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Abstract Let G be a finite group with |G| > 4 and S be a subset of G with |S| = d such
that the Cayley sum graph CΣ(G,S) is undirected and connected. We show that the non-
trivial spectrum of the normalised adjacency operator of CΣ(G,S) is controlled by its Cheeger
constant and its degree. We establish an explicit lower bound for the non-trivial spectrum of
these graphs, namely, the non-trivial eigenvalues of the normalised adjacency operator lies in
the interval

(
− 1 + hΣ(G)4

η
, 1 − hΣ(G)2

2d2

]
, where hΣ(G) denotes the vertex Cheeger constant

of the d-regular graph CΣ(G,S) and η = 29d8. Further, we improve upon a recently obtained
bound on the non-trivial spectrum of the normalised adjacency operator of the Cayley graph
of finite groups.

1. Introduction
Let G be a finite group, and S be a subset of G with |S| = d. The Cayley sum graph
CΣ(G,S) is the graph having G as its set of vertices and for g, h ∈ G, the vertex h is
adjacent to g if h = g−1s for some element s ∈ S. These are classical combinatorial
objects. We also recall that the Cayley graph of G (sometimes, called the Cayley
difference graph), denoted by C(G,S), is the graph having G as its set of vertices and
a vertex h is adjacent to a vertex g if h = gs for some element s ∈ S. The structures
of C(G,S) and CΣ(G,S) can be very different. This can be seen by considering the
Cayley graph C(G,S) and the Cayley sum graph CΣ(G,S) of G = Z/nZ (n > 5)
with respect to the set S = {±1}. The former is always a cycle graph while the lat-
ter need not be so (for instance, the latter is a cycle graph when n is even and is a
path with loops at the endpoints whenever n is odd). Cayley graphs have been exten-
sively studied over the ages. However, despite being classical combinatorial objects,
the literature on Cayley sum graphs is not extensive. Very few things are known
about Cayley sum graphs and most of them are quite recent works. They include
those of Chung [7], Green [11, 12], Green–Morris [13], Grynkiewicz–Lev–Serra [14],
DeVos–Goddyn–Mohar–Šámal [9], Mrazović [18], Konyagin–Shkredov [15], Ma–Feng–
Wang [17]. Indeed, even the question of vertex connectivity of abelian Cayley sum
graphs was treated very recently in 2009 by Grynkiewicz–Lev–Serra [14], whereas
vertex connectivity of abelian Cayley graphs is relatively easy. One reason for this
fact is that unlike in the case of Cayley graphs, Cayley sum graphs may have less
symmetry in them. Even less is known about the spectra of Cayley sum graphs. In
fact, among the previous works, only that of Chung [7] and that of DeVos et. al. [9]
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deal with eigenvalues of some Cayley sum graphs, whereas the computation of distri-
bution of eigenvalues of graphs is a fundamental topic of interest in graph theory. It
is not yet known whether random Cayley sum graphs are expanders. Much remains
to be discovered about Cayley sum graphs and it is a topic of current research. In
this article, our main motivation is to establish a lower bound on the distribution of
non-trivial eigenvalues of Cayley sum graphs.

In the following, the graphs and the multi-graphs considered are all undirected. The
multi-graphs may possibly admit multiple edges. Moreover, the graphs and the multi-
graphs considered may admit loops. Given a finite d-regular multi-graph G = (V,E)
where V denotes the set of vertices and E ⊆

(
V
2
)
denotes the multi-set of edges, we

have the normalised adjacency matrix T of size |V |× |V |, which is equal to 1
dA, where

A denote the adjacency matrix of G of size |V | × |V |, whose (i, j)-th entry is equal to
the number of edges joining the i-th vertex and the j-th vertex of V . Note that the
eigenvalues of T lie in the interval [−1, 1]. The normalised Laplacian matrix of G is
defined by

L := I|V | − T
where I|V | denotes the identity matrix of size |V | × |V |. The eigenvalues of L lie in
the interval [0, 2]. Denote the eigenvalues of T and the eigenvalues of L by {ti : i =
1, . . . , |V |} and {λi : i = 1, . . . , |V |} respectively, such that λi = 1− ti and

−1 6 tn 6 tn−1 6 · · · 6 t2 6 t1 = 1,
0 = λ1 6 λ2 6 · · · 6 λn−1 6 λn 6 2.

The multi-graph G is connected if and only if λ2 > 0 (equivalently, t2 < 1). Moreover,
if G is connected, then it is bipartite if and only if λn = 2 (equivalently, tn = −1).

For a subset V1 ⊆ V , we denote the neighbourhood of V1 by N(V1) where,

N(V1) := {v ∈ V : {v, v1} ∈ E for some v1 ∈ V1}.

The boundary of V1 is defined as δ(V1) := N(V1)\V1.

Remark 1.1. In the case of a Cayley graph C(G,S), the neighbourhood N(V1) of a
subset V1 of G is equal to V1S and its boundary δ(V1) is equal to V1S r S, while for
a Cayley sum graph CΣ(G,S), the neighbourhood N(V1) of a subset V1 of G is equal
to V −1

1 S, and its boundary δ(V1) is equal to V −1
1 S r S.

Definition 1.2 (Vertex Cheeger constant). The vertex Cheeger constant of the multi-
graph G = (V,E) with |V | > 2, denoted by h(G), is defined as

h(G) := inf
{
|δ(V1)|
|V1|

: ∅ 6= V1 ⊆ V, |V1| 6
|V |
2

}
.

By considering a subset of V having size around half of the size of V , it follows
that the vertex Cheeger constant of (V,E) cannot be much bigger than one. Indeed,
if V contains an even number of elements, then taking a subset V1 of V of size equal
to |V |/2, one observes that the ratio of the size of its boundary δ(V1) to the size of V1
is bounded from the above by 1. Moreover, if V contains an odd number of elements,
then taking a subset V2 of V of size equal to (|V | − 1)/2, one observes that the ratio
of the size of its boundary δ(V2) to its size |V2| is bounded from the above by

|V r V2|
|V2|

= |V |+ 1
|V | − 1 = 1 + 2

|V | − 1 .

In particular, the vertex Cheeger constant of G satisfies h(G) 6 2.
Next, we recall the notion of an expander graph as stated by Alon in [1].
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Definition 1.3 ((n, d, ε)-expander). Let ε > 0. An (n, d, ε)-expander is a graph G =
(V,E) on |V | = n vertices, having maximal degree d, such that for every set ∅ 6= V1 ⊆
V satisfying |V1| 6 n

2 , |δ(V1)| > ε|V1| holds (equivalently, h(G) > ε).

It was shown qualitatively by Breuillard, Green, Guralnick, and Tao that the eigen-
values of the normalised Laplacian matrix of non-bipartite finite Cayley graphs are
bounded away from 2 [4, Appendix E]. Based on their arguments, the first author
recently established an explicit upper bound [3, Theorem 1.4]. In this article, we
show that a similar phenomenon occurs for the spectrum of the Cayley sum graph
CΣ(G,S) by suitably adapting the strategy outlined in [4, Appendix E], along with
the introduction of some new refinements. For an outline of the proof, we refer to
§ 1.1. Henceforth, we assume that |G| > 4, to avoid trivial cases.

Theorem 1.4. Let hΣ(G) denote the vertex Cheeger constant of the connected Cayley
sum graph CΣ(G,S). Then if CΣ(G,S) is non-bipartite, we have

λn < 2− hΣ(G)4

29d8 (equivalently, − 1 + hΣ(G)4

29d8 < tn),

where λn (respectively, tn) is the largest (respectively, the smallest) eigenvalue of
the normalised Laplacian matrix (respectively, the normalised adjacency matrix) of
CΣ(G,S).

Remark 1.5. Note that when CΣ(G,S) is bipartite, the spectrum of its adjacency
matrix is symmetric about the origin. In this case, the lower spectrum is determined
by the upper spectrum, for instance, tn = −t1 = −1 and tn−1 = −t2 > −1 + hΣ(G)2

2d2 ,
which follows from the discrete Cheeger–Buser inequality. Theorem 1.4 focuses on the
non-bipartite Cayley sum graphs and shows that the smallest eigenvalue of the nor-
malised adjacency matrix admits a lower bound depending only on the vertex Cheeger
constant and the degree. This result is deduced after the proof of Theorem 2.10.

One has the following corollary of Theorem 1.4.

Corollary 1.6. Let d > 2 be an integer. Let {CΣ(Gk, Sk)}k>1 be a sequence of non-
bipartite, finite Cayley sum graphs with |Gk| → ∞, |Sk| = d. Then, if there exists an
uniform ε > 0, such that each graph CΣ(Gk, Sk) in the sequence is an (|Gk|, d, ε)-
expander, we have all the eigenvalues of the normalised adjacency matrix of each
graph are uniformly bounded away from −1.

As a by-product of our proof, we improve the bound established for Cayley graphs
in [3, Theorem 1.4]. See Theorem 2.12.

1.1. Outline of the proof. We outline the proof of Theorem 1.4. To prove this
result, we assume on the contrary that the normalised adjacency matrix T of the
Cayley sum graph admits an eigenvalue close to −1 (see Theorem 2.10). This im-
plies that T 2 has an eigenvalue close to 1. We define a multi-graphM such that its
normalised adjacency matrix is equal to T 2 (see the proof of Proposition 2.8). Then
the discrete Cheeger–Buser inequality yields an upper bound on the edge-Cheeger
constant ofM, which in turn implies an upper bound on the vertex Cheeger constant
of M. This yields a subset A of G of size 6 |G|

2 having a convenient upper bound
on |S−1ASrA|/|A|. Using combinatorial arguments, we obtain upper bounds on the
sizes of several subsets defined using A (see Proposition 2.8). As a consequence, for
a given element g ∈ G, we establish a dichotomy result on the size of A ∩ Ag (see
Proposition 2.9), which states that the size A∩Ag is either very small or quite large as
compared to the size of A. This allows us to adapt an argument due to Frĕıman [10] in
our set-up to construct a subgroup H+ of G (see Theorem 2.10). From the bound on
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the smallest eigenvalue of T , it follows that the subgroup H+ has index two in G. In
Proposition 2.9, we also establish a similar dichotomy result on the size of A∩A−1g.
Using the strategy of Frĕıman once again, we define a subset H− of G, which avoids
S and is equal to a coset of H+ in G, i.e. to H+ or GrH+. To conclude the result, we
consider two cases. First, ifH− is equal toH+, then the index two subgroupH+ avoids
S, which contradicts the hypothesis that CΣ(G,S) is non-bipartite (by Lemma 2.5).
Next, if H− is equal to GrH+, then the index two subgroup H+ contains S, which
contradicts the hypothesis that CΣ(G,S) is connected.

2. Proof of the main result
The degree of a vertex of a multi-graph is the number of half-edges adjacent to it
(in the absence of loops). The presence of a loop at a vertex increases its degree by
one. A multi-graph is said to be r-regular if each vertex has degree r. Apart from the
vertex expansion as in Definition 1.3, we also have the notion of edge expansion.

Definition 2.1 (Edge expansion). Let G = (V,E) be a d-regular multi-graph with
vertex set V and edge multi-set E. For a subset ∅ 6= V1 ⊆ V , let E(V1, V \V1) be the
edge boundary of V1, defined as

E(V1, V \V1) := {(v1, v2) ∈ E : v1 ∈ V, v2 ∈ V \V1}.

Then the edge expansion ratio φ(V1) of V1 is defined as

φ(V1) := |E(V1, V \V1)|
d|V1|

.

Definition 2.2 (Edge-Cheeger constant). For a multi-graph G = (V,E), its edge-
Cheeger constant h(G) is defined by

h(G) := inf
∅ 6=V1⊆V,|V1|6|V |/2

φ(V1).

In a d-regular multi-graph, the two Cheeger constants are related by the following.

Lemma 2.3. Let G = (V,E) be a d-regular multi-graph. Then

h(G)
d
6 h(G) 6 h(G)

holds.

Proof. Let ∅ 6= V1 ⊆ V and we consider the map

ψ : E(V1, V \V1)→ δ(V1) given by (v1, v2) 7→ v2.

This map is surjective, hence we have the left hand side and at the worst case d to 1
wherein we get the right hand side. �

The discrete Cheeger–Buser inequality relates the (edge) Cheeger constant with
the second smallest eigenvalue of the Laplacian matrix. It is the version for graphs
of the corresponding inequalities for the Laplace–Beltrami operator on compact Rie-
mannian manifolds. It was first proven by Cheeger [6] (the lower bound) and by
Buser [5] (the upper bound). The discrete version was shown by Alon and Milman [2]
(Proposition 2.4).
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Proposition 2.4 (Discrete Cheeger–Buser inequality). Let G = (V,E) be a finite
d-regular multi-graph. Let λ2 denote the second smallest eigenvalue of its normalised
Laplacian matrix and h(G) be the edge-Cheeger constant. Then

h(G)2

2 6 λ2 6 2h(G).

Proof. See [16, Proposition 4.2.4, 4.2.5] or [8, Section 3]. �

Lemma 2.5. If G contains a subgroup of index two which does not intersect S, then
the Cayley sum graph CΣ(G,S) is bipartite.

Proof. Suppose G contains a subgroup H of index two which does not intersect S.
Then H−1S is equal to G rH and hence H is an independent set. Moreover, (G r
H)−1S is equal to H. Thus, G r H is also an independent set. So, the Cayley sum
graph CΣ(G,S) is bipartite. �

Lemma 2.6. The Cayley sum graph CΣ(G,S) is undirected if and only if S is closed
under conjugation.

Proof. The graph CΣ(G,S) is undirected if and only if for any g ∈ G and s ∈ S,
(g−1s)−1t = g holds for some t ∈ S, which is equivalent to S being closed under
conjugation. �

Proposition 2.7. Suppose (V,E) is an (n, d, ε)-expander with ε > 0 and |V | > 4. Let
A be a subset of V with |A| > 1

2 |V |. Then, the inequalities

(1) ε 6 d− 1,

(2) |δ(A)| > ε

d
|V rA|

hold.

Proof. If u, v are two adjacent vertices in V , then it follows that ε|{u, v}| 6
|δ({u, v})| 6 2(d− 1) (since the size of {u, v} is 6 1

2 |V |), which shows that ε 6 d− 1.
Let B denote the subset V r (A ∪ δ(A)) of V . Suppose B is nonempty. Since

|A| > 1
2 |V |, it follows that |B| 6 1

2 |V |. This shows that ε|B| 6 |δ(B)|. Note that
V is equal to the union of the pairwise disjoint subsets A, δ(A), B. Since no element
of A is adjacent to an element of B, it follows that δ(B) is contained in δ(A). This
shows that ε|B| 6 |δ(B)| 6 |δ(A)|. Suppose (2) does not hold, i.e. the inequality
d|δ(A)| < ε(|B|+ |δ(A)|) holds. This yields

(d− ε)ε|B| 6 (d− ε)|δ(A)| < ε|B|,

which implies that ε > d−1, which is impossible. Hence, the set B is empty. Then (2)
follows from the inequality ε 6 d, which holds by (1). �

Proposition 2.8. Let CΣ(G,S) be a non-bipartite (n, d, ε)-vertex expander for some
ε > 0. Suppose the normalised adjacency matrix of CΣ(G,S) has an eigenvalue in the
interval (−1,−1+ζ] for some ζ satisfying 0 < ζ 6 ε2

4d4 . Then for some subset A of G,
the following conditions hold with β = d2

√
2ζ(2− ζ).

(1) 1
2+β+ dβ

ε

|G| 6 |A| 6 1
2 |G|.

(2) |Ag ∩ (Ag)−1S| 6 β
ε |A| for all g ∈ G.

(3) |(Ag)−1s∆(Ag)c| 6 β
ε (ε+ d+ 2)|A| for all s ∈ S, g ∈ G.

(4) |A−1g ∩ (A−1g)−1S| 6 β
ε |A| for all g ∈ G.

(5) |(A−1g)−1s∆(A−1g)c| 6 β
ε (ε+ d+ 2)|A| for all s ∈ S, g ∈ G.
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Proof. Since |G| > 4, it follows from Proposition 2.7 that

(3) ε 6 d− 1.

This implies that ζ < 1. Let T denote the normalised adjacency matrix of the Cayley
sum graph CΣ(G,S). Since T has an eigenvalue in (−1,−1 + ζ] and ζ < 1, it follows
that T 2 has an eigenvalue ν in [(1− ζ)2, 1). LetM denote the weighted graph having
G as its set of vertices and having T 2 as its normalised adjacency matrix. Thus the
second largest eigenvalue of the normalised adjacency matrix ofM is > ν > (1−ζ)2 =
1−ζ(2−ζ). Hence the second smallest eigenvalue of the normalised Laplacian matrix
of M is 6 ζ(2 − ζ). By the discrete Cheeger–Buser inequality (Proposition 2.4), it
follows that the edge-Cheeger constant ofM satisfies

1
2h(M)2 6 ζ(2− ζ),

which yields

h(M) 6
√

2ζ(2− ζ).

Consequently, by Lemma 2.3, the vertex Cheeger constant ofM satisfies

h(M) 6 d2h(M) 6 d2
√

2ζ(2− ζ).

This implies that for some non-empty subset A of G with |A| 6 1
2 |G|,

(4) |S−1AS rA|
|A|

6 d2
√

2ζ(2− ζ)

holds.
We claim that

(5) |A ∪A−1S| > 1
2 |G|.

Otherwise, the inequality |A ∪A−1S| 6 1
2 |G| would imply

ε|A ∪A−1S| 6 |((A ∪A−1S)−1S) r (A ∪A−1S)|,

which combined with the inequalities

ε|A| 6 ε|A ∪A−1S|

and

|((A ∪A−1S)−1S) r (A ∪A−1S)| = |(A−1S ∪ S−1AS) r (A ∪A−1S)|
6 |S−1AS rA|

6 |A|d2
√

2ζ(2− ζ)

implies

ε 6 d2
√

2ζ(2− ζ) < d2
√

4ζ.

