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The Hopf structure of symmetric group
characters as symmetric functions

Rosa Orellana & Mike Zabrocki

Abstract In [23] the authors introduced inhomogeneous bases of the ring of symmetric func-
tions. The elements in these bases have the property that they evaluate to characters of sym-
metric groups. In this article we develop further properties of these bases by proving product
and coproduct formulae. In addition, we give the transition coefficients between the elementary
symmetric functions and the irreducible character basis.

1. Introduction
In [23], the authors introduced a basis of the symmetric functions {s̃λ} that special-
ize to the characters of the irreducible modules of the symmetric group when the
symmetric group Sn is embedded in GLn as permutation matrices. This basis pro-
vides a new perspective on the representation theory of the symmetric group which is
not well understood. In addition, several outstanding open problems in combinatorial
representation theory are encoded in the linear algebra related to this basis.

One such problem is the restriction problem [7, 15, 17, 22, 27, 28]. Since Sn can
be viewed as a subgroup of GLn via the embedding using permutation matrices, it
follows that any irreducible polynomial module of GLn, with character given by the
Schur function sλ, is a representation of Sn via this restriction. Thus, the transition
coefficients, rλ,µ, between the Schur basis {sλ} and the irreducible character basis {s̃µ}
encode the decomposition of a polynomial, irreducible GLn-module into symmetric
group irreducibles, i.e.

sλ =
∑
µ

rλ,µs̃µ.

In addition, we have shown in [23] that the structure coefficient of the {s̃λ} basis
are the reduced (or stable) Kronecker coefficients, ḡγα,β [2, 3, 4, 5, 6, 10, 19, 20, 21].
The history of these problems indicates that they are difficult and are unlikely to be
resolved in a single step. In order to make further progress, we need to develop some
of the properties of character bases so that they can be treated as familiar objects in
the ring of symmetric functions.

The combinatorics related to the irreducible character basis involves multiset par-
titions and multiset tableaux. Developing analogues of the notion of ‘lattice’ that
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exists for words and column strict tableaux would likely help find a combinatorial
interpretations for

(1) the transition coefficients, rλ,µ, from the Schur function sλ to the irreducible
character basis; and

(2) the structure coefficients of the irreducible character basis, ḡγα,β .

The Hopf algebra structure that we develop here lays out the combinatorics and
indicates that a combinatorial interpretation for the stable Kronecker and restriction
problems may exist using operations on multiset tableaux.

In order to develop symmetric function expressions for irreducible characters and
to develop their properties, the authors introduced in [23] an intermediate basis h̃λ
which represent the characters of the trivial module in Sλ1×Sλ2×· · ·×Sλ`(λ) induced
to Sn. A third character basis, x̃λ, was introduced in [1] and it represents the character
of the module Sλ⊗S(n−|λ|) of S|λ|×Sn−|λ| induced to Sn, where Sλ is the irreducible
module indexed by λ and S(n−|λ|) is the trivial module. Assaf and Speyer used this
basis to show that the Schur expansion of the s̃λ basis is sign alternating in degree.
We show that the power sum expansion of all three of the character bases is given by
expanding them in terms of two analogues of the power sum basis, pλ and pλ (see
Equations (3)–(4)).

In [24] we gave combinatorial interpretations for some products involving the s̃λ
basis. The purpose of this paper is to further develop algebraic properties of the
character and related bases. The main results in this paper are product formulae for
the h̃λ, pλ and pλ bases; as well as coproduct formulae for the h̃λ, pλ, pλ, x̃λ and
s̃λ bases. The coproduct formulae correspond to restriction of characters from Sn to
Sr × Ss with r + s = n.

In [23] we provided a combinatorial interpretation for the transition coefficients
from the complete homogeneous basis to the s̃λ-basis in terms of multiset tableaux.
In representation theory, this is equivalent to computing the multiplicities when we
restrict the tensor product of symmetric tensors from GLn to Sn. In this paper, we
give a combinatorial interpretation for the expansion of the elementary basis in the
irreducible character basis. This corresponds to finding a combinatorial interpretation
of the multiplicities of the restriction of the antisymmetric tensor products from GLn
to Sn.

2. Notation and Preliminaries
The combinatorial objects that arise in our work are the classical building blocks: set,
multiset, partition, set partition, multiset partition, composition, weak composition,
tableau, words, etc. In this section we remind the reader about the definitions of these
objects as well as establish notation and usual conventions that we will use in this
paper.

A partition of a non-negative integer n is a weakly decreasing sequence λ =
(λ1, λ2, . . . , λ`) such that |λ| = λ1 + λ2 + · · · + λ` = n. We call n = |λ| the size
of λ. The λi’s are called the parts of the partition and the number of nonzero parts is
called the length and it is often denoted `(λ) = `. We use the notation λ ` n to mean
that λ is a partition of n. We reserve λ and µ exclusively for partitions. We denote by
mi(λ) the multiplicity of i in λ, that is, the number of times it occurs as a part in λ.
Another useful notation for a partition is the exponential notation where mi = mi(λ)
and λ = (1m12m2 · · · kmk). With this notation the number of permutations with cycle
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structure λ ` n is n!
zλ

where

(1) zλ =
λ1∏
i=1

mi(λ)!imi(λ).

The most common operation we use is that of adding a part of size n to the
beginning of a partition. This is denoted (n, λ). If n < λ1, this sequence will no
longer be an integer partition and we will have to interpret the object appropriately.
Similarly, if λ is non-empty, then let λ = (λ2, λ3, . . . , λ`(λ)).

For a partition λ the set {(i, j) : 1 6 i 6 λj , 1 6 j 6 `(λ)} are called the cells of λ
and we represent these cells as stacks of boxes in the first quadrant with the largest
part at the bottom following the ‘French notation’. This graphical representation of
the cells is called the Young diagram of λ. A tableau is a mapping from the set of cells
to a set of labels. A tableau will be represented by filling the boxes of the diagram
of a partition with the labels. In our case, we will encounter tableaux where only a
subset of the cells are mapped to a label. The content of a tableau is the multiset
obtained with the total number of occurrences of each number.

Amultiset is a collection of elements such that repetitions are allowed, multisets are
denoted by {{b1, b2, . . . , br}}. Multisets will also be represented by exponential notation
so that {{1a1 , 2a2 , . . . , `a`}} represents the multiset where the value i occurs ai times.

A set partition of a set S is a set of subsets {S1, S2, . . . , S`} with Si ⊆ S for
1 6 i 6 `, Si∩Sj = ∅ for 1 6 i < j 6 ` and S1∪S2∪· · ·∪S` = S. A multiset partition
π = {{S1, S2, . . . , S`}} of a multiset S is a similar construction to a set partition, but
now Si is a multiset, and it is possible that two multisets Si and Sj have non-empty
intersection (and may even be equal). The length of a multiset partition is the number
of non-empty multisets in the partition and it is denoted by `(π) = `. We will use the
notation π `̀ S to indicate that π is a multiset partition of the multiset S.

We will use m̃(π) to represent the partition of `(π) consisting of the multiplicities of
the multisets which occur in π (e.g. m̃({{{{1, 1, 2}}, {{1, 1, 2}}, {{1, 3}}}}) = (2, 1) because
{{1, 1, 2}} occurs 2 times and {{1, 3}} occurs 1 time).

For non-negative integers n and `, a composition of size n is an ordered sequence
of positive integers α = (α1, α2, . . . , α`) such that α1 + α2 + · · · + α` = n. A weak
composition is such a sequence with the condition that αi > 0 (zeros are allowed).
To indicate that α is a composition of n we will use the notation α |= n and to
indicate that α is a weak composition of n we will use the notation α |=w n. For both
compositions and weak compositions, `(α) := `.

2.1. The ring of symmetric functions. For some modern references on this sub-
ject see for example [16, 18, 25, 30]. The ring of symmetric functions will be denoted
Sym = Q[p1, p2, p3, . . .]. The pk are power sum generators and they will be thought
of as functions which can be evaluated at values when appropriate by making the
substitution pk → xk1 + xk2 + . . .+ xkn but they will be used algebraically in this ring
without reference to their variables. Thus the degree of each pk is k. It is well-known
that the monomials in the power sums pλ := pλ1pλ2 · · · pλ`(λ) where λ ` n span the
subspace of the symmetric functions of degree n.

