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Representation stability for sequences of
0-Hecke modules

Robert P. Laudone

Abstract We define a new category analogous to FI for the 0-Hecke algebra Hn(0) called the
0-Hecke category, H, indexing sequences of representations of Hn(0) as n varies under suitable
compatibility conditions. We establish a new type of representation stability in this setting
and prove it is implied by being a finitely generated H-module. We then provide examples of
H-modules and discuss further desirable properties these modules possess.

1. Introduction
The category FI of finite sets and injections, first defined in [3], and its variants
have been of great interest recently. Being a finitely generated FI-module implies
many desirable properties that are often very difficult to prove on their own about
sequences of symmetric group representations, such as representation stability and
polynomial growth. The study of this combinatorial category and its modules has
been fruitful, providing tools to prove a variety of stability results about spaces such as
Hi(Confn(M); Q) the cohomology of configuration space of n distinct ordered points
on a connected, oriented manifold M and many others [3]. In this vein, a variety of
other combinatorial categories have been defined. The most relevant categories to us
that have seen a surge of interest in recent years are FI and OI, for a general survey
of results we refer the reader to [3, 35, 37, 38]. Recently, in [11] the authors establish a
structure theory for OI-modules similar to the structure theory for FI-modules in [37]
by studying J the monoid of increasing functions.

One can loosely think of FI-modules as sequences of compatible vector spaces
with a complete symmetry present, and similarly OI-modules can be thought of as
sequences of compatible vector spaces with no requirement of symmetry. A similar
story plays out in the analogous field of symmetric function theory as seen in [12],
where the ring of symmetric functions Sym plays the role of FI and the ring of
nonsymmetric functions plays the role of OI. Interpolating between these two rings
is the ring of quasisymmetric functions QSym. One of the goals of this paper is to
define the analogous category that interpolates between FI and OI and explore its
surprising structure.

This category turns out to be the categorical analogue of FI for the 0-Hecke algebra.
We denote it by H and call it the 0-Hecke category. We begin by defining H and
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discussing how it can be viewed as a quotient of the braid category as seen in [32,
§1.2]. We then prove a variety of structural results about H-modules. Most notably,
despite the 0-Hecke algebra not being semi-simple, one can say a surprising amount
about the underlying Hn(0) representation theory of a finitely generated H-module.
In particular, we are able to construct an explicit basis for the Grothendieck group
of H-modules G(ModH) consisting of padded induced modules M(α, k) where α is a
composition and −1 6 k 6 |α| is an integer. These modules are quotients of the
standard induced modules. This ultimately allows us to prove that finitely generated
H-modules satisfy a new form of representation stability,

Theorem 1.1. For any finitely generated H-module V , we have a unique finite de-
composition in the Grothendieck group G(ModH),

[Vn] =
∑
i,j

cαi,kj [M(αi, kj)n]

where the coefficients cαi,kj do not depend on n.

As with the standard form of representation stability for FI, this theorem implies
that a finite list of data, namely {(αi, ki)}, completely describe all the irreducible
Hn(0) representations that will occur in Vn for n � 0. We also describe the exact
process to go from the finite list of data to the irreducible representations one desires.

We then study an important statistic often associated with these combinatorial
categories Gabriel–Krull dimension due to [9]. One can think of this as the analogue
of Krull dimension in commutative algebra, it gives a rough measure of the complexity
of the category. We prove,

Theorem 1.2. The Gabriel–Krull dimension of H is infinite.

In this respect,H bears more similarity to OI which [11] shows has infinite Gabriel–
Krull dimension. We dedicate the remainder of the paper to exploring examples of
H-modules. We expect there are many more examples,
1) In Section 9 we explore one of the more basic but tractable finitely H-modules

[n] 7→ k[x1, . . . , xn]d the degree d polynomials in n variables. It is not hard to show
this forms a H-module where Hn(0) acts by Demazure operators. This example is
instructive because for small values of d we can explicitly see the representation
stability predicted by Theorem 1.1.

2) In Section 10 we present one of the motivating examples for this paper. From work
of [33] and [13] it was known that the group cohomology Hi(B(n, q),Fq), where
B(n, q) is the Borel subgroup of GL(n, q), carried an action of Hn(0) for any fixed
i > 0. It does not, however, have any natural complete symmetry, i.e. an action of
Sn. In this setting it is natural to ask if a H-module structure is present, we are
able to prove

Theorem 1.3. The assignment [n] 7→ Hi(B(n, q),Fq) with compatibility maps de-
scribed in Section 10 forms a H-module.

We believe this defines a finitely generated H-module, but this problem is still
open.
3) In Section 11 we study one of the other motivating examples for this paper,

Hi(B(n, q),Fq). By a spectral sequence argument Hi(B(n, q),Fq) is equal to
Hi(U(n, q),Fq), where U(n, q) is the unipotent subgroup. This motivated Put-
man, Sam and Snowden to prove that the assignment [n] 7→ Hi(U(n, q),Fq) with
inclusion maps induced by inclusion of unipotent subgroups is a finitely generated
OI-module [29]. We define a new Hn(0)-action on Hi(U(n, q),Fq) and prove
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Theorem 1.4. The assignment [n] 7→ Hi(U(n, q),Fq) with compatibility maps
Φn : Hi(U(n, q),Fq)→ Hi(U(n+ 1, q),Fq)

induced by the natural inclusion U(n, q) ↪→ U(n + 1, q) is a finitely generated H-
module.

It turns out that the restriction to OI of the H-action gives an action equivalent to
the one defined in [29]. This result is a strengthening of their result because H has
more structure. In particular, Theorem 1.4 implies

Theorem 1.5. Fix i > 0, the sequence of Hn(0)-modules {Hi(U(n, q),Fq)}n>0 is
representation stable.

4) In Section 12 we explain how we can turn the collection of Stanley Reisner rings
of the Boolean algebra into a H-module using work of [14]. We then prove this
H-module is finitely generated and so is representation stable in our new sense.

5) Finally, in Section 13 we make the connection to QSym more explicit and explore
how a new class of modules defined by [41] which map to quasisymmetric Schur
functions as defined in [12] under the quasisymmetric characteristic map have a
finitely generated H-module structure. These modules provide another example of
a H-module that cannot be a FI-module.

1.1. Outline of Argument. The proof of Theorem 1.1 breaks into the following
steps:
1) For each composition α, we first define an important class of H-modules called

induced modulesM(α) in Section 3 and use this to define padded induced modules
M(α, k) in Section 4.

2) Every finitely generatedH-module has eventually polynomial growth, the degree of
the polynomial that eventually describes the growth is called the polynomial degree
of the H-module. We prove that padded induced modules have the property that
any proper quotient of them has strictly smaller polynomial degree in Theorem 4.6.

3) We then argue in Theorem 5.1 that M(α, k) is the smallest polynomial degree
k quotient of M(α), i.e. any other polynomial degree k quotient of M(α) must
contain M(α, k).

4) The above allows us to deduce that M(α, k) is simple in the Serre quotient Hk
of polynomial degree 6 k objects by polynomial degree 6 k − 1 objects and that
every simple is of this form. This can be seen in Lemma 5.2.

5) Lemma 5.2 means that the M(n) are all finite length, and every finitely generated
H-module is a quotient of a direct sum of the M(n), so we can argue that every
object in the Serre quotient has finite length (Lemma 5.3). This allows us to find
a finite length filtration of any finitely generated polynomial degree k H-module
V in Hk with successive quotients isomorphic to M(αi, k) (Theorem 5.4).

6) We then use this filtration to show that the isomorphism classes [M(α, k)] as α
ranges over all compositions and k ∈ Z ranges −1 6 k 6 |α| span the Grothendieck
group of finitely generated H-modules, G(ModH) in Theorem 5.5.

7) Finally, we construct functions on the Grothendieck group to argue that the
[M(α, k)] are in fact linearly independent and hence form a basis for G(ModH)
(Theorem 5.6). This ultimately implies our new form of representation stability.

1.2. Relation to Previous Work. We show in Theorem 2.13 that H is another
example of an ever growing class of noetherian categories. In [38] the authors describe a
Gröbner method for proving noetherianity of combinatorial categories which we apply
here. This underlying idea fits into a broader area of interest called noetherianity up
to symmetry. For a nice introduction we recommend [5]. Ultimately, one works with
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a space or object on which a group or algebra acts and proves finite generation up
to the action of this group or algebra. Noetherianity up to symmetry is important
in [26, 35, 36, 37], where the authors explore various manifestations of this idea to
prove finite generation results for various representations of categories and twisted
commutative algebras. These ideas are also present in [3, 6, 20, 34, 40, 42] and many
other recent papers.

The 0-Hecke algebras Hn(0) are also an example of a growing class of diagram
algebras that satisfy some form of representation stability. Diagram algebras and
their representations have been of great interest to researchers for many years. Brauer
originally introduced the Brauer algebra in [2] to study Schur–Weyl duality for the
orthogonal group. Since then, many other diagram algebras appeared in the literature,
we refer the reader to [16, 17, 21, 24, 43]. Recently, Patzt in [28] showed that three
of the most important and well studied diagram algebras, the Partition, Brauer and
Temperly–Lieb diagram algebras, also satisfy a form of representation stability. The
Brauer algebra, and its representation theory, has also received considerable attention
in [39].

As we have mentioned one can view H as interpolating between FI and OI. This
paper opens the door to many questions explored in [3] for FI-modules and [38, 11]
for OI-modules.
H has concrete connections to QSym, the ring of quasisymmetric functions, as seen

in Section 13. This ring has seen a resurgence of interest as of late, for a general survey
we refer the reader to [25]. The connection between FI and the ring of symmetric
functions is very explicit, in particular the authors in [37] prove that the Grothendieck
group of FI-modules is isomorphic to two copies of the ring of symmetric functions.
It would be interesting to see if a similar result were true about H and what else the
category could tell us about QSym.

This paper also provides a more systematic approach to studying natural sequences
of representations of the 0-Hecke algebra. Recent such examples addressed in this
paper include the Stanley–Reisner ring of the Boolean algebra studied in [14], qua-
sisymmetric Schur modules studied in [41], and Hi(B(n, q),Fq) as studied in [13, 33].
There are many other examples we are working on in a future paper including ordered
set partitions studied in [15].

Quillen computed the cohomology of the general linear group in non-defining char-
acteristic, Hi(GL(n, q),F`), using Sylow subgroups as a key ingredient [30]. In defin-
ing characteristic, B(n, q) is a Sylow-q subgroup of GL(n, q), and so researchers have
naturally sought to understandHi(B(n, q); Fq). Quillen’s methods depend on working
over non-defining characteristic and the pre-existing FI literature does not naturally
apply because there is no natural symmetric group action. The category H provides
the missing categorical framework to study the group homology of the Borel group in
defining characteristic.

1.3. Conventions. For the majority of the paper k denotes a field of arbitrary
characteristic because the representation theory of Hn(0) does not depend on char-
acteristic. The majority of the notation for this paper is outlined in Section 2.

2. Background
2.1. Compositions. A composition α of n is a list of positive natural numbers
(α1, . . . , αk) such that α1 + · · · + αk = n. There are 2n−1 compositions of n. We
will denote that α is a composition of n by writing α � n. Compositions of n
isomorphically correspond to descent sets on [n − 1], subsets of increasing integers
in [n − 1], in the following way. Given a composition α = (α1, . . . , αk) we write
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D(α) = {α1, α1 + α2, . . . , α1 + · · · + αk−1}. It is also easy to reverse this process.
Given a descent set D, we denote by C(D) the corresponding composition.

We can view compositions combinatorially as ribbon diagrams. A ribbon diagram
is an edgewise connected skew diagram with no 2 by 2 boxes. The composition α � n
given by (α1, . . . , αk) corresponds to the ribbon diagram with αi boxes in row i. For
example, (2, 1, 3) corresponds to the ribbon diagram

.

Given a composition α, let `(α), the length of α, denote the number of entries in
α. Combinatorially, this is the number of rows in the ribbon diagram of shape α.
We denote by w(α) the width of α. This gives the number of columns in the ribbon
diagram of α.

Proposition 2.1. For any composition α � n, w(α) = n− `(α) + 1.

Proof. To see why this is the case, notice that the number of columns in the ribbon
diagram is exactly,

(α1) + (α2 − 1) + · · ·+ (αk − 1) = (α1 + · · ·+ αk)− k + 1 = n− `(α) + 1. �

Given two compositions α, β we define their sum to be α+β= (α1, . . . , αk, β1, . . . , β`)
and their join as αC β = (α1, . . . , αk + β1, β2, . . . , β`).

In a ribbon diagram, we enumerate boxes from left to right and bottom to top. So
by the i-th box, we mean that i-th box counted in this manner. We will often discuss
adding boxes to positions of a ribbon diagram, we make this concrete here. Given
a composition α = (α1, . . . , αk) with α � n, adding a box to the i-th position of α
means that we add a box above the (i−1)-st box in the ribbon diagram corresponding
to α and shift the corresponding boxes up to ensure we still have a ribbon diagram.
Explicitly, if the (i − 1)-st box is in αj , i.e. α1 + · · · + αj−1 < i − 1 6 α1 + · · · + αj ,
then the ribbon diagram where we add a box to position i− 1 is exactly

(α1, . . . , αj−1, αj − βi, 1)C (βi, αj+1, . . . , αk),

where βi is a correction factor so that α1 + · · ·+ αj − βi = i− 1.
From this we can see that in a composition of n, it makes sense to add a box

to any position i with 1 6 i 6 n + 1. We say that α � n has n + 1 positions, so
position(α) = |α|+ 1. Combinatorially this is because we are allowed to add a box to
the left of the first box as well.

2.2. 0-Hecke Algebra. The 0-Hecke algebra Hn(0) is the associative algebra gen-
erated by π1, . . . , πn−1 over an arbitrary field F where the generators satisfy the
relations 

π2
i = πi 1 6 i 6 n− 1
πiπi+1πi = πi+1πiπi+1 1 6 i 6 n− 2
πiπj = πjπi |i− j| > 1.

We will most often use this generating set. The last two relations are commonly
called the braid relations and the first relation is sometimes called the skein relation.
Hn(0) is a deformation of the symmetric group Sn and one of the most well studied
degenerate deformations. Recall that the symmetric group has Coxeter generators
{s1, . . . , sn−1} where the si = (i, i+1) is the adjacent transposition. These generators
satisfy the braid relations, but not the skein relation, instead s2

i = 1. If w ∈ Sn

is a permutation and w = si1 · · · sik is a reduced expression for w in the Coxeter
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generators we define the Hn(0) algebra element πw := πi1 · · ·πik ∈ Hn(0). One can
show that the set {πw | w ∈ Sn} forms a basis for Hn(0) as an F-vector space.

It is well known that Hn(0) has another algebra generating set {π1, . . . , πn−1}
subject to the relations

π2
i = −πi 1 6 i 6 n− 1
πiπi+1πi = πi+1πiπi+1 1 6 i 6 n− 2
πiπj = πjπi |i− j| > 1.

Here πi = πi − 1 for all i.
In [27] the author characterizes all simple and projective Hn(0) modules. In par-

ticular, they are indexed by compositions α � n. The complete list of irreducible
modules is given by {Cα}α where Cα is a one dimensional Hn(0)-module spanned by
vα where for i = 1, . . . , n− 1,

πivα =
{

0 i ∈ D(α)
vα i 6∈ D(α).

We will denote the complete list of projective modules by {Pα}. For more details
we refer the reader to [27]. As a quick example we note that Cn = Pn is the trivial
representation where all generators πi act by 1 because D(n) = {}.

2.3. Symmetric Function Theory. Let X = (x1, x2, . . . ) be a totally ordered
infinite set of variables. Then we denote the Z-algebra of symmetric functions in X
with coefficients in Z by Sym. There is a clear N-grading on this algebra, its degree
n component has basis given by the Schur functions {sλ | λ ` n}, i.e. λ is a partition
of n. The Schur function sλ can be expressed as

(1) sλ =
∑
T

xT

where the sum is over all semi-standard tableau T of shape λ and xT is the monomial

xT := x
c1(T )
1 x

c2(T )
2 · · ·

where ci(T ) is the number of times i appears in T . Given partitions µ ⊂ λ, we also let
sλ/µ ∈ Sym denote the skew Schur function. This function is defined via Equation (1),
where we sum over all skew-tableau of shape λ/µ. The most important example of a
skew Schur function for us is a ribbon Schur function, where λ/µ is a ribbon tableau.
We will index these by sα where α is a composition corresponding to the ribbon λ/µ.
For further reading on symmetric functions we refer the reader to [23].

There is a coproduct structure on Sym given by replacing the variables x1, x2, . . .
with x1, x2, . . . , y1, y2, . . . so that Sym becomes a graded Hopf algebra which is self
dual under the basis {sλ} [10, §2].

There is a larger algebra which contains Sym given by loosening the requirement
that the functions be symmetric. Once again if we let X be a totally ordered set
of variables, we can define the Z-algebra of quasisymmetric functions QSym as the
power series of bounded degree in X which are upward shift invariant in the sense that
the coefficient of the monomial xα1

1 · · ·x
αk
k is equal to the coefficient of xα1

i1
· · ·xαkik for

any increasing sequence of integers i1 < i2 < · · · < ik. Notice that every symmetric
function satisfies this property, but there are quasisymmetric functions that are not
symmetric, for example

x1x
2
2 + x1x

2
3 + x2x

2
3

is a quasisymmetric function in 3 variables but is not symmetric. This means that we
naturally have Sym ⊂ QSym. The algebra QSym has a basis consisting of monomial
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quasisymmetric functions Mα. For a composition α � n with α = {α1, . . . , αk}

Mα :=
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαkik .

We can use this basis to define one of the most important bases for QSym, the Gessel
fundamental quasisymmetric functions, denoted {Fα}. To begin we let F0 = 1 and for
any composition α,

Fα =
∑
β�α

Mβ

where β � α if we can obtain α by adding together adjacent elements of β. For
example (1, 1, 2, 3, 2) � (2, 2, 5). This is sometimes called the refinement order on
compositions.

The final algebra we consider is NSym the graded algebra of noncommutative
symmetric functions. This is the free unital associative noncommutative algebra of
noncommutative functions in X invariant under the natural symmetric group action.
Alternatively, we can define it as the free unital associative noncommutative algebra
Z〈h1, h2, . . . 〉 generated over Z by the symbols h1, h2, . . . where hd has degree d. The
degree n component of NSym has Z-basis given by {hα | α � n} where

hα = hα1 · · ·hαk .

Remember this is a noncommutative product, so considering compositions instead of
partitions is important. One of the most important bases for the degree n component
of NSym consists of the noncommutative ribbon Schur functions, {sα | α � n}. We
note that these are not the same as the ribbon Schur functions mentioned above,
because they are not commutative, their commutative image will be one of the ribbon
Schur functions. In terms of the hα we define these as

sα :=
∑
β�α

(−1)`(α)−`(β)hβ .

As in the symmetric function case there are coproducts on QSym and NSym but
they are not self dual, instead they are dual to each other as Hopf algebras [10, §5].

2.4. Quasicharacteristic Maps. Let A be a finite dimensional algebra over a
field F. We will often work with the Grothendieck group G(A) of finitely generated
A-modules. This group is the quotient of the free abelian group generated by isomor-
phism classes of finitely generated A-modules [M ] by the relation [M ] − [L] − [N ] if
there is a short exact sequence of finitely generated A-modules

0→ L→M → N → 0.

If we let A = Hn(0), G(Hn(0)) has free basis given by the collection of isomorphism
classes of irreducible Hn(0)-modules, i.e. the {[Cα]} for all α � n. We will not use it
much for now, but it is worth mentioning that there is another Grothendieck group
K(A) consisting of all finitely-generated projective A-modules which has free basis
given by the collection of isomorphism classes of indecomposable projective Hn(0)-
modules. These were also characterized in [27] and correspond to compositions of n
as well.

In the following we assume some representation theory background, a good re-
source for these results is [7]. The symmetric group algebra Q[Sn] is semisimple and
has irreducible representations Vλ indexed by partitions λ ` n. In this setting, the
Grothendieck group G(Q[S•]) of the tower

Q[Sn] : Q[S0] ↪→ Q[S1] ↪→ · · ·
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of symmetric group algebras is the direct sum of the G(Q[Sn]) for all n > 0. It can
be given the structure of a graded Hopf algebra where the product and coproduct are
respectively induction and restriction of representations along the natural embedding
Sn ⊗ Sm ↪→ Sn+m. The Frobenius characteristic map Fch of a finite dimensional
Q[Sn]-modules V is defined first on the basis for G(Q[Sn]) consisting of isomorphism
classes of Specht modules [Vλ]

Fch([Vλ]) = sλ

where sλ is the Schur function corresponding to the partition λ, we then extend
linearly. Incredibly, the map Fch gives a graded Hopf algebra isomorphism between
G(Q[S•]) ∼= Sym [10, §4.4]. This connection has been incredibly useful as it allows us
to study the representation theory of the symmetric group by working with symmetric
functions and vice versa. One important result coming from this connection is the
decomposition of tensor products Vλ ⊗ Vn of Specht modules considered now as a
representation of S|λ|+n into its irreducible components via the Pieri rule. For further
details we refer the reader to [23, I 5].

It turns out that there are two analogous characteristic maps Ch and ch defined
by Krob and Thibon [18], which make it possible to study representations of Hn(0)
through the rings QSym and NSym defined above. We will recall their construction
because it will be very important in the coming sections.

As discussed, the two Grothendieck groups G(Hn(0)) and K(Hn(0)) have bases
given by {[Cα] | α � n} and {[Pα] | α � n} respectively. Similar to the symmetric
group algebra case, we have Grothendieck groups G(H•(0)) :=

⊕
n>0 G(Hn(0)) and

K(H•(0)) :=
⊕

n>0K(Hn(0)) associated to the tower of algebras

H•(0) : H0(0) ↪→ H1(0) ↪→ H2(0) ↪→ · · · .
These groups are both graded Hopf algebras with product and coproduct given
by induction and restriction of representations along the natural embedding
Hn(0) ⊗ Hm(0) ↪→ Hn+m(0). Furthermore, they are dual to each other via the
pairing 〈[Pα], [Cβ ]〉 = δα,β where this is the Kronecker-Delta function.

Krob and Thibon [18] define two linear characteristic maps
Ch: G(H•(0))→ QSym and ch : K(H•(0))→ NSym,

by Ch([Cα]) := Fα and ch(Pα) := sα where Fα is the fundamental quasisymmetric
function and sα is the noncommutative ribbon Schur function. They then show these
maps are graded isomorphisms of Hopf algebras. For more information we refer the
reader to [18].

2.5. The 0-Hecke Category H. In [1] the author describes a natural way to view
Hn(0) as a quotient of the braid group Bn. Recall that a geometric braid is a disjoint
union of n edges called strands, in D× I where I = [0, 1] and D is a closed disk. The
set of endpoints of the strands is required to be {p1, . . . , pn}×{0, 1}, and each strand
is required to intersect each disk cross-section exactly once. Two geometric braids are
said to be equivalent if it is possible to continuously deform one to get the other. The
elements of Bn are equivalence classes of braids under this continuous deformation
equivalence relation. For more we refer the reader to [1]. From now on, we will refer
to geometric braids as braids.

Definition 2.2. A crossing in a braid is called positive if the strand on top in the
crossing goes from top left to bottom right, otherwise it is called negative.

We can encode each πi as a braid with strands connecting vertices i to i+ 1 in the
top row to vertices i+ 1 to i in the bottom row with a positive crossing. Then every
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element of Hn(0) can be represented as a composition of positive crossing diagrams
and hence can be viewed as a braid diagram with strictly positive crossings, meaning
the strand originating at the first vertex crosses above any vertex it crosses. The
strand originating from the second vertex can only cross below the strand originating
from vertex 1 and above all other strands etc.

Definition 2.3. We call a braid diagram from [n] vertices to [m] vertices order pre-
serving if there are no crossings.

We will define H as the quotient of the Braid Category in [32, §1.2] by the skein
relation, i.e. that π2

i = πi. Graphically, this is the relation

• •

• •

• •

• •

=
• •

• •
.

More explicitly, the objects of H consist of sets [n] for n ∈ Z>0 and homH([n], [m]) for
n 6 m is given by all positive crossing braid diagrams from n vertices to m vertices.

To compose two maps f ∈ homH([n], [m]) and g ∈ homH([m], [`]) we view both
maps as elements of H`(0) by padding the top rows of the corresponding diagrams
with dummy vertices, called “free” ends in [32], so that every row has ` vertices. We
then connect the dummy vertices to the vertices in the bottom row that have degree
0 so that we do not introduce any crossings between the edges we introduce and so
that every crossing we must create is positive. The edges adjacent to dummy vertices
are called dummy edges. Now compose as we would in H`(0), i.e. by following paths
and applying the skein relations to ensure we have positive crossings. We then remove
all dummy vertices and the dummy edges from the resulting composition.

Notice that the number of dummy vertices we add to f does not matter after we
add m− n because after that each dummy vertex is mapped identically to itself.

The following are an important list of relations that result from the above compo-
sition rules:

(2a)

• •

• • •

• • •

• • •

=
• •

• • •
(2b)

• •

• • •

• • •

• • •

=
• •

• • •

(2c)

• •

• • • •

• • • •

• • • •

=
• •

• • • •

Remark 2.4. It is easy to check that all of these relations arise from our padded
composition in H. We will illustrate how to check Relation (2b) and leave the rest
for the reader. Once again, dummy vertices are denoted by � and dummy edges are
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dashed, Relation (2b) can be seen as,

• • �

• • •

• • •

• • •

.

In H3(0) this is π1π1π2 = π1π2 by the skein relation. Recall that composition is read
from right to left and with our diagrams we read from top to bottom. As a result
when we remove the dummy vertex and its connected edge we recover the original
diagram.

Proposition 2.5. OI is a subcategory of H.

Proof. We have a natural embedding of objects. For maps, every order preserving
injection corresponds to an order preserving braid diagram. It remains to check that
given two order preserving maps, they compose as they would in OI using our com-
position rules.

Let f and g be two order preserving maps, f ∈ homH([n], [m]), g ∈ homH([m], [`]).
To compose we will pad f with ` − n dummy vertices and g with ` − m dummy
vertices. When we add the dummy edges by virtue of the fact that the original maps
were order preserving there will never be crossings between non-dummy edges in the
resulting composition in H`(0). So when we remove the dummy vertices and edges,
we will recover the exact composition we would expect in OI. �

Proposition 2.6. Composition in H is well defined and associative.

Proof. One way to see this is that composition is well defined in the Braid Category
and hence is well defined in the quotient. This also follows immediately from the fact
that composition is well defined and associative in Hn(0) for any n. Since when we
compose two maps f ∈ homH([n], [m]) and g ∈ homH([m], [`]) we first pad them
and proceed to compose the corresponding padded diagrams in H`(0). Associativ-
ity in H`(0) implies that no matter how we compose we get the same diagram, so
when we remove dummy vertices and edges we get the same well defined diagram in
homH([n], [`]). �

Definition 2.7. We call the natural injection of Hn(0) into Hm(0) sending πi 7→ πi
for i = 1, . . . , n− 1 the principal injection and denote it by ιn,m. This is represented
by the order preserving braid diagram that sends vertex i to vertex i.

Notice that Hm(0) acts on homH([n], [m]) via post-composition. We can see that
the element ιn,m generates all other elements under this action, but the action is not
transitive as in the FI case, which we would expect because there are no inverses in
Hm(0). We can also see that the annihilator of ιn,m is isomorphic to Hm−n(0) because
it is generated by all the maps πn+1, . . . , πm. From this we can conclude,

Proposition 2.8. As a Hm(0)-module,

homH([n], [m]) ∼= Hm(0)/Hm−n(0).

Proof. Define a Hm(0)-equivariant map

φ : Hm(0)→ homH([n], [m])
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via the action of the element on ιn,m, so φ(πi) = πiιn,m and we extend so φ is an
algebra homomorphism. From the above observations, this map is surjective. By the
first isomorphism theorem we have

Hm(0)/ ker(φ) ∼= homH([n], [m]).
But by definition ker(φ) is exactly the annihilator of ιn,m, and this is isomorphic to
Hm−n(0). �

Using this, we can derive a H-module criterion.

Theorem 2.9 (H-module criterion). Suppose that {Wn} is a sequence of Hn(0) rep-
resentations with Hn(0)-equivariant maps φn : Wn → Wn+1, where the action on
Wn+1 is given by embedding Hn(0) into Hn+1(0) via the principal injection ιn,n+1.
Let K ∼= Hm−n(0) be the stabilizer of ιn,m under the action of Hm(0) by post compo-
sition. Then {Wn} can be promoted to a H-module with (ιn,n+1)∗ = φn if and only if
for all n < m

π · v = v ∀π ∈ K and v ∈ image((ιn,m)∗).

Proof. First if we assume that {Wn} is a H-module, we clearly have π · v = v for
every π ∈ K and v ∈ image((ιn,m)∗) by the rules for composition, since we know
the stabilizer will be generated by πn+1, . . . , πm and all of these element act by the
identity after ιn,m so by functoriality we must have π∗(ιn,m)∗ = (π · ιn,m)∗ = (ιn,m)∗.

For the other direction, we can factor any map f ∈ homH([n], [m]) as f = Twιn,m
where Tw is a word in the generators of Hm(0). We will define the H action by letting
(ιn,n+1)∗ = φn and then f∗ = Twφm−1 · · ·φn. It remains to check that functoriality
is satisfied.

Suppose we have f ∈ homH([n], [m]) and g ∈ homH([m], [`]), then we claim
(g ◦ f)∗ = Tpφ`−1 · · ·φmTwφm−1 · · ·φn = g∗f∗.

In order for the above to be well defined and true we need any permutation of strictly
dummy vertices in the composition g ◦ f to act by the identity on any vector in the
image of (ιn,`)∗. This is guaranteed by our assumption because such permutations are
exactly the stabilizer of ιn,`. �

Remark 2.10. We quickly notice that checking the above is equivalent to checking
that every element that annihilates ιn,m acts by 0. This is because if π stabilizes, then
π − 1 annihilates and vice versa.

Theorem 2.9 classifies the sequences of 0-Hecke representations that can be “pro-
moted” to a H-module, a similar result for FI-modules appears in [3, Remark 3.3.1].
We will now prove a few more properties of this category. First, we will show it is
noetherian.

Definition 2.11. We say that a category of modules is locally noetherian if any sub-
module of a finitely generated module is finitely generated.

Definition 2.12. Given two categories C and C′, we say that a functor Φ: C → C′
satisfies property (F) if the following condition holds: given any object x of C′ there
exist finitely many objects y1, . . . , yn of C and morphisms fi : x→ Φ(yi) in C′ such that
for any object y of C and any morphism f : x→ Φ(y) in C′, there exists a morphism
g : yi → y in C such that f = Φ(g) ◦ fi.

This property is important because it is equivalent to the pullback functor
Φ∗ : Repk(C′) → Repk(C) preserving finite generation. For more on this we direct
the reader to [38, §3].
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Theorem 2.13. The category of H-modules, ModH, is locally noetherian.

Proof. We use Gröbner methods outlined in [38]. In particular, we will show that H is
quasi-Gröbner which proves that it is locally noetherian. In [38] the authors show that
OI is a Gröbner category, i.e. that it is locally noetherian. So it suffices to produce
a functor Φ: OI → H that satisfies property (F). The functor Φ will be the natural
inclusion outlined in Proposition 2.5.

It is clear that Φ is essentially surjective, so it remains to show that it satisfies
property (F). Let x = [n] be a given object in H. Every map f ∈ homH([n], [m])
can be factored as i(n,m)Tw where Tw ∈ Hn(0) and i(n,m) is an order preserving
injection from [n] to [m]. If we take y1, . . . , yn! = [n] and fi : [n]→ Φ(yi) to be the ith
element of Hn(0) under any enumeration it is clear that Φ satisfies property (F). �

3. Induced Modules
We will now consider the induced modules M(Cα) where Cα is the simple one dimen-
sional Hn(0)-module defined in the Section 2. M(Cα) is defined as

M(Cα)m := k[homH([n], [m])]⊗k[Hn(0)] Cα,

where the action of H is composition on the left tensor factor. It is not hard to see
that

M(Cα)m ∼= IndHm(0)
Hn(0)×Hm−n(0) Cα �Cm−n.

We also define M(n)m := k[homH([n], [m])]. There is a convenient way to index basis
elements of M(α) in each degree.

Lemma 3.1. For a fixed α � n and degree d a basis for M(α)d is indexed by all order
preserving injections of n into d. Explicitly this basis is given by {g ⊗ vα} where g
ranges over all order preserving injections of n into d and vα spans Cα.

Proof. For fixed d and n, we may assume d > n, the space M(α)d is exactly

M(n)d ⊗k[Hn(0)] Cα.

Pick any element f ⊗ vα where vα spans Cα. We may assume by linearity that f
is a single map and not a sum of maps. If f has any crossings, we can factor f as
an element of Hn(0) followed by an order preserving injection g, i.e. f = gTw. We
can then pass the element of Hn(0) through the tensor and have it act on vα. This
implies that this vector f ⊗ vα = g ⊗ (Twvα). But we know Tw acts by either 0 or 1
on vα so either the original vector is zero or it equals g⊗vα for some order preserving
injection g. �

Corollary 3.2. For a fixed α � n, dim (M(α)d) =
(
d
n

)
.

Proof. This follows immediately from Lemma 3.1 because there are
(
d
n

)
order pre-

serving injections of [n] into [d]. �

Under the quasisymmetric characteristic map Ch: G(H) → QSym defined in Sec-
tion 2, the isomorphism class of the simple element [Cα] corresponds to the fundamen-
tal quasisymmetric function Fα. We can use this characteristic map to decompose the
isomorphism class [M(Cα)]n, in particular it corresponds to the analogous variant of
the Pieri rule for fundamental quasisymmetric functions which we now recall.

Given two words w and v of length n and m respectively, we define their shuffle
set, denoted by w � v as the set of all words, u1 · · ·um+n, where for some subset of
disjoint indices {i1, . . . , in} and {j1, . . . , jm} with i1 < · · · < in and j1 < · · · < jm,

Algebraic Combinatorics, Vol. 4 #4 (2021) 630



Representation stability for 0-Hecke modules

we have uik = wk and ujk = vk. Given a word w on an ordered set such as Z>0 we
define the descent set of w as

D(w) = {i | wi > wi+1}.

As a quick example consider the word w = 14253, then D(w) = {2, 4}.
For fundamental quasisymmetric functions Fα and Fβ we have the following mul-

tiplication rule, for more details on this rule we refer the reader to [19],

FαFβ =
∑

u∈w(α)�w(β)

FC(D(u))

where w(α) is some word on Z>0 with descent set D(w(α)) = D(α) and the same for
w(β) with the condition that w(α) and w(β) must consist of disjoint natural numbers.
We recall that C(D(u)) is the composition corresponding to the descent set of the
word u.

We are specifically concerned with the case where β = m. In this case, combinato-
rially if we interpret α � n as a ribbon diagram we sum over all Fγ with γ � m + n
a ribbon diagram constructed from α by adding m boxes in any way to any of the
positions of α. This multiplication rule allows us to discover which simple modules
are in each degree of our induced modules. Consider the following example,

Example 3.3. Consider the following induced H-module, M
(

2
1 3

)
. We will explicitly

compute the simples in degree 4,

M
(

2
1 3

)
4 =

1
3

2 4 +
1 3

2 4 +

3
1 4
2 +

3
1 2 4 .

We number the boxes to illustrate the connection to descent words and the multi-
plication rule above. Each diagram corresponds to the descent word where we read
from bottom to top, left to right. Here w(β) = 1 and w(α) = 243. We then sum over
all shuffles, so we get the descent words {2431, 2413, 2143, 1243} which correspond to
inserting 1 into all possible places.

From this point forward, we will no longer number the boxes because the descent
set is recoverable from the diagrams themselves. We placed the numbers in the above
example purely to illustrate the connection between the multiplication rule for fun-
damental quasisymmetric functions and adding boxes to certain positions of α.

We also note that the action of the 0-Hecke algebra Hn(0) on the simples in the H-
degree n component of a H-module M(α) corresponds to shifting added boxes down
to a lower position in the diagram. This perspective will be very useful in the coming
sections. We will often switch perspectives depending on which allows for the easiest
proof. To see what we mean, consider the following example.

Example 3.4. Once again if we consider the induced module M((2, 1)), we can see
that each of the diagrams in the above example correspond to a basis element, which
are indexed by order preserving injections. In degree 4 we have

M
( )

4 =
•

+
•

+
•

+ • ,

where the marked boxes are the box we add to the ribbon tableau corresponding to
(2, 1). These diagrams correspond respectively to the basis elements

• • •

• • • •

⊗ v(2,1),
• • •

• • • •

⊗ v(2,1),
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• • •

• • • •

⊗ v(2,1),
• • •

• • • •

⊗ v(2,1)

where we read from left to right then top to bottom and v(2,1) is the basis element that
spans C(2,1). To see this correspondence, notice that the final diagram is preserved by
the H4(0) action where π1 acts by 1, π2 acts by 1, and π3 acts by 0. The corresponding
descent set is precisely {3} and so the corresponding composition of 4 is (3, 1). Notice
this is the diagram where the box is placed in the lowest possible position.

When we quotient by this simple, one can check that the next simple that we can
inject into this module is precisely the third diagram where we add a box to the second
position. Under the H4(0) action, we can map the third diagram to the final diagram
where we add a box to the 1st position by applying π1. In this same way, it is possible
to move any box we have added in a higher row to a lower row under this H4(0)
action since adding boxes to the i-th row corresponds to having that many degree
0 vertices before the i-th strand. This implies that if a submodule contains a simple
in M(α) that corresponds to adding a box to a higher position of α, the submodule
must also contain all the simple modules corresponding to adding the same boxes to
lower positions. This will be extremely useful in the coming sections.

Proposition 3.5. The simple objects in ModH are precisely the modules equal to Cα
in degree |α| and zero elsewhere.

Proof. Suppose V is a simple H-module. Let d be the first degree where Vd 6= 0.
Then by simplicity we must have V>d+1 = 0, otherwise V>d+1 would be a nonzero
submodule. Furthermore, Vd must be a simple Hd(0) module otherwise it would have
a submodule. This means Vd = Cα for some composition α � d. �

4. Padded Induced Modules
We say that a finitely generated H-module V has polynomial degree d if dim(Vn) is
given by a degree d polynomial for sufficiently large n.

Given a composition α � n, for 0 6 i 6 n, let ηi(α) consist of the first i blocks
of α and τj(α) consist of the last j blocks of α. We refer to these ηi(α) as heads of
α and τj(α) as tails of α. We explain what a head looks like explicitly and the tail
is similar. If α = (α1, . . . , αk) then ηi(α) = (α1, . . . , α` − β) where β is a potential
correction term to make sure that ηi(α) is a composition of i. We say that ρ and γ
are summands of α if we can write α = ρ + γ where ρ and γ are both compositions.
We say that ηi(α) or τj(α) is split if we need a correction term β, combinatorially
this is if the i-th block reading from left to right is not at the end of a row. If ηi(α)
is split then α = ηi(α) + τn−i(α), if not then α = ηi(α)C τn−i(α).

We now define a new module M(α, k) where α is a composition of n and k is an
integer−1 6 k 6 n. First we letM(α, n) := M(α) andM(α,−1) := Cα these are both
quotients of M(α). Then for 0 6 k < n, we let M(α, k) be the quotient of M(α) of
degree k defined as follows. Let Aα,k be the submodule ofM(α) generated by the basis
element in degree |α|+ 1 indexed by the order preserving injection gk : [n]→ [n+ 1],

gk(i) =
{
i+ 1 i > |α| − k,
i else.

When we quotient by this module, the remaining simples in degree m of M(α, k)
are indexed by M(τk(α))m−n+k. To find the simples of M(α, k) corresponding to the
compositions {βi,m−n+k}i of M(τk(α))m−n+k we either get ηn−k(α) + βi,m−n+k or
ηn−k(α) C βi,m−n+k. The first case occurs if ηn−k(α) is split or if we add a box to
the first row of τk(α) in βi,m−n+k. The second case occurs if ηn−k(α) is not split
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and we do not add a box to the first row of τk(α). We explain this further below in
Lemma 4.4. We call these degree k induced α modules.

Proposition 4.1. The module M(α, k) where |α| = n, has Hilbert function
(
d−n+k

k

)
and so has polynomial degree k.

Proof. The simples that occur in M(α, k)d are precisely those obtained from α by
adding d−n boxes to the top k+ 1 positions of α. There are

(
d−n+k

k

)
ways to do this

and each simple is one dimensional. �

Remark 4.2. Notice, this result recovers the previous statement that dim(M(α)d) =(
d
n

)
, as M(α) = M(α, n) if |α| = n. Comparing the proof of this result with Corol-

lary 3.2 further illustrates the connection between the basis of order preserving in-
jections and the combinatorial interpretation of computing simples that occur using
ribbon diagrams.

Example 4.3. Consider the example of M((2, 2), 3). We define this as a quotient of
M((2, 2)) by the submodule generated by

• • • •

• • • • •
⊗ v(2,2),

where recall v(2,2) spans C(2,2). The above map is precisely the map indexed by the
order preserving injection g described above. In this case |α| − 3 = 1. Notice that α1
is not split, i.e. α1 = (1) and α3 = (1, 2). From the above all the remaining simples
should be generated by adjoining the simples in M((1, 2)) to α1. In degree 4 this
quotient is spanned by

• • • •

• • • •
⊗ v(2,2).

This corresponds to the simple C2,2, which we can realize as α1 C (1, 2) where (1, 2)
is the only simple in M((1, 2))3. In degree 5 the quotient is spanned by

• • • •

• • • • •

⊗ v(2,2),
• • • •

• • • • •

⊗ v(2,2),

• • • •

• • • • •

⊗ v(2,2),
• • • •

• • • • •

⊗ v(2,2).

Notice the restriction the quotient places on the remaining basis elements is that the
first arrow must go directly down. If it does, the basis element will not be in the
quotient, if it does not the basis element is forced into the quotient. The quotient
can be viewed as all simples where we place at least one block into the first position
of the diagram for α, so all the remaining diagrams are exactly the ones where we
never have a block in that position. These correspond to the following compositions
α1 C (1, 2, 1), α1 C (1, 1, 2), α1 C (1, 3) and α1 + (2, 2). The compositions on the right
are exactly those present in M((1, 2))4. Notice α1 is split, but in the final diagram we
add a box to the first position of (1, 2) so we add instead of join.

The above illustrates that the representation theory of M(α, k) is very similar to
that of M(τk(α)). To make this more explicit,

Lemma 4.4. Submodules of M(α, k) are in bijective correspondence with submodules
of M(τk(α)). This bijection respects the H-module structure and preserves polynomial
degree.
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Proof. Simples are indexed by their sole basis element, as we have seen above
(Lemma 3.1). We will give a bijective correspondence between these basis elements
that respects the H-module structure. This bijection then extends to a bijective
correspondence of submodules, as every submodule can be described by the basis
elements that generate it as an H-module. A bijective correspondence of basis
elements also clearly respects the polynomial degree.

Given a basis element of M(τk(α))d, to get the corresponding basis element of
M(α, k)d+|α|−k we prepend |α| − k vertices to the top and bottom row of the string
diagram corresponding to the basis element and connect them directly downwards.
By construction this will be nonzero in the quotient so our map has a nonzero image
in M(α, k)d+|α|−k. Furthermore, each basis element has a unique image and this map
respects the action of Hd(0) where we embed Hd(0) ↪→ Hd+|α|−k(0) by πi 7→ π|α|−k+i.
In particular, we see that if the basis vectors corresponding to simples {Cβi} generate
a submodule ofM(τk(α)), the basis vectors corresponding to the simples {Cγi} where
we prepend the missing part of α, i.e. η|α|−k(α), to βi will generate a corresponding
submodule of M(α, k).

The inverse map is the restriction map that ignores the first |α| − k fixed vertical
edges that must occur in any basis element of the quotient moduleM(α, k). This map
is also an injection because by construction every basis element that occurs in any
degree ofM(α, k) has |α|−k fixed vertical edges, so the only new information is what
occurs within the final d pairs of vertices. Notice, this also respects the Hd(0) action.

Finally, by construction the only way to generate new basis elements in M(α, k)
from a given element is via the Hd(0) action on the final d vertices. As a result,
generating sets for submodules are completely determined up to this action. Since the
above bijection respects this Hd(0) action, it gives us a bijective correspondence of
submodules. �

Remark 4.5. The above shows that when dealing with proofs about polynomial de-
gree of submodules it suffices to work with the M(α). It is important to note that
this does not show that M(τk(α)) and M(α, k) are isomorphic as H-modules, this is
very much not the case. In particular, we are not trying to say that there is an iso-
morphism of submodules, just a bijective correspondence that respects the H-module
structure. We show that the simples occurring in submodules ofM(α, k) are controlled
by M(τk(α)) and hence so is the dimension because all simples are one dimensional.
To understand this lemma further, look back at Example 4.3.

We now prove an important theorem about quotients of M(α, k).

Theorem 4.6. Let α be a composition with |α| = n. Then any proper quotient of
M(α, k) has polynomial degree < k. Equivalently, any proper submodule of M(α, k)
has Hilbert polynomial of the same degree with the same leading term as M(α, k).

Lemma 3.1 allows us to place a total order on the basis elements ofM(α) for any α.
In particular, we say that g1⊗ vα > g2⊗ vα if g1 has image in [m] while g2 has image
in [n] withm > n or if g1 and g2 both have image in [n] and (g1(1), g1(2), . . . , g1(n)) >
(g2(1), g2(2), . . . , g2(n)) in the lexicographic order. It is not hard to see this is indeed
a total order.

Lemma 4.7. Order preserving maps preserve the lexicographic order on basis elements
of the same degree.

Proof. Given two basis elements g1⊗vα > g2⊗vα with g1, g2 ∈M(n)d order preserving
and another order preserving map f ∈ homH([d], [m]) we know that f acts on these
basis elements by composition in the first component and we need to show f(g1⊗vα) >
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f(g2 ⊗ vα). Equivalently we need to show,
(fg1)⊗ vα > (fg2)⊗ vα.

fg1 and fg2 both inject into [m] so we have to show
(fg1(1), fg1(2), . . . , fg1(n)) > (fg2(1), fg2(2), . . . , fg2(n)).

This is clear because f is order preserving. �

Every element we are concerned with will be a sum of basis elements in the same
degree, because we consider degrees separately. The above result implies that order
preserving injections between degrees respect the total order on each degree. With
these results, we are ready to prove our theorem,

Proof of Theorem 4.6. It suffices to prove this result forM(α) = M(α, |α|) as α varies
by Lemma 4.4. Let V be a proper submodule of M(α) in ModH. Suppose that d > n
is the first degree where Vd 6= 0. Then because V is a submodule of M(α) we know
Vd will contain a vector v with the following vector as a nonzero summand,

• • · · · • •

• · · · • • • · · · • •
⊗ vα

where vα is a vector spanning Cα and there are n vertices on top, d on the bottom
and the first d− n vertices are not mapped to. We will call the above vector u. This
vector will appear because we can apply the moves in (2a) to obtain such a v having
u as a nonzero summand. In degree d, u = f ⊗ vα is the largest element with respect
to the lex order on basis elements.

If we consider all the order preserving maps that factor through f in later degrees
they will be linearly independent because they are basis elements as described in
Lemma 3.1. Applying order preserving injections preserves the lex order as seen in
Lemma 4.7, so in any order preserving injection of v the image of u will be the largest
vector that appears as a summand.

Consider a collection of order preserving injections of v that inject u to unique
vectors (e.g. we want the final n vertices of the d total vertices to have unique images
under each map and we want the first d − n vertices to map directly downward so
there are no repetitions in the mapping of u). We claim the images of v under these
order preserving injections are linearly independent. If there was some nontrivial linear
combination of these order preserving injections of v, consider the images of u. The
coefficient of the largest image of v, i.e. the one that contains the largest image of u
with respect to the lexicographic order, must be zero because the image of u will be
the largest possible vector in that degree with respect to the lexicographic order and
no other selected order preserving injection of v contains that vector as a summand
by construction. We then continue in that fashion to find that all the coefficients must
be zero.

This means that every order preserving injection we have selected of the vector
v will be linearly independent. If we map to degree m > d > n there are

(
m−d+n

n

)
such injections. Each will be given by selecting n vertices from the final m − d + n
vertices in degree m. So if we consider the submodule generated by the vector v, it
gives a lower bound on the dimension of the original submodule V in each degree.
We know dim(M(α)m) gives an upper bound on the dimension of Vm. All of these
submodules have eventually polynomial growth because they are finitely generated
by Noetherianity (Theorem 2.13). In total we have shown that(

m

n

)
> dim(Vm) >

(
m− d+ n

n

)
,
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and dim(Vm) is eventually polynomial. All of this implies that dim(Vm) must even-
tually equal a polynomial of degree n with leading coefficient 1

n! . As a result, the
quotient module M(α)/V has degree < n because the leading terms will cancel. �

5. Grothendieck Group
Let H6d := (ModH)6d the H-modules of polynomial degree 6 d. Consider the suc-
cessive Serre quotient category where we consider every polynomial degree d module
modulo polynomial degree < d objects, we will denote this category of polynomial
degree d objects modulo degree 6 d − 1 objects by Hd := H6d/H6d−1. It turns out
that the M(α, k) are simple in the quotient by lower polynomial degree submodules.

Theorem 5.1. Any nonzero polynomial degree k quotient of M(α) must contain
M(α, k), i.e. M(α, k) is the smallest nonzero polynomial degree k quotient of M(α).

Proof. For any α and k, this is equivalent to saying that if M(α, k) = M(α)/Aα,k
that any other quotient M(α)/B of polynomial degree k has B ⊆ Aα,k.

If k = −1, M(α,−1) = Cα which is clearly the smallest polynomial degree −1
nonzero quotient of M(α) as any further quotient would have to be identically zero.

Assume k > 0. Suppose there were a submodule B with Aα,k ⊂ B such that
M(α)/B had polynomial degree k. This implies the existence of a nonzero submodule
of M(α, k) such that the quotient still has polynomial degree k which is impossible
by Theorem 4.6, as the polynomial degree must drop to k − 1.

The other option is that Aα,k and B are not comparable in the containment order.
Suppose this is the case with k > 0, and that M(α)/B has polynomial degree k.

Let b span a simple in B that is not contained in Aα,k. For b to not be in Aα,k, the
corresponding simple module must not have a box added to the first |α|−k positions of
α. This is because by construction Aα,k contains every such simple module. Suppose b
is in H-degree `. Without loss we can assume we add all ` boxes to the (|α|−k+1)-st
position since the submodule generated by any other choice of simple contains this
one because we can always shift boxes down.

In the quotient of M(α) by the submodule generated by b, the remaining simples
correspond to diagrams where we add no more than `−1 boxes to the first |α|−k+ 1
positions of α. The number of ways to place ` − 1 boxes in the first |α| − k + 1
positions of α is

(|α|−k+1+`−2
`−2

)
which is a constant. There are a total of |α| + 1

positions we could add boxes to, and once we fix a way to place at most `− 1 boxes
in the first |α| − k + 1 positions, we can add the remaining boxes in any way to the
remaining k positions. In degree d, we could choose to add at most d − |α| boxes to
the top k positions, there are at most

(
d−|α|+k−1

k−1
)
ways to do this. The quotient then

has dimension 6
(|α|−k+1+`−2

`−2
)(
d−|α|+k−1

k−1
)
, which is a degree k − 1 polynomial in d.

B clearly contains the submodule generated by b and so this implies the quotient
M(α)/B has smaller polynomial degree and hence polynomial degree 6 k − 1 which
is a contradiction. �

Lemma 5.2. The module M(α, k) is finitely generated and simple in Hk. Furthermore,
every simple module is of this form.

Proof. Finite generation is inherited in the quotient category. To see that M(α, k)
is simple, Theorem 4.6 implies that if V is any nonzero submodule it must have the
same polynomial degree and leading coefficient as M(α, k) and so the quotient has
smaller degree. This implies that M(α, k) = V in the quotient so M(α, k) is simple.

For the final statement, let L ∈ Hk be simple. Denote by L̃ a lift of L to an object
in ModH. We may assume that L̃ is a quotient of M(β) for some choice of β. Indeed,
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we know that L̃ must be generated by a single element v in degree d. By simplicity,
v must span Ld. If this were not the case, there would be some πj(v) = w with w not
a scalar multiple of v. Consider the submodule M of L spanned by w. There are two
options, one is thatM has polynomial degree k, in which case L is not simple because
M does not contain v, a contradiction. Otherwise, M has polynomial degree < k, so
that L = L/M in Hk. So we may in general assume that L̃ is generated by a single
element in lowest degree and that in this degree that element spans. This means that
L̃d is an irreducible representation of H, say Cβ . We then get a natural surjection
M(β)� L. Any simple quotient of M(β) must be isomorphic to M(β, k) for some k
in Hk. Indeed, Theorem 5.1 shows M(β, k) is the smallest degree k quotient of M(β),
so M(β, k) is a submodule of the quotient, but because the quotient is simple they
must be equal. �

We define ModK =
⊕

k>0Hk. That is, we consider all polynomial degree d objects
modulo lower degree objects.

Lemma 5.3. Every object of ModK has finite length.

Proof. Every module V is a quotient of a finite direct sum of M(n) which have finite
length by Lemma 5.2, so V is finite length. �

Theorem 5.4. Every finitely generated H-module V with polynomial degree d has a
finite filtration in Hd

0 = F1 ⊂ F2 ⊂ · · · ⊂ Fn = V,

where Fi/Fi−1 is isomorphic to M(αi, d).

Proof. V has a finite composition series from Lemma 5.3, because V has polynomial
degree d we know the simples must as well otherwise we would be able to shorten
the composition series. This implies that Fi/Fi−1 is isomorphic to a simple module
of degree d, so a simple module in Hd. Lemma 5.2 implies each of the simples are
isomorphic to M(αi, d). �

Corollary 5.5. The isomorphism classes [M(α, k)] span G(ModH).

Proof. Given any finitely generated H-module V of polynomial growth d, we claim
that its isomorphism class can be expressed as a finite sum

[V ] =
∑
j

[M(αj , kj)]

where kj 6 d. We will proceed by induction on the polynomial growth of V . If d = −1,
V is torsion and even without using Theorem 5.4 we can express V as a sum

[V ] =
∑
i

[M(αi,−1)]

by starting in the highest H-degree and injecting the corresponding torsion modules.
Now suppose the result holds for degrees 6 d − 1 and consider some d > 0. From
Theorem 5.4 we can write

[V ] =
∑
i

[M(αi, d)] + [W ]

where [W ] is a module with smaller polynomial degree 6 d − 1 and the first sum is
finite. By induction we have

[W ] =
∑
j

[M(αj , kj)]

where kj 6 d− 1. This completes the proof. �
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We now wish to strengthen this result to show that the [M(α, k)] actually form a
basis.

Theorem 5.6. The [M(α, k)] form a basis for G(ModH).

Proof. Corollary 5.5 implies the [M(α, k)] span G(ModH), it remains to prove they
are linearly independent. To do this, we will construct functions.

To prove linear independence, it suffices to prove that M(α, k) are linearly inde-
pendent for a fixed k > −1. This follows from considering the corresponding Hilbert
polynomials. If there were a finite linear combination,∑

i,j

ci,j [M(αi, j)] = 0,

if we consider the corresponding sum of Hilbert polynomials for sufficiently large
H-degree, that sum must be zero as well. This implies that the coefficients of each
polynomial degree must be zero. By considering the largest degree, say `, such coeffi-
cients can only appear from the [M(αi, `)]. If we can show linear independence here,
it implies the above sum can be zero if and only if the coefficients ci,` = 0. We can
continue in this fashion to show that every coefficient must be zero. So to show linear
independence in general, it suffices to prove it for each fixed k > −1.

Fix some k > −1. For a finitely generated H-module V , let Γα([V ]) be the number
of times Cα appears in the composition series of the V|α|. This clearly respects short
exact sequences and so is well defined on the Grothendieck group. Notice that for a
fixed k > −1, Γα([M(β, k)]) satisfies

Γα([M(β, k)]) =


0 |β| > |α|, or |α| = |β| and α 6= β,

1 β = α,

∗ else,

where ∗ could be any non-negative integer. First, if |β| > |α| the lowest nonzero H-
degree of M(β, k) is |β| so Cα could not possibly occur because it only appears in
H-degree |α|. If |α| = |β|, there are two cases to consider. If α = β, then Cα appears
in the lowest degree of M(α, k) precisely once, so Γα(M(α, k)) = 1. If α 6= β, then
M(β, k) has only Cβ in degree |β| = |α| and so Cα also cannot occur. It is possible
that Cα could appear multiple times in some M(β, k) with |β| < |α|, this is the
remaining case, but this will not matter.

Order the compositions of i arbitrarily, then place all compositions in increasing
order according to i. Call this list of all compositions of any non-negative integer
{αi}. The order described is equivalent to saying that if i 6 j we have |αi| 6 |αj |
so the size of the compositions is weakly increasing in our list. Consider the matrix
whose (i, j) entry is Γαi(M(βj , k)). The above implies that this matrix will be lower
uni-triangular because Γαi(M(αj , k)) is potentially nonzero precisely when j 6 i as
here we could have |αj | < |αi|, and when j = i Γαi(M(αi, k)) = 1. When j > i, we
either have |αi| = |αj | but αi 6= αj in which case the (i, j)-entry is zero, or |αj | > |αi|
in which case again the (i, j)-entry is zero.

This implies that the matrix is invertible and so there is some change of basis in
which we can express the Kronecker-Delta functions δα,k as a linear combination of
the Γα, where recall that

δα,k(M(β, k)) :=
{

1 (α, k) = (β, k),
0 else.
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The existence of such functions implies that the [M(α, k)] are linearly independent
for a fixed k > −1. Indeed, suppose there were some finite linear combination∑

i

cαi [M(αi, k)] = 0,

then applying δα,k implies cα,k = 0. As this holds for every choice of α, this implies
every coefficient is zero and so they must be linearly independent. This argument
holds for any fixed k > −1 and so implies that the [M(α, k)] are linearly independent
for any such fixed k. By the above, we have that the [M(α, k)] are linearly independent
as α ranges over all compositions and k an integer with k > −1. �

Lemma 5.2 describes the simple modules in Hd = H6d/H6d−1, for the coming
results we wish to strengthen this slightly.

Lemma 5.7. Any simple object in H/H6d−1 is isomorphic to M(α, d) for some choice
of α.

Proof. Any simple object in H6d/H6d−1 is isomorphic to M(α, d) by Lemma 5.2.
So the M(α, d) are simple, it remains to consider higher polynomial degree modules.
Given any other simple object L that has polynomial degree > d, we can lift L to L̃
in ModH. As in Lemma 5.2, we may assume that L̃ is a quotient of M(β) for some
choice of β. Any quotient of M(β) must contain M(β, k) for an appropriate choice of
k > d by Theorem 4.6. Hence it cannot possibly be simple unless it equals M(β, k)
in the localization. But M(β, k) is only simple in the quotient by H6k−1, otherwise
it has a nontrivial quotient corresponding to M(β, k− 1) which implies the existence
of a nontrivial submodule of polynomial degree > d − 1. This means that the only
simples in H/H6d−1 are exactly M(β, d) as β varies over all compositions. �

Theorem 5.8. A finitely generated H-module has polynomial degree 6 d if and only
if it has Gabriel–Krull dimension 6 d.

Proof. Let H6d be the objects that are finite length in the quotient H/H6d−1. We
will prove by induction on d that H6d = H6d.

For d = −1 the statement is true because in each case we get torsion modules.
These are the only polynomial degree −1 modules by definition and they are also the
only finite length modules in H by Lemma 3.5.

Now if we assume the statement for 6 d−1, we will prove it for d where d > 0. We
aim to show that a finitely generated H-module V has polynomial degree 6 d if and
only if the image of V in H/H6d−1 is finite length. By induction this is equivalent to
showing that V has polynomial degree 6 d if and only if the image of V in H/H6d−1
is finite length because we have H6d−1 = H6d−1.

If V has polynomial degree 6 d then it is is finite length inH/H6d−1 by Lemma 5.3.
Suppose instead that V is finite length inH/H6d−1. Consider the finite composition

series for V in H/H6d. Lemma 5.7 implies [V ] is a sum of [M(αi, d)] modulo lower
polynomial degree terms as these are precisely the simple modules in H/H6d. This
means V has polynomial degree 6 d as each of the terms in the expression of [V ] in
the Grothendieck group does. The result then follows by induction. �

Corollary 5.9. The Gabriel–Krull dimension of H is infinite.

Proof. This follows immediately from Theorem 5.8 and the fact that we have H-
modules with arbitrarily large polynomial degree, e.g. M((d)) is a degree d H-module.

�
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Heuristically, H can be thought of as somewhere between OI and FI but closer to
OI. In particular, we know that OI is a subcategory of H under the map Φ: OI→ H
described in Proposition 2.5. This gives rise to a pullback functor Φ∗ : ModH →
ModOI which then induces a pullback functor on Grothendieck groups which by abuse
of notation we will also call Φ∗. It is natural to ask where the [M(α, k)] land.

We will use the notation outlined in [11]. In their paper, Güntürkün and Snowden
study the representation theory of the increasing monoid, denoted J , which they
show also describes the representation theory of OI-modules. We recall the essential
definitions from their paper, for further details consult [11].

One of the most important classes of J -modules are called standard modules, de-
noted by Eλ where λ is a finite word on the alphabet {a, b}. Given such a word
λ = λ1 . . . λr the module Eλ associated to λ is defined as follows: Eλ has a basis
consisting of elements of the form ei1,...,ir where 1 6 i1 < · · · < ir subject to the
constraint that if λk = b then ik − ik−1 = 1 (with the convention that i0 = 0). The
increasing monoid acts by σei1,...,ir = eσ(i1),...,σ(ir) if this is a basis element of Eλ and
0 otherwise.

In [11, Theorem 12.1] the authors show that the isomorphism classes of standard
modules form an integral basis for the Grothendieck group of finitely generated J -
modules. To understand Φ∗([M(α, k)]) it thus suffices to express the image in terms
of the isomorphism classes of these standard modules.

Proposition 5.10. Under the pullback functor we have Φ∗([M(α, k)]) = [Eb
|α|−kak+1

].

Proof. The pullback functor forgets the action of Hn(0) in each H-degree and only
allows order preserving injections between degrees. This means that when we consider
basis elements for M(α, k) indexed by order preserving injections, we can forget the
vector vα that spans Cα as this only keeps track of the 0-Hecke action in each degree.
We then see that in each degree d, a basis for M(α, k) is given exactly by order
preserving injections g : [|α|] → [d] where the first |α| − k numbers must map to
themselves. Such order preserving injections are in bijective correspondence with basis
elements of Eb

|α|−kak+1
where we send the injection g : [|α|]→ [d] to the basis element

eg(1),...,g(|α|),d+1. Notice by construction g(i) = i for i = 1, . . . , |α|−k which is exactly
mandated by the constraint word b|α|−kak+1.

This map also respects the transition maps between degrees because if such a map
does not fix the first |α| − k entries, it will be zero in both M(α, k) and Eb

|α|−kak+1
.

Otherwise, the remaining entries are free to be sent anywhere in both modules. �

We show in Theorem 5.6 that the [M(α, k)] form a basis for the Grothendieck
group of H. Proposition 5.10 shows that Φ∗([M(α, k)]) = Φ∗([M(β, k)]) so long as
|α| = |β|. Heuristically, this is because the only difference between these two modules
is the 0-Hecke action in each degree. When we forget this action, they become the
same OI-module.

The fact that Φ∗ is not surjective can be explained intuitively by H-modules allow-
ing us to move basis vector upwards within degrees. The basis elements we miss are the
[Eλ] where λ has b elements interspersed within a elements. This would correspond
to an order preserving injection where we force g(k) = g(k − 1) + 1. This condition
cannot be preserved by a H-action unless we only fix the beginning elements. This
is illustrative of the statement that every H-module is an OI-module but not every
OI-module is a H-module. Also, it illustrates that there is a difference between the
categories OI and H.
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6. Representation Stability
With the previous section established, we are ready to state some immediate repre-
sentation stability results for sequences of representations of Hn(0)-modules.

Theorem 6.1. For any finitely generated H-module V , we have a unique finite de-
composition in the Grothendieck group G(ModH),

[V ] =
∑
i,j

cαi,kj [M(αi, kj)]

where the coefficients cαi,kj are integers.

Proof. This follows immediately from Theorem 5.6. �

We will say that a sequence of Hn(0) representations is representation stable if
there is such a decomposition in the Grothendieck group. The above shows that being
finitely generated as a H-module implies representation stability. We can make this
more explicit in terms of the simple modules that can occur in finitely generated
H-modules for sufficiently large n.

Theorem 6.2. For any finitely generated H-module V , for sufficiently large n the
simples that appear in Vn are exactly those that appear in the finite sum,⊕

i,j

cαi,kjM(αi, kj)n

where the coefficient cαi,kj is independent of n.

Proof. This is a direct consequence of 6.1. �

Remark 6.3. For any finitely generated H-module V , we have for sufficiently large
n a unique finite list of pairs {(αi, ki)} of compositions with integers k > −1 that
dictate exactly which simples occur in Vn.

To see what we mean in this theorem, notice that in M(α, k) only Cα occurs in
degree |α|. After this, to find the simples that occur in degree d > |α| you add d− |α|
boxes to the top k + 1 positions of α in all ways possible.

We often refer to stability occurring for sufficiently large n. As of now, we do
not have explicit bounds on when this stability begins to occur. This is another
potential direction for further research, as such bounds have been investigated in the
FI-setting. In [3], they refer to the n for which this stability occurs as the stable
range. They prove that for a sequence of Sn-representations {Vn, φn} coming from
a FI-module V , stabilization occurs for n > weight(V ) + stab-deg(V ). For explicit
definitions of weight and stability degree, we refer the reader to [3, Definition 3.2.1]
and [3, Definition 3.1.3] respectively. One can define analogous definitions of weight
and stability degree forH-modules, but our method of proving representation stability
is largely different from the FI case, so it is not immediately obvious how one could
find a similar lower bound on stabilization. We do, however, believe one exists and
are actively working to find it.

7. The Shift Functor
As in the case of FI it makes sense to define a shift functor Σ forH. Given aH-module
V , we define its first shift ΣV to be the H-module with (ΣV )n = Vn+1 on sets. For
any f ∈ homH([n], [m]), the map ΣV (f) : Vn+1 → Vm+1 is the map V (F ) where F
agrees with f on [n] and maps n+ 1 to m+ 1. We denote by Σa the ath iterate of Σ.
From this definition it is not hard to see that

(ΣV )n ∼= ResHn+1(0)
Hn(0) Vn+1.
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Also, notice there is an inclusion map V → ΣV induced by the natural inclusion
ιn : [n] → [n + 1] with ιn(i) = i for all i. We define the derivative of V , denoted by
∆V as

∆V := coker(V → ΣV ).
In the case of FI and many other categories of interest these functors play an impor-
tant role and have many nice properties. For further reading on this subject we refer
the reader to [31, 3, 4, 8]. We will see that many of these desirable properties are also
present for H.

Lemma 7.1. Given any padded induced module M(α, k) with k > 1 we have

ΣM(α, k) ∼= M(α, k)⊕M(α|α|−1, k − 1).

If k = 0, ΣM(α, 0) = M(α, 0). If k = −1, ΣM(α,−1) = 0.

Proof. To prove this, fix an H-degree d. In this degree we know (ΣM(α, k))d =
M(α, k)d+1 as a set, where the action comes from restriction. Take the basis for
M(α, k) as in Lemma 3.1. In M(α, k)d+1 we can separate the basis elements into
two groups, the first consisting of all elements indexed by an order preserving injec-
tion with g(|α|) = d + 1 and the second consisting of the remaining elements where
g(|α|) 6 d. In ResHd+1(0)

Hd(0) M(α, k)d+1 the first group becomes a sub-representation
isomorphic to M(α|α|−1, k − 1)d and the second becomes a sub-representation iso-
morphic to M(α, k)d. This is clear because when we restrict we ignore πd. Under the
action of π1, . . . , πd−1 the first collection of elements consists of all order preserving
injections from [|α| − 1] to [d] and the action of π1, . . . , πd−1 is dictated by Cα|α|−1 .
The second collection of basis elements consists of all order preserving injections from
[|α|] to [d] and the action of π1, . . . , πd−1 is dictated by Cα.

Furthermore, because in ΣM(α, k) we must map the final vertex to the final vertex
these groupings of basis elements are preserved under all transition maps, so they
do form H-submodules. The above shows that these submodules are isomorphic to
M(α, k) and M(α|α|−1, k − 1). It is also clear from the above that we have the short
exact sequence

0→M(α|α|−1, k − 1)→ ΣM(α, k)→M(α, k)→ 0

and that it splits, where the splitting is exactly the inclusion ofM(α, k) into ΣM(α, k).
�

Corollary 7.2. If V is a H-module finitely generated in degree d, ∆V is finitely
generated in degrees 6 d− 1.

Proof. Every finitely generated H-module is a quotient of a direct sum of M(d),
so it suffices to check the result holds there. Lemma 7.1 and its proof imply that
∆(M(d)) ∼= M(d− 1) which is generated in degree d− 1. The result follows. �

8. Regularity
One can also define a notion of regularity for H-modules. Let V be a H-module.
We define Tor0(M) to be the H-module that assigns to the set S the quotient of
V (S) by the sum of the images of the V (T ) as T varies over all proper subsets
of S. This is analogous with H0(V ) the 0-th homology. It is easy to see that Tor0
is a right-exact functor, so we consider its left derived functors Tor•. We will also
sometimes refer to these as H• the H-homology. We let ti(V ) be the maximum H-
degree occurring in Tori(V ). We use the convention ti(V ) = −1 if Tori(V ) = 0. We
define the Castelnuovo–Mumford regularity of V , denoted reg(M), to be the minimum
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integer r such that ti(V ) 6 r + i for all i. We will show that every finitely generated
H-module has finite regularity.

To do this we will use the theory of shift functors established in [8]. Corollary 7.2
shows that the shift functor we define in Section 7 is a generic shift functor in the
language of [8]. We will make use of the following result

Corollary 8.1 ([8, Corollary 1.11]). Suppose that k is a commutative Noetherian
ring and C has a generic shift functor Σ. If reg(ΣM(s)) 6 s for all s > 0, then
reg(V ) <∞ for every finitely generated C-module V .

H satisfies all the necessary properties outlined by Gan and Li in [8, §1.2], so we
may apply their results in our setting. We can use Corollary 8.1 in combination with
Lemma 7.1 to conclude,

Theorem 8.2. Every finitely generated H-module V has finite regularity.

Proof. We established that H has a generic shift functor Σ as defined in Section 7.
Lemma 7.1 implies that reg(ΣM(s)) = reg(M(s)⊕M(s− 1)) 6 s. Corollary 8.1 then
immediately implies every finitely generated H-module V has finite regularity. �

Remark 8.3. We want to thank an anonymous referee for pointing out that we can use
the shift functor to directly prove finite regularity. One can also immediately deduce
local noetherianity of H from the existence of this shift functor in combination with
Lemma 7.1 as seen in [8]. We use the methods developed by Sam and Snowden in [38]
to prove Theorem 2.13 because it requires less setup at the start and because we make
use of the explicit connection between OI and H.

9. Degree d polynomials in n variables
The first example we consider is probably the simplest. Consider the H-module V
with Vn = k[x1, . . . , xn]d, that is degree d polynomials in n variables. There is a
Hn(0) action on Vn via Demazure operations, in particular the element τi of Hn(0)
acts by the operator πi where

πi(f) := ∂i(xif) = xif − si(xif)
xi − xi+1

,

where ∂i is the divided difference operator and si is the transposition (i, i+ 1) acting
on indices.

Given a map f ∈ homH([n], [m]), we can factor f as a series of πi in Hn(0) followed
by the injection of variables ιn,m followed by a series of πi in Hm(0). f acts as the
Demazure operators corresponding to the πi followed by the injection of variables
ιn,m then the other Demazure operators corresponding to the remaining πi in Hm(0).

For example, consider the map in homH([3], [5]) corresponding to the diagram

• • •

• • • • •

we can factor this as the map π1 followed by ι3,5 followed by π3. When we apply this
to the element x1 in the case where d = 1 we get x1 + x2 because π1(x1) = x1 + x2
and π3(x1 + x2) = x1 + x2.

We can use our Criterion 2.9 to verify this is a H-module. In this case the natural
inclusion map will be an inclusion of variables. We just have to verify that for the
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natural inclusion of variables k[x1, . . . , xn] → k[x1, . . . , xm] the Demazure operators
πn+1, . . . , πm−1 act by 1. This is clearly the case since

xi+1f(x1, . . . , xn, 0, . . . , 0)− xi+2f(x1, . . . , xn, 0, . . . , 0)
xi+1 − xi+2

= f

for all i = n, . . . ,m− 1. Notice that V is finitely generated as a H-module in degrees
6 d. This is because once we have d variables, we can get every composition of d,
so we have all unique exponent vectors of monomials. We then have to inject to
higher degrees to get all other monomials. Theorem 6.1 implies we should be able
to decompose V in the Grothendieck group G(ModK). We will show how to do this
explicitly in the case that d = 1 and d = 2.

When d = 1 we have V1 = SpanF(x1), V2 = SpanF(x1, x2) etc. We will now
explicitly decompose these Vi in the Grothendieck group. We will do this for i =
2 because it illustrates the process in general. V2 has a one dimensional subspace
spanned by x2 where π1(x2) = 0. This corresponds to C(1,1). When we quotient by
this space π1(x1) = x1 so in the quotient x1 spans a subspace isomorphic to C(2).
Hence we have

[V ]2 = + .

If we continue to decompose in a similar fashion we find

[V ]1 = , [V ]2 = + ,

[V ]3 = + + , [V ]4 = + + + .

It is actually not hard to see that V = M( ). According to Theorem 6.1, in G(ModH)
we have uniquely that,

[Vn] = [M( )n].
When d = 2, we have V1 = SpanF(x2

1), V2 = SpanF(x2
1, x

2
2, x1x2), etc. The H action

is described by injecting variables xi 7→ xi and applying the corresponding Demazure
operators. For example take f ∈ homH([2], [3]),

• •

• • •

.

The corresponding map f∗(x2
1) = x2

1 because it will correspond to π2(x2
1) because

the map f factors as π2ι2,3. f∗(x2
2) = π2(x2

2) = x2
2 + x2x3 + x2

3. Finally f∗(x1x2) =
x1x2+x1x3. From this example it is not hard to see thisH module is finitely generated
in degree 2. It is not generated in degree 1 because the images of x2

1 are only x2
1 and

x2
1 + x1x2 + x2

2. This is also expected from an easy dimension count.
If we carry out the decomposition in the Grothendieck group, we find that

[V ]1 = , [V ]2 = 2 + , [V ]3 = 2 + 2 + 2 ,

[V ]4 = 2 + 3 + 2 + 2 + .
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One can then check that in the Grothendieck group G(ModH) we get the decomposi-
tion,

[V ] = [M( )] + [M( )]
so when n > 3 all of these modules are nonzero in that degree and we have

[Vn] = [M( )n] + [M( )n].
It is easy to see that this captures all of the diagrams that can occur. We will now
describe this decomposition in some detail because this is one of the few cases where
we can completely work it out. In general it is very hard to determine.

The first submodule F1 will be exactly the submodule spanned by the elements
xixj . It is clear that injections between degrees preserve these elements that the De-
mazure operators also respect these elements. One can check that the sub-H-module
spanned by these elements is isomorphic to M( ).

The quotient V/F1 is spanned by x2
i in each degree. It is not hard to check explicitly

that this quotient module is isomorphic to M( ).
This is a particularly nice example because V is actually isomorphic to a direct

sum of M(α), but in general this will not be the case.

10. Cohomology of Borel Groups
In the following example, we assume some knowledge of group cohomology. We refer
the reader to [33, 22] for a rigorous treatment of the background in relation to this
example. Let G be a group and letM be a left G-module. ThusM is a representation
of G. Then we can describe the cohomology of G with coefficients in M using either
homogeneous or nonhomogeneous cochains. In this section, we will only consider ho-
mogeneous cochains. We denote the i-th cohomology group of G with coefficients in
M is given by Hi(G,M).

We will now discuss how the 0-Hecke algebra Hn(0) acts on Hi(B(n, q),Fq) where
B(n, q) ⊂ GLn(Fq) is the group of upper-triangular matrices over Fq. We will then
show that one can upgrade the sequence of 0-Hecke algebra representations [n] 7→
Hi(B(n, q),Fq) to a H-module.

There is a much broader theory for the following, but we will restrict to the case
that matters to us. For a more rigorous treatment, including proofs that everything
is well defined we again refer the reader to [33, 22].

Definition 10.1. Let G be a group. Two subgroups Γ and Γ′ are said to be commen-
surable if

[Γ : Γ ∩ Γ′] <∞, [Γ′ : Γ ∩ Γ′] <∞,
that is, if Γ ∩ Γ′ has finite index in both Γ and Γ′.

It is not hard to show that this defines an equivalence relation on subgroups of G.
With this in mind we can define the commensurator of a subgroup Γ in G as follows

Γ̃ := {α ∈ G | α−1Γα ∼ Γ}.
Let ∆ be a sub-semigroup of the group G and let C(∆) denote the set of mutually

commensurable subgroups Γ of G such that

Γ ⊆ ∆ ⊆ Γ̃.
Given some Γ ∈ C(∆) and R a commutative ring with identity, we denote byHR(Γ; ∆)
the free R module generated by the double cosets ΓαΓ with α ∈ ∆ and call this the
Hecke algebra associated to Γ and ∆ over R. So every element can be written as∑

α∈∆

cαΓαΓ.
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where cα ∈ R are zero except for a finite number of α.
The Hecke algebra H(Γ; Γ̃) acts on the cohomology Hi(Γ, A) where Γ is a subgroup

of a group G and A is a unitary left Z[G]-module. If we take G = GL(n, q), Γ = Bn
the Borel subgroup and A = Fq, then Γ̃ = GL(n, q) and H(Bn; GL(n, q)) = Hn(q).
If we restrict scalars to a field of characteristic q then we recover the 0-Hecke algebra.
To see this explicitly we refer the reader to [13, Pages 6-7]

The action is defined in the following way. Given a homogeneous cochain ψ : Γi+1 →
M and a double coset ΓαΓ with α ∈ Γ̃, we define a k-linear map

T(α) : Ci(Γ,M)→ Ci(Γ,M)
by

(T(α)ψ)(γ0, . . . , γi) :=
d∑
j=1

α−1
j ψ(ξj(γ0), . . . , ξj(γi))

where ΓαΓ =
⋃

16j6d Γαj and αjγk = ξj(γk)αι(γk). This gives a well defined action
of H(Γ; Γ̃) on the cohomology Hi(Γ, A) for any i as seen in [33, 22].

As mentioned above H(B(n, q),GL(n, q)) ∼= Hn(0), where T(Ei,i+1) is identified
with the generator πi, Ei,i+1 being the permutation matrix swapping i and i+ 1 [13].
So the above gives a well defined action of Hn(0) on Hi(B(n, q),Fq) for any choice
of i > 0. The main theorem we will prove in this section is:

Theorem 10.2. For any fixed i > 0, the assignment [n] 7→ Hi(B(n, q),Fq) is a H-
module.

Before we are ready to prove this theorem, we need a few lemmas. First we will
explicitly define the embeddings from Hi(B(n, q))→ Hi(B(n+ 1, q)). Notice there is
a group homomorphism rn+1,n : B(n+ 1, q)→ B(n, q) given by restricting to the first
n rows and n columns of any matrix in B(n+ 1, q). It is not hard to check that this
is indeed a group homomorphism. It is well known that such a group homomorphism
induces a map on cohomology

Φn : Hi(B(n, q))→ Hi(B(n+ 1, q))
where the indexing is swapped because cohomology is contravariant. Explicitly this
map on the level of cochains is defined by

Φn(φ)(γ0, . . . , γi) = φ(rn+1,n(γ0), . . . , rn+1,n(γi)),
where φ ∈ Ci(Γn,Fq) and γj ∈ B(n + 1, q). We ultimately wish to show that these
maps in combination with the above Hn(0)-action combine to define a H-module
structure. We will prove this in stages, ultimately working towards invoking Theo-
rem 2.9. First we must prove some structure theorems about the cosets that appear
in our decomposition.

Lemma 10.3. For a fixed permutation matrix Ei,i+1, if we consider the decomposition
ΓnEi,i+1Γn = tiΓnαi there are exactly q cosets independent of n and we can take as
coset representatives matrices M with Mi+1,i+1 = x, Mi,i+1 = Mi+1,i = 1, Mj,j = 1
for j 6= i, i+1 and Mj,k = 0 else including j = k = i, where x ranges over all elements
of Fq.

Proof. If we were to take left cosets instead of right this coset decomposition would
correspond to finding all distinct complete flags that are equivalent to the complete
flag corresponding to Ei,i+1Γn up to a left action of Γn. This is precisely because Γn is
the stabilizer of the right GL(n, q)-action on complete flags of an n-dimensional vector
space, so left cosets correspond to distinct complete flags. If we act on the left instead
of the right B(n, q) acts by upward row operations instead of column operations. So
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we can once again view cosets as complete flags if we identify the bottom row with
the first spanning vector, the (n−1)st row with the second spanning vector etc. Then
the left B(n, q) action stabilizes these complete flags.

So we must now find all complete flags equivalent to the complete flag corresponding
to ΓnEi,i+1 up to a right action of Γn. The complete flag corresponding to ΓnEi,i+1
is exactly

V0 ⊂ V1 ⊂ · · · ⊂ Vn−(i+1) ⊂ Vn−i ⊂ · · · ⊂ Vn−1

with
Vj = SpanFq (en, . . . , en−j) j = 0, . . . , n− (i+ 2)
Vj = SpanFq (en, . . . , ei+2, ei) j = n− (i+ 1)
Vj = Span Fq(en, . . . , ei+2, ei, ei+1) j = n− i
Vj = SpanFq (en, . . . , en−j , ei, ei+1, ei−1, . . . , en−j) j = n− i+ 1, . . . , n− 1.

All of these equivalent distinct flags are exactly in correspondence with the Mx

described above. That is Mi+1,i+1 = x, Mi,i+1 = Mi+1,i = 1, Mi,i = 0 and all other
entries are zero, where x ranges over all elements of Fq. This is clear because the only
difference in flags is what multiple of the vector ei+1 we add to ei to get Vn−(i+1) =
SpanFq (en, . . . , ei+2, ei + xei+1) and Vn−i = SpanFq (en, . . . , ei+2, ei + xei+1, ei+1) in
the complete flag

V0 ⊂ · · ·Vn−(i+1) ⊂ Vn−i ⊂ · · · ⊂ Vn−1.

There are precisely q such distinct choices. �

Lemma 10.4. The map Φn : Hi(B(n, q))→ Hi(B(n+1, q)) is Hn(0)-equivariant where
Hn(0) acts via the natural embedding into Hn+1(0) on Hi(B(n+ 1, q)).
Proof. The action is defined on the level of cochains, so we can prove equivari-
ance there and it will imply equivariance on cohomology. Given a cochain map φ ∈
Ci(Γn,Fq) and any πi ∈ Hn(0) acting by T(Ei,i+1) we wish to show ΦnT(Ei,i+1)φ =
T(Ei,i+1)Φnφ. If we compute the left hand side we get,

T(Ei,i+1)Φnφ(γ0, . . . , γi) =
q∑
j=1

M−1
xj φ(rn+1,n(ξj(γ0)), . . . , rn,n+1(ξj(γi))),

where here we are using the explicit definition of the map T(Ei,i+1) along with
Lemma 10.3, so each Mxj is the (n + 1) × (n + 1) matrix described there. If we
compute the right hand side,

ΦnT(Ei,i+1)φ =
q∑
j=1

(Mxj )−1
n+1,n+1φ(ξj(rn+1,n(γ0)), . . . , ξj(rn+1,n(γi))),

where in this case the coset representatives we get are exactly the n × n minors of
Mxj where we delete the last row and column, this is (Mxj )n+1,n+1. This is only true
because we are considering T(Ei,i+1) for i = 1, . . . , n− 1.

First notice that each of these matrices acts trivially because we take coefficients
in the ground field. To prove these two are equal, it suffices to show ξj(rn+1,n(γk)) =
rn+1,n(ξj(γk)).

By definition ξj(rn+1,n(γk)) is the matrix determined by
(3) (Mxj )n+1,n+1rn+1,n(γk) = ξj(rn+1,n(γk))(Mxm)n+1,n+1

and ξj(γk) is determined by
(4) Mxjγk = ξj(γk)Mx` .

In Equation (3) on the left hand side, we are multiplying minors, so one can see that
this is precisely the multiplication that occurs in Equation (4) on the left hand side
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if you remove the last row and column of each matrix since restriction is a group
homomorphism. This implies that the right hand sides must be equal as well if we
restrict the right hand side of Equation (4) to only consider the n×n minors where we
delete the last row and column, i.e. ξj(rn+1,n(γk)) = rn+1,n(ξj(γk)). From the above
this implies equivariance. �

Lemma 10.5. If we take any element in the image of Φn,m = ΦmΦm−1 · · ·Φn,
T(Ei,i+1) will act by 0 on this element for i = n+ 1, . . . ,m.

Proof. Once again we can work at the level of cochains. Given a cochain map φ ∈
C(Γn,Fq) we will show that T(Ei,i+1)Φn,mφ = 0. To do this, we can explicitly compute
this map,

T(Ei,i+1)Φn,mφ(γ0, . . . , γi) =
q∑
j=1

M−1
xj φ(rm,n(ξj(γ0)), . . . , rm,n(ξj(γi))),

where once again Mxj is the m×m matrix described in Lemma 10.3. This detail will
actually not matter for this proof, the important fact here is that there are exactly
q cosets. Since each M−1

xj acts trivially as we take coefficients in the ground field, we
can simplify this equation,

T(Ei,i+1)Φn,mφ(γ0, . . . , γi) =
q∑
j=1

φ(rm,n(ξj(γ0)), . . . , rm,n(ξj(γi))).

Again recall that ξj(γk) is defined by

Mxjγk = ξj(γk)Mxm

where each of the Mx` have (Mx`)i+1,i+1 = x`, (Mx`)i,i+1 = (Mx`)i+1,i = 1 and
Ma,b = 0 else. In particular if we consider the n × n minor where we delete the last
m − n rows and columns we get the identity matrix since i > n + 1. As a result, if
we apply this restriction map rm,n to both sides of the above equation because it is
a group homomorphism we find

rm,n(γk) = rm,n(ξj(γk)),

where notice this does not depend on j. As a result,

T(Ei,i+1)Φn,mφ(γ0, . . . , γi) =
q∑
j=1

φ(rm,n(γ0), . . . , rm,n(γi))

= qφ(rm,n(γ0), . . . , rm,n(γi)) = 0. �

We are now ready to prove our main theorem.

Theorem 10.6. For any fixed i > 0, if we let πj ∈ Hn(0) act by T(Ej,j+1) + id and
we take as our transition maps the Φn : Hi(B(n, q),Fq) → Hi(B(n + 1, q),Fq) then
the assignment [n] 7→ Hi(B(n, q),Fq) is a H-module.

Proof. According to Theorem 2.9 it suffices to show that the transition maps Φn are
Hn(0)-equivariant and that the T(Ej,j+1) + id act via the identity on the image of
Φn,m for j = n+1, . . . ,m. The first statement is exactly what we show in Lemma 10.4
and the second statement follows immediately from Lemma 10.5. �

Remark 10.7. We believe this is a finitely generated H module, but have not been
able to prove it yet.
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11. Homology of Borel Groups
In [29] the authors study the group homology of the unipotent group and prove in
particular that the assignment [n] 7→ Hi(Un,Fq) is a finitely generated OI-module
for any fixed i > 0. Although being an OI-module does provide some insight into
the behavior of these homology groups, it is natural to ask if there is a more rigid
categorical structure present. In this section we will discuss how this OI-module
structure can be extended to a H-module structure. We then use [29] to show that
the H-module is also finitely generated. This then implies we have representation
stability.

Our ultimate goal is to gain a deeper understanding of the homologyHi(B(n,q),Fq),
but it is equivalent to the homology of Hi(U(n, q),Fq) the unipotent subgroup, so we
will study this. To see why this is the case notice we have a short exact sequence

0→ Diag(n, q)→ B(n, q)→ U(n, q)→ 0

where Diag(n, q) are the diagonal matrices. From the Hochschild–Serre spectral se-
quence we have

Hi(U(n, q), Hj(Diag(n, q),Fq)) =⇒ Hi+j(B(n, q),Fq).

Since the order of Diag(n, q) is prime to q, the input vanishes when j > 0, so the
spectral sequence immediately degenerates and gives

Hi(U(n, q), H0(Diag(n, q),Fq)) = Hi(B(n, q),Fq).

Diag(n, q) acts trivially on Fq, so the left side is Hi(U(n, q),Fq).
We will define a 0-Hecke action on U(n, q), this action will then induce an action

on homology. We will then show this action is finitely generated via the arguments
in [29].

Given an element M ∈ U(n, q) we will define the action of πi ∈ Hn(0) for i =
1, . . . , n − 1. πi will act on M by replaces the entry in columns i + 1 with the entry
in column i for rows 1, . . . , i− 1, it will set Mi,i+1 = 0 and it will replace the entry in
row i+ 1 with the entry in row i for columns i+ 2, . . . , n.

Proposition 11.1. The action defined above is a well defined Hn(0) action on U(n, q).

Proof. We first check that the πi satisfy the necessary axioms. First we can see πiπj =
πjπi for |i−j| > 1. We may assume i < j. In this case the only interaction between πi
and πj is in the four entries (i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1) where we would be
adding rows i and i+ 1 as well as the columns j and j+ 1. However, if we labeled the
entries as (i, j) = a, (i, j + 1) = b, (i+ 1, j) = c and (i+ 1, j + 1) = d then regardless
of the order of composition, (i+ 1, j + 1) = a and all the other entries becomes zero.

Next we must check that πiπi+1πi = πi+1πiπi+1 for i = 1, . . . , n− 2. If we fix some
row j with 1 6 j 6 i−1 the three entries affected in that row are columns i, i+ 1 and
i+ 2. Let entry (j, i) = a, (j, i + 1) = b and (j, i + 2) = c. Regardless of the order of
composition we have entry (j, i) = (j, i+1) = (j, i+2) = a. The only other part of the
matrix we need to check is entries (k, `) with k 6 ` and k = i, i+1, i+2, ` = i, i+1, i+2.
However in this case we always have entries (i, i + 1) = (i, i + 2) = (i + 1, i + 2) = 0
and (i, i) = (i + 1, i + 1) = 1 regardless of the order of composition. Checking the
columns is similar.

Finally we verify that π2
i = πi for i = 1, . . . , n − 1. This is not hard to see from

definition.
Next we need to verify that πi(AB) = πi(A)πi(B). Fix a row 1 6 j 6 i − 1 and

consider the entries in columns i and i+1. (AB)j,i =
∑n
k=1Aj,kBk,i and (AB)j,i+1 =
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∑n
k=1Aj,kBk,i+1. So πi(AB)j,i =

∑n
k=1Aj,kBk,i = (πi(A)πi(B))j,i and

πi(AB)j,i+1 =
n∑
k=1

Aj,kBk,i = (πi(A)πi(B))j,i+1

Checking the appropriate columns is similar. �

The above action then induces an action on homology by considering the action
on homogeneous chains πi[g1, . . . , gk] = [πig1, . . . , πigk]. This action is well defined by
Proposition 11.1. Furthermore, this action commutes with the differential, once again
by Proposition 11.1, so it induces an action on homology.

Furthermore, there is a natural embedding of groups φn,n+1 : U(n, q) ↪→ U(n+1, q)
where we add a new row and column to the bottom of any matrix in U(n, q) with a 1
on the diagonal. This induces a map on homology Φn : Hi(U(n, q),Fq)→ Hi(U(n+
1, q),Fq). Explicitly on the level of chains, we embed the element [g1, . . . , gk] →
[φn,n+1(g1)| · · · |φn,n+1(gk)].

We will now argue that the above action and Φn endow the homology of the
unipotent group with a finitely generated H-module structure.

Lemma 11.2. The map Φn : Hi(B(n, q),Fq) → Hi(B(n + 1, q),Fq) is Hn(0)-
equivariant where Hn(0) acts via the natural embedding into Hn+1(0) on Hi(B(n +
1, q),Fq).

Proof. We verify this on the level of chains, this will then imply the result for ho-
mology. Fix some πj ∈ Hn(0), so j = 1, . . . , n − 1 and some chain [g1, . . . , gi] with
g` ∈ U(n, q). Consider

Φn(πj([g1, . . . , gi]) = Φn([πj(g1), . . . , πj(gi)]) = [φn,n+1πj(g1), . . . , φn,n+1πj(gi)].
Notice that φn,n+1πj(g`) = πjφn,n+1(g`) because in φn,n+1(g`) we only add a column
of zeroes in rows 1, . . . , n, so this will not affect the action of πj since 1 6 j 6 n−1. �

To show that the assignment [n] 7→ Hi(B(n, q),Fq) with transition maps given by
Φn is a H-module it remains to show the following

Lemma 11.3. If we take any element in the image of Φn,m = ΦmΦm−1 · · ·Φn, πj will
act by the identity on this element for j = n+ 1, . . . ,m.

Proof. Once again we verify this on the level of chains. Fix some πj ∈ Hm(0) for
n+ 1 6 j 6 m and some chain [g1, . . . , gi] for g` ∈ U(n, q). Notice that the embedded
chain element Φn,m([g1, . . . , gi]) has each g` with only nonzero entries on the diagonal
below row n and they are all equal to 1. Hence when we apply πj it can only act by
the identity because n+ 1 6 j 6 m. �

Theorem 11.4. For any fixed i > 0, if we let πj ∈ Hn(0) act as described above and
we take as our transition maps the Φn : Hi(B(n, q),Fq) → Hi(B(n + 1, q),Fq) then
the assignment [n] 7→ Hi(B(n, q),Fq) is a H-module.

Proof. According to Theorem 2.9 it suffices to show that the transition maps Φn
are Hn(0)-equivariant and that the πj act via the identity on the image of Φn,m for
j = n+ 1, . . . ,m. The first statement is exactly what we show in Lemma 11.2 and the
second statement follows immediately from Lemma 11.3. �

In [29] the authors study [n] 7→ Hi(U(n, q),Fq) as an OI-module. They ultimately
show that it is a finitely generated OI-module. We will now show that when we
restrict our H-action it agrees with their OI-module action. Their finite generation
result then implies that we have finite generation as a H-module and so the homology
of the Unipotent subgroup in defining characteristic is representation stable.
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We will first describe their action explicitly. For their purposes, they did not need
an explicit description, so it is not in their paper, but they do describe one implicitly.
Given an order preserving injection ι : [n] ↪→ [m] we describe the OI-action on the
level of chains. Suppose {α1, . . . , αm−n} = [m] r ι([n]), then for g ∈ U(n, q), ι∗g is
the matrix where gi,j = (ι∗g)ι(i),ι(j), (ι∗g)αi,αi = 1 and all other entries are zero.

We can see this is the action the authors define in [29, §4.4]. We will now argue
that it agrees with our H-module action. The key is to realize that we still have an
induced OI-group structure given by Un = U(n, q) and maps given by the H-module
structure described above. Let U′ = Σ(U). It is still the case that U(n + 1, q) is
the semi-direct product Un n Fnq and most importantly that this description is still
functorial.

To verify this, let E be the OI-group given by En = Fnq as described in [29]. We
then have homomorphisms of OI-groups i : U → U′ and p : U′ → U with pi = id
and ker(p) = E. Where i is given by the natural embedding and p forgets the final
column. This functorial decomposition is the only place where the specific OI-module
structure is used in the proof of finite generation in [29].

Lemma 11.5. The restriction of the H-module structure on [n] 7→ Hk(U(n, q),Fq) to
OI is a finitely generated OI-module.

Proof. This follows formally from the proof of Theorem 1.4 in [29, §6] by the remarks
in the previous two paragraphs. The key step being that we still have the same
functorial decomposition as described above, so Proposition 6.3 from [29] holds. �

See the following example to illuminate this proof.

Example 11.6. Consider the order preserving injection ι(1) = 1, ι(i) = i + 1 for
i = 2, 3. This corresponds to the map π2π3Φ3,4. The action described in [29] sends
the matrix

M =

1 a b
0 1 c
0 0 1

 7→


1 0 a b
0 1 0 0
0 0 1 c
0 0 0 1

 .

So the action on the final column is the embedding of the entries from the third
column into positions 1 and 3. Comparing this to our action,

π3Φ3,4(M) =


1 a b b
0 1 c c
0 0 1 0
0 0 0 1

 , π2π3Φ3,4(M) =


1 a a b
0 1 0 c
0 0 1 c
0 0 0 1

 .

Chains are determined up to a left action of Un(q). So each matrix in our chain will
be of this form, and we can apply the element

1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

 to get


1 a a b
0 1 −1 0
0 0 1 c
0 0 0 1

 .

Checking for other maps is similar. So it is not hard to see that the action on chains
is equivalent in the final column, which is precisely the kernel of the map p, called E
in [29].

Theorem 11.7. The H-module [n] 7→ Hi(U(n, q),Fq) with transition maps described
in Theorem 11.4 is finitely generated as a H-module.
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Proof. Lemma 11.5 in combination with [29, Theorem 1.4] imply this H-module is
finitely generated with respect to the OI-substructure. We already showed there is
functor Φ: OI → H satisfying property (F) in Theorem 2.13, so being finitely gen-
erated with respect to the restriction to OI is equivalent to being finitely generated
with respect to the full H-action. �

Corollary 11.8. For any fixed i> 0 sequence of Hn(0)-modules {Hi(U(n, q),Fq)}n>0
is representation stable.

Proof. This follows immediately from Theorems 11.7 and 6.1. �

Corollary 11.9. For any fixed i> 0 sequence of Hn(0)-modules {Hi(B(n, q),Fq)}n>0
is representation stable.

Proof. This follows formally from the introduction to this section. Since
Hi(U(n, q),Fq) = Hi(B(n, q),Fq),

Corollary 11.8 implies this result. �

12. Graded Components of Stanley Reisner Rings
We first recall some necessary definitions. An abstract simplicial complex ∆ on a
vertex set V is a collection of finite subsets of V , called faces, such that any subset of
a face is also a face. The dimension of a face F is |F |−1, so that one vertex faces have
dimension zero. The dimension of a simplicial complex is the maximum dimension
of its faces. We say that a (d− 1)-dimensional simplicial complex is balanced if there
exists a coloring map r : V → [d] such that every face consists of vertices of distinct
colors. The reason we call this coloring map r is because we call the rank set of a face
F , denoted by r(F ), all the colors of all of its vertices.

The Stanley–Reisner ring F[∆] of a simplicial complex ∆ over a field F is
F[∆] := F[yv | v ∈ V ]/I∆,

where I∆ := 〈yuyv | u, v ∈ V, {u, v} 6∈ ∆〉. So a monomial yv1 · · · yvd is nonzero if
and only if v1, . . . , vd all belong to the same face of ∆. This ideal does not equate
monomials, it just makes some of them zero, so we can see that all nonzero monomials
form a F-basis for F[∆].

If ∆ is balanced then its Stanley–Reisner ring F[∆] is multigraded, that is any
nonzero monomial m = yv1 · · · yvk has a rank multiset r(m)

12.1. Stanley Reisner Ring of the Boolean Algebra. The Boolean algebra
Bn is the ranked poset of all subsets of [n] ordered by inclusion with minimum element
∅ and maximum element [n]. The rank of an element is defined as the cardinality of
the corresponding set, where clearly |∅| = 0. Following the definition of the Stanley–
Reisner ring above, if we take Bn as our simplicial complex where the vertices are
subsets of [n] and the faces are chains of subsets, we see that F[Bn] = F[yA | A ⊂
[n]]/I∆. In this case

I∆ = 〈yAyB | A,B incomparable〉,
in other words A is not a subset of B and B is not a subset of A. For example if we
take A = {1, 3, 4} and B = {2, 4, 5}. So the nonzero monomials are exactly given by
weakly increasing chains of subsets, sometimes called multichains. This means that
we have an F-basis {yM} indexed by multichains M in Bn. This basis is multigraded
by the rank multisets r(M) of the multichains M . For example the multichain {2} ⊆
{2} ⊂ {1, 2, 4} ⊂ [5] has r(M) = {1, 1, 3, 5}.

There is a natural way of encoding multichains, which [14] uses to construct a
Hn(0) action on F[Bn] which we recall now. For more details we refer the reader
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to [14]. Let M = (A1 ⊆ A2 ⊆ · · · ⊆ Ak) be an arbitrary multichain of length k in Bn,
set A0 = ∅ and Ak+1 = [n] by convention. For any such multichain M of length k
in Bn, let pi(M) = min{j ∈ [k + 1] | i ∈ Aj}, this records the first position where i
occurs inM . By definition it must appear in every position after this, so the collection
p(M) = (p1(M), . . . , pn(M)) encodes the multichain M . The map M 7→ p(M) gives
a bijection between the set of multichains of length k in Bn and the set [k+ 1]n of all
words of length n on the alphabet [k + 1] for any fixed integer k > 0.

In Section 9 we saw how Hn(0) can act on the polynomial ring via Demazure
operators using the generating set πi. In this example, it is easier to use the generating
set πi, once again we recall that πi = πi+1. LetM = (A1 ⊆ · · · ⊆ Ak) be a multichain
in Bn, then Huang defined

πi(yM ) :=


−yM , pi(M) > pi+1(M),
0, pi(M) = pi+1(M),
si(yM ), pi(M) < pi+1(M),

for i = 1, . . . , n − 1. Huang shows this is a well defined action that respects the
multigrading. We can use this to see how the πi should act,

πi(yM ) :=


0, pi(M) > pi+1(M),
yM , pi(M) = pi+1(M),
si(yM ) + yM , pi(M) < pi+1(M).

We will now define a H module where [n] 7→ F[Bn] and the inclusion map ιn,n+1 acts
by sending a multichain M = (A1 ⊆ · · · ⊆ Ak) to the multichain with Ak+1 = [n+ 1]
instead of [n]. The crossings act by the πi we just defined on multichains, not the
πi. It is clear that the inclusion maps are Hn(0)-equivariant. From Theorem 2.9 it
remains to check that if we apply (ιn,m)∗ that πn+1, . . . , πm act by 1, or equivalently
that πn+1, . . . , πm act by 0.

By definition of our embedding, elements in the image of (ιn,m)∗ will be a poly-
nomial in yA where every set A is a subset of [n], i.e. it will consist of monomials
yM in Bm where the multichain M has Ai ⊂ [n] and Ak+1 = [m]. This implies that
pi(M) = k + 1 = pi+1(M) for every i = n + 1, . . . ,m − 1. As a result, πi(yM ) = yM
for every i = n+ 1, . . . ,m− 1 so Theorem 2.9 implies the following:

Theorem 12.1. The assignment [n] 7→ F[Bn], the Stanley–Reisner ring of the Boolean
algebra, with transition maps as defined above is a H-module.

This module cannot possibly be finitely generated because it does not grow like a
polynomial. However, there is a multigrading present, where we say that a multichain
M has multigrading g = (r1, . . . , rk) if the multichain is of the form A1 ⊆ · · · ⊆ Ak
where |Ai| = ri. The Hn(0) action respects the multigrading [14], so we can consider
the H-submodule given by restricting to homogeneous polynomials whose monomials
correspond to multichains of a fixed length k that correspond to a fixed composition
(α1, . . . , αk), that is the set sizes remain fixed as well. When we apply the transfer
map τ : F[Bn]→ F[X] defined by

τ(yM ) :=
∏

16i6k

∏
j∈Aj

xj ,

for all multichains M = (A1 ⊆ · · · ⊆ Ak) in Bn, these correspond exactly to degree
r1(M)+· · ·+rk(M) monomials. This map is not a ring homomorphism, but it restricts
to an isomorphism τ : F[B∗n] ∼= F[X] of Hn(0)-modules. For more details we refer the
reader to [14, §3.4].
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Theorem 12.2. If we fix any multigrading g, the assignment [n] 7→ F[Bn]g defines a
homogeneous multigraded H-module that is finitely generated.

Proof. First, because the action as defined above respects the multigrading and so do
our embedding maps (ιn,m)∗ Theorem 12.1 implies that this is a H-module.

To see that it is finitely generated, notice from the discussion above that if we have
fixed multigrading r(M) = (a1, . . . , ak) the monomial corresponding to the multichain

[a1] ⊆ [a2] ⊆ · · · ⊆ [ak],
in lowest degree ak will generate all other monomials because after we embed to a
higher degree we can apply permutations to get any multichain. In terms of monomi-
als, this multichain corresponds to

x
r1(M)
1 x

r2(M)
2 · · ·xrak (M)

ak

where ri(M) is the number of times i occurs in the multichainM . We can also encode
this monomial using its exponent vector as

(r1(M), r2(M), . . . , rak(M)) = (γ1, . . . , γak).
In a higher degree, in order for us to stay in the same multigrading, the corresponding
monomial must have exponent vector corresponding to the above vector where we can
insert 0s and permute the γi since this is equivalent to the multiset sizes remaining
the same. The action of the 0-Hecke algebra elements πi on these exponent vectors
is via sorting. If we have an exponent vector (a1, . . . , an), πi will swap ai and aj if
ai > aj , it will be zero if ai = aj and it will act by −1 is ai < aj . By construction our
original multichain corresponds to the exponent vector with γ1 > γ2 > · · · > γk.

Given any other exponent vector β = (β1, . . . , βd) in a higher degree d of
the same multigrading, we can first inject (γ1, . . . , γak) into that degree to get
(γ1, . . . , γak , 0, . . . , 0) where there are d−ak zeroes. Let (βi1 , . . . , βiak ) be the nonzero
entries of the exponent vector β. Use the πi to sort the γi into the order in which the
nonzero βij appear. Algorithmically do this by looking at the first entry, if βi1 = γ1
move on to βi2 , if not this means βi1 = γj < γ1. Since this is the case, we can move γj
to the first position as it will be smaller than everything to its left. We then consider
βi2 , if βi2 = γ1 we move on to βi3 , otherwise we perform the same procedure to place
the correct γj into the second spot. We continue in this way until the γi are in the
correct order.

We can then use the πi to sort the γi into the nonzero entries of the exponent
vector (β1, . . . , βd), we can do this because all the other entries will be zero so we can
shift any nonzero entries to the right as much as we want. This shows that we can
generate any monomial with the fixed multigrading g, which completes the proof. �

Corollary 12.3. For a fixed multigrading g, and n a sufficiently large positive integer,
F [Bn]g is representation stable. That is, there is a finite list of compositions αi paired
with finitely many integers kj ∈ Z>−1 such that

[F [Bn]g] =
⊕
i,j

cαi,kj [M(αi, kj)]

where the non-negative integer integers cαi,kj are independent of n.

Proof. This follows directly from Theorem 6.1 in combination with Theorem 12.2. �

Another way to state this theorem is that for any fixed multigrading g and for
n sufficiently large, there is a finite list {(αi, ki)} of compositions paired with inte-
gers ki ∈ Z>−1 that completely control the simple Hn(0)-modules that can occur in
F [Bn]g.
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13. Quasisymmetric Schur Modules
In this section, we pursue an example of a H-module that is not a FI-module. These
modules arise in a natural way. Through the Frobenius characteristic map, we get an
isomorphism between the irreducible representations of the symmetric group up to
isomorphism and the ring of symmetric functions. In this setting, the Specht modules
Vλ map to sλ the Schur polynomial.

