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Equivariant incