particular, taking T k, N , and Rc to be as defined in the proof of
Proposition 5.9, the arguments there imply that k = c, N is a 2-group, and either
R = T or (R, T, |R : T |) = (An, An−1, 2d). Presumably the latter case does not arise
(we have no examples)? Also are there examples with N nontrivial, where R = T?

In summary, none of the basic biquasiprimitive pairs (Γ, G) ∈ OG(4) with soc(G)
abelian, or with soc(G) = T k nonabelian and k ∈ {1, 8} can be constructed using
Method 5.8. Further investigation is required to determine how useful Method 5.8 is
in constructing biquasiprimitive pairs of the remaining types. Note that Method 5.8
returns a group G ∼= H o S2. If such a group appears in a basic pair (Γ, G) of bi-
quasiprimitive type then Aut(H) must also contain a rather special automorphism ϕ
as described in Proposition 3.2. It is thus not clear whether the basic biquasiprimitive
pairs (Γ, G) obtained by Method 5.8 cover most, or all, or just some, of the examples
with soc(G) = T 2 or T 4 (and T nonabelian simple).

5.3. Constructing Examples. We now provide constructions of basic biquasiprim-
itve pairs (Γ, G) ∈ OG(4) with the various possible structures for soc(G) as described
in cases (a)–(c) of Theorem 1.1. We will use both the bi-Cayley graph construction
described in Subsection 2.3 (Method 5.1) and the coset graph construction developed
in the last part of the previous section (Method 5.7).

We begin with examples of biquasiprimitive basic pairs (Γ, G) with soc(G) abelian.
Note that all 4-valent bi-Cayley graphs over an abelian group are arc-transitive [5,
Proposition 1.3].

Construction 5.11. Take a prime p ≡ 1 (mod 4) and let q ∈ Zp such that q2 ≡ −1
mod p. Let Γ = BiCay(N,∅,∅, S) with vertex set N0 ∪ N1, where N = Zp and
S = {±1,±q}. Define a permutation δ of the vertices of Γ by xδε = (x · q)1−ε for
ε ∈ {0, 1}, and set G := N o 〈δ〉.

Remark 5.12. Note that for a pair (Γ, G) obtained using Construction 5.11, the
graph Γ is a circulant and Γ ∼= Cay(Z2p, {±(p + 2),±(p + 2q)}). These pairs are
somewhat exceptional in the family OG(4) in that the graph Γ contains precisely two
G-alternating cycles, both spanning V Γ (see [11, Proposition 2.4]).

Lemma 5.13. For Γ, G as in Construction 5.11, (Γ, G) ∈ OG(4) and is basic of bi-
quasiprimitive type with soc(G) as described in Theorem 1.1 case (a) with k = 1.

Proof. Since |S| = 4 and 〈S〉 = 〈S2〉 = N it follows that Γ is 4-valent and connected.
Also by Proposition 5.2, δ ∈ Aut(Γ) since it is induced by an automorphism of N
fixing S setwise. Notice that the automorphism δ has order 4 and that the stabiliser
in G of the vertex (0)0 is 〈δ2〉 ∼= C2. This group has two orbits of length two on the
neighbourhood of (0)0, namely {(1)1, (−1)1} and {(q)1, (−q)1}.

Now, any automorphism g ∈ G is of the form g = nδi with n ∈ N and i ∈ {1..4}.
In particular, any automorphism taking the vertex (0)0 to its neighbour (1)1 must
be of the form g = nδi with n ∈ N and i ∈ {1, 3}. This gives just two possibilities
for such an automorphism namely g1 = q3δ and g2 = qδ3 where q ∈ N . These two
automorphisms map (1)1 to (1 + q)0 and (1− q)0 respectively. Thus no element of G
can reverse edges and Γ is G-oriented.
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Since the only proper non-trivial normal subgroups of G are N and N〈δ2〉 it follows
that (Γ, G) is basic of biquasiprimitve type. �

Construction 5.14. Let Γ = BiCay(N,∅,∅, S) where N = Z2
p for a prime p ≡ 3

mod 4, and S = {±(1, 0),±(0, 1)}. Let δ be a permutation of V Γ taking a vertex
(x, y)ε to (y,−x)1−ε where x, y ∈ Zp and ε ∈ {0, 1}, and let G := N o 〈δ〉.

Lemma 5.15. For Γ, G as in Construction 5.14, (Γ, G) ∈ OG(4) and is basic of bi-
quasiprimitive type with soc(G) as described in Theorem 1.1 case (a) with k = 2.

Proof. First note that |S| = 4 and 〈S〉 = 〈S2〉 = N so Γ is 4-valent and connected.
Also by Proposition 5.2, δ ∈ Aut(Γ). Furthermore, the automorphism δ has order 4,
and for the vertex α = (0, 0)0, we have Gα = 〈δ2〉 ∼= C2 with two orbits of length
two on the neighbourhood of α. Moreover any automorphism in G taking the vertex
(0, 0)0 to its neighbour (1, 0)1 must be either g1 = (0, 1)δ or g2 = (0,−1)δ3 where
(0, 1) and (0,−1) are elements of N . However, neither of these automorphisms maps
(1, 0)1 to (0, 0)0 and so no g ∈ G can reverse edges of Γ and (Γ, G) ∈ OG(4).

To show that (Γ, G) is basic of biquasiprimitive type, notice that the setwise sta-
biliser G+ in G of the two parts N0 and N1 of V Γ is N o 〈δ2〉, with δ2 acting as
inversion on N . Hence the nontrivial normal subgroups of G+ are N , and the sub-
groups of N isomorphic to Zp (all intransitive on N0 since N is regular). Therefore
we need to check that none of the subgroups of N of order p is normal in G.

To this end, notice that the subgroups corresponding to the direct factors of N
are swapped by conjugation by δ in G, and hence aren’t normal. All other nontrivial
proper subgroups of N are of the form 〈(1, x)〉 with x ∈ Z∗p. Hence if 〈(1, x)〉δ =
〈(x,−1)〉 = 〈(1, x)〉, then c(1, x) = (x,−1) for some c ∈ Z∗p. It follows that c = x and
so x2 ≡ −1 mod p, but this is impossible since p ≡ 3 mod 4. Thus the only proper
non-trivial normal subgroups of G are N and G+, both of which are transitive on the
two biparts of V Γ. �

Next we give constructions of biquasiprimitive basic pairs (Γ, G) ∈ OG(4) with
soc(G) nonabelian. Note that any nonabelian simple group T can be generated by
an involution and an element of prime order [10]. In particular all nonabelian simple
groups can be generated by two elements. In each of our constructions of biquasiprim-
itive pairs with nonabelian socle we will use a simple group T and a generating pair
{a, b} with prescribed properties.

We begin with constructions of biquasiprimitive basic pairs (Γ, G) ∈ OG(4) with
soc(G) nonabelian and as described in Theorem 1.1 case (b).

Construction 5.16. Let T be a nonabelian simple group, and let {a, b} be a gener-
ating set for T where a is an involution and the elements b and ab have odd order.
Let N = T , S0 = {ab, ba}, S = S0 ∪ S−1

0 , and let Γ = BiCay(N,∅,∅, S). Define two
permutations δ and σ of V Γ where xδε = (xa)1−ε, and xσε = (xa)ε for ε ∈ {0, 1}, and
set G := N o 〈σ, δ〉.

Remark 5.17. For an explicit example of a simple group T and generating set {a, b}
as in Construction 5.16 take T to be the alternating group Alt(n) for odd n > 5, and
let a = (12)(34) and b = (12 . . . n).

Lemma 5.18. For Γ, G as in Construction 5.19, (Γ, G) ∈ OG(4) and is basic of bi-
quasiprimitive type with soc(G) as described in Theorem 1.1 case (b) with k = 1.

Proof. Since N is nonabelian and the orders of b and ab are odd, it follows that
S0 ∩S−1

0 = ∅ (as ab 6= (ab)−1) and hence that |S| = 4 and Γ is 4-valent. Again, using
the fact that b has odd order it is easy to check that a, b ∈ 〈S〉 and hence that 〈S〉 = N .
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Now consider S2. This set contains the elements abab, b2 and baba. In particular, 〈S2〉
contains b and hence also contains aba. Since aba and abab are contained in 〈S2〉 and
the order of ab is odd, it follows that a ∈ 〈S2〉 and hence 〈S2〉 = N . Therefore Γ is
connected.

Next, notice that both σ and δ are induced by conjugation by a in N and this auto-
morphism fixes S setwise. Hence σ and δ are automorphisms of Γ by Proposition 5.2.
The stabiliser in G of the vertex (1N )0 is 〈σ〉 with two orbits on the neighbours of
(1N )0, namely {(ab)1, (ba)1} and {(b−1a)1, (ab−1)1}. Furthermore a straightforward
check shows that the only automorphisms in G mapping 10 to (ab)1 are g1 = (ab)σδ
and g2 = (ba)δ (where (ab) and (ba) are automorphisms contained in N) and nei-
ther of these map (ab)1 to 10. This implies that Γ is G-oriented and hence that
(Γ, G) ∈ OG(4).

Now notice that neither 〈σ〉 nor 〈δ〉 is normal in G. On the other hand, N is a
normal (and hence minimal normal) subgroup of G, and is the unique such subgroup.
Since N clearly has two orbits on V Γ, it follows that G is biquasiprimitive on the
vertices of Γ. �

Construction 5.19. Let T be a nonabelian simple group, and let {a, b} be a gener-
ating set for T such that no automorphism of T swaps a and b, and the elements a
and b have odd order. Let N = T ×T , S0 = {(a, b), (b, a)}, S = S0 ∪S−1

0 , and let Γ =
BiCay(N,∅,∅, S). Define two permutations δ and σ of V Γ where (x, y)δε = (y, x)1−ε,
and (x, y)σε = (y, x)ε for ε ∈ {0, 1}. Set G := N o 〈σ, δ〉.

Remark 5.20. For an explicit example of a simple group T and generating set {a, b}
as in Construction 5.19 take T to be the alternating group Alt(n) for odd n, and let
a = (123) and b = (12 . . . n).

Lemma 5.21. For Γ, G as in Construction 5.19, (Γ, G) ∈ OG(4) and is basic of bi-
quasiprimitive type with soc(G) as described in Theorem 1.1 case (b) with k = 2.

Proof. First notice that S0 ∩S−1
0 = ∅ since if (a, b)−1 = (a, b), then both a and b are

involutions, while if (a, b)−1 = (b, a) then 〈a, b〉 = 〈a〉 is cyclic, and neither of these is
possible. In particular, |S| = 4 and Γ is 4-valent.

To see that Γ is connected consider the following. The projections of 〈S〉 onto the
simple direct factors of N = T × T are both equal to the group 〈a, b〉 = T . Hence
either 〈S〉 = N or 〈S〉 = {(t, tϕ), t ∈ T} for some ϕ ∈ Aut(T ). In the latter case,
(a, b) = (a, aϕ) so b = aϕ, but also (b, a) = (b, bϕ) so a = bϕ, but by our assumption
no such automorphism ϕ exists. Hence N = 〈S〉. Finally, notice that since both a
and b have odd order, we have (a, b) ∈ 〈(a2, b2)〉 (and similarly (b, a) ∈ 〈(b2, a2)〉). In
particular both (a, b) and (b, a) are contained in 〈S2〉, so N = 〈S〉 = 〈S2〉, and Γ is
connected.

Once again Proposition 5.2 implies that σ, δ ∈ Aut(Γ). Now it is clear that G acts
transitively on the vertices of Γ and the stabiliser in G of the vertex (1N )0 is exactly
〈σ〉 ∼= C2 with two orbits on the neighbourhood of (1N )0. Moreover, it is easy to
check that no automorphism can reverse edges as follows. The only automorphisms
taking (1N )0 to (a, b)1 are g1 = n1σδ and g2 = n2δ where n1 = (a, b) and n2 = (b, a)
are elements of N . Since neither of these maps (a, b)1 to (1N )0, it follows that Γ is
G-oriented and (Γ, G) ∈ OG(4).

Finally, since conjugation by σ in G interchanges the two simple direct factors of
N , it follows that N is a minimal normal subgroup of G and so is the unique minimal
normal subgroup. Of course, N has two orbits on V Γ, thus G is biquasiprimitive on
the vertices of Γ. �
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Next we give a construction of biquasiprimitive basic pairs as described in Theo-
rem 1.1 case (b) with k = 4. This time we will use Method 5.7. We will use the same
simple group T and generating pair {a, b} in Constructions 5.23, 5.28 and 5.30. Hence
we begin with the following important remark.

Remark 5.22. For a prime p > 7 let T denote the simple group PSL(2, p). Then T is
generated by two elements a and b where

a :=
(

0 1
−1 0

)
and b :=

(
0 1
−1 1

)
.

Moreover a and b have orders 2 and 3 respectively, while ab and ab2 have order p, [6,
Section 7.5].

Construction 5.23. For a prime p > 7 let T denote the simple group PSL(2, p)
generated by two elements a and b such that a and b have orders 2 and 3 respectively
while ab and ab2 have order p. Take the group T o S4 with S4 acting by permuting the
four direct factors of T 4 and define the following elements of this group

ϕ̃ := (b, ba, ab, aba)(13),
y := ϕ̃2 = (bab, baba, ab2, ab2a),
h1 := (a, a, a, a)(12)(34),

h2 := hϕ̃1 = (b−1aba, ab−1ab, b−1aba, ab−1ab)(14)(23).

Now let V := 〈h1, h2〉 and define the subgroup H := T 4 o V 6 T o S4. Notice that
conjugation by ϕ̃ in T o S4 induces an automorphism ϕ ∈ Aut(H), in particular ϕ2 is
the inner automorphism of H corresponding to conjugation by y ∈ H.

Finally apply Construction 5.3 using H,V, y and ϕ to get the pair (Γ, G).

Remark 5.24. Constructions 5.23, 5.28 and 5.30 all produce basic pairs of bi-
quasiprimitive type via Method 5.7. In order to apply this method we must first show
that the quadruple (H,V, y, ϕ) given in these constructions is appropriate. In each
of these constructions, the fact that the automorphism ϕ2 = ιy and the fact that
yϕ = y follow immediately from the choices of ϕ ∈ Aut(H) and y ∈ H. Thus showing
that (H,V, y, ϕ) is appropriate amounts to showing that ϕ 6= ιu for any u ∈ H with
u2 = y.

In each of these three constructions the group H is of the form T k o V 6 T k o Sk,
where k > 1 and V is an elementary abelian 2-group. We may thus define two types
of projection maps as follows. Let ρ be the projection map ρ : T o Sk → Sk and, for
each i ∈ [1, k], let πi be the projection map πi : T1 × · · ·Tk → Ti.

Now if ϕ = ιu for some u ∈ H with y = u2, then we have u = ts where t ∈ T k,
s ∈ ρ(H) and s2 = 1. Furthermore, since u2 = y it follows that u = ts and y commute,
which implies that yts = y and hence that yt = ys. We then have πs(i)(y) = πi(ys) =
πi(yt) = πi(y)πi(t) and it follows that, if s interchanges the ith and jth simple direct
factors of T k, then πj(y) and πi(y) lie in the same conjugacy class of T , a fact which
we will use in proving that each of these constructions gives appropriate (H,V, y, ϕ).

Lemma 5.25. Let Γ, G be as in Construction 5.23. Then (Γ, G) ∈ OG(4) and is basic
of biquasiprimitive type, with soc(G) as described in Theorem 1.1 case (b) with k = 4.

Proof. We begin by showing that the quadruple (H,V, y, ϕ) as given in Construc-
tion 5.23 is appropriate. By Remark 5.24 we only need to show that ϕ 6= ιu for
any u ∈ H with u2 = y. Suppose then, for a contradiction, that ϕ = ιu for some
u ∈ H such that u2 = y. By Remark 5.24 we know that u = ts for some t ∈ T 4

and s ∈ ρ(H) = ρ(V ) where, if s interchanges i and j, then πi(y) and πj(y) lie in
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the same conjugacy class of T . Consider the order |π`(y)| for each `. It is easy to
check that (|bab|, |baba|, |ab2|, |ab2a|) = (p, p, p, 3), and hence that ab2a cannot lie in
the same conjugacy class as any of the other entries of y. On the other hand, since
each nontrivial element c ∈ ρ(H) interchanges two pairs of elements of {1, 2, 3, 4}, it
follows that s = 1. Thus ϕ = ιu for some u ∈ T 4. However, it is clear that if we take
z := (1, 1, a, 1) ∈ H, then zϕ 6= zu for any u ∈ T 4 since π1(zu) = 1 for each u ∈ T 4,
while π1(zϕ) = aab 6= 1. Thus ϕ 6= ιu for any u ∈ T 4, a contradiction. Hence by
Remark 5.24, the quadruple (H,V, y, ϕ) as given in Construction 5.23 is appropriate.

Thus Construction 5.23 is a special case of Construction 5.3. Hence, in order to
show that (Γ, G) ∈ OG(4) it suffices to show that condition (2) of Lemma 5.4 is
satisfied. First notice that V ∼= Z2

2 since h1 and h2 are commuting involutions. Also
V is core-free in H since for instance V ∩ V y = 1. It is also easy to check that
V ∩ V ϕ = 〈h2〉, and so |V : V ∩ V ϕ| = 2.

Now suppose that y ∈ V V ϕ so that y = vu for some v ∈ V, and u ∈ V ϕ. This
implies that vu ∈ T 4, and hence, if we again take ρ to be the projection map T oS4 →
S4, then ρ(v) = ρ(u). Hence the only possibilities for (v, u) such that y = vu that
need to be considered are (h1, h

ϕ
2 ), (h2, h2), and (h1h2, h2h

ϕ
2 ). The second possibility

gives h2
2 = 1 6= y, while the first and third possibilities both give y = h1h

ϕ
2 . It is easy

to check however that h1h
ϕ
2 = h1h

y
1 has bab2 in its third coordinate while y has ab2

in its third coordinate. Hence y /∈ V V ϕ.
It remains to show that 〈V, y〉 = H, and to prove this it is sufficient to show that

T 4 6 〈V, y〉. To this end, let y1 := yh1 and y2 := yh2 , so that we have

y = (bab, baba, ab2, ab2a),
y1 = (abab, ababa, b2, b2a), and
y2 = (b2ab2ab, ab2abababa, b2abab2, ab2).

We claim that T 4 = 〈y, y1, y2〉 6 〈V, y〉.
First, it is straightforward to check that the group 〈y, y1, y2〉 projects onto each

simple direct factor of T 4. Consider now the elements of T appearing as coordinates
of y, y1 and y2. It is easy to see that the three elements ab2a, b2, and b2ab2ab have
order 3. On the other hand, using the fact that ab and ab2 have order p, we can check
that abab, bab and b2abab2 also have order p. The remaining elements appearing as
coordinates of y, y1 and y2 are conjugates of these elements of order p and hence also
have the same order. In particular, since the only elements of order 3 (ab2a, b2, and
b2ab2ab), appear in the fourth, third and first coordinates of y, y1 and y2 respectively,
and 〈y, y1, y2〉 is a subdirect subgroup of T 4, it follows that T 4 = 〈y, y1, y2〉 and so
〈V, y〉 = H. Hence, by Lemma 5.4, (Γ, G) ∈ OG(4).

Finally we show that (Γ, G) is basic of biquasiprimitive type. Since H acts tran-
sitively on the simple direct factors of T 4, it follows that T 4 is a minimal normal
subgroup of H, and is the unique such subgroup. Hence N = Diagϕ(T 4×T 4) ∼= T 4 is
the unique minimal normal subgroup of G+, and must be the unique minimal normal
subgroup of G. Hence (Γ, G) is biquasiprimitive by Corollary 5.6. �

We conclude this section by giving constructions of basic biquasiprimitive (Γ, G) ∈
OG(4) as described in Theorem 1.1 case (c). The first construction is similar to Con-
struction 5.19. As in that construction, the alternating group Alt(n) with n odd, and
generators a = (123) and b = (12 . . . n) will have the required properties.

Construction 5.26. Let T be a nonabelian simple group, and let {a, b} be a generat-
ing set for T such that no automorphism of T swaps a and b, and the elements a and
b have odd order. Suppose further that there is an automorphism θ ∈ Aut(T ) which
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inverts both generators a and b. Let N = T × T , S0 = {(a, b), (b, a)}, S = S0 ∪ S−1
0 ,

and let Γ = BiCay(N,∅,∅, S). Define two permutations δ and σ of V Γ, where
(x, y)δε = (y, x)1−ε, and (x, y)σε = (xθ, yθ)ε for ε ∈ {0, 1}. Set G := N o 〈σ, δ〉.

Lemma 5.27. For Γ, G as in Construction 5.26, (Γ, G) ∈ OG(4) and is basic of bi-
quasiprimitive type with soc(G) as described in Theorem 1.1 case (c) with ` = 1.