This contradicts the assumption ζ 6 ε2

4d4 . Hence (5) holds.
Applying Proposition 2.7 to the Cayley sum graph CΣ(G,S), we obtain

ε

d
|Gr (A ∪A−1S)| 6 |((A ∪A−1S)−1S) r (A ∪A−1S)| 6 |A|d2

√
2ζ(2− ζ) = |A|β.
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So
dβ

ε
|A| > |Gr (A ∪A−1S)| = |G| − |A ∪A−1S|,

which implies

|G| 6 dβ

ε
|A|+ |A ∪A−1S|

6
dβ

ε
|A|+ |A|+ |A−1S|

= dβ

ε
|A|+ |A|+ |S−1A|

6
dβ

ε
|A|+ |A|+ |S−1AS|

6
dβ

ε
|A|+ |A|+ |A|+ |S−1AS rA|

6
dβ

ε
|A|+ 2|A|+ β|A|,

where the last inequality follows from (4). This proves the inequalities as in state-
ment (1).

To obtain the inequality in statement (2), note that |A| 6 1
2 |G| implies that |Ag ∩

(Ag)−1S| 6 1
2 |G|. Since CΣ(G,S) is an ε-vertex expander, it follows that

ε|Ag ∩ (Ag)−1S| 6 |((Ag ∩ (Ag)−1S)−1S) r (Ag ∩ (Ag)−1S)|
= |(((Ag)−1 ∩ S−1Ag)S) r (Ag ∩ (Ag)−1S)|
6 |((Ag)−1S ∩ S−1AgS) r (Ag ∩ (Ag)−1S)|
6 |S−1AgS rAg|
= |S−1AgSg−1 rA|
= |S−1AS rA|
6 β|A|.

This establishes the inequality in statement (2).
To obtain the inequality in statement (3), it suffices to observe that

|(Ag)−1s∆(Ag)c| = |(Ag)−1s|+ |(Ag)c| − 2|(Ag)−1s ∩ (Ag)c|
= |Ag|+ |G| − |Ag| − 2(|(Ag)−1s| − |(Ag)−1s ∩Ag|)
= |G| − 2|(Ag)−1s|+ 2|(Ag)−1s ∩Ag|
= |G| − 2|A|+ 2|Ag ∩ (Ag)−1s|
6 |G| − 2|A|+ 2|Ag ∩ (Ag)−1S|

6

(
2 + β + dβ

ε

)
|A| − 2|A|+ 2β

ε
|A|

= β

(
1 + d

ε
+ 2
ε

)
|A|

holds, where the final inequality is obtained by applying statements (1) and (2).
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To obtain the inequality in statement (4), note that |A−1| 6 1
2 |G| implies that

|A−1g ∩ (A−1g)−1S| 6 1
2 |G|. Since CΣ(G,S) is an ε-vertex expander, it follows that

ε|A−1g ∩ ((A−1g)−1S)| 6 |((A−1g ∩ ((A−1g)−1S))−1S) r (A−1g ∩ ((A−1g)−1S))|
= |(((A−1g)−1S ∩ (S−1A−1gS)) r (A−1g ∩ ((A−1g)−1S))|
6 |(((A−1g)−1S) ∩ (S−1A−1gS)) r (A−1g ∩ ((A−1g)−1S))|
6 |S−1A−1gS rA−1g|
= |S−1A−1gSg−1 rA−1|
= |S−1A−1S rA−1|
= |S−1AS rA|
6 β|A|.

This establishes the inequality in statement (4).
To complete the proof, it suffices to observe that

|(A−1g)−1s∆(A−1g)c|= |(A−1g)−1s|+ |(A−1g)c| − 2|(A−1g)−1s ∩ (A−1g)c|
= |A−1g|+ |G|−|A−1g|−2(|(A−1g)−1s|−|(A−1g)−1s∩A−1g|)
= |G| − 2|(A−1g)−1s|+ 2|(A−1g)−1s ∩A−1g|
= |G| − 2|A|+ 2|A−1g ∩ (A−1g)−1s|
6 |G| − 2|A|+ 2|A−1g ∩ ((A−1g)−1S)|

6

(
2 + β + dβ

ε

)
|A| − 2|A|+ 2β

ε
|A|

=β

(
1 + d

ε
+ 2
ε

)
|A|

holds, where the final inequality is obtained by applying statement (1) and (4). �

Proposition 2.9. Under the notations and assumptions as in Proposition 2.8, and
the additional hypothesis

β <
ε2

4d(d+ 1) ,

it follows that for a given element g ∈ G,
(1) exactly one of the inequalities

|A ∩Ag| 6 dβ

ε2 (ε+ d+ 2)|A|, |A ∩Ag| >
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|

holds, and
(2) exactly one of the inequalities

|A ∩A−1g| 6 dβ

ε2 (ε+ d+ 2)|A|, |A ∩A−1g| >
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|

holds.

Proof. Note that the inequalities
2dβ
ε2 (ε+ d+ 2) 6 2dβ

ε2 (d+ d+ 2) = 4dβ
ε2 (d+ 1) < 1

imply that
dβ

ε2 (ε+ d+ 2) < 1− dβ

ε2 (ε+ d+ 2).
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Hence it suffices to show that for a given element g ∈ G, one of the inequalities

|A ∩Ag| 6 dβ

ε2 (ε+ d+ 2)|A|, |A ∩Ag| >
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|

holds, and one of the inequalities

|A ∩A−1g| 6 dβ

ε2 (ε+ d+ 2)|A|, |A ∩A−1g| >
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|

holds.
Define the subset B+ of G by B+ := A∆(Ag)c. The set Bc+ is also equal to

(A∆(Ag)c)c = A∆Ag. Note that

|B−1
+ S∆B+| 6

∑
s∈S
|B−1

+ s∆B+|

=
∑
s∈S
|((A∆(Ag)c)−1s)∆(A∆(Ag)c)|

=
∑
s∈S
|(A−1s∆((Ag)c)−1s)∆(A∆(Ag)c)|

=
∑
s∈S
|(A−1s∆((Ag)c)−1s)∆(Ac∆Ag)|

=
∑
s∈S
|(A−1s∆Ac)∆

(
((Ag)c)−1s∆Ag

)
|

=
∑
s∈S
|(A−1s∆Ac)∆

(
((Ag)−1)cs∆Ag

)
|

=
∑
s∈S
|(A−1s∆Ac)∆

(
(Ag)−1s∆(Ag)c

)
|

6
∑
s∈S

(
|A−1s∆Ac|+ |(Ag)−1s∆(Ag)c|

)
6

2dβ
ε

(ε+ d+ 2)|A|,

and

|(Bc+)−1S∆Bc+| 6
∑
s∈S
|(Bc+)−1s∆Bc+|

=
∑
s∈S
|((A∆Ag)−1s)∆(A∆Ag)|

=
∑
s∈S
|(A−1s∆(Ag)−1s)∆(Ac∆(Ag)c)|

=
∑
s∈S
|(A−1s∆Ac)∆((Ag)−1s∆(Ag)c)|

6
∑
s∈S

(
|A−1s∆Ac|+ |(Ag)−1s∆(Ag)c|

)
6

2dβ
ε

(ε+ d+ 2)|A|

hold as a consequence of Proposition 2.8(3). We consider the following cases, viz.,
|B+| 6 |G|2 , |B+| > |G|

2 . When |B+| 6 |G|2 holds, we obtain

ε|B+| 6 |B−1
+ S rB+| 6 |B−1

+ S∆B+| 6
2dβ
ε

(ε+ d+ 2)|A|,
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which yields
|B+| 6

2dβ
ε2 (ε+ d+ 2)|A|.

Since
|G| − |B+| = |Bc+| = |A∆Ag| = |A| − |A ∩Ag|+ |Ag| − |A ∩Ag| = 2|A| − 2|A ∩Ag|
holds, we obtain

2|A ∩Ag| 6 |G| − 2|A|+ 2|A ∩Ag| = |B+| 6
2dβ
ε2 (ε+ d+ 2)|A|.

While |B+| > |G|
2 holds, we obtain

ε|Bc+| 6 |(Bc+)−1S rBc+| 6 |(Bc+)−1S∆Bc+| 6
2dβ
ε

(ε+ d+ 2)|A|,

which yields
|Bc+| 6

2dβ
ε2 (ε+ d+ 2)|A|.

Since
|Bc+| = |A∆Ag| = |A| − |A ∩Ag|+ |Ag| − |A ∩Ag| = 2|A| − 2|A ∩Ag|

holds, we obtain

|A ∩Ag| > |A| − dβ

ε2 (ε+ d+ 2)|A| =
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|.

Considering the subset B− of G defined by B− := A∆(A−1g)c, and using Proposi-
tion 2.8(5) and similar arguments as above, we obtain that

|A ∩A−1g| 6 dβ

ε2 (ε+ d+ 2)|A|
or

|A ∩A−1g| >
(

1− dβ

ε2 (ε+ d+ 2)
)
|A|

holds according as |B−| 6 |G|2 or |B−| > |G|
2 . �

Theorem 2.10. Let CΣ(G,S) be a non-bipartite (n, d, ε)-vertex expander for some
ε > 0. Then the eigenvalues of the normalised adjacency matrix of this graph are
greater than −1 + `ε,d with

`ε,d = ε4

29d8 .

Proof. On the contrary, let us assume that an eigenvalue of the normalised adjacency
matrix of the graph CΣ(G,S) lies in the interval [−1,−1 + `ε,d]. Since CΣ(G,S) is non-
bipartite, it follows that −1 is not an eigenvalue of its normalised adjacency matrix.
Hence an eigenvalue of the normalised adjacency matrix of the graph CΣ(G,S) lies
in the interval (−1,−1 + `ε,d]. Set

τ = d2
√

2`ε,d(2− `ε,d),

r = 1− dτ

ε2 (ε+ d+ 2).

