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The Erdos-Ko—-Rado theorem for
2-intersecting families of perfect matchings

Shaun Fallat, Karen Meagher & Mahsa N. Shirazi

ABSTRACT A perfect matching in the complete graph on 2k vertices is a set of edges such that
no two edges have a vertex in common and every vertex is covered exactly once. Two perfect
matchings are said to be t-intersecting if they have at least ¢ edges in common. The main result
in this paper is an extension of the famous Erdés—Ko-Rado (EKR) theorem [4] to 2-intersecting
families of perfect matchings for all values of k. Specifically, for k > 3 a set of 2-intersecting
perfect matchings in Ky of maximum size has (2k — 5)(2k — 7) - - - (1) perfect matchings.

1. INTRODUCTION AND PRELIMINARIES

In this paper we present two different approaches to establish a version of the Erdés—
Ko-Rado theorem for 2-intersecting families of perfect matchings. There are many
recent results that verify analogs of the Erdés—Ko—-Rado theorem. This research area
started with Erdds, Ko, and Rado’s work on systems of intersecting sets. In 1961,
they proved if F is a t-intersecting family of k-subsets of {1,2,...,n}, then there is a
tight upper bound on the size of F with n sufficiently large [4].

THEOREM 1.1 (EKR, [4]). If F is a t-intersecting family of k-subsets of {1,2,...,n},
then there exists a function f(k,t) such that if n > f(k,t), then

n—t
Fl < .
| \<k—t>

If equality holds, then F consists of all k-subsets containing a fixed t-subset of
{1,2,...,n}.

Twenty-three years after the publication of Erdés, Ko and Rado’s work, Wilson [20]
enhanced their results by giving an algebraic proof of the their result with the exact
value of f(k,t) for all k£ and ¢. Later in 1997, Ahlswede and Khachatrian [1] found
all maximum t¢-intersecting families of k-subsets for all values of n. In 2011, Ellis,
Friedgut, and Pilpel [3] showed that the analog of the EKR theorem holds for ¢-
intersecting families of permutations of {1,...,n}, when n is sufficiently large relative
to t. In 2005, Meagher and Moura [13] proved that a natural version of the EKR
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theorem holds for uniform set-partitions. Recently, an algebraic proof of this well-
known theorem for intersecting families of perfect matching was found by Godsil and
Meagher [8] and their proof is based on eigenvalue techniques originally utilized by
Wilson [20]. Further, they conjectured a version of the EKR theorem holds for ¢-
intersecting families of perfect matchings, when 2k > 3t + 2. In 2018, Lindzey [12]
proved this conjecture for all ¢, provided that k is sufficiently large relative to t. In
this paper we prove the conjecture holds for ¢ = 2 and all k£ > 3.

In Section 2, we provide some necessary background on perfect matchings and
introduce the association scheme for perfect matchings. We convert the problem of
finding the maximum size of an intersecting set of perfect matchings to the problem of
finding a maximum coclique in a graph. Section 3 gives a proof of the result for some
values of k; this proof uses the well-known clique-coclique bound. In Section 4, we
derive a different approach that proves the result for all k. In this section we construct
a matrix in the association scheme that is a weighted adjacency matrix for the graph
in question, we prove our result by showing the ratio bound holds with equality for
this weighted adjacency matrix. In 2012, Tanaka [18] implicitly mentioned how to
find such a matrix in P- and Q-polynomial schemes. He formulated the EKR theorem
as a consequence of linear programming and the feasible solutions are obtained from
designs. We will take a similar approach in Section 4, but we note that, except in the
case of k = 3, the perfect matching association scheme is neither P- nor @-polynomial.
We conclude this work with some possible related future directions and open problems
and we include an appendix which provides several partial tables of eigenvalues for
different graphs in the association scheme for perfect matchings.

2. BACKGROUND ON PERFECT MATCHINGS

A matching M in a graph X is a set of edges such that no two edges have a vertex in
common. If a matching covers every vertex of X, it is called a perfect matching [9].
Two perfect matchings are said to be t-intersecting if they have at least ¢ edges in
common. If t = 1, we just say that they are intersecting. In this paper we only consider
perfect matchings in complete graphs with an even number of vertices. Our goal is
to find the size of the largest set of 2-intersecting perfect matchings in Ky for all
k > 3. A perfect matching is a special case of a uniform set-partition in which the
size of each part is 2. In [13] a proof for a version of the EKR theorem for uniform
set-partitions is presented. However, the results given in [13] are asymptotic in nature
(as in the size of k needs to be sufficiently large relative to t) and do not apply to
perfect matchings when ¢ > 1.
It is easy to check that the number of perfect matchings in Ko is

;(22’“) <2k2_ 2) e (;) = (2k — 1)(2k — 3)(2k — 5)--- 1.

For any positive integer k define
2k — =2k - 1)(2k—3)(2k —5) - - - 1,

so the number of perfect matchings in Koy is (2k — 1)!I.

A set of all perfect matchings that contain a common set of ¢ edges is called a
canonically t-intersecting set. The size of a canonically t-intersecting set of perfect
matchings in Koy, is (2k — 2t — 1)!!. For a set T of ¢ disjoint edges in Ko, we use vr
to denote the characteristic vector of the set of all perfect matchings that include all
the edges in T'.
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2.1. PERFECT MATCHING DERANGEMENT GRAPH. The approach we take is to define
a graph in which every coclique is a set of intersecting perfect matchings. We then use
algebraic techniques to find the size of the largest cocliques in this graph. To start,
we state some well-known terminology.

Let X be a graph. A clique in X is a set of vertices in which any two are adjacent;
a coclique is a set of vertices in which no two are adjacent. The size of a largest clique
and a largest coclique are denoted by w(X) and a(X), respectively. The adjacency
matriz A(X) of X is a matrix in which rows and columns are indexed by the vertices
and the (i, j)-entry is 1 if ¢ ~ j, and 0 otherwise. A weighted adjacency matriz Aw (X)
subordinate to X is a symmetric matrix in which rows and columns are indexed by
the vertices and the (i, j)-entry may be non-zero (which is interpreted as its edge
weight) if ¢ ~ j and is 0 otherwise. The eigenvalues of X refer to the eigenvalues of
its adjacency matrix. We use 1 to denote the all-ones vector; for any d-regular graph,
the all-ones vector is an eigenvector with eigenvalue d.

In general, finding the largest coclique of a graph X is a well-known NP-hard
problem, but there is a famous upper bound on «(X) that we use throughout this

paper.

THEOREM 2.1 (Delsarte-Hoffman bound [7, p. 31]). Let A be a weighted adjacency
matriz for a graph X on vertex set V(X). If A has constant row sums d and least
etgenvalue T, then

If equality holds for some coclique S with characteristic vector vg, then

e 8]
V(X)|

is an eigenvector with eigenvalue T.

This bound is based on the ratio between the largest and the smallest eigenvalue
for a weighted adjacency matrix, thus it is also known as the Ratio Bound. The Ratio
Bound is important here since we apply it to a graph defined so that the cocliques
are sets of 2-intersecting perfect matchings.

DEFINITION 2.2 ([8]). Define the perfect matching derangement graph M (2k) to be
the graph whose vertices are perfect matchings on complete graph Ksp. In this graph

two vertices are adjacent if they have at most (t — 1) edges in common. Denote the
adjacency matriz of My(2k) by A:(2k).

In a coclique of M;(2k), any two vertices are not adjacent; thus they have more than
t — 1 edges in common or in other words, they are t-intersecting perfect matchings.
Using the Delsarte-Hoffman bound, our problem transforms into finding a weighted
adjacency matrix for My(2k), for any k > 3, with a sufficiently large ratio between the
largest and least eigenvalues. This method to prove EKR theorems was first developed
by Wilson in 1984 [20]. In 2015, Godsil and Meagher applied this method to the
family of all perfect matchings of the complete graph Ko to find the largest set of
intersecting perfect matchings (¢ = 1) [8]; later in 2017 it was applied to t-intersecting
perfect matchings by Lindzey [12].

EXAMPLE 2.3 (M;(6)). In Definition 2.2, let ¢ = 1 and 2k = 6. The number of perfect
matchings in Kg is 5!!, so M;(6) has 15 vertices. Two vertices here are adjacent if
they are not intersecting. The graph depicted in Figure 1 below is M;(6).
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FIGURE 1. Graph M;(2k) when ¢t =1 and 2k =6

2.2. PERFECT MATCHING ASSOCIATION SCHEME. A set partition P = {Py,..., P},
of the set {1,2,...,n} is a grouping the elements of this set into nonempty subsets
(parts) such that each element is included in exactly one part. A set partition in which
all parts have even size is called an even set partition.

An integer partition of a positive integer n is a list A = [A1, A2, ..., A¢] of positive
integers with n = ). \;; typically in an integer partition A\; > X;11. We denote an
integer partition of n by A F n. An integer partition in which all parts have even
size is called an even partition. For example, if A F k, with A = [\, Ao, ..., A\¢], then
2\ = [2A1,2)g,...,2)] is an even partition. The set of sizes of the parts in a set
partition P of {1,2...,n} is an integer partition of n, we call the integer partition
the shape of P. (See [7, Sections 3.1 and 15.4] for more details about partitions.)

It is easily seen that any perfect matching of Ky is an even set partition with
all parts of size 2; and the shape of any perfect matching is the integer partition
[2,2,...,2]. Taking the union of (or overlapping) two perfect matchings in Koy pro-
duces disjoint even cycles in Ky, where the union of parallel edges gives rise to 2-
cycles. Any two perfect matchings in Koy, produce a set partition of the set {1,...,2k}
where each part is the set of vertices contained in one of the even cycles in the union
of the two perfect matchings. The shape of this set partition is the integer partition
A = [A1, Ag,..., Ag], here the cycles have size A;. Such an integer partition will be
even. Using this we define a set of graphs on the collection of all perfect matchings.

DEFINITION 2.4. Let k be an integer and A + k. Define Asy to be a matriz in which
rows and columns are indexed by perfect matchings of Kay. In Agy the (P,Q)-entry
is 1 if the union of the perfect matchings P and Q has shape 2), and 0 otherwise.
We define
A={Agx | \F K}
The set A forms a symmetric association scheme which is known as the perfect match-
ing association scheme [7, Section 15.4], and the matrix algebra C[.A] constructed by
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the complex linear combinations of the matrices in A is called the Bose—Mesner al-
gebra of this association scheme. For a matrix Asy € A define the graph Xs) so that
Aoy is its adjacency matrix. A graph in the association scheme is any graph X with
A(X) € C[A]. Every graph in this association scheme is an undirected graph with the
set of perfect matchings as its vertex set.

The symmetric group Sym(2k) acts transitively on the set of perfect matchings
of K. This action preserves the adjacencies in M;(2k). This implies Sym(2k) is a
subset of the automorphism group of the graph M;(2k) and that M;(2k) is vertex
transitive. For any A F k, consider the set of all pairs of perfect matchings P and @,
with the property that the union of P and @ has shape 2. It is known that Sym(2k)
is transitive on this set of pairs (again see [7, Section 15.4]), this implies each graph
Xo) is edge transitive.

We state some properties of this association scheme and refer the reader to [7,
Chapter 3] for more details and proofs. Denote the Schur product of two matrices of
the same size A = [a; ;] and B = [b; ;] by the matrix A o B whose (4, j)-entry is given
by [a; ;b; j]. For any two matrices Ay; and Ay, in A,

Ay, 0 Ay, = {O i

’ Ay, 1=].

This implies the matrices Ay, are linearly independent and Schur orthogonal. Hence
the matrix set {Asy | A F n} is an orthogonal basis for the Bose-Mesner algebra of
this scheme. Further, the matrices in A are symmetric and commute, thus they are
simultaneously diagonalizable.

The group Sym(2k) acts transitively on the set of perfect matchings of Koy, and the
stabilizer of a single perfect matching under this action is isomorphic to the wreath
product Sym(2) ! Sym(k). The action of the group Sym(2k) on the set of perfect
matchings is equivalent to its action on the cosets of Sym(2k)/ (Sym(2) ! Sym(k)). The
perfect matching scheme is the Schurian association scheme, or the orbital scheme of
the action of Sym(2k) on the cosets Sym(2k)/ (Sym(2) ! Sym(k)).

The (2k —1)!!-dimensional vector space of vectors indexed by the perfect matchings
is a Sym(2k)-module. It is well-known that the irreducible representations of Sym(2k)
correspond to integer partitions of 2k [15] and that this module can be expressed as
the sum of irreducible modules Sym(2k) corresponding to even integer partitions of
2k. We denote these irreducible modules by the corresponding even integer partitions
(see [7, Chapter 15] for details). (For example, [2k] will be used to denote the irre-
ducible module corresponding to the trivial representation; this is the 1-dimensional
vector space of constant vectors of length (2k — 1)!l.) It follows that the common
eigenspaces of the matrices in the perfect matching association scheme are unions
of these irreducible modules, thus the common eigenspaces in the perfect matching
association scheme correspond to the even integer partitions of 2k. Further details on
these eigenspaces are in Subsection 4.1.

The graph M,;(2k) is the union of the graphs of the scheme X in which the even
partition A has at most t — 1 cycles of length 2, this can be expressed as

Ay(2k) = Z Ax,

AF2k

where the sum is taken over partitions A that have at most ¢ — 1 parts of length 2.
Further, the eigenvalues of M;(2k) are the sums of the eigenvalues of matrices Ay in
this sum.

Algebraic Combinatorics, Vol. 4 #4 (2021) 579



SHAUN FALLAT, KAREN MEAGHER & MAHSA N. SHIRAZI

3. CLIQUE-COCLIQUE APPROACH

For our first approach, we construct a large clique in Ms(2k) and then apply the
clique-coclique bound. This clique is constructed using projective planes which are
introduced and discussed in the next subsection. This approach only works for some
values of k. The existence of such a clique implies the existence of a weighted adjacency
matrix M of Ms(2k), for which the Delsarte-Hoffman bound holds with equality. This
is similar to the result in [6], where the authors show how to find the matrix used
in Wilson’s proof of the EKR Theorem [20]. This is the motivation for our second
approach, where we show that such a matrix exists, even when there is no appropriate
clique.

3.1. FINITE PROJECTIVE PLANE.

DEFINITION 3.1 ([19, p. 51]). A finite projective plane PG(2,n) consists a finite set
of points P of size n> +n+1 and a set L of subsets of P, called lines, satisfying the
azioms (P1), (P2), and (P3):

(P1) Given two points in P, there is exactly one line that contains both.

(P2) Given two lines in L, there is exactly one point on both.

(P3) There are four points of which no three are co-linear.

Every line contains n + 1 points.

Assume O is a set of points in a PG(2,n). A line [ is called a secant of O if [ and O
have 2 points in common; if they have 1 point in common, [ is called a tangent of O.
If any line has at most 2 points in common with O, then O is called a 2-arc. A 2-arc
with n + 1 points is called an oval, and a 2-arc with n + 2 points is called a hyperoval.

THEOREM 3.2 ([19, p. 56]). For every positive integer a, there is a PG(2,2%) contain-
ing a hyperoval.

3.2. CONSTRUCTION OF LARGE CLIQUES. We know that X5 (2k) is a vertex-transitive
graph. We apply the following well-known bound on the size of a coclique on a vertex-
transitive graph.

THEOREM 3.3 (Clique-Coclique Bound [7, p. 26]). Let X be a vertex-transitive graph.
Then

a(X)w(X) < [V(X)].
If equality holds for a cligue C and a coclique S, then the vectors

C S
Xc — ul, Xs — %1
are orthogonal, where xc and xs are the characteristic vectors of C' and S respectively.

In particular xExs = 1.

In the next theorem we show that equality in the clique-coclique bound holds for
M5 (2k) for infinitely many values of k.

THEOREM 3.4. If 2k = 2% + 2, where a is a positive integer, then w(Ma(2k)) = (2k —
1)(2k — 3).

Proof. By Theorem 3.2, for every integer a there exists a PG(2,2%) containing a
hyperoval. Call this hyperoval O. Clearly |O] = 2k = 2% + 2. Let S be the set of
points in O. Note that |S| = 22¢ — 1. For s € S, let L5 be the set of lines of secants
through s. Clearly, each point of O is covered by exactly one element of £;, and so
Ls] =S = k.

We can identify the points of O with the vertices of K. Every line in £ forms an
edge of Ky}, as it has exactly 2 points in common with O, and as the elements of L4 only
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meet in s, L, corresponds to a perfect matching of Koi. Thus, the set C = {Ls|s € S}
forms a family of perfect matchings of size 22 —1 = (2941)(2¢—1) = (2k—1)(2k—3).

As two points lie on exactly one line together, |£s N L, < 1 for s,r € S, s # r.
Hence, C is actually a clique. Finally we note that C is a maximum clique in My
since a canonical 2-intersecting perfect matching is a coclique of size (2k — 5)!!; hence
equality in the clique-coclique bound holds. O

THEOREM 3.5. Suppose that X is a graph in a symmetric association scheme. If there
1s a clique in X for which equality holds in the clique-coclique bound, then there exists
a weighted adjacency matrix of X, for which the ratio bound holds with equality.

Proof. Let A = {Ag, A1,...,Ax} be a symmetric association scheme on v vertices
and denote the row sum of A; by v;. Let X; be the graph associated with A;, for
i €{0,...,k}. Then X is a graph such that X = J;., X; for some T'C {1,...,k}.

Let C be a clique in X for which the clique-coclique bound holds with equality, so
a(X) = v/|C|. Let x¢ be the characteristic vector of C. Then xLx¢ is a positive semi-
definite (psd) matrix. The projection of this matrix into the Bose-Mesner algebra is
the matrix

kT
— XcAixc
M= 22 4.

Clearly, M is again a psd matrix (see [6, Lemma 3.2]). Since Ag = I, we have

T
A
7)(0@1)(;)(0 AO = 7'5' I.

Define M = M — %I . Since M is psd, the minimal eigenvalue for M is at least

—‘%l. Further, since C is a clique in X, any two vertices in C' will be related in some

A; for i € T, in particular xcA;xc =0 for j ¢ T. Thus
E T T
XcAixc XcAixc
M= S S A = S A
i:zl VU; ZGZT VU;

and M is a weighted adjacency matrix of X.
The row sums of M can be calculated as follows

kT
171 Z xcAixc ]

i=0 v

Lk
- Z X6Aixel
Vizo

k
1 T
- Ai 1
UXC(E )XC

=0

1
= ;ngxCl

CQ
_Iery
v

Hence the row sums of M all equal

_ler_ic
v v

d
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We also know the minimum eigenvalue 7 is negative and at least —‘%l and the maxi-
mum coclique has size %,‘ The ratio bound, applied to M gives
v v v
Eﬂ:au)<1_é: cZ_[ol
p 1—- = —
Rearranging verifies that 7 is less than or equal to f%. Thus 7 = 7\%\ and equality
holds in the ratio bound. g

We have proved that for infinitely many values of 2k = 2% + 2 we can build a
maximum clique in Ms(2k), hence we can construct the matrix M as in Theorem 3.5
with equality in the ratio bound. The value 2% 4 2 grows fast as a increases, which
makes it difficult to find the maximum clique, and the values in M by computer.
In the next approach we try to build the matrix M without identifying maximum
cliques.

4. SECOND APPROACH

In this section we find a set of coefficients ay, for the matrices Ay, in the association
scheme of perfect matchings so that the matrix M = )" ay Ay, is a weighted
adjacency matrix for the graph M5(2k) and the ratio bound holds with equality
for the matrix M. To verify this, we need to determine the row sum and the least
eigenvalue of the matrix M.

If we have the complete character table of the perfect matching association scheme,
then we can easily find the row sum and the least eigenvalue of M. The matrices in
an association scheme are simultaneously diagonalizable, therefore they have common
eigenspaces. This means that the eigenvalue of a linear combination of the matrices
Ay, corresponding to an eigenspace is actually the same linear combination of the
eigenvalues of matrices Ay, corresponding to the eigenspace. But finding the com-
plete character table of this scheme for 2k > 40 is still an unsolved problem. In his
1994 paper, Muzychuk [14] studied the eigenvalues of the association scheme of the
symmetric group Sym(2k). The calculations are quite complicated and Muzychuk only
found the eigenvalues up to 2k = 10. More recently in 2018, Srinivasan [16, 17] pre-
sented a recursive algorithm to find the character tables and calculated the complete
tables up to 2k = 40.

In this work, we calculate several entries in the character table of the perfect
matching association scheme for all values of 2k. From these eigenvalues we will find
an appropriate weighted adjacency matrix. To do this, we calculate the eigenvalues
of some carefully chosen quotient graphs.

4.1. EIGENVALUES OF PERFECT MATCHING ASSOCIATION SCHEME.

DEFINITION 4.1 ([7, Section 2.2]). Let @ = [m1,7a,...,m;] be a set partition of the
vertices of the graph X . This partition is equitable if the number of vertices in wj that
are adjacent to a vertexr in my is determined only by k and £, where k, £ € {1,...,i}.
If 7 is an equitable partition of X, the quotient graph X/ is a directed multi-graph
with the parts of m as its vertices, and if a vertex in mp has exactly v neighbours in
g, then X/m has v arcs from m; to .

Quotient graphs are usually represented as a matrix, the rows and columns are
indexed by the parts of the equitable partition and the (g, m)-entry is the number
of edges from a vertex in 7 to .

Consider an integer partition A = [A1, A2, ..., \;]. The orbit partition formed by
the Young subgroup Sym(\) = Sym(\;) X Sym(Az2) x - -+ X Sym();) acting on the set
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of all perfect matchings of Ko (vertices of Ms(2k)) is an equitable partition. Hence
for every class p in the perfect matching association scheme, the quotient graph of
X, with respect to this orbit partition, is well-defined. We denote this quotient graph
by X, /m(X). The eigenvalues of X, /7()\) are also eigenvalues of the matrix A, [7,
p. 28]. Using this fact, we will construct some quotient graphs for several classes in
the perfect matching association scheme to build a portion of the character table in
the next subsection.

Let Ay be one of the matrices in the perfect matching association scheme. Let
Sym(A) be a Young subgroup and Ay/m(X\) represent the corresponding quotient
graph. Any eigenvector v/ of the quotient graph can be lifted to form an eigen-
vector v for Ay (the P-entry of v is equal to the entry of ' corresponding to the
part that contains P). The groups Sym(A) and Sym(n) both act on the cosets of
Sym(n)/ (Sym(2)Sym(k)), and thus also act on the vector v by permuting the in-
dices. Since the entries of v are constant on the orbits of Sym(\), the vector v is
unchanged by the action of Sym(A). Define

V =span{ov|o € Sym(n)}.

In particular, V' is the Sym(n)-module generated by the action of Sym(n) on v.

For two integer partitions p = [u1,...,ue] and A = [A1,..., \g] of n, we say that
@ = A in the dominance ordering if p; = A;, for all j < ¢ and p; > A; for some
ie{l,...,min{k,£}}. We will use ¢, to denote the character of Sym(n) associated
to the partition .

The decomposition of the representation of Sym(n) induced by the trivial repre-
sentation on a Young subgroup is well-known.

THEOREM 4.2 ([7, Chapter 12]). If A+ n, then

indSym(n)(lSym()\)) =ox+ Z Kuk¢uv
n>A

where K, is the Kostka number (see [7, Section 12.5] for more information).

The decomposition of the representation of Sym(n) induced by the trivial repre-
sentation on Sym(2) ! Sym(k) is also well-known.

LeMMA 4.3 ([7, Chapter 12]). For integers n and k with n > 2k,

indSym(n)(:lSym(Q)ZSym(k)) = Z ®2x-
Ak
Our plan is to use the Young subgroup to form the quotient graphs. The eigenvalues
of the quotient graphs belong to the modules that are in both decompositions in
Theorem 4.2 and Lemma 4.3.

THEOREM 4.4. Assume that Sym(n) acts on the set Q, and that A is the adjacency
matriz for an orbital of the action of Sym(n) on Q. Let A - n and 7 be the orbit
partition from the action of Sym(X) on Q. If n is an eigenvalue of the quotient graph
A/z, then n is an eigenvalue of A. Moreover, n belongs to some Sym(n)-module
represented by the partition p where p > X in the dominance ordering.

Proof. Let m be the orbit partition of Sym(\) acting on €. Assume that v/ is an
eigenvector of the quotient graph A/m with eigenvalue 1. The vector v/ can be lifted
to an n-eigenvector of A, which we denote by v.

The group Sym(n) and Sym(A) both act on € and thus also act on the vector v
by permuting the entries. Since the entries of v are constant on the orbits of Sym(\),
the vector v is unchanged by the action of Sym()\). Define a vector space W to be
the span of the vector v, so Sym(\) fixes every element in W.
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Set V. = @ csymn) oW Then V is isomorphic to the module for the induced
representation indgyy,n) (Isym(n)) = &x + Z/D)\ K, )¢, Clearly the vector v € V and
since v is an n-eigenvector there is a © > A so that the y-module is a subspace of the
n-eigenspace. O

EXAMPLE 4.5. Consider the matrix Apy_44 in the perfect matching association
scheme. Note that in the graph corresponding to this matrix, two perfect match-
ings are adjacent if their union forms a 4-cycle and a (2k — 4)-cycle. The following
matrix is the quotient graph corresponding to the group Sym(2k—2) x Sym(2). Denote
this quotient graph by A(X[ar—4,4)/7([2k — 2,2]) (in this notation the first integer
partition is the class in the perfect matching association scheme, the second partition
is the Young subgroup used to form the partition of the vertices in the graph).

0 ‘ k(k — 1)(2k — 6)!!
A(Xjop—1,0))/[2k — 2,2] = ‘lk(gk 3)(2k — 6)!!
L _ —6)!

3k(2k — 6)!!

For the matrix A(X[2x—4,4))/7([2k — 2,2]) the all-ones vector 1 is an eigenvector
corresponding to the largest eigenvalue, k(k — 1)(2k — 6)!!. This eigenvalue is actually
the degree of A[2;_4.4), and by Theorem 4.4, this eigenvalue corresponds to the [2k]-
module in the character table. It is well-known that the trace of a matrix is equal
to the sum of its eigenvalues, so by subtracting the degree from the trace, we find
the second eigenvalue of this matrix which is —3k(2k — 6)!!. Using Theorem 4.4, and
noting that the degree eigenvalue belongs to the [2k]-module, it is easy to deduce that
the second eigenvalue belongs to the [2k — 2, 2]-module.

The quotient graph of Ajp;_44 With the orbit partition formed by the action of
the group Sym(2k — 4) x Sym(4) on the perfect matchings is the following

2(2k — 6)!! (2k — 4)!! (k—1)(k —2)(2k — 6)!!
1(2k —6)! 1(5k — 2)(2k — 6)!! 1(2k% — Tk +1)(2k — 6)!!
3(k—1)(2k — 8)1|3(2k? — Tk + 1)(2k — 8)11| (2> — 14k* + 3k — 2)(2k — 8)!!

Denote this matrix by A(X{ox—4,4)/7([2k — 4,4]). This matrix yields the eigenval-
ues of App_4.4) belonging to the modules [2k], [2k — 2,2], and [2k — 4,4]. From
the matrix A(X{ax—4,4))/7([2k — 2,2]) we already have two eigenvalues of the matrix
A(X(2k—4,41)/7([2k — 4,4]), those corresponding to the modules [2k] and [2k — 2, 2].
Hence by subtracting these two eigenvalues from the trace, we find a third eigen-
value of A[j_4 4], the one corresponding to the module [2k — 4,4], and it is equal to
2(7k — 15)(2k — 8)I.

By finding several quotient graphs for the classes [2k], [2k — 2, 2], [2k — 4, 4], and
[2k — 6,6] in the perfect matching association scheme, we construct a portion of
the character table for the association scheme on the perfect matchings for Ko for
any k > 6. By using Theorem 4.4 and the dominance ordering recursively to define
the quotient graphs of each class in this association scheme, we can determine the
eigenvalues that belong to some of the modules in the character table. These results
are recorded in Table 1.

We prove another result beyond Theorem 4.4 that will be used later in this work.
For a set S C {1,...,2k} of size four, consider the set of all perfect matchings that
include two edges e and €’ such that e and ¢’ form a set partition of S. This set
is the first part in the equitable partition formed by the action of Sym([2k — 4,4])
on the perfect matchings given in Example 4.5. For example, if S = {1,2,3,4} the
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characteristic vector of this set is

W{1,2,3,4} = Y{1,2},{3,4} T V{1,3},{2,4} T V{1,4},{2,3}-

In the next theorem we use wg to denote the characteristic vector for the set of perfect
matchings in which an arbitrary 4-set S is contained in only 2 edges.

THEOREM 4.6. The set {wg|S C {1,2,...,2k} with |S| = 4} is a spanning set for
the Sym(2k) module span{[2k], [2k — 2,2], [2k — 4,4]}.

Proof. Consider the quotient matrix A(Xg,—_4,4])/7([2k — 4,4]) formed by the action
of Sym([2k — 4,4]) on the perfect matchings (this matrix is given in Example 4.5).
The first part in the equitable partition is the set of all perfect matchings for which a
fixed set of size S four is contained in only two edges (that is, S is the 4-set stabilized
by Sym([2k — 4,4])).

The matrix A(X(ox—4,4))/7([2k —4,4]) is a 3 x 3-matrix that is diagonalizable. This
implies the vector (1,0, 0) can be expressed as a linear combination of the eigenvectors
of the quotient matrix. Further, each of the eigenvectors of the quotient matrix can
be lifted to be an eigenvector for the adjacency matrix. By Theorem 4.4, these lifted
vectors are the eigenvectors belonging to the [2k], [2k — 2,2] and [2k — 4, 4] modules
of Sym(2k).

Using the same linear combination to produce the vector (1,0, 0) from the eigenvec-
tors of the quotient matrix, wg is a linear combination of eigenvectors for the modules
[2k], [2k — 2,2] and [2k — 4, 4] (indeed wg is the vector formed by lifting (1,0,0)). So
we conclude for any subset S of size four, the vector wg is in the span of the [2k],
[2k — 2,2] and [2k — 4, 4] modules.

Finally, we show that the dimension of the span of wg where S is taken over all 4-
subsets of {1,2,...,2k} is equal to the dimension of the span of the [2k], [2k—2, 2] and
[2k — 4,4] modules. Define N to be the matrix with the rows indexed by the perfect
matchings of Ky, and the columns by the 4-subsets S C {1,2,...,2k}, with each
column the vector wg. The entries of NTN depend only the size of the intersection
of the 4-subsets, so it can be written as a linear combination of the matrices in the
Johnson scheme J(2k,4). In particular

NTN = (2k — )T + (2k — )T (2k, 4, 2) + 9(2k — 9)1.J(2k, 4, 0).

Here, J(2k,4,1i) is the adjacency matrix of the graph in which vertices are the 4-
subsets of a set of size 2k; and two vertices are adjacent if their intersection is of
size 4 — i. The eigenvalues of the Johnson scheme are well-known and can be used to
calculate the eigenvalues of NTN. It is straight-forward to see that 0 is an eigenvalue
with multiplicity 2k — 1 + (24k) — (23k). This implies the rank of N7 N, and hence the
rank of N, equals the dimension of [2k], [2k — 2, 2] and [2k — 4, 4] modules. Thus the
set {wg | S C{1,...,2k} with |S| = 4} is a spanning set. O

4.2. THE DEGREES OF THE IRREDUCIBLE MODULES OF Sym(n). In this subsection
we review some results on the dimension of the irreducible modules of Sym(2k). Later
we use these results to prove Theorem 4.11.

Let A = [A1, A2, ..., \¢] be an integer partition of 2k, the dimension of the A module
will be denoted by m(\). The dual partition \* to the partition \ is the partition with
the Young diagram that is the reflection of the Young diagram of A. The degree of
a partition and its dual is the same; hence m()\) = m(\*). A partition A is called
primary if A > A* in the dominance ordering (see [15] for more details).
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THEOREM 4.7 ([15, p. 151]). Let X = [A1, A2, ..., \¢] be an integer partition of 2k in
which A\ > k. Then,

m([A1, 2k — A1]) < m(A).

The next result follows from a straight-forward application of the hook length
formula.

LEMMA 4.8 ([7, Section 12.6]). Let n > 2k, then

m([n — k, k]) = <Z) - (kf 1).

The next result is a general bound on the degree of a representation in which the
first part of the corresponding integer partition is considered small.

THEOREM 4.9 ([15, p. 163]). Let A be a primary partition of n for which the first part
A1 < [5]. Then m(X\) = F(n), where

Fn) = n-Fn—1)(m+2) ifn=2m+1 is odd,
)2-F(n—1) if n is even,

with F(0) = 2. In particular, for n > 8,

3

§~F(n71) <Fn)<2-Fln-1).
4.3. LEAST EIGENVALUE OF WEIGHTED ADJACENCY MATRIX. In this subsection, our
goal is to show that the set of perfect matchings with two fixed edges is a maximum
coclique in Ms(2k). To address this, we determine an appropriate set of coefficients
agy so that

(1) M = Zaz)\AQ,\
AFE

is a weighted adjacency matrix of My (2k) with row sum (2k —1)(2k —3) — 1 and the
least eigenvalue —1. This proves that the ratio bound
V(X)) (2k — 1!
al(X) = = — = (2k =51l

1—d  ]_ G=DEk=3)-1
T —1

holds with equality for My(2k). To be a weighted adjacency matrix of My(2k), we
need that asy = 0 whenever A\ has 2 or more ones. Further, the eigenvalue of M
corresponding to the p-module is &* = Y, a2x&hy, where &5, is the eigenvalue of
Aoy belonging to the u-module.

THEOREM 4.10. For 3 < k <9, there exists a weighted adjacency matriz of the graph
M5 (2k) for which the degree and the least eigenvalue are (2k —1)(2k—3) —1 and —1,
respectively.

Proof. For k = 3,4,5, define the matrices Mg = A[g) + A[4,2, Mg = iA[g] + %A[Gyz] +
%A[474], and My = %A[IO] + %A[g)g] + %A[4)4,2]. The matrices MG, Mg, and M, are
the desired weighted adjacency matrices for the graphs My (6), M3(8), and M»(10),
respectively.

As we see in Table 2, the row sum and the least eigenvalue of Mg are (2k —1)(2k —
3) — 1 and —1. Similarly, using the character tables for £ = 3 and k = 5 [14, 16],
we find the eigenvalues of the matrices Mg and Mjg and verify that the ratio bound
holds with equality.
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Ay | A2 | Ay | Apz2) | Ap2.2.2]
X[8] 48 32 12 12 1
X[6,2] -8 4 -2 5 1
X[4,4) 2| 8| 7 P 1
X[4,2,2] 4 -2 -2 -1 1
X[2,2,2,2] —6 8 3 —6 1

TABLE 2. Character table for 2k = 8

For k = 6, Theorem 3.4 proves that equality holds in the ratio bound. For 7 <
k < 9, we have the complete character table for the perfect matching association
scheme. So we can express the eigenvalues of M =3, , asxA2y as a system of linear
equations. The objective is to maximize the value of the greatest eigenvalue (this is the
row sum, so the eigenvalue belonging to the [2k] module) while fixing the eigenvalues
corresponding to the modules [2k — 2,2], [2k — 4, 4], and [2k — 4,2,2] to be —1, and
having all other eigenvalues strictly greater than —1. The Gurobi Optimizer [10] is
then used to find solutions for these system of inequalities. As such we determined
the desired weighted adjacency matrices as follows:

Mz = @A[l“] + %A[&G,Z] + @A[4,4,4,2],
Ms = cosAan) + 52 Ao + 155 Alasal,
1 1 1
9= 80640 08 T T3qa0 /882t Jggp 042

To find the set of coefficients for k£ > 10, we consider linear combinations of the

form
My = ar Ay + a2 Apak—2,2) + asApp—4,4)-

To find the values of a;,as and ag for k£ > 10, we use the eigenvalues in the partial
character table in Table 1 to produce a corresponding linear system. For this system,
there is one equation for each of the eigenvalues that correspond to the irreducible
modules [2k—2,2], [2k—4, 4], and [2k—4, 2, 2], which are equated to —1. The rationale
for choosing these modules is that they, along with [2k], are the modules that are in
both the deCOHlpOSitiOIl of indSym(n)(1Sym([2k74,2,2])) and indSym(n)(1Sym(2)ZSym(k))-
Observe Sym([2k — 4, 2, 2]) is the group that stabilizes the set of all perfect matchings
which include a fixed pair of edges.