There is a similar picture for representations of the 0-Hecke algebra. As we have dis-
cussed, there is a noncommutative and quasisymmetric characteristic map. The qua-
sisymmetric characteristic map provides an isomorphism between the Grothendieck
group of finitely generated Hn(0)-modules for all n and the ring of quasisymmetric
functions. This map sends the irreducible module Cα to the fundamental quasisym-
metric function Fα. For many years, these were thought of as the analogue of Schur
functions in QSym. Although they do have a multiplication rule as we have seen and
studied above, they do not naturally lift many of the well known properties of Schur
functions to the ring of quasisymmetric functions (expression in terms of monomial
symmetric functions, Pieri rule, etc. ).

In [12], the authors discovered and defined this appropriate analogue which they
aptly named quasisymmetric Schur functions. For more details on why these functions
are a natural refinement of Schur functions in the quasisymmetric setting we refer the
reader to [12]. It then became a natural question to ask if there were representations
of Hn(0) that realize these quasisymmetric Schur functions under the quasisymmetric
characteristic map. Recently, in [41], the authors define a collection of Hn(0) modules
for varying n and prove their image is exactly the quasisymmetric Schur functions. We
will now define these modules and show how it is possible to put a H-module structure
on suitable collections of them. The construction of these modules also illustrates the
type of symmetry that H preserves, namely an upward symmetry, as opposed to FI
which can only act when the corresponding objects have complete symmetry.

We begin by making the necessary definitions. Given a composition α =
(α1, . . . , αk) of n, we define its reverse composition diagram which we will de-
note by α as an array of left-justified boxes with αi boxes in row i from the top.
Notice, this is very different from the ribbon tableau representation of a composition
α. The reverse composition diagram is more akin to Young diagrams. We say that a
box is in position (i, j) if it is i rows down from the top and j columns in from left
to right. We are now ready to make a key definition,

Definition 13.1. Given a composition α � n, we can define a standard reverse com-
position tableau, abbreviated SRCT τ of shape α and size n to be a bijective filling
τ : α → {1, . . . , n} of the cells (i, j) of the reverse composition diagram α subject to
the conditions

(1) The entries in each row must be decreasing when read from left to right,
(2) The entries in the first column must be increasing when read from top to

bottom,
(3) The filling must satisfy the triple rule, namely, if i< j and τ(i, k)>τ(j, k+1),

then τ(i, k + 1) exists and τ(i, k + 1) > τ(j, k + 1).

We denote the set of all SRCTs by SRCT(α) maintaining the notation in [41]. For
more information on the triple rule, and the definitions and constructions we refer
the reader to [41].
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Example 13.2. Let α = (2, 1, 4) be a composition of 7, then an example of an element
of SRCT(α) is

2 1
3
7 6 5 4 .

A nonexample is
6 1
3
7 5 4 2

because this does not satisfy the triple rule and the first column is not increasing. In
particular, we see that τ(1, 1) > τ(3, 2), but τ(1, 2) = 1 < τ(3, 2) = 5.

Given a SRCT τ there is a notion of a corresponding descent set

Des(τ) = {i | i+ 1 appears weakly right of i} ⊆ [n− 1].

From this we can construct a descent composition of τ , comp(τ) = comp(Des(τ)).
The collection of standard reverse composition tableaux is important because it is
used to define the quasisymmetric Schur function Sα. Namely,

Definition 13.3. Let α � n be a composition. Then the quasisymmetric Schur func-
tion Sα is defined by S∅ = 1 and

Sα =
∑

τ∈SRCT(α)

Fcomp(τ)

where comp(τ) was defined above.

Now we are almost ready to define a Hn(0) action on SRCTs, we just need the
notion of attacking blocks.

Definition 13.4. Given τ ∈ SRCT(α) for a composition α � n, and any positive
integer i with 1 6 i 6 n − 1 we say that i and i + 1 are attacking if one of the
following is true

(1) i and i+ 1 are in the same column of τ , or
(2) i and i + 1 are in adjacent columns of τ , with i + 1 positioned strictly down

and to the right of i.

Given τ ∈ SRCT(α) for some α � n, and a positive integer 1 6 i 6 n− 1, let si(τ)
denote the filling obtained by interchanging the positions of entries i and i + 1 in τ .
Now we are ready to define a 0-Hecke action on SRCT(α) as follows, for 1 6 i 6 n−1
let

πi(τ) =


−τ i 6∈ Des(τ)
0 i ∈ Des(τ), i and i+ 1 attacking
si(τ) i ∈ Des(τ), i and i+ 1 non-attacking.

The action that the authors in [41] describe differs from ours by a sign, we will denote
their generators by π̃i. We choose to introduce the sign because this action is more
amenable to an H-module structure and is more in line with usual 0-Hecke actions. It
is also not hard to check that this is still a well defined action and that the partial order
described below is the same as the one in [41]. We will, however, do this explicitly.
We omit some details that overlap with the proofs in [41]. For all of the following, τ
will denote some SRCT of size n.

Lemma 13.5. For 1 6 i 6 n− 1 we have π2
i = −πi.

Algebraic Combinatorics, Vol. 4 #4 (2021) 656



Representation stability for 0-Hecke modules

Proof. If i 6∈ Des(τ), then πi(τ) = −τ . So we see that π2
i (τ) = τ = −πi(τ).

If i ∈ Des(τ) then this is roughly the same proof as in [41]. �

Lemma 13.6. For 1 6 i, j 6 n− 1 with |i− j| > 2, we have πiπj = πjπi.

Proof. If neither i nor j belong to Des(τ) then πi(τ) = πj(τ) = −τ and so πiπj(τ) =
τ = πjπi(τ).

Suppose that i ∈ Des(τ). If i and i+ 1 are attacking, then this is the same proof as
in [41]. Otherwise we can assume i and i+ 1 are non-attacking. This means πi(τ) =
si(τ). If j 6∈ Des(τ) then because |i − j| > 2 we also have j 6∈ Des(si(τ)). As a
result πjπi(τ) = πj(si(τ)) = −si(τ) = πiπj(τ). If j ∈ Des(τ) our generators agree
with [41]. �

Lemma 13.7. For 1 6 i 6 n− 2, we have πiπi+1πi = πi+1πiπi+1.

Proof. We will proceed in cases. The first case is if i, i + 1 6∈ Des(τ). This means
πi(τ) = πi+1(τ) = −τ so the desired identity clearly holds.

If i 6∈ Des(τ) but i + 1 ∈ Des(τ) we have πi(τ) = −τ . If i + 1 and i + 2 are
attacking, then πi+1(τ) = 0. This implies that πiπi+1πi(τ) = πi+1πiπi+1(τ) = 0. As
a result we may assume that i + 1 and i + 2 are non-attacking, or equivalently that
πi+1(τ) = si+1(τ). We then have three possibilities

(1) If i 6∈Des(si+1(τ)) then πiπi+1(τ) =−si+1(τ), so πi+1πiπi+1 =−πi+1πi+1(τ) =
si+1(τ) by Lemma 13.5. By assumption πi(τ) = −τ so πiπi+1πi(τ) = si+1(τ)
as well.

(2) If i ∈ Des(si+1(τ)) with i and i+1 attacking in si+1(τ) then πi+1πiπi+1(τ) =
0 = πiπi+1πi(τ).

(3) Finally if i ∈ Des(si+1(τ)) with i and i + 1 non-attacking in si+1(τ)
then πiπi+1(τ) = sisi+1τ . As in [41] i + 1 is not a descent in sisi+1 so
πi+1πiπi+1(τ) = −sisi+1(τ). This is precisely πiπi+1πi(τ) since πi(τ) = −τ .

The next case to consider is if i ∈ Des(τ) and i+ 1 6∈ Des(τ). In this case we have
πi+1(τ) = −τ . For the exact same reason as above we may assume that i and i+1 are
non-attacking otherwise both identities vanish. This means πiπi+1 = −si(τ). Again
we have three possibilities

(1) If i + 1 6∈ Des(si(τ)) then πi+1(si(τ)) = −si(τ). This implies that
πi+1πiπi+1 = si(τ) = πiπi+1πi(τ) since πiπi+1πi(τ) = −πi(si(τ)) =
−π2

i (τ) = si(τ).
(2) If i+ 1 ∈ Des(si(τ)) with i+ 1, i+ 2 attacking in si(τ) we have πi+1πi(τ) =

πi+1(si(τ)) = 0. This implies that both identities are zero.
(3) Finally, if i + 1 ∈ Des(si(τ)) with i + 1 and i + 2 non-attacking in si(τ)

this means πi+1πi(τ) = si+1si(τ). Again notice i 6∈ Des(si+1si(τ)) so
πiπi+1πi(τ) = −si+1si(τ). Now πi+1πiπi+1(τ) = −si+1si(τ) as well because
πi+1(τ) = −τ .

For the final case, suppose i, i+1 ∈ Des(τ). In this case, the proof in [41] applies to
our case because there is never a point where an element is not in a descent set. �

The above proves that our definition of the πi defines a Hn(0) action on SRCT(α)
with α � n. When defining our H-module, we prefer to use the generators πi, which
we describe explicitly in this case,

πi(τ) =


0 i 6∈ Des(τ)
τ i ∈ Des(τ), i and i+ 1 attacking
si(τ) + τ i ∈ Des(τ), i and i+ 1 non-attacking.
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In [41] the authors then place a partial order on elements of SRCT(α) called �α, where
τ1 �α τ2 if and only if there exists an element πσ ∈ Hn(0) such that πσ(τ1) = τ2.
Notice, this would not be possible for FI. An important part of establishing that
partial order is well defined, i.e. the anti-symmetry, follows from the fact that Hn(0)
preserves upward symmetry.

They then arbitrarily extend this partial order to a total order �tα and define new
modules Vτi for some SRCT τi ∈ SRCT(α) with

Vτi = Span{τj | τi �tα τj} for 1 6 i 6 m.

One can think of this as the poset ideal generated by τi. They prove that for any
choice of τi, Vτi is a Hn(0)-module. Once again, we note that there is no natural Σn
action on these modules, or on SRCTs in general. The reason for studying these Vτi
is that if we take τ as the minimal element of SRCT(α) with respect to �tα then
Ch(Vτ ) = Sα the quasisymmetric Schur function.

We want to note that changing πi does not affect Vτi as defined in [41]. This follows
immediately from the observation that we only get a new nonzero SRCT if we fall
into the third case where i ∈ Des(τ) with i and i + 1 non-attacking. So suppose we
have

π̃σ(τ1) = τ2

then πσ(τ1) = τ2 +
∑
i πσi(τ1) where σi is the first i generators in σ. By definition

this tail will be in Vτ1 and so τ2 ∈ Vτ1 . Conversely suppose we have πσ(τ1) = τ2, then
π̃σ(τ1) = τ2 −

∑
i πσi(τ1) so the definition of Vτ does not change if we change the

Hn(0) action as above.
Now with our definition of Vτ we claim there is a natural Hn(0) equivariant em-

bedding Φn : SRCT(α) → SRCT(α′) for α � n and α′ � n + 1 where α′ = α + (1)
given by filling in α′ with the elements of α and placing n+1 in the new square. First,
notice this is Hn(0) equivariant because the descent set does not change and we do
not shift the elements of α so π1, . . . , πn−1 act in the same way.

Now define a H-module H(Vτ ) with τ � n via the assignment [i] 7→ Vτ+(1i−n) for
i > n and [i] 7→ 0 for i < n. And define the map from degree i to degree i+ 1 via the
map in the previous paragraph.

Theorem 13.8. For a composition τ � n, the assignment [i] 7→ Vτ+(1i−n) for i > n
and [i] 7→ 0 for i < n, with the order preserving injection ιi,i+1 from degree i to degree
i+ 1 defined via Φi is a H-module.

Proof. By Theorem 2.9 it remains to check in degree m > n that πn+1, . . . , πm−1
act by the identity on the image of the above map. Notice that any SRCT in the
image has n + 1, . . . ,m − 1 descending in the first column. This implies that they
are all in the descent set and attacking, so by definition πi acts by the identity for
i = n+ 1, . . . ,m− 1. �

Example 13.9. In practice, consider the example

2 1
3
5 4

Φ57−−→

2 1
3
5 4
6 .
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If we wish to embed to a higher degree, say 8 we get

2 1
3
5 4
6
7
8 .

We can view these modules H(Vτ ) as analogues of L>D
λ in [37], but in this case

rather than growth in the first row we have growth in the first column.

Proposition 13.10. The H-module H(Vτ ) is finitely generated for any choice of com-
position τ .

Proof. It is not hard to see that the images of the embeddings from the lowest degree
generate the entire H-module. This is because in any SRCT of shape (τ, 1d) we must
fill the 1d section with the d largest natural numbers in [|τ | + d], so the number of
SRCTs of shape (τ, 1d) is actually the same as the number of SRCTs of shape τ . �

Corollary 13.11. For any n > 0 and fixed composition τ � n, the sequence of Hj(0)-
modules {Vτ+(1i−n)}i>n satisfies representation stability.

Proof. This follows immediately from Proposition 13.10 and Theorem 6.1. �

Remark 13.12. It is important to remember here that we follow the notation in [41,
12] where they encode compositions as standard reverse composition tableau. This
should not be confused with the above encoding of compositions as ribbon tableau.
The above states that for any i � 0, there is a finite fixed list of compositions
{(αj , kj)} that completely encodes all the irreducible representations that will appear
in Vτ+(1i−n).

14. Further Questions
This work was largely motivated by Sections 10, 11 and the work in [11, 29]. In
particular, the sequence of modules Hi(B(n, q),Fq) are a natural object to study, but
they do not have any natural FI-module structure. This is largely due to the fact
that there is no apparent complete symmetry, only an upward symmetry. There are
other sequences of modules with this same property such as the quasisymmetric Schur
modules seen in Section 13 that have received a large amount of attention recently.
Heuristically one can think of such modules as the quasisymmetric functions that are
not symmetric. We believe there are many more natural examples of such modules and
are already investigating a few. Some immediate further questions are summarized as
follows,
1) Is the H-module [n] 7→ Hi(B(n, q),Fq) studied in Section 10 finite generated as a
H-module? We believe it is, but have not been able to prove it.

2) What other properties of FI-module are also satisfied by H-modules? We have a
notion of representation stability and finite regularity, is there a notion of depth
or weight?

3) Is there any hope of bounding the regularity? We suspect this is impossible because
it seems like the ability to do this depends on the Gabriel–Krull dimension being
finite, which it is not for H-modules.

4) Is there a refined version of representation stability if we only consider sequences
of projective Hn(0)-modules?

Algebraic Combinatorics, Vol. 4 #4 (2021) 659



Robert P. Laudone

5) Is there a more concrete connection between H and the ring of quasisymmetric
functions? The Grothendieck group of FI-modules is isomorphic to two copies of
the ring of symmetric functions [36]; is there some analogue for G(ModH)? We
suspect there might be an infinite analogue.

6) Symmetric function theory suggests a deeper connection between FI and H. In
particular, every symmetric function is quasisymmetric, and every space with com-
plete symmetry also has partial symmetry. It then becomes natural to ask, does
every FI-module has a natural H-module structure?

To make this more concrete, there is another category FIq, the q-deformation
of FI, over the ring C[q], where the q = 1 fiber gives FI and the q = 0 fiber
recovers H. In this way, we get a correspondence between Grothendieck groups
K(ModFI)← K(ModFIq )→ K(ModH). Evidence suggests the first functor, taking
the fiber at q = 1, is close to an equivalence if one considers flat FIq-modules. This
would then give a map in the desired direction.

7) What can one say about the extensions of H-modules?
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