For any symmetric function f ∈ Sym, f is a linear combination of the power sum
basis f =

∑
λ aλpλ, then for any expression E(x1, x2, x3, . . .) in the set of variables

x1, x2, x3, . . . (and potentially y1, y2, y3, . . . , z1, z2, z3, . . .) the notation f [E] will rep-
resent

f [E(x1, x2, x3, . . .)] =
∑
λ

aλ

`(λ)∏
i=1

E(xλi1 , x
λi
2 , x

λi
3 , . . .).
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The advantage of this notation is that if Xn = x1 + x2 + · · · + xn, then f [Xn] is
a symmetric polynomial in n variables since pk[Xn] = xk1 + xk2 + · · · + xkn is the
power sum symmetric polynomial. This notation is also practical because by defining
X = x1 +x2 + · · · , then f [X] is a symmetric series in the set of variables x1, x2, x3, . . .
such that if the variables xi = 0 for i > n, then the resulting expression is f [Xn]. For a
given alphabetX, set SymX to be the symmetric functions (or symmetric polynomials
if X is finite) in the variables X and SymX ' Sym as a graded Hopf algebra.

A Hopf algebra [32] is a vector space with both a product and a coproduct that form
a bialgebra structure along with some additional relations including the existence of
the map known as an antipode. Hopf algebras arise in many areas of mathematics,
but in algebraic combinatorics the symmetric functions as a graded bialgebra is one
of the prototypes for what is known as a ‘combinatorial Hopf algebra’ [13].

The symmetric functions have a Hopf structure on it, [13, Chapter 2], and the
coproduct operation can be encoded in operations of evaluating the symmetric func-
tion on sets of variables. The pk are primitive elements of Sym so that ∆(pk) =
pk ⊗ 1 + 1 ⊗ pk. Since pk[X + Y ] = pk[X] + pk[Y ], it follows that if we represent
the coproduct of f in Sweedler notation, ∆(f) =

∑
i f

(i) ⊗ f̃ (i), then it is possible to
derive,

f [X + Y ] =
∑
i

f (i)[X]f̃ (i)[Y ]

by linearity relations calculated on the power sum basis. We will calculate formulas
for the coproduct operation on the character bases in Section 4 and this symmetric
function notation will be helpful in our proofs since Sym⊗Sym ' SymX,Y as a graded
Hopf algebra.

The standard bases of Sym (each indexed by the set of partitions λ) are power
sum {pλ}λ, homogeneous/complete {hλ}λ, elementary {eλ}λ, monomial {mλ}λ, and
Schur {sλ}λ. The Hall inner product is defined by declaring that the power sum basis
is orthogonal, i.e.

〈
pλ
zλ
, pµ

〉
= δλµ, where we use the notation δλµ = 1 if λ = µ and

0 if λ 6= µ. Under this inner product the Schur functions are orthonormal and the
monomial and homogeneous functions are dual, i.e. 〈sλ, sµ〉 = 〈hλ,mµ〉 = δλµ. We
use this scalar product to represent values of coefficients by taking scalar products
with dual bases. In particular, an identity that we will repeatedly use

(2) f =
∑
λ

〈f, aλ〉 bλ

for any pair of bases {aλ}λ and {bλ}λ such that 〈aλ, bµ〉 = δλµ.
The scalar product on Sym naturally extends to a scalar product on SymX ,

Sym⊗ Sym and SymX,Y . The identities that we will use to calculate coproducts
on the character symmetric functions in Section 4 can be found in [18, Section 5,
p. 91–92].

We will also refer to the irreducible character of the symmetric group indexed by
the partition λ and evaluated at a permutation of cycle structure µ as the coefficient
〈sλ, pµ〉 = χλ(µ). For k > 0, define

Ξk := 1, e2πi/k, e4πi/k, . . . , e2(k−1)πi/k

as a symbol representing the eigenvalues of a permutation matrix of a k-cycle. Then
for any partition µ, let

Ξµ := Ξµ1 ,Ξµ2 , . . . ,Ξµ`(µ)

be the multiset of eigenvalues of a permutation matrix with cycle structure µ. We
will evaluate symmetric functions at these eigenvalues. The notation f [Ξµ] represents
taking the element f ∈ Sym and replacing pk in f with xk1 + xk2 + · · · + xk|µ| and
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then replacing the variables xi with the values in Ξµ. In particular, for r, k > 0,
pr[Ξk] = 0 unless either r = 0 (in which case the value is 1) or k divides r (in which
case pr[Ξk] = k).

From [23], a useful tool that we will repeatedly use to establish symmetric function
identities is the following proposition.

Proposition 2.1 ([23, Proposition 38] and [23, Corollary 40]). Let f, g ∈ Sym be
symmetric functions of degree less than or equal to some positive integer n. Assume
that

f [Ξγ ] = g[Ξγ ]
for all partitions γ such that |γ| 6 n (respectively, |γ| > n), then f = g as elements
of Sym.

2.2. Symmetric group characters as symmetric functions. In this section,
we will define five additional bases for the ring of symmetric functions and discuss
their connections to the characters of the symmetric group. Four of these appeared
in [23] and the fifth basis was introduced in [1].

The following expressions were developed from character polynomials and yield
two analogues of the power sum basis. For each i, r > 0, define

(3) pir = ir

1
i

∑
d|i

µ(i/d)pd


r

and pir =
r∑

k=0
(−1)r−k

(
r

k

)
pik

where (x)k = x(x − 1) · · · (x − k + 1) denotes the k-th falling factorial. Then if a
partition γ is expressed as γ = 1m1(γ)2m2(γ) · · · `m`(γ), we set

pγ :=
∏
i>1

pimi(γ) and pγ :=
∏
i>1

pimi(γ) .

Note that by Möbius inversion and Equation (3) we also have that

pir =
r∑

k=0

(
r

k

)
pik .

Now define three more bases,

(4) s̃λ =
∑
γ`|λ|

χλ(γ)pγ
zγ
, x̃λ =

∑
γ`|λ|

χλ(γ)
pγ
zγ

and h̃λ =
∑
γ`|λ|

〈hλ, pγ〉
pγ
zγ
.

We refer to the set of functions s̃λ as the irreducible character basis since s̃λ[Xn] are
symmetric polynomials which evaluate to the irreducible characters of the symmetric
group in the same way that Schur functions evaluate to the irreducible characters of
polynomial GLn modules. Speyer and Assaf [1] used the notation s†λ for s̃λ and called
them “stable Specht polynomials.” The foundations of these symmetric functions is
likely found in earlier work than that of Specht [29] on the representation theory
of the symmetric groups and go back to Frobenius [11] and Young [33]. We refer
to the set of functions x̃λ as the induced irreducible character basis since, for n >
|λ| + λ1, it encodes the character of the module Sλ ⊗ S(n−|λ|) ↑SnS|λ|×Sn−|λ| , where Sλ

is the irreducible module indexed by λ and S(n−|λ|) is the trivial module of Sn−|λ|.
As a symmetric function, x̃λ is a sum of irreducible character basis elements with
nonnegative coefficients. We refer to the set of functions h̃λ as the induced trivial
character basis since the h̃λ[Ξµ] are values of trivial characters induced from Young
subgroups Sλ1 × · · · × Sλr to the symmetric group Sn.

Theorem 14 and Equations (34) and (35) from [23] say that if λ is a partition
and n is an integer such that n > |λ| + λ1 and µ is a partition of n, then s̃λ[Ξµ] =
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χ(n−|λ|,λ)(µ). Proposition 16 and Lemma 15 of [23] says that h̃λ[Ξµ] =
〈
h(n−|λ|,λ), pµ

〉
if n > |λ| and 0 otherwise. It is well-known that 〈hµ, pγ〉 =

∑
λ`|µ|Kλµ 〈sλ, pγ〉,

where Kλµ are the Kostka coefficients. Then, it follows that h̃µ =
∑
λ`|µ|Kλµx̃λ and

x̃λ[Ξµ] =
〈
s(n−|λ|)sλ, pµ

〉
if n > |λ| and 0 otherwise.

As Assaf and Speyer [1, Proposition 5] point out, the x̃λ and s̃λ bases are related
by

(5) x̃λ =
∑
ν

s̃ν and s̃λ =
∑
ν

(−1)|λ/ν|x̃ν

where the sum on the left (resp. sum on the right) is over partitions ν contained in λ
such that λ/ν is a horizontal strip (resp. vertical strip). That is, if the Young diagram
for ν is drawn inside the Young diagram for λ, then there is at most one cell per
column (resp. row) in λ which is not in ν.

The s̃λ form a basis of the symmetric functions with the property that s̃λ[Xn] is a
symmetric polynomial (of inhomogeneous degree) that evaluates to the characters of
the irreducible symmetric group modules S(n−|λ|,λ). Then, the character symmetric
functions are a means of encoding the characters of families of symmetric group mod-
ules which are representation stable (a notion formalized in [9]). They are equivalent
to finitely generated FI-modules, a category introduced by Church, Ellenberg and
Farb in [8] to capture the fundamental properties of representation theory stability.