Using the results in Subsection 4.1, this linear system becomes:

—(2k —4)lay + (kK —2)(2k —6)llag —  k(k — 3)(2k — 8)lag = —1,
—(2k — 6)llay — (5k — 12)(2k — 8)!lag + 3(Tk — 15)(2k — 8)!lag = —1,
2(2k — 6)lay — (2k — 6)lag — 2(2k — 6)!lag = —1.
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Solving this system, we obtain the coefficients a; = m, and ap = ag =
m. Note that for k£ > 4, the determinant of the coefficient matrix corresponding

to the aforementioned linear system is nonzero, so the values a;, ap, and ag are
unique. This can be easily checked by using any basic mathematical software.

THEOREM 4.11. For k > 10, let M = alA[%] + azA[gk_gg] + a3A[2k_474] where a; =
m, and ag = ag = m Then the row sum and the least eigenvalue of the
matriz M are (2k — 1)(2k — 3) — 1 and —1, respectively. Moreover, the only modules

with eigenvalue equal to -1 are [2k — 2,2], [2k — 4,4] and [2k — 4,2,2].

Proof. For 10 < k < 14, similar to the proof of Theorem 4.10, by utilizing the complete
character tables of the perfect matching association scheme [14, 16] we can find all
the eigenvalues of the matrix M, and we see that the ratio bound holds with equality.

For the remainder of the proof assume that & > 15. Reviewing the linear system
of equations, it follows that —1 is an eigenvalue of M (corresponding to the modules
[2k — 2], [2k — 4,4], and [2k — 4,2,2]). Denote the row sum by djs; this is the lin-
ear combination of the degrees for matrices Ajgr), Agr—2,2), and Ajgr_4 4); say dpax),
djok—2,2], and d[aj_4,4). For the coefficients a;, az, and az, we calculate

dy = ardpr) + azdpp—2,2) + azdar_4,4]
2k =211 k(2k -4 k(k—1)(2k —6)!!
TARk—6) T (2k—o6) (2k — 6)11
= (2k —1)(2k —3) — 1.

Finally, we need to prove that all other eigenvalues of the matrix M are strictly
greater than —1. Let {dgvl]), —1(m1) _1(m2) _1(ms) 95{"4), ey 9,8”’“)} be the spectrum
of the matrix M, where the values m; represent the multiplicity of the eigenvalues.
By Lemma 4.8, and the hook length formula [7, Section 12.6] we have,

2k(2k — 3)
my=——p—",
o 2k(2k = 1)(2k — 2)(2k = 7)
2 — 4! )
 2k(2k — 1)(2k — 4)(2k — 5)
ms = 12 .

As we defined, M = aj Ajg) + azAppxr—2,2 +asA[2r—4,4), the entry on the diagonal
of the matrix M? is

M?[i,i] = a1*dpy) + az’dpr—2.9) + as’djor—4.4]
@k =21 k@k—4) (k- 1)(2k — 6)!
= 7t 7t 2
@2k —6)1)2 | ((2k—6)1) (2% — 6)11)
13K — 23k + 2
42k —6)!

It is well-known that the trace of any matrix is equal to the sum of its eigenvalues.
Hence we have that the trace of M? is

13k% — 23k + 2 k
<4(2k_6)”> (2k — D = d; +my +mg +ma + > mib?.

=4
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From the equation above, we obtain the following inequality for any eigenvalue 6;
of M,

(2k—1)! [13k2—23k+2 191 79 1
2) 16;] < — | 18K4 — T4k + ——k2 — —k+4 )/ —.
(2) 16:] \/(2k—6)!! 4 8 Tk 2 F g "t m;

To finish the proof, it is sufficient to prove that the term in the right-hand side of
the above inequality is strictly less than 1; or equivalently

(26— )N (13k% — 23k + 2 . s 191 , 79
(3) mi > e 1 18K = TAK® + ==k — k4.

Let the partition A; = [Ai;, Aiy, ..., N, where A;; > A, > -+ = \;,. Then there
are 3 cases:

CASE 1. Assume that \;, > k.

First, consider the module [2k — 6, 6]. Using the linear combination of the eigen-
values of the matrices Ajgy), Apx—2,2, and Apg_44 corresponding to the module
[2k — 6, 6] it follows that the eigenvalue of M belonging to [2k — 6, 6] is

—6(2k — 12)11

2
@ o) (8k* — 65k 4 130) .

This eigenvalue is greater than —1 for & > 15 (this can be checked with a mathematical
software).

Second, consider the modules [2k—6, 4, 2] and [2k—6, 2, 2, 2]. Using the hook length
formula [7, Section 12.6], we calculate the dimensions Mok —6,4,2] and Map_¢ 2.2 2]-
If, in the right hand side of (3), we approximate the term (2k — 6)!! with (2k — 7)!l,
then the inequality holds for mg_g 4,9) With k& > 37, and for maj,_¢ 2 2,29 for k > 63.
Using Maple for the values of ma),_¢ 4,9 for 15 < k < 36, and for and for m;_62,2,2)
with 15 < k < 62, observe that (3) holds for these two modules.

Next consider the module [2k — 8,8]. By Lemma 4.8 the multiplicity of the
corresponding eigenvalue is

(2k)(2k — 1)(2k — 2)(2k — 3)(2k — 4)(2k — 5)(2k — 6)(2k — 15)
8!

Thus, if in the right hand side of (3), we approximate the term (2k — 6)!! with
(2k — 7)1, then the inequality holds for all k& > 20. Using Maple for the values
15 < k < 19, we have that (3) holds for this module.

Finally, using Theorem 4.7 and Lemma 4.8, for all modules with \;; > k and
Ai;, < 2k — 8, the multiplicity m; is greater than the multiplicity for the module
[2k — 8,8]. Thus (3) holds for all remaining modules with A;; > k.

CASE 2. Assume that A\;, < k and JA; is primary.
Using Theorem 4.9 for 2k > 8, we have

(4) m(\) = F(2k) = 2F(2k — 1) > (2) (;’) F(2k—2) > > 2(3%).

Approximating the term (2k — 6)!! with (2k — 7)!!, in (2), for k& > 15 we have

104k5 — 724k* + 1738k3 + 595k — 46 - 104k5 <
4m; 8(3k)

07 <
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The term (—724k* + 1738k + 595k — 46) is always negative for & > 3, this along
with (4) proves the strict inequality above.

CASE 3. Assume that A\;;, < k and A; is not primary.
We know that the degrees of a partition and its dual are the same, so m(A) = m(A*).