Since `ε,d = ε4

29d8 , we have

τ = d2
√

2`ε,d(2− `ε,d) < d2√4`ε,d 6
ε2

8
√

2d2
,

1− r = dτ

ε2 (ε+ d+ 2) < 1
8
√

2d
(ε+ d+ 2) 6 1

8
√

2d
(d− 1 + d+ 2) 6 3

8
√

2
<

1
3 .
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Consequently,

(6) `ε,d 6
ε2

4d4 , τ <
ε2

4d(d+ 1) and r > 2
3 .

Define the subsets H+, H− of G by
H+ := {g ∈ G : |A ∩Ag| > r|A|},
H− := {g ∈ G : |A ∩A−1g| > r|A|}.

Note that H+ contains the identity element of G. By the triangle inequality,
|ArAgh| 6 |ArAh|+ |AhrAgh|

= |ArAh|+ |ArAg|
= |A| − |A ∩Ah|+ |A| − |A ∩Ag|
6 2|A| − 2r|A|.

Consequently,
|A ∩Agh| = |A| − |ArAgh| > |A| − 2|A|+ 2r|A| = (2r − 1)|A|.

If |A ∩Agh| 6 (1− r)|A|, then we obtain
(1− r)|A| > |A ∩Agh| > (2r − 1)|A|,

which implies r 6 2
3 . Since r >

2
3 , by Proposition 2.9(1), it follows that H+ contains

gh. So H+ is a subgroup of G. Note that H+ is not equal to G, otherwise, we will
obtain

|A| · |G|2 > |A|
2 =

∑
g∈G
|A ∩Ag| > |G| · r|A|,

which yields r 6 1
2 .

The following estimate

|A|2 =
∑
g∈G
|A ∩Ag| 6 |H+||A|+

dτ

ε2 (ε+ d+ 2)|A||GrH+|

implies
|A| 6 |H+|+

dτ

ε2 (ε+ d+ 2)(|G| − |H+|).

Using Proposition 2.8(1), we obtain
1

2 + τ + dτ
ε

|G| − dτ

ε2 (ε+ d+ 2)|G| 6
(

1− dτ

ε2 (ε+ d+ 2)
)
|H+|.

We claim that H+ is a subgroup of G of index two. To prove this claim, it suffices to
show that

(7) 1
3

(
1− dτ

ε2 (ε+ d+ 2)
)
<

1
2 + τ + dτ

ε

− dτ

ε2 (ε+ d+ 2),

i.e. (
2 + τ + dτ

ε

)(
1 + 2dτ

ε2 (ε+ d+ 2)
)
< 3,

which is equivalent to

(8)
(
τ + dτ

ε

)
+ 2dτ

ε2 (ε+ d+ 2)
(

2 + τ + dτ

ε

)
< 1.

Let R = τ + dτ
ε . From (3), we obtain

τ <
1

8
√

2

(
1− 1

d

)2
,
dτ

ε
<

1
8
√

2

(
1− 1

d

)
and R <

1
8
√

2

(
2− 3

d
+ 1
d2

)
.
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From (8), it suffices to show that

R+ 1
4
√

2

(
2 + 1

d

)
(2 +R) < 1.

i.e. it suffices to show that
1

8
√

2

(
2− 3

d
+ 1
d2

)
+ 1

4
√

2

(
2 + 1

d

)(
2 + 1

8
√

2

(
2− 3

d
+ 1
d2

))
< 1.

Collecting the terms, it suffices to show that,(
5

4
√

2
+ 1

16

)
+
(

1
8
√

2
− 1

16

)
1
d

+
(

1
8
√

2
− 1

64

)
1
d2 + 1

64
1
d3 < 1,

which reduces to
(60− 40

√
2)d3 − 4(

√
2− 1)d2 − (4

√
2− 1)d− 1 > 0.

The above cubic polynomial in d is positive for d > 2 and hence the claim that H+ is
a subgroup of G of index two follows.

By Proposition 2.8(2), H− does not intersect the set S. Similar to as before, the
following estimate

|A|2 =
∑
g∈G
|A ∩A−1g| 6 |H−||A|+

dτ

ε2 (ε+ d+ 2)|A||GrH−|

implies
|A| 6 |H−|+

dτ

ε2 (ε+ d+ 2)(|G| − |H−|).

This inequality combined with Proposition 2.8(1) yields
1

2 + τ + dτ
ε

|G| − dτ

ε2 (ε+ d+ 2)|G| 6
(

1− dτ

ε2 (ε+ d+ 2)
)
|H−|.