Let FI be the category with objects [n] := {1, 2, . . . , n} and whose morphisms
are injections [n] ↪→ [m]. An FI-module is a functor V from FI to the category of
C-modules. By evaluation at a set [n], the functor V realizes a family of Sn modules
V ([n]). The character basis is a way of encoding the character of this family as a
symmetric function.

In particular, Theorem 3.3.4 of [8] shows that that if V is a finitely generated
FI-module, then there a polynomial PV (X1, X2, . . .) such that the character of a
permutation σ (of a sufficiently large n) acting on the module V ([n]) is an evaluation
of PV . This implies by Proposition 12 of [23] that there is a corresponding symmetric
function fV such that if the permutation σ has cycle structure µ, then the character
of σ acting on V ([n]) is equal to fV [Ξµ].

Summarizing Theorem 3.3.4 appearing in [8] and how they apply to the irreducible
character basis, we have the following proposition.

Proposition 2.2. For every finitely generated FI-module V , there exists a positive
integer M and coefficients aλ if and only if for all n >M ,

V ([n]) '
⊕
λ

(S(n−|λ|,λ))⊕aλ

and
fV =

∑
λ

aλs̃λ

is a symmetric function such that fV [Ξµ] is the character of a permutation σ of cycle
structure µ ` n acting on V ([n]).

2.3. A scalar product on characters and the Frobenius map. In [24] we
introduced a scalar product on symmetric functions (coming from the usual scalar
product on irreducible characters of the symmetric group) for which the irreducible
character basis was orthogonal. This scalar product was useful in the application
presented in that paper because it allowed us to calculate an individual coefficient
of an irreducible character in an expression. In this section we develop some of the
properties of this scalar product further.
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For all n sufficiently large,∑
ν`n

s̃λ[Ξν ]s̃µ[Ξν ]
zν

=
∑
ν`n

χ(n−|λ|,λ)(ν)χ(n−|µ|,µ)(ν)
zν

= δλµ.

Now the right hand side of this expression is independent of n. Thus, for a sufficiently
large n and for any symmetric functions f and g, the expression

∑
ν`n

f [Ξν ]g[Ξν ]
zν

is
also independent of n by linearity since {s̃λ} is a basis.

Therefore we may define

(6) 〈f, g〉@ =
∑
ν`n

f [Ξν ]g[Ξν ]
zν

= 1
n!
∑
σ∈Sn

f [Ξcyc(σ)]g[Ξcyc(σ)].

for n > 2 max(deg(f),deg(g)) and where cyc(σ) is a partition representing the cycle
structure of σ ∈ Sn. We use the @-symbol as a subscript of the right angle bracket to
differentiate this scalar product from the usual scalar product where 〈sλ, sµ〉 = δλµ.

We can relate these scalar products by using the Frobenius map which is a linear
isomorphism from the class functions of the symmetric group to the ring of symmetric
functions. Since we know that characters of the symmetric group (and hence class
functions) can be expressed as symmetric functions, we can define the Frobenius map
or characteristic map on symmetric functions

(7) φn(f) =
∑
ν`n

f [Ξν ]pν
zν
.

We have that φn is a map from the ring of symmetric functions to the subspace
of symmetric functions of degree n. And φn has the property that for symmetric
functions f and g,

φn(fg) = φn(f) ∗ φn(g),
where ∗ denotes the Kronecker (or internal) product of symmetric functions. Since
h̃λ[Ξν ] =

〈
h|ν|−|λ|hλ, pν

〉
, x̃λ[Ξµ] =

〈
s(n−|λ|)sλ, pµ

〉
and s̃λ[Ξν ] = χ(|ν|−|λ|,λ)(ν) if

|ν| > |λ|+ λ1, then the image of s̃λ, x̃λ and h̃λ are
(8) φn(s̃λ) = s(n−|λ|,λ), φn(x̃λ) = s(n−|λ|)sλ and φn(h̃λ) = h(n−|λ|,λ).

This leads to the following proposition.

Proposition 2.3. If n > 2 max(deg(f),deg(g)), then
(9) 〈f, g〉@ = 〈φn(f), φn(g)〉 .

Proof. For partitions λ and µ, take an n which is sufficiently large (take n >
2 max(|λ|, |µ|)), then (n − |λ|, λ) and (n − |µ|, µ) are both partitions and this scalar
product can easily be computed on the irreducible character basis by

〈φn(s̃λ), φn(s̃µ)〉 =
〈
s(n−|λ|,λ), s(n−|µ|,µ)

〉
= δλµ = 〈s̃λ, s̃µ〉@ .

Since this calculation holds on a basis, Equation (9) holds for all symmetric functions
f and g by linearity. �

The s̃λ symmetric functions are the orthonormal basis with respect to the scalar
product 〈· , ·〉@. This basis is triangular with respect the Schur basis (s̃λ is equal to
sλ plus terms of lower degree) and hence it may be calculated using Gram–Schmidt
orthonormalization with respect to the @-scalar product.

Remark 2.4. Using the fact that s̃λ is an orthonormal basis and sλ =
∑
γ rλ,γ s̃γ

where rλ,γ are the multiplicities in the decomposition of a polynomial, irreducible
GLn-module into symmetric group irreducibles. We have that 〈sλ, sµ〉@ =

∑
γ rλ,γrµ,γ

which is a positive integer.
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The analogue pλ of power sums are orthogonal with respect to the @-scalar product
in the same way that the power sums are orthogonal with respect to the Hall scalar
product. By the definition, Equation (4),

(10) pλ =
∑
µ`|λ|

〈pλ, sµ〉 s̃µ.

Proposition 2.5. For all partitions λ and µ,
〈pλ,pµ〉@ = zλδλµ.

Proof. By Equation (10),

〈pλ,pµ〉@ =
∑
γ`|λ|

∑
ν`|µ|

〈pλ, sγ〉 〈pµ, sν〉 〈s̃γ , s̃ν〉@ =
∑
ν`|µ|

〈pλ, sν〉 〈pµ, sν〉 .

This expression is equal to 0 if |λ| is not equal to |µ|. If they are equal, the right hand
side is equal to 〈pλ, pµ〉 = zλδλµ. �

3. Products of character bases
In [23] we showed that the structure coefficients for the character basis s̃λ are the
reduced (or stable) Kronecker coefficients, ḡγα,β ,

s̃αs̃β =
∑
γ

ḡγα,β s̃γ .

One of the main motivations for introducing these bases and developing their proper-
ties is that it will hopefully lead to a combinatorial interpretation for these coefficients.

In [24] we studied several combinatorial formulae for coefficients of repeated prod-
ucts of character bases in terms of multiset tableaux satisfying a lattice condition. In
particular, we gave a combinatorial interpretation for the coefficient of s̃ν in products
of the form

s̃λ1 s̃λ2 · · · s̃λr s̃γ ,
where γ is any partition and λi’s are positive integers. Notice that these products
contain the Pieri rule as a special case. Unfortunately, we do not have the means to
extend this to a combinatorial interpretation for the coefficients ḡγα,β . In order to gain
a better understanding we develop product formulae for other bases in this section
and coproduct formulae in Section 4.

3.1. Products on the power sum bases. In contrast with the power symmetric
function pλ that is multiplicative, the new bases {pγ} and {pγ} are not multiplicative
unless the parts of the partition are disjoint. Therefore, in this section we begin by
describing the structure of products of the form pabpac and pabpac .

Recall that the k-falling factorial, (x)k, has the following product structure

(x)n(x)m =
∑
k>0

(
m

k

)(
n

k

)
k!(x)m+n−k.

Therefore we can at least easily compute the following product of one of the power
sum bases from this formula.

Proposition 3.1. For a positive integers i, r and s,

(11) pirpis =
∑
k>0

(
r

k

)(
s

k

)
k!ikpir+s−k .

If mi(λ) = 0, then pirpλ = p(ir)∪λ.
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It also implies by making a change of basis back and forth between pir to pis that
we have the following expansion for the product of the pir elements.

Proposition 3.2. Define the coefficients

ci,r,s,a =
∑
`>0

∑
d>0

∑
k>0

(−1)r+s−`−d
(
r

`

)(
s

d

)(
`

k

)(
d

k

)(
`+ d− k

a

)
k!ik

then

(12) pirpis =
r+s∑
a=0

ci,r,s,apia .

If mi(λ) = 0, then pirpλ = p(ir)∪λ.

3.2. Products of induced trivial characters. A combinatorial interpretation
for the Kronecker product of two complete symmetric functions expanded in the
complete basis is listed as Exercise 23 (e) in section I.7 of [18] and Exercise 7.84 (b)
in [30]. The earliest reference to this result that we are aware of is due to Garsia and
Remmel [12]. The formula for this Kronecker product is

(13) hλ ∗ hµ =
∑
M

`(λ)∏
i=1

`(µ)∏
j=1

hMij

summed over all matrices M of non-negative integers with `(λ) rows, `(µ) columns
and row sums are given by the vectors λ and column sums by the vector µ. For
λ, µ, ν ` n, we define dλµν as the coefficient of hν in hλ ∗ hµ.

Let λ, µ and ν be partitions, then for n > |λ| + |µ| + |ν|, let dλµν :=
d(n−|λ|,λ)(n−|µ|,µ)(n−|ν|,ν) denote the common (stable) coefficient of h(n−|ν|,ν) in
h(n−|λ|,λ) ∗ h(n−|µ|,µ).

Proposition 3.3. For partitions λ and µ

h̃λh̃µ =
∑

ν:|ν|6|λ|+|µ|

dλµν h̃ν .

Proof. For each partition γ such that |γ| > n (n sufficiently large), calculation in
terms of characters shows that

h̃λ[Ξγ ]h̃µ[Ξγ ] =
〈
h|γ|−|λ|hλ, pγ

〉 〈
h|γ|−|µ|hµ, pγ

〉
=
〈
h(|γ|−|λ|,λ) ∗ h(|γ|−|µ|,µ), pγ

〉
=

∑
|ν|6|λ|+|µ|

dλµν
〈
h(|γ|−|ν|,ν), pγ

〉
=

∑
|ν|6|λ|+|µ|

dλµν h̃ν [Ξγ ].

We can conclude by Proposition 2.1 that the structure coefficients of the induced
trivial characters are the coefficients dλµν . �

Let S be a multiset and T a set. The restriction of S to T is the multiset S|T =
{{v ∈ S : v ∈ T}}. Then we can define the restriction of a multiset partition to the
content T by π|T = {{S|T : S ∈ π}}. If necessary in this operation we throw away
empty multisets in π|T .

We will use the notation π#τ to represent a set of multiset partitions that will
appear in the product. Let π and τ be multiset partitions on disjoint sets S and T .
(14) π#τ = {θ : θ `̀ S ∪ T, θ|S = π, θ|T = τ}.
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That is, θ ∈ π#τ means that θ is of the form

θ = {{Si1 , . . . , Si`(π)−k , Tj1 , . . . , Tj`(τ)−k , Si′1 ∪ Tj′1 , . . . , Si′k ∪ Tj′k}}

where
{i1, i2, . . . , i`(π)−k, i

′
1, i
′
2, . . . , i

′
k} = {1, 2, . . . , `(π)}

and
{j1, j2, . . . , j`(τ)−k, j

′
1, j
′
2, . . . , j

′
k} = {1, 2, . . . , `(τ)}.

We propose the following different, but equivalent combinatorial interpretation for
this product of the induced trivial character basis.

Proposition 3.4. For multiset partitions π `̀ S and τ `̀ T where the multisets S and
T are disjoint,

h̃m̃(π)h̃m̃(τ) =
∑

θ∈π#τ
h̃m̃(θ).

Before we give a proof of this proposition by showing an equivalence with Equa-
tion (13), we provide an example to try to clarify any subtleties of the notation.

Example 3.5. Let π = {{{{1}}, {{1}}, {{2}}}} and τ = {{{{3}}, {{3}}, {{4}}}}. Below we list
the multiset partitions in π#τ along with the corresponding partition m̃(θ).

{{{{1}}, {{1}}, {{2}}, {{3}}, {{3}}, {{4}}}} → 2211 {{{{1, 3}}, {{1}}, {{2}}, {{3}}, {{4}}}} → 11111
{{{{1}}, {{1}}, {{2, 3}}, {{3}}, {{4}}}} → 2111 {{{{1}}, {{1, 4}}, {{2}}, {{3}}, {{3}}}} → 2111
{{{{1}}, {{1}}, {{2, 4}}, {{3}}, {{3}}}} → 221 {{{{1, 3}}, {{1, 3}}, {{2}}, {{4}}}} → 211
{{{{1, 3}}, {{1, 4}}, {{2}}, {{3}}}} → 1111 {{{{1}}, {{1, 3}}, {{2, 3}}, {{4}}}} → 1111
{{{{1}}, {{1, 4}}, {{2, 3}}, {{3}}}} → 1111 {{{{1}}, {{1, 3}}, {{2, 4}}, {{3}}}} → 1111

{{{{1, 3}}, {{1, 3}}, {{2, 4}}}} → 21 {{{{1, 3}}, {{1, 4}}, {{2, 3}}}} → 111

As a consequence of Proposition 3.4 we conclude

h̃21h̃21 = h̃111 + 4h̃1111 + h̃11111 + h̃21 + h̃211 + 2h̃2111 + h̃221 + h̃2211

or in terms of Kronecker products with n = 8,

h521 ∗ h521 = h5111 + 4h41111 + h311111 + h521 + h4211 + 2h32111 + h3221 + h22211.

Proof. We define a bijection between matrices whose row sums are (n − |λ|, λ) and
whose column sums are (n−|µ|, µ) and elements of π#τ where π is a multiset partition
such that m̃(π) is λ and τ is a multiset partition such that m̃(τ) = µ.

Let M be such a matrix. The first row of this matrix has sum equal to n− |λ| and
the sum of row i of this matrix represents the number of times that some multiset A
repeats in π (it does not matter what that multiset is, just that it repeats

∑
jMij

times). The sum of column j of this matrix (for j > 1) represents the number of times
that a particular part of the multiset B repeats in τ (again, it does not matter the
content of that multiset, just that it is different than the others). Therefore the entry
Mij is the number of times that A∪B repeats in the multiset θ ∈ π#τ . The value of
Mi1 is equal to the number of times that A appears in θ and the value of M1j is the
number of times that B appears in θ. �

Example 3.6. To ensure that the bijection described in the proof is clear we show
the correspondence between some specific multiset partitions and the non-negative
integer matrices to which they correspond. The second and third row will represent
the multiplicities of {{1}} and {{2}} respectively. The second and third column will
represent the multiplicities of {{3}} and {{4}} respectively. Rather than consider all
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multiset partitions, we will consider only the 4 that we calculated in the last example
that have m̃(π) = 1111.

{{{{1, 3}}, {{1, 4}}, {{2}}, {{3}}}} ↔

n− 4 1 0
0 1 1
1 0 0


{{{{1}}, {{1, 3}}, {{2, 3}}, {{4}}}} ↔

n− 4 0 1
1 1 0
0 1 0


{{{{1}}, {{1, 4}}, {{2, 3}}, {{3}}}} ↔

n− 4 1 0
1 0 1
0 1 0


{{{{1}}, {{1, 3}}, {{2, 4}}, {{3}}}} ↔

n− 4 1 0
1 1 0
0 0 1


The multiset partition notation is therefore not significantly different than the

integer matrices notation, but there are distinct advantages to an interpretation in
terms of multiset partitions. The main one is that the notion of multisets in the context
of symmetric functions leads to the combinatorial objects of multiset tableaux that
can be used as a possible object to keep track of stable Kronecker coefficients.

4. Coproducts of the character bases
The coproduct of symmetric functions corresponds to restriction from Sn to Sr ×
St where r + t = n. This is because the coproduct operation is isomorphic to the
operation of replacing one set of variables with two in the power sum symmetric
function pk[X]→ pk[X] + pk[Y ] and the evaluation of the symmetric function at the
eigenvalues of Sr ×St in Sn replaces the X variables by eigenvalues of the element of
Sr and the Y variables by the eigenvalues of the element of St. Therefore, formulae
involving coproducts of character basis compute multiplicities for these restrictions.
The main result are coproduct formulae for the analogues of the power sum bases,
the h̃, s̃ and x̃ bases.

For a basis {bλ} of the symmetric functions, we will refer to the coproduct structure
coefficients as the coefficients of bµ ⊗ bν in ∆(bλ) where λ, µ, ν are all partitions. For
bases that are of homogeneous degree we have the restriction that |µ|+ |ν| = |λ|, but
for the bases here it could be the case that |µ|+ |ν| 6 |λ|. To summarize the results
in this section we state the following theorem.

Theorem 4.1. The coproduct formulae for the character bases are given by:
• (Theorem 4.7) For partitions λ, µ and ν with |µ| + |ν| 6 |λ|, the coproduct
structure coefficients of the basis {s̃λ} are

∑
γ c

λ
µγ where the sum is over all

partitions γ such that γ/ν is a horizontal strip of size |λ| − |µ| − |ν| and cλµγ
are the Littlewood–Richardson coefficients.

• (Propositions 4.3, 4.5 and Corollary 4.6 respectively) The bases {pλ}, {h̃λ}
and {x̃λ} have the same coproduct structure coefficients as the power sum
{pλ}, complete {hλ} and Schur bases {sλ} (respectively).

• (Proposition 4.4) For the basis {pλ}, the second analogue of the power sum
basis, we have ∆(pγ) :=

∏
i>1 ∆(pimi(γ)) where

∆(pir ) =
r∑
d=0

(
r

d

) d∑
a=0

(
d

a

)
pia ⊗ pid−a .
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4.1. Coproducts on the power sum bases. In [23] we derived an analogue of
the Murnaghan–Nakayama rule, see Theorem 20. This allows us to expand the power
symmetric function in the irreducible character basis. This is currently the most effi-
cient method for computing the irreducible character basis.

For a partition λ, it follows from the defining relations in Equation (4) that

(15) pλ =
∑
µ`|λ|

〈pλ, sµ〉 x̃µ =
∑
µ`|λ|

〈pλ,mµ〉 h̃µ.

Now this power sum analogue is important because of the following proposition.
Proposition 4.2. If |µ| < |λ|, then pλ[Ξµ] = 0 and if |µ| = |λ|, then pλ[Ξµ] = δλµ.
More generally, φm(pλ) = h(m−|λ|)pλ.

Proof. We know that h̃λ[Ξγ ] =
〈
h(|γ|−|µ|)hµ, pγ

〉
(and in particular the expression is

0 if |γ| < |µ|) by Equation (6) of [23]. By Equation (15),

φm(pλ) =
∑
γ`m

∑
µ`|λ|

〈pλ,mµ〉 h̃µ[Ξγ ]pγ
zγ

=
∑
γ`m

∑
µ`|λ|

〈pλ,mµ〉
〈
h(m−|µ|)hµ, pγ

〉 pγ
zγ

=
∑
γ`m

〈
h(m−|µ|)pλ, pγ

〉 pγ
zγ

by an application of Equation (2) and the right hand side of this expression is equal
to h(m−|µ|)pλ by a second application of Equation (2). �

We wish to understand as completely as possible the coproduct structure on these
power sum bases. Since the coproduct is an algebra homomorphism, it suffices to
understand the result on the partitions of the form (ir).
Proposition 4.3. The pλ basis has the same coproduct as the power sum basis. That
is, if the coefficients aµγτ are defined by those appearing in the equation ∆(pµ) =∑
γ,τ a

µ
γτpγ ⊗ pτ then ∆(pµ) =

∑
γ,τ a

µ
γτpγ ⊗ pτ and specifically

(16) ∆(pir ) =
r∑

k=0

(
r

k

)
pik ⊗ pir−k .

Proof. Define the coefficients bλαβ appearing in the coproduct of the complete sym-
metric function basis by

∆(hλ) =
∑
α,β

bλαβhα ⊗ hβ .

In Proposition 4.5, we will show by direct computation that ∆(h̃λ) =
∑
α,β b

λ
αβh̃α⊗h̃β .

We know already that the coefficient of pγ in hλ is equal to the coefficient of pγ in
h̃λ (and both are equal to 〈hλ, pγ/zγ〉 by Equation (4)). Therefore the coefficient of
pγ ⊗ pτ in ∆(pλ) is equal to

∆(pλ) =
∑
ν

〈pλ,mν〉∆(h̃ν) =
∑
ν

∑
α,β

〈pλ,mν〉 bναβh̃α ⊗ h̃β

=
∑
ν

∑
α,β

∑
γ,τ

〈pλ,mν〉 bναβ 〈hα, pγ〉 〈hβ , pτ 〉
pγ
zγ
⊗ pτ
zτ
.

Now if we compute the coefficient of pγ ⊗ pτ in ∆(pλ) it is precisely the same as the
coefficient of pγ ⊗ pτ in ∆(pλ).

In particular, Equation (16) holds because

∆(pir ) = (pi ⊗ 1 + 1⊗ pi)r =
r∑

k=0

(
r

k

)
pik ⊗ pir−k .
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Now for the coproduct on the other power basis pλ we need to work slightly harder
to give the expression.

Proposition 4.4. For i, r > 1, the coproduct on pλ can be calculated by

(17) ∆(pir ) =
r∑
d=0

(
r

d

) d∑
a=0

(
d

a

)
pia ⊗ pid−a ,

and since ∆ is an algebra homomorphism, ∆(pγ) :=
∏
i>1 ∆(pimi(γ)).

Proof. Applying Equation (3) and (16), we simplify the limits of the expression to
show that

(
r
k

)
= 0 if k > r. Then we see that

∆(pir ) =
∑
k>0

(−1)r−k
(
r

k

)
∆(pik)

=
∑
k>0

∑
`>0

(−1)r−k
(
r

k

)(
k

`

)
pi` ⊗ pik−`

=
∑
k>0

∑
`>0

∑
a>0

∑
b>0

(−1)r−k
(
r

k

)(
k

`

)(
`

a

)(
k − `
b

)
pia ⊗ pib

=
∑
a>0

∑
b>0

∑
k>0

∑
`>0

(−1)r−k
(
r

k

)(
k

`

)(
`

a

)(
k − `
b

)
pia ⊗ pib

where in the last equality we have just rearranged the order of the summations. The
sum over a and b can be combined by setting d = a + b and changing the sum over
a > 0, b > 0 to one of d > 0, a > 0. Moreover, since

(
`
a

)
= 0 if ` < a, then we can

assume that ` > a and hence

∆(pir ) =
∑
d>0

d∑
a=0

∑
k>0

∑
`>a

(−1)r−k
(
r

k

)(
k

`

)(
`

a

)(
k − `
d− a

)
pia ⊗ pid−a

=
∑
d>0

d∑
a=0

∑
k>0

∑
`>0

(−1)r−k
(
r

k

)(
k

`+ a

)(
`+ a

a

)(
k − `− a
d− a

)
pia ⊗ pid−a .(18)

Now by expanding the binomial coefficients we know that(
k

`+ a

)(
`+ a

a

)(
k − `− a
d− a

)
=
(
d

a

)(
k

`+ d

)(
`+ d

d

)
.

Note that by taking the coefficient of yd in

k∑
m=0

2k−m
(
k

m

)
ym = (1 + 1 + y)k =

∑
m>0

∑
`>0

(
k

`

)(
`

m

)
ym

=
∑
m>0

∑
`′>0

(
k

`′ +m

)(
`′ +m

m

)
ym

we know that

2k−d
(
k

d

)
=
∑
`>0

(
k

`+ d

)(
`+ d

d

)
.
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This reduces Equation (18) to

∆(pir ) =
∑
d>0

d∑
a=0

(
d

a

)∑
k>0

(−1)r−k2k−d
(
r

k

)(
k

d

)
pia ⊗ pid−a

=
∑
d>0

d∑
a=0

(
d

a

)(
r

d

)
pia ⊗ pid−a .

The last equality follows by taking the coefficient of yd in∑
m>0

(
r

m

)
ym = (2− 1 + y)r =

∑
m>0

∑
k>0

(−1)r−k2k−m
(
r

k

)(
k

m

)
ym. �

4.2. Coproducts on the induced trivial and induced irreducible charac-
ter basis. The induced trivial character basis follows the combinatorics of multiset
partitions for the product. We now give the coproduct for this basis.

It turns out that the coefficient of h̃µ ⊗ h̃ν in ∆(h̃λ) is equal to the coefficient
hµ ⊗ hν in ∆(hλ). Since ∆(hn) =

∑n
k=0 hn−k ⊗ hk, we have more generally that

∆(hλ) =
∑

α+β=λ
hα ⊗ hβ .

Hence the coproduct formula for the induced trivial character basis can be stated in
the following proposition.

Proposition 4.5. For a partition λ,

(19) ∆(h̃λ) =
∑

α+β=λ
h̃α ⊗ h̃β

where the sum is over all pairs of weak compositions α and β of length λ whose vector
sum is equal to λ.

Proof. We will show that h̃λ[X + Y ] =
∑
α+β=λ h̃α[X]h̃β [Y ]. This will be done by

applying Proposition 2.1 that states if f [Ξµ] = g[Ξµ] for enough partitions µ, then
f = g as symmetric functions.