Let A* = (A}, A3, ..., A}). Since A is an even partition, then A} = A5 = f. Since \; is
not primary, A* > A. This means that A\* is primary. If f > k, then \* = [k, k] which
is covered in Case 1. If f < k, this is covered by Case 2. d

Recall that a canonical 2-intersecting set of perfect matchings is the set of all perfect
matchings that contain the edges e; and es. The size of a canonical 2-intersecting set
is (2k —5)!!. Theorems 4.10 and 4.11, along with the ratio bound (Theorem 2.1), show
that the size of a 2-intersecting set of perfect matchings is no larger than (2k — 5)!1.
The ratio bound further implies that if S is a maximum 2-intersecting set and vg is
the characteristic vector of S, then vg — ml is a —1-eigenvector for My (2k).
Since the only irreducible representations of Sym(2k) that afford —1 as an eigenvalue
are [2k — 2,2], [2k — 4,4], and [2k — 4, 2, 2], this implies that vg is in span{[2k], [2k —
2,2],[2k — 4,4],[2k — 4,2,2]}. The next result gives a more convenient spanning set
for this space. Define v, ., to be the characteristic vector of all perfect matchings
with the (disjoint) edges e; and es.

THEOREM 4.12. For k > 4, let
V(2k) = span{ve, ¢, | €1, €2 edges in Koy}

and

W (2k) = span{[2k], [2k — 2, 2], [2k — 4, 4], [2k — 4,2, 2]}.
Then W (2k) = V(2k).
Proof. Using the ratio bound for the weighted adjacency matrices given in Theo-
rems 4.10 and 4.11, we see that the size of a maximum coclique in M(2k) is (2k—5)!!,
so all perfect matchings which have two fixed edges, say e; and ez, form a maximum
coclique. Thus, by Theorem 2.1, v, ¢, — gz%i’g::l is an eigenvector for the least eigen-
value. The least eigenvalue is —1 and only the modules [2k — 2,2], [2k — 4, 4], and
[2k — 4,2,2] have —1 as their eigenvalues. So ve, ., € W(2k), and V(2k) C W (2k).

Denote the dimensions of the sets W (2k) and V(2k), by Dw (2k) and Dy (2k).
Then, by Lemma 4.8, and more generally the hook length formula

Dw(2k) =1+ <2k) _ <2k> i (2k> B <2k> L (2R)(2k = 1)(2k =4)(2k =5)

2 1 4 3 12

For 4 < k < 11, using GAP [5], we note Dy (2k) = Dw (2k), thus V(2k) = W(2k).
For k£ > 11, we prove the same result by induction.

By summing all vectors in V' (2k+2), we obtain a multiple of the all ones vectors, so
the module [2k + 2] is contained in V' (2k + 2). Similarly, by summing all vectors with
a fixed edge and subtracting an appropriate multiple of the all ones vector, we see the
space V' (2k) contains the characteristic vector of the set of all perfect matchings that
contain a fixed edge. Thus V(2k + 2) includes the module [2k, 2] [8, Lemma 8.2].

For any set S C {1,2,...,2k + 2} of size four the characteristic vector of all the
perfect matchings in which the four elements of S appear as two independent edges
is in V(2k 4 2). By Theorem 4.6 these vectors are a spanning set for span{[2k +
2], [2k, 2], [2k — 2,4]}. Thus each of these modules is contained in V(2k).

Since the edges of Ko, are a subset of the edges form K2, the space V(2k + 2)
contains a subspace isomorphic to V(2k). By induction, the dimension of V' (2k) is

o1 (3)-(2) () () - oot
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This is a lower bound on the dimension of V' (2k + 2).
For k > 11,

Dy (2k) > D(12k + 2)) + D([2k, 2]) + D([2k — 2,4]).

We conclude that V' (2k + 2) must include some of the space [2k — 2,2, 2]. But since
these are irreducible G-modules and V' (2k + 2) is invariant over G, this implies all of
[2k — 2,2,2] is also contained in V(2k + 2). O

Putting these results together, we have our main result.

THEOREM 4.13. The size of the largest set of 2-intersecting perfect matchings in Koy,
with k > 3 is (2k — 5)!N. Further, if S is a set of 2-intersecting perfect matchings the
characteristic vector of S is a linear combination of the characteristic vectors of the
canonically 2-intersecting sets of perfect matchings.

5. FURTHER WORK

In this paper, we proved that the Erdés—Ko—Rado theorem holds for 2-intersecting
families of perfect matchings of the complete graph K. Our first open question is if
these approaches can be generalized to prove a version of the Erdés—Ko-Rado theorem
for the family of ¢-intersecting perfect matchings of the complete graph Ko, where
t > 27 This has been done for k sufficiently large relative to ¢ in [12]. In this work, it
is quite remarkable that we were able to find a weighted adjacency matrix for Ms(2k)
for which the ratio bound holds with equality that only uses three of the classes of the
association scheme. It is an open question if a comparably simple weighted adjacency
matrix would exist for larger values of t.

Our next question is, if we can characterize the largest set of t-intersecting perfect
matchings for graphs other than the complete graph? In the special case that the
graph is the complete bipartite graph K, ,, each perfect matching corresponds to a
permutation. The set of intersecting permutations has been well-studied and versions
of the EKR theorem hold [2, 3]. It would be interesting to consider other bipar-
tite graphs, such as the hypercube, although just enumerating the perfect matchings
maybe quite difficult.

Finally, while we were working on computing various entries of the character table
of the perfect matching association scheme, we observed some interesting patterns for
the values in the table. There are conjectures and some results about signs and values
of the eigenvalues in the association scheme for the permutations, see [11]. We suspect
that there are similar results for the eigenvalues in the perfect matching scheme. For
example, we make the following related interesting conjecture.

CONJECTURE 5.1. Consider the character table of the perfect matching association
scheme for 2k. The greatest eigenvalue in the row corresponding to the module [2k —
20,20] is the one that corresponds to the same class of the scheme, [2k — 2¢,2¢]. In
addition, in the same row all the eigenvalues corresponding to the classes which are
greater than [2k — 2¢,2/) (in the dominance ordering) are negative.

APPENDIX A. THE ADJACENCY MATRICES OF SOME QUOTIENT GRAPHS
IN THE PERFECT MATCHING ASSOCIATION SCHEME

THE ADJACENCY MATRICES OF THE QUOTIENT GRAPHS CORRESPONDING TO THE
GROUP Sym(2k — 2) x Sym(2).

THE ADJACENCY MATRICES OF THE QUOTIENT GRAPHS CORRESPONDING TO THE
GROUP Sym(2k — 4) x Sym(4).
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0 (2k — 2)\!

(2k — )l

(2k — 3)(2k — 4)!

TABLE 3. The adjacency matrix of Xjgz)/[2k — 2, 2]

(2k — 4)11

(k — 1)(2k — )

3(2k — 4!t

$(2k—1)(2k—4)!!

TABLE 4. The adjacency matrix of Xjg,_o 2]/[2k — 2,2]

(2k)!!
0 6(2k—6)

(2k) (2k—4)!! (2k) (2k—3) (2k—4)!!
6(2k—6) 6(2k—6)

TABLE 5. The adjacency matrix of Xjo,_¢6)/[2k — 2,2]

0 A(2k — 4)!! (2k — 6)(2k — 4)!!
2(2k — 6)!! 2(5k —12)(2k — 6)!! | (2k — 6)(2k — 5)(2k — 6)!!
3(2k — 6)!! 6(2k — 5)(2k — 6)!! (2k — 7)(2k — 5)(2k — 6)!!