The inequality in (7) (which has been established) implies that

|H−| >
|G|
3 ,

and consequently, H− is nonempty. Note that for h− ∈ H−, h+ ∈ H+, the triangle
inequality implies

|ArA−1h−h+| 6 |ArAh+|+ |Ah+ rA−1h−h+|
= |ArAh+|+ |ArA−1h−|
= |A| − |A ∩Ah+|+ |A| − |A ∩A−1h−|
6 2|A| − 2r|A|,

which yields
|A ∩A−1h−h+| = |A| − |ArA−1h−h+| > |A| − 2|A|+ 2r|A| = (2r − 1)|A|.

If |A ∩A−1h−h+| 6 (1− r)|A|, then we will obtain
(1− r)|A| > |A ∩A−1h−h+| > (2r − 1)|A|,

which in turn implies r 6 2
3 . Since r >

2
3 , using Proposition 2.9(2), we conclude that

|A∩A−1h−h+| > r|A|, i.e. H− contains h−h+. Thus, H−H+ is contained in H−. Since
H− is a nonempty proper subset of G, it follows that H− is equal to H+ or H− is equal
to the non-trivial coset of H+ in G, i.e. GrH+. Note that if H− is not equal to H+,
then the index two subgroup H+ of G will contain S (since H− ∩ S = ∅). Since the
graph CΣ(G,S) is an expander, it is connected (otherwise, for a connected component
C of least size, the ratio of the size of the boundary of C to the size of C would be

Algebraic Combinatorics, Vol. 4 #3 (2021) 528



A Cheeger type inequality in finite Cayley sum graphs

zero, which is impossible in this case). Thus, every element of G is connected to the
identity element. So, any element of G can be expressed as a product of elements of
the set S ∪ S−1. This shows that G is contained in H+, which is impossible. So H−
is equal to H+. Consequently, H+ is a subgroup of G of index two avoiding S. Thus,
the graph CΣ(G,S) is bipartite by Lemma 2.5. We are done. �

Proof of Theorem 1.4. Since CΣ(G,S) is connected, its vertex Cheeger constant
hΣ(G) is positive. Thus CΣ(G,S) is an hΣ(G)-expander with hΣ(G) > 0. So
Theorem 1.4 follows from Theorem 2.10. �

Proof of Corollary 1.6. From Theorem 1.4, it follows that for any k > 1, the eigen-
values of the normalised adjacency matrix of CΣ(Gk, Sk) are greater than −1 + ε4

29d8 ,
which depends on ε, d, but not on k. Hence the corollary. �

In the context of Cayley graphs, the first author obtained the following bound on
the spectrum of the adjacency operator.

Theorem 2.11 ([3, Theorem 1.4]). Let S be a symmetric subset of G and let C(G,S)
denote the Cayley graph of G with respect to S with |S| = d and h(G) denote its
vertex Cheeger constant. If C(G,S) is non-bipartite, then the largest eigenvalue of its
normalised Laplacian matrix is less than

λn < 2− h(G)4

29d6(d+ 1)2 .

As a consequence of the proof of Theorem 2.10, we obtain the following refinement
of the bound provided in the above result.

Theorem 2.12. Let S be a symmetric subset of G and let C(G,S) denote the Cayley
graph of G with respect to S with |S| = d and h(G) denote its vertex Cheeger constant.
Suppose S does not contain the identity element. If the graph C(G,S) is non-bipartite,
then the largest eigenvalue of its normalised Laplacian matrix is less than

2− h(G)4

29d8 .

Proof. Suppose C(G,S) is an ε-vertex expander with ε > 0 and it is non-bipartite.
We claim that the largest eigenvalue of the normalised Laplacian matrix is less than

2− ε4

29d8 .

The bound on this eigenvalue given by [3, Theorem 1.4] is

2− ε4

29d6(d+ 1)2 .

Note that the proof of this result as in loc.cit. crucially relies on the last inequality
in [3, p. 306], i.e. the inequality

(9)
(
β + dβ

ε

)
+ 2dβ

ε2
(ε+ d+ 2)

(
2 + β + dβ

ε

)
< 1

where β = d2
√

2ζ(2− ζ). This inequality has been established using ε 6 d and the
hypothesis that ζ = ε4

29d6(d+1)2 . The analogue of (9) in the context of Cayley sum
graph is the inequality(

τ + dτ

ε

)
+ 2dτ

ε2 (ε+ d+ 2)
(

2 + τ + dτ

ε

)
< 1
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in (8) where τ = d2√2`ε,d(2− `ε,d). The above inequality has been established using
ε 6 d− 1 and `ε,d = ε4

29d8 . Hence (9) will be satisfied for ζ = ε4

29d8 if ε 6 d− 1 holds,
which follows from Proposition 2.7. This shows the claim. Noting that C(G,S) is
an h(G)-vertex expander, and h(G) > 0 (since the graph C(G,S) is connected), the
result follows from the claim. �
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