We note that for partitions µ and ν and a positive integer n = |µ|+ |ν|,

h̃λ[Ξµ + Ξν ] =
〈
h(n−|λ|,λ), pµpν

〉
.

Now the evaluation of the,∑
α+β=λ

h̃α[Ξµ]h̃β [Ξν ] =
∑

α+β=λ

〈
h(|µ|−|α|,α), pµ

〉 〈
h(|ν|−|β|,β), pν

〉
=

∑
α+β=λ

n−|λ|∑
k=0

〈
h(n−|λ|−k,α), pµ

〉 〈
h(k,β), pν

〉
(20)

where in the last expression all of the terms in sum are assumed to be 0 unless
k = |ν| − |β|. In this case, n − k − |λ| = |µ| + |ν| − (|ν| − |β|) − |λ| = |µ| − |α|.
Now we can recognize the terms in the left entry of the scalar product as those that
arise as the coproduct formula on the complete basis element h(n−|λ|,λ). If we define
〈f ⊗ f ′, g ⊗ g′〉 = 〈f, g〉 〈f ′, g′〉 then we know (see for instance [18, I.5 p. 92 Example
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25]) that 〈∆(f), g ⊗ h〉 = 〈f, gh〉. Hence we have that Equation (20) is equivalent to∑
α+β=λ

h̃α[Ξµ]h̃β [Ξν ] =
〈
∆(h(n−|λ|,λ)), pν ⊗ pµ

〉
=
〈
h(n−|λ|,λ), pνpµ

〉
= h̃λ[Ξµ + Ξν ].

Now from Proposition 2.1 we can conclude that h̃λ[X + Ξν ] =
∑
α+β=λ h̃α[X]h̃β [Ξν ]

as a symmetric function identity and a second application allows us to conclude that
h̃λ[X + Y ] =

∑
α+β=λ h̃α[X]h̃β [Y ]. �

Because the relationship between the h̃λ basis and the x̃λ basis is the same as the
relationship between the hλ and sλ basis, we can conclude that the coproduct rule on
the induced irreducible character basis will be the same as that for the Schur basis.

Corollary 4.6. For a partition λ,

(21) ∆(x̃λ) =
∑
µ,ν

cλµν x̃µ ⊗ x̃ν

where the coefficients cλµν are the Littlewood–Richardson coefficients, the same coprod-
uct structure coefficients for the Schur basis.

4.3. Coproducts on the irreducible character basis. The method that we
used in the last section to derive coproduct formula can also be used to derive the
coproduct for the irreducible character basis. In this case though we reverse the ex-
pression and expand s̃λ[X + Y ] evaluated at X = Ξµ and Y = Ξν .

Theorem 4.7. For a partition λ,

(22) ∆(s̃λ) =
∑

δ:|δ|6|λ|

∑
β`|λ|−|δ|

∑
η

cλδβ s̃δ ⊗ s̃η

where cλδβ is the Littlewood–Richardson coefficient and the inner sum is over partitions
η such that the skew partition β/η is a horizontal strip.

In particular, the coefficient of s̃δ ⊗ s̃η in ∆(s̃λ) is equal to∑
β

cλδβ

where the sum is over all partitions β such that β/η is a horizontal strip of size
|λ| − |δ| − |η|.

Proof. Assume that µ ` N where N is “sufficiently large”. We can without loss of
generality assume that N is larger than 2|λ| because we will apply Proposition 2.1.
We need to show that the following identity holds for all partitions µ, such that |µ| > n
for some n which is at least as large the degree of the symmetric function.

s̃λ[Ξµ + Ξν ] =
〈
s(|µ|+|ν|−|λ|,λ), pµpν

〉
=
〈
∆(s(|µ|+|ν|−|λ|,λ)), pµ ⊗ pν

〉
=
∑
α`|µ|

〈sα, pµ〉
〈
s(|µ|+|ν|−|λ|,λ)/α, pν

〉
.(23)

Now we know that |α| = |µ| > 2|λ|, this implies that (|µ| + |ν| − |λ|, λ)/α is a skew
partition where the first row is disconnected. The skew Schur function s(|µ|+|ν|−|λ|,λ)/α
is then equal to sλ/α ·s(|µ|+|ν|−|λ|−|α|+|α|) = sλ/α ·s(|ν|−|λ|+|α|) where α is the partition
α with the first row removed. Since we know that α ` |µ| then α is determined from
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α. In addition, α is contained in λ for sλ/α to be defined, thus |α| 6 |λ|. Therefore
Equation (23) is equivalent to

s̃λ[Ξµ + Ξν ] =
∑

α:|α|6|λ|

〈
s(|µ|−|α|,α), pµ

〉 〈
sλ/α · s(|ν|−|λ|+|α|), pν

〉
=

∑
α:|α|6|λ|

∑
β`|λ|−|α|

cλαβ
〈
s(|µ|−|α|,α), pµ

〉 〈
sβ · s(|ν|−|λ|+|α|), pν

〉
=

∑
α:|α|6|λ|

∑
β`|λ|−|α|

∑
γ

cλαβ
〈
s(|µ|−|α|,α), pµ

〉
〈sγ , pν〉(24)

where the sum over γ is of partitions such that γ/β is a horizontal strip of size
|ν|− |λ|+ |α|. But if γ/β is a horizontal strip, then β/γ will also be a horizontal strip.
Moreover we know that since γ ` |ν| and γ is determined by γ, then Equation (24) is
equivalent to

s̃λ[Ξµ + Ξν ] =
∑

α:|α|6|λ|

∑
β`|λ|−|α|

∑
γ

cλαβ
〈
s(|µ|−|α|,α), pµ

〉 〈
s(|ν|−|γ|,γ), pν

〉
=

∑
α:|α|6|λ|

∑
β`|λ|−|α|

∑
γ

cλαβ s̃α[Ξµ]s̃γ [Ξν ]

where the inner sums are over partitions γ such that β/γ is a horizontal strip. Using
the same argument that we did for the induced trivial character basis at the end of
the proof of Proposition 4.5, we conclude that

(25) ∆(s̃λ) =
∑
α

∑
β`|λ|−|α|

∑
γ

cλαβ s̃α ⊗ s̃γ .

Equation (25) is equivalent to Equation (22) by setting δ = α and η = γ. �

Remark 4.8. The antipode of a Hopf algebra is part of its defining structure. In the
case of the symmetric functions, the antipode is an involution S : Sym→ Sym where
S(sλ) = (−1)|λ|sλ′ . The result of Assaf–Speyer [1] implies (−1)|λ|S(s̃λ) will be Schur
positive and hence this expression expands positively in the irreducible character
basis. A better understanding of the transition coefficients between the Schur basis
and the irreducible character basis could be used to give a more precise formula for
this expression.

5. Expansion of the elementary symmetric functions in the
irreducible character basis

In [23] we gave the expansion of the complete symmetric function hµ in terms of
the irreducible character basis s̃λ. In this section we give the s̃λ expansion of an
elementary symmetric function eµ. The proof is similar to the proof of the irreducible
character expansion of a complete symmetric function, see [23] Theorem 9. We will
start by proving the expansion in the irreducible character basis except that we will
reserve some of the detailed combinatorial calculations for last. We assume that there
is a total order on the sets that appear in set partitions and create tableaux to keep
track of the terms in the symmetric function expansion. The order chosen does not
matter, all the matters is that there is a total order, in the examples we have chosen
lexicographic order. Let shape(T ) be a partition representing the shape of a tableau
T and we again use the overline notation on a partition to represent the partition
with the first part removed, λ = (λ2, λ3, . . . , λ`λ).
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Theorem 5.1. For a partition µ,

(26) eλ =
∑
T

s̃shape(T )

where the sum is over tableaux that are of skew shape ν/(ν2) for some partition ν and
that are weakly increasing in rows and columns with non-empty sets as labels of the
tableaux (not multisets, that is no repeated values are allowed) such that the content
of the tableau is {{1λ1 , 2λ2 , . . . , `λ`}}. A set is allowed to appear multiple times in the
same column if and only if the set has an odd number of entries. A set is allowed to
appear multiple times in the same row if and only if the set has an even number of
entries.

Proof. In Corollary 5.16 we will show that

eλ[Ξµ] =
∑

π`{{1λ1 ,2λ2 ,...,`(λ`)}}

〈
hnhm̃e(π)em̃o(π), pµ

〉
.

where m̃e(π) (resp. m̃o(π)) is the partition representing the multiplicities of the sets
in π with an even (resp. odd) number of elements (see Example 5.10).