TABLE 6. The adjacency matrix of Xjo/[2k — 4, 4]

0 4(2k — 4)!! (k — 4)(2k — 4)!!

2(2k — 6)!! (Tk — 18)(2k — 6)!! (2k2 — 11k + 16)(2k — 6)!!

3(k — 4)(2k — 8)!!

6(2k2—11k+16)(2k—8)!!

(2k2 — 9k 4 12)(2k —
7)(2k — 8)!!

TABLE 7. The adjacency matrix of Xjg,_s 2)/[2k — 4, 4]

THE ADJACENCY MATRICES OF THE QUOTIENT GRAPHS CORRESPONDING TO THE

GROUP Sym(2k — 6) x Sym(6).

THE ADJACENCY MATRICES OF THE QUOTIENT GRAPHS CORRESPONDING TO THE

GROUP Sym(2k — 6) x Sym(6).
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0 24(2k — 6)!! 12(2k — 8)(2k — 6)!! | (2k—8)(2k—10)(2k—6)!!
2(13k — 45)(2k — (2k — 7)(2k — 8)(2k —
—_ &\ —_ — &\
8(2k — 8)!1 | 8(8k — 27)(2k — 8)!! 8)(2k — 8! 10)(2k — )1
4(Tk — 30)(2k — 7)(2k — | (2k — 7)(2k — 9)(2k —
—_\ — —8&\!
12(2k—8)!1| 6(13k —45)(2k—8)!! )l 10)(2k — )1
15(2k — 7)(2k — 9)(2k — | (2k — 7)(2k — 9)(2k —
—_\N — — 8\
15(2k —8)!1 | 45(2k — 7)(2k — 8)!! )l 11)(2k — )1
TABLE 8. The adjacency matrix of Xjaz)/[2k — 6, 6]
0 24(2k — 6)!! 6(3k — 14)(2k — 6)!! | (k—5)(2k —12)(2k —6)!!
2 3 2
o B o (34K% — 274k + 2(2k3 — 27k 4+ 123k —
8(2k — 8)!! | 4(13k—48)(2k—8)!! 564)(2k — 8! 190)(2k — 8)1
6(3k - 2 3 2 4 3 2
14) (2% — 6(17k% — 137k + 2(32k% — 390k2 + (8k* — 136k> + 886k% —
10)! 282)(2k — 10)!! | 1627k — 2334)(2k — 10)!! | 2642k + 3060)(2k — 10)!!
15(k - 2 3 2 4 3 2
6)(2k — 45(2k* — 17k + | 15(4k3 — 48k 4 203k — | (8" — 132k + 838k? —
10)1! 38)(2k — 10)!! 306)(2k — 10)!! 2487k +2970)(2k — 10)!!
TABLE 9. The adjacency matrix of X|g,_2 2]/[2k — 6, 6]
0 12(2k — 6)!! 3(2k — 8)(2k — 6)!! | (k? — Tk + 12)(2k — 6)!!
13k% — 79k + 108)(2k — |  (2k® — 21k? + 65k —
—_\ — 6! (
4(2k — 8)!! 10(2k — 6)!! )1 52)(2k — )1
302k — 81 3(13k% — 79k + | (28k® — 274k 4+ 792k — | (4k* — 60k3 + 311k% —
T 108)(2k — 10)!! 576)(2k — 10)!! 609k + 276)(2k — 10)!!
15(k2 - 5 4 3
Tk + 45(2k3 — 21k? + | 15(4k* — 60k + 311k2 — (8k 45_91153“1 ;7;?)22’“ B
_ _ — 12\ — " n
12%(22)13 65k —52)(2k — 12)!!| 609k + 276)(2k — 12)!! 1980) (2% — 12)1

TABLE 10. The adjacency matrix of X{ox_4 4/[2k — 6, 6]
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8(2k — 8)!! 4(2k — 6)!! 202k —2)(2k — 6)!! | 2(k? — 6k +2)(2k — 6)!!
413 3812 4 927

S(2k — &)1 | (32k — 4)(2k — )1 | (2082 10k ay(2k—g)| (3F é)(skk_g)'fk
22)((2212__ (26k2 — 116k + (k% — 164K + | (5K* — 1285 + 550K2 —
10)! 12)(2k — 10)!! LBk —12)(2k — 10)1 | 838k + 4)(2k — 10)!!

10(k% — 167.5 4
1655 _ 104k +
26];]:_ 9 iO(k?) _2§k21—; n 402(£4 y 1§k3 i ¥k2”_ 2(238%1]63 — 2486k2 +
- —1)(2k —12)11 | 299% 4 3y(2k — 12)1!
)1(2)!! i ) 2 R)k =12 920k — 20)(2k — 12)!!
TABLE 11. The adjacency matrix of X[o,_¢¢)/[2k — 6, 6]
0 0 0 0 42k — ) [ (2k—6)(2k—4)!!
42k — | (2k—5)(2k —
—_ AN — 6\
0 0 (26 =D |22k | o e | 62k - )1
42k — | (2k—5)(2k —
— 4\ — 6\

0 (2k — 4)! 0 22k =" | 501 6 | 6)(2k - o)
0 2k — N | (2K — 4)! 0 2(2k — )11 |(2k—6)(2k—4)!!
ol (k- (2k — o 6k — | (2k—5)(2k -
k=6 5 ok — oy | syk -y | ZFON Tiyor—em| 6)@k -6
R ) (2k — Lo | 4k | (2k—5)(2k -
(k=6 5 ok — oyt | )2k — o) | 2N T syon 6| 72k — o)

TABLE 12. The adjacency matrix of Xoy/[2k — 4,2, 2]
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0 (2k — 4)! (2k — 4)! 0 2(2k — 4)!! (k —4)(2k — 4)!
2k —6)1 | (2k —5)(2k — 6)11 | (k —3)(2k — 6)! k-GN | 22k—5)2k—6) | 2K~ :Mm 16)(2k —
(2k —6)!! | (k—3)(2k —6)!! | (2k —5)(2k — 6)!! (2k — 6)!! 2(2k —5)(2k—6)!! (2% :Mvﬁ 16)(2k —

0 1(2k — ) 1(2k — ) 0 3(2k — 4)!! (k —4)(2k — 4)!
$(2k —6)! | £(2k—5)(2k—6)!! | $(2k—5)(2k—6)!! 3(2k —6)! (5k —13)(2k —6)!! (2 — :MVL_M 16)(2k —
It I el [ S KT o

TABLE 13. The adjacency matrix of X{op_22/[2k —4,2,2]
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S +_M%wa\% —42) (T +34L— %\_N_m ii(8 = 42)(1 =) Lﬁ:i?&% &@:iT%%
&@:iT%% 11(9 — 42) (T — 48) 7 19— %) | 10— 42) (1 —42)¥ | 1i(9—42)(1 —42)}
ii(e —12) ii(v — 4e) ¢ (9 — *z) iy —4e)t iy —4e)¥
é@QiT%% 1i(9 — 42) (1 — 2) ii(9 —42) 0 ii(9 — 4203
ﬁxiﬁm% ii(9 — 42)(1 — 4z) ii(9 —42)% ii(9 — ¥2)4§ 0
iz — ¥2) (¥ — 42) ii(9 — ¥2)z 0 0
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