Proof. Since Γ is the same graph from Construction 5.19, it follows from Lemma 5.21
that Γ is 4-valent and connected. Again σ and δ are induced by automorphisms of
N which fix S and hence are automorphisms of Γ by Proposition 5.2. Moreover it is
a straightforward check that the stabiliser in G of the vertex (1N )0 is 〈σ〉 ∼= C2 and
also that there are only two automorphisms in G mapping the vertex (1N )0 to its
neighbour (a, b)1 but neither of these reverses the edge {(1N )0, (a, b)1}. Hence Γ is
G-oriented and (Γ, G) ∈ OG(4).

Now notice the setwise stabiliser in G of ∆ := N0 is G+ = N〈σ〉 and that T×1 6 N
is a normal subgroup of G+ which is intransitive on ∆. In particular, G+ is not
quasiprimitve on ∆. Moreover δ interchanges the two simple direct factors of N , and
hence N is the unique minimal normal subgroup of G. Since N is contained in G+ it
follows that Γ is basic of biquasiprimitive type as in Lemma 4.2 case (b). �

The next two constructions both provide pairs (Γ, G) as described in Theorem 1.1
case (c) with ` = 2 and ` = 4 respectively. In both cases soc(G) = T 2` where T is the
simple group PSL(2, p). In both cases we may use the same generating pairs {a, b} as
those used in Construction 5.23 (see Remark 5.22).

Construction 5.28. For a prime p > 7 let T denote the simple group PSL(2, p)
generated by two elements a and b such that a and b have orders 2 and 3 respectively
while ab and ab2 have order p. Take the group T o S4 with S4 acting by permuting the
four direct factors of T 4 and define the following elements of this group

ϕ̃ := (b2ab, ab2, b2, a)(13)(24),
y := ϕ̃2 = (b2a, ab2a, bab, b2),
h1 := (a, a, a, a)(12)(34).

Now let V := 〈h1〉 and define the subgroup H := T 4 o V 6 T o S4. Notice that
conjugation by ϕ̃ in T o S4 induces an automorphism ϕ ∈ Aut(H), in particular ϕ2 is
the inner automorphism of H corresponding to conjugation by y ∈ H.

Finally apply Construction 5.3 using H,V, y and ϕ to get the pair (Γ, G).

Lemma 5.29. Let Γ, G be as in Construction 5.28. Then (Γ, G) ∈ OG(4) and is basic
of biquasiprimitive type, with soc(G) as described in Theorem 1.1 case (c) with ` = 2.

Proof. We begin by showing that the quadruple (H,V, y, ϕ) as given in Construc-
tion 5.28 is appropriate. By Remark 5.24 we only need to show that ϕ 6= ιu for
any u ∈ H with u2 = y. Suppose then, for a contradiction, that ϕ = ιu for some
u ∈ H such that u2 = y. By Remark 5.24 we know that u = ts for some t ∈ T 4 and
s ∈ ρ(H) = ρ(V ), where if s interchanges i and j then πi(y) and πj(y) lie in the same
conjugacy class of T . Now consider the order |π`(y)| for each `. It is easy to check
that (|b2a|, |ab2a|, |bab|, |b2|) = (p, 3, p, 3), implying that s cannot interchange 1 and
2. However, since s ∈ ρ(H) = 〈(12)(34)〉 it follows that s = 1, and so ϕ = ιu for some
u ∈ T 4. It is easy to see that, if we take z := (1, 1, a, 1) ∈ H then zϕ 6= zu for any
u ∈ T 4, since π1(zu) = 1 for all u ∈ T 4 while π1(zϕ) = ab

2 6= 1. This contradiction
implies that ϕ 6= ιu for any u ∈ H with u2 = y. Hence by Remark 5.24, the quadruple
(H,V, y, ϕ) as given in Construction 5.28 is appropriate.
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Thus Construction 5.28 is a special case of Construction 5.3. Hence, in order to
show that (Γ, G) ∈ OG(4) it is sufficient to show that condition (2) of Lemma 5.4
is satisfied. Here V ∼= C2 and since hϕ1 /∈ V we have that V is core-free in H and
|V : V ∩ V ϕ| = 2. It is also easy to check that y /∈ V V ϕ in this case, by noticing that
y 6= h1h

ϕ
1 .

It remains to show that 〈V, y〉 = H. In fact, we will show that T 4 6 〈y1, y〉 where
y1 := yh1 = (b2, ab2, ab2a, ababa), from which it follows that 〈V, y〉 = H. First, 〈y, y1〉
projects onto each simple direct factor of T 4, so we only need to make sure that 〈y, y1〉
is not a product of diagonal subgroups of T 4. Now y has elements of order p in its first
and third coordinates and elements of order 3 in its second and fourth coordinates.
Thus all we need to check is that no automorphism of T can map b2a to bab and b2
to ab2a and that no automorphism can map ab2a to b2 and ab2 to ababa. In the first
case, such an automorphism must map a to (ab)3 which is impossible since a is an
involution. In the second case, such an automorphism must map a to (ab2)3, which
again is not an involution. Hence T 4 6 〈y1, y〉 and so 〈V, y〉 = H. By Lemma 5.4 we
conclude that (Γ, G) ∈ OG(4).

It is clear that the action of H on the simple direct factors of T 4 has two orbits
of length 2. Thus H has two minimal normal subgroups isomorphic to T 2, and these
are the only minimal normal subgroups of H. Furthermore, it is clear that the auto-
morphism ϕ of H interchanges these normal subgroups. Let R and Rϕ denote these
two minimal normal subgroups of H.

Since G+ ∼= H, G+ also has two minimal normal subgroups isomorphic to R,Rϕ ∼=
T 2. Let K and L denote these minimal normal subgroups of G+ so K = Diagϕ(R×R)
and L = Diagϕ(Rϕ×Rϕ). Then conjugation by g in G, interchanges K and L and so
G acts transitively on the direct factors of soc(G+) = K ×L ∼= T 4. Hence soc(G+) is
a minimal normal subgroup of G and (Γ, G) is biquasiprimitive by Corollary 5.6. �

Construction 5.30. For a prime p > 7 let T denote the simple group PSL(2, p)
generated by two elements a and b such that a and b have orders 2 and 3 respectively
while ab and ab2 have order p. Take the group T o S8 with S8 acting by permuting the
eight direct factors of T 8 and define the following elements of this group

ϕ̃ := (b, ba, ab, aba, b2, ab, ba, ab2a)(15)(28)(37)(46),
y := ϕ̃2 = (1, a, ab2a, ab2, 1, ababa, b2, ab2aba),
h1 := (a, a, a, a, a, a, a, a)(12)(34)(56)(78),

h2 := hϕ̃1 = (b2, ab2a, aba, b, b2aba, ab2ab, b2aba, ab2ab)(14)(23)(58)(67).

Now let V := 〈h1, h2〉 and define the subgroup H := T 8 o V 6 T o S8. Notice that
conjugation by ϕ̃ in T o S8 induces an automorphism ϕ ∈ Aut(H), in particular ϕ2 is
the inner automorphism of H corresponding to conjugation by y ∈ H.

Finally apply Construction 5.3 using H,V, y and ϕ to get the pair (Γ, G).

Lemma 5.31. Let Γ, G be as in Construction 5.30. Then (Γ, G) ∈ OG(4) and is basic
of biquasiprimitive type with soc(G) as described in Theorem 1.1 case (c) with ` = 4.

Proof. We begin by showing that the quadruple (H,V, y, ϕ) as given in Construc-
tion 5.30 is appropriate. By Remark 5.24 we only need to show that ϕ 6= ιu for
any u ∈ H with u2 = y. Suppose then, for a contradiction, that ϕ = ιu for some
u ∈ H such that u2 = y. By Remark 5.24 we know that u = ts for some t ∈ T 8 and
s ∈ ρ(H) = ρ(V ), where if s interchanges i and j then πi(y) and πj(y) lie in the same
conjugacy class of T . Now consider the order |π`(y)| for each `. It is easy to check that

(|1|, |a|, |ab2a|, |ab2|, |1|, |ababa|, |b2|, |ab2aba|) = (1, 2, 3, p, 1, p, 3, 2).
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This implies that s cannot interchange any two elements of {1, 2, 3, 4} or of {5, 6, 7, 8}.
However s ∈ ρ(H) and the orbits of ρ(H) are precisely {1, 2, 3, 4} and {5, 6, 7, 8}.
Thus s must fix all elements in each of these orbits, and so s = 1 and ϕ = ιu for some
u ∈ T 8. However, it is easy to see that if we take z := (1, 1, 1, 1, a, 1, 1, 1) ∈ H, then
zϕ 6= zu for any u ∈ T 8 since π1(zu) = 1 for all u ∈ T 8 while π1(zϕ) = ab

2 6= 1. Thus
ϕ 6= ιu for any u ∈ H with u2 = y. Hence by Remark 5.24, the quadruple (H,V, y, ϕ)
as given in Construction 5.30 is appropriate.

Hence, as in previous constructions, we only need to check that condition (2) of
Lemma 5.4 is satisfied to show that (Γ, G) ∈ OG(4). Here we have V = 〈h1, h2〉 ∼= Z2

2
with V ∩V ϕ = 〈h2〉 and V ∩V y = 1. Hence V is core-free in H and |V : V ∩V ϕ| = 2.
To check that y /∈ V V ϕ it is sufficient to check that y 6= h1h

y
1 and this is clearly true

since y 6= 1.
It remains to show that 〈V, y〉 = H, and for this it is sufficient to show that

T 8 6 〈V, y〉. In fact we will show that T 8 = 〈y, y1, y2〉 6 〈V, y〉 where y1 := yh1 , and
y2 := yh2 . We have

y = (1, a, ab2a, ab2, 1, ababa, b2, ab2aba),
y1 = (a, 1, b2a, b2, bab, 1, b2ab, ab2a), and
y2 = (b2a, ab2a, abab2a, 1, b2ab, ab2ab2aba, b2a, 1).

It is easy to check that 〈y, y1, y2〉 projects onto each simple direct factor of T 8. Fur-
thermore, we note that the identity element occurs in the first and fifth coordinates
of y, the second and sixth coordinates of y1, and the fourth and eighth coordinates of
y2. So if 〈y, y1, y2〉 is a product of diagonal subgroups of T 8 = Π8

i=1Ti then each direct
factor of 〈y, y1, y2〉 must be either a full subgroup Tj for some 1 6 j 6 8, or a diagonal
subgroup of a subproduct Tm × Tn where (m,n) ∈ {(1, 5), (2, 6), (3, 7), (4, 8)}.

However, the elements in the first and fifth coordinates of y2 have orders p and
2 respectively, the elements in the second and sixth coordinates of y have orders
2 and p respectively, the elements in the third and seventh coordinates of y1 have
orders p and 2 respectively, and the elements in the fourth and eighth coordinates
of y have orders p and 2 respectively. Therefore 〈y, y1, y2〉 = Π8

i=1Ti = T 8 and hence
H = 〈V, y〉. Lemma 5.4 now implies that (Γ, G) ∈ OG(4).

Note that the action of H on the simple direct factors of T 8 has two orbits of
length 4. Thus H has two minimal normal subgroups isomorphic to T 4, and these
subgroups are interchanged by the automorphism ϕ ∈ Aut(H). As in previous
constructions, we let R and Rϕ denote these two minimal normal subgroups of H.

Since G+ ∼= H, G+ also has two minimal normal subgroups, namely K =
Diagϕ(R × R) and L = Diagϕ(Rϕ × Rϕ), and conjugation by g ∈ G interchanges
K and L, implying that G acts transitively on the direct factors of K × L ∼= T 8. In
particular, soc(G+) = K ×L is a minimal normal subgroup of G, and hence (Γ, G) is
biquasiprimitive by Corollary 5.6. This shows that (Γ, G) is basic of biquasiprimitive
type, as described in Lemma 4.2 case (b) with ` = 4. �

Constructions 5.11–5.30 together with Lemmas 5.13–5.31, and the remarks in this
section which give explicit simple groups and generating pairs for each construction,
and therefore complete the proof of Theorem 1.1.

Note that in each of the explicit examples of biquasiprimitive pairs (Γ, G) provided
here, the group G contains a subgroup N acting semi-regularly with two orbits on
V Γ, hence all of these examples are bi-Cayley graphs. Of course, it should not be too
difficult to construct non-bi-Cayley examples using Method 5.7.
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An interesting further question would be to determine which nonabelian simple
groups T can occur as the simple direct factors of the socle of G where (Γ, G) ∈ OG(4)
is biquasiprimitive.
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