For the rest of this proof, we assume that the reader is familiar with the Pieri
rules, [30, Chapter 7, p. 339–340], which state hrsλ is the sum of terms sµ where the
Young diagram for µ differs from the Young diagram of λ by adding cells that may
occur in the same row, but not in the same column of the diagram. Similarly, ersλ is
the sum of terms sµ where the Young diagram for µ differs from the Young diagram
of λ by adding cells that may occur in the same column, but not in the same row of
the diagram.

Now order the occurrences of the generators in the product hnhm̃e(π)em̃o(π) so that
they are in the same order as the total order that is chosen for the sets that appear
in the set partitions. Using a tableau to keep track of the terms in the resulting Schur
expansion of the product we will have that

hnhm̃e(π)em̃o(π) =
∑
T

sshape(T )

where the sum is over tableaux that have n blank cells in the first row and sets as
labels in the rest of the tableau. Because we multiply by a generator hr if a set with
an even number of entries occurs r times, then those sets with an even number of
elements can appear multiple times in the same row, but not in the same column of
the tableau. Similarly, because we multiply by a generator er if a set with an odd
number of entries occurs r times, then those sets with an odd number of elements can
appear multiple times in the same column, but not in the same row of the tableau.

If the shape of the tableau is of skew shape ν/(n) with n > ν2, there are the same
number of tableaux of skew-shape (ν2 + |ν|, ν)/(ν2) because there is a bijection by
deleting blank cells in the first row.

Therefore we have

eλ[Ξµ] =
∑

π`{{1λ1 ,2λ2 ,...,`λ`}}

∑
T

〈
sshape(T ), pµ

〉
=

∑
π`{{1λ1 ,2λ2 ,...,`λ`}}

∑
T

s̃shape(T )[Ξµ]

where the sum is over those tableau described in the statement of the proposition.
Our proposition now follows from Proposition 2.1. �
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Example 5.2. To begin with a small example, consider the expansion of e21. The
following 11 tableaux follow the rules outlined in Theorem 5.1.

1
1 2

2
1
1

1
1

2

2
1

1

12
1 1 2

1
1 12 1

1 2
12

1
1

12 1 12

Theorem 5.1 then states that

e21 = s̃21 + s̃111 + 3s̃11 + 2s̃2 + 3s̃1 + s̃().

Example 5.3. A slightly larger example is the expansion of e33. If we use Sage [31, 26]
to determine the expansion we see that

e33 = 2s̃() + 4s̃1 + 4s̃11 + 4s̃111 + 4s̃1111 + 3s̃11111 + s̃111111 + 6s̃2

+ 8s̃21 + 7s̃211 + 4s̃2111 + s̃21111 + 5s̃22 + 4s̃221 + s̃2211 + s̃222

+ 5s̃3 + 4s̃31 + s̃311 + s̃32 + s̃4.

Hence there are 71 tableaux in total satisfying the conditions of Theorem 5.1 that
have a total content {{13, 23}}. Listing all 71 tableaux is perhaps not a clear example
so let us consider just the coefficient of s̃21. Notice that the content of the tableaux
is {{13, 23}}. Since the cells of the tableaux must contain sets, there are four ways to
partition {{13, 23}} into sets: {{{1}, {1}, {1}, {2}, {2}, {2}}}; {{{1}, {1}, {1, 2}, {2}, {2}}};
{{{1}, {1, 2}, {1, 2}, {2}}}; and {{{1, 2}, {1, 2}, {1, 2}}}. The shape of the tableaux is of
the form (r, 2, 1)/(2) where r depends on the number of boxes filled in the first row. For
the multiset partition {{{1}, {1}, {1}, {2}, {2}, {2}}}, the shape would be (5, 2, 1)/(2)
because we need to fill six boxes, three of these in the first row; however we cannot have
two equal odd sets in any row, which means that this partition does not contribute
to the coefficient. Similarly, the partition {{{1, 2}, {1, 2}, {1, 2}}} would fill a shape
(2, 2, 1)/(2) (in this case there are no filled boxes in the first row), but since we
cannot repeat sets of even size on any column this partition does not contribute to
the coefficient.

The other two partitions contribute to the coefficient of s̃(2,1). Notice that we have
ordered the sets {1} < {1, 2} < {2}. The partition {{{1}, {1}, {1, 2}, {2}, {2}}} will
fill tableaux of shape (4, 2, 1)/(2) and the partition {{{1}, {1, 2}, {1, 2}, {2}}} will fill
tableaux of shape (3, 2, 1)/(2). Below we list the 8 tableaux that contribute to the
coefficient.

1
1 2

12 2

12
1 2

1 2

2
1 12

1 2

2
1 2

1 12

2
1212

1

12
1 2

12

2
1 12

12

12
1 12

2

In [16, Lemma 5.10.1], Lascoux showed the following result. This result will serve
as the starting point for our computations. In the following expressions, the notation
r|n indicates shorthand for “r divides n.”

Proposition 5.4. For r > 0, h0[Ξr] = e0[Ξr] = p0[Ξr] = 1. In addition, for n > 0,

(27) hn[Ξr] = δr|n, pn[Ξr] = rδr|n, en[Ξr] = (−1)r−1δr=n.

We will need the evaluation and a combinatorial interpretation of eλ[Ξµ] in order
to make a connection with character symmetric functions.
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To extend this further, we determine the evaluation of an elementary symmetric
function at Ξµ. For a subset S = {i1, i2, . . . , i|S|} ⊆ {1, 2, . . . , `(µ)}, let µS denote the
sub-partition (µi1 , µi2 , . . . , µi|S|). This implies that

(28) en[Ξµ] =
∑
α|=wn

`(α)=`(µ)

`(µ)∏
i=1

eαi [Ξµi ] =
∑

S:|µS |=n

∏
i∈S

eµi [Ξµi ] =
∑

S:|µS |=n

(−1)n+|S|

where the sum is over all subsets S ⊆ {1, 2, . . . , `(µ)} such that |µS | = n.

Definition 5.5. Define the set Cλ,µ to be the set of sequences (S(1), S(2), . . . , S(`(λ)))
where each S(i) is a subset such that |µS(i) | = λi.

Since eλ[Ξµ] = eλ1 [Ξµ]eλ2 [Ξµ] · · · eλ`(λ) [Ξµ], it implies that we have the following
Proposition for evaluating this expression.

Proposition 5.6. For partitions λ and µ,

(29) eλ[Ξµ] =
∑

S(∗)∈Cλ,µ

(−1)|λ|+|S
(∗)|

where |S(∗)| =
∑`(λ)
i=1 |S(i)|.

Example 5.7. Let n = 4, then to evaluate e4[Ξ3211] there are three subsets of parts
of (3, 2, 1, 1) which sum to 4, namely, {1, 3}, {1, 4} and {2, 3, 4}. The first two are
counted with weight 1 and the third has weight −1, hence e4[Ξ3211] = 1 + 1− 1 = 1.

To evaluate e31[Ξ3211] we determine that C31,3211 = {({1}, {3}), ({1}, {4}),
({2, 3}, {3}), ({2, 3}, {4}), ({2, 4}, {3}), ({2, 4}, {4})}. The first two of these have
weight (−1)|λ|+|S(∗)| both equal to 1 and the last four have weight −1 hence
e31[Ξ3211] = −2.

Let γ(∗) = (γ(0), γ(1), γ(2), . . . , γ(r)) be sequences of partitions such that
⋃r
i=0 γ

(i) =
µ, then we may use Equation (1) to compute

zµ
zγ(0)zγ(1)zγ(2) · · · zγ(r)

=
∏
i>1

(
mi(µ)

mi(γ(1)),mi(γ(2)), . . . ,mi(γ(r))

)
(30)

and the parts of γ(0) are determined from µ and all of the γ(i) for 1 6 i 6 r.
Now we will need to evaluate HE(λ|τ),µ :=

〈
pµ, h|µ|−|λ|−|τ |hλeτ

〉
where λ, τ and

µ are partitions. We do this by expanding the expression h|µ|−|λ|−|τ |hλeτ . For each
sequence of partitions γ(∗) of length `(λ) and each sequence of partitions ν(∗) of length
`(τ), there will be one term in the sum coming from the expansion of the product of
hλ and eτ . Expanding the expression for HE(λ|τ),µ, yields

HE(λ|τ),µ =
∑

γ(∗),ν(∗)

sgn(ν(∗))
µ1∏
i=1

(
mi(µ)

mi(γ(1)), . . . ,mi(γ(`(λ))),mi(ν(1)), . . . ,mi(ν(`(τ)))

)

where the sum is over all sequences of partitions γ(∗) = (γ(1), γ(2), . . . , γ(`(λ))) where
γ(j) ` λj and ν(∗) = (ν(1), ν(2), . . . , ν(`(τ))) where ν(j) ` τj and

sgn(ν(∗)) = (−1)
∑

i
|ν(i)|+`(ν(i)).

Algebraic Combinatorics, Vol. 4 #3 (2021) 569



Rosa Orellana & Mike Zabrocki

Note that we are using the convention that if
⋃
i γ

(i) ∪
⋃
i ν

(i) is not a subset of the
parts of µ then the weight

µ1∏
i=1

(
mi(µ)

mi(γ(1)), . . . ,mi(γ(`(λ))),mi(ν(1)), . . . ,mi(ν(`(τ)))

)
is equal to 0.

Proposition 5.8. For partitions λ, τ and µ, let Fµλ,τ be the fillings of the diagram for
the partition µ with λi labels i and τj labels j′ such that all cells in a row are filled
with the same label such that cells in any row are either all filled or all empty. For
F ∈ Fµλ,τ , the weight of the filling, wt(F ) is equal to −1 raised to the number of cells
filled with primed labels plus the number of rows occupied by the primed labels. Then

(31) HE(λ|τ),µ =
∑

F∈Fµ
λ,τ

wt(F ).

Proof. This is precisely the analogous statement to Proposition 28 of [23]. It follows
because if we fix the sequences of partitions γ(∗) and ν(∗) such that γ(i) ` λi and
ν(j) ` τj , then the quantity

µ1∏
i=1

(
mi(µ)

mi(γ(1)), . . . ,mi(γ(`(λ))),mi(ν(1)), . . . ,mi(ν(`(τ)))

)
is precisely the number of F in Fµλ,τ with the rows filled according to the sequences
of partitions γ(∗) and ν(∗). The sign of a filling is constant on this set and is equal to
sgn(ν(∗)). �

Example 5.9. The following are all the possible fillings of the diagram (3, 3, 2, 2, 1, 1)
with two 1’s and two 1′’s such that the rows have the same labels.

1
1
1′ 1′

1
1

1′ 1′
1′ 1′
1 1

1 1
1′ 1′

1′
1′
1 1

1′
1′

1 1

Since the weight of the filling is equal to the (−1) raised to the number of cells plus
the number of rows occupied by primed entries, the first four have weight −1 and the
last two have weight 1 and hence

HE(2|2),332211 = −2.

The rest of this section develops the combinatorial constructions required to show
that the evaluations of eλ at roots of unity are correct.

We have previously used the notation π `̀ {{1λ1 , 2λ2 . . . , `λ`}} to indicate that π is a
multiset partition of a multiset. We will then use the notation π ` {{1λ1 , 2λ2 . . . , `λ`}}
to indicate that π is a set partition of a multiset, that is, π = {{P (1), P (2), . . . , P (`(π))}}
where P (1) ]P (2) ] · · · ]P (`(π)) = {{1λ1 , 2λ2 . . . , `λ`}} and each of the P (i) are sets (no
repetitions allowed). It is possible that π itself is a multiset since it is possible that
P (i) = P (j) when i 6= j. In this case we say that π is a set partition of a multiset of
content λ (to differentiate from a multiset partition of a multiset).

Now we have previously defined m̃(π) to be a partition representing the multiplic-
ity of the sets that appear in π. Now define m̃e(π) be a partition representing the
multiplicities of the sets with an even number of elements and m̃o(π) be a partition
representing the multiplicities of the sets with an odd number of elements.
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Example 5.10. Let λ = (5, 3, 3, 2, 1) and then
π = {{{1, 2, 5}, {1, 2}, {1, 2}, {1, 3}, {1, 3}, {3, 4}, {4}}}

is a set partition of the multiset {{15, 23, 33, 42, 5}}. The corresponding partition
m̃(π) = (2, 2, 1, 1, 1) and m̃e(π) = (2, 2, 1) and m̃o(π) = (1, 1). The sequence m̃(π) is
a partition of the length of π and m̃e(π) ∪ m̃o(π) = m̃(π).

Definition 5.11. For partitions λ and µ, let Pλµ be the set of pairs (π, T ) where
π is a set partition of the multiset {{1λ1 , 2λ2 , . . . , `(λ)λ`(λ)}} and T is a filling of
some of the rows of the diagram for µ with content γ = m̃e(π) consisting of labels
{{1γ1 , 2γ2 , · · · , `(γ)γ`(γ)}} and some rows filled with content τ = m̃o(π) consisting of
primed labels {{1′τ1 , 2′τ2 , . . . , `(τ)′`(τ)}}. The weight, wt, of a pair (π, T ) will be either
±1 and is equal to −1 raised to the number of primed labels plus the number of rows
those labels occupy.

Example 5.12. Consider the set P(3,1),(3,3,2,2,1,1) that consists of the following 12
pairs of set partitions and fillings{{{1},{1},{1},{2}}} ,

2′

1′ 1′ 1′


{{{1},{1},{1},{2}}} ,

2′

1′ 1′ 1′


{{{1},{1},{1},{2}}} ,

2′

1′ 1′ 1′


{{{1},{1},{1},{2}}} ,

2′

1′ 1′ 1′


{{{1},{1},{1},{2}}} ,

2′
1′
1′ 1′


{{{1},{1},{1},{2}}} ,

2′
1′

1′ 1′


{{{1},{1},{1},{2}}} ,

1′
2′
1′ 1′


{{{1},{1},{1},{2}}} ,

1′
2′

1′ 1′


 {{{1},{1},{1,2}}} ,

1

1′ 1′


{{{1},{1},{1,2}}} ,

1

1′ 1′


 {{{1},{1},{1,2}}} ,

1
1′ 1′


 {{{1},{1},{1,2}}} ,

1

1′ 1′


The first four of these pairs have weight +1 and the remaining eight have weight −1.

With these definitions, we can use Proposition 5.8 to state that∑
π`{{1λ1 ,2λ2 ,...,`(λ`)}}

HE(m̃e(π)|m̃o(π)),µ =
∑

F∈Pλ,µ

wt(F ).

Next we define a set T λ,µ, this set is defined in a similar way as Pλ,µ, with the main
difference that now the tableaux will contain the sets that make up the parts of π.

Definition 5.13. For partitions λ and µ let T λ,µ be the fillings of some of the cells
of the diagram of the partition µ with subsets of {1, 2, . . . , `(λ)} such that the total
content of the filling is {{1λ1 , 2λ2 , . . . , `(λ)λ`(λ)}} and such that all cells in the same
row have the same subset of entries. We will define the weight of one of these fillings
to be −1 to the power of the size of λ plus the number of rows whose cells are occupied
by a set of odd size (this is also equal to the number of cells plus the number of rows
occupied by the sets of odd size).
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Example 5.14. The following 12 tableaux are the elements of T (3,1),(3,3,2,2,1,1).

2

1 1 1

2

1 1 1

2

1 1 1

2

1 1 1

2
1
1 1

2
1

1 1

1
2
1 1

1
2

1 1

12

1 1

12

1 1

12
1 1

12

1 1

The fillings listed above are in the same order as their isomorphism with the set of
pairs P(3,1),(3,3,2,2,1,1) from Example 5.12. As in that case we have that, the first four
of these pairs have weight +1 and the remaining eight have weight −1.

The following result should be clear from the definitions listed above and the ex-
amples we have presented.

Lemma 5.15. There is a bijection between the sets Pλ,µ and T λ,µ and Cλ,µ that pre-
serves the weight.

Corollary 5.16. For partitions λ and µ,

(32) eλ[Ξµ] =
∑

π`{{1λ1 ,2λ2 ,...,`λ`}}

HE(m̃e(π)|m̃o(π)),µ.

Example 5.17. There are only three set partitions of {{13, 22}}. These are
{{{1}, {1}, {1}, {2}, {2}}}, {{{1}, {1}, {1, 2}, {2}}}, {{{1}, {1, 2}, {1, 2}}}.

Corollary 5.16 states that
e32[Ξµ] = HE(·|32),µ +HE(1|21),µ +HE(2|1),µ.

Remark 5.18. The expressions HE(λ,τ),µ implies that we could define symmetric func-
tions h̃e(λ|τ) with the property h̃e(λ|τ)[Ξµ] = HE(λ|τ),µ =

〈
h|µ|−|λ|−|τ |hλeτ , pµ

〉
. Some

of the results we present in this paper can be generalized to elements h̃e(λ|τ) which
form a spanning set, but not a basis. This set of elements featured heavily in the
thesis of Arash Islami in a project to develop formulae for a character basis for the
hyperoctahedral group [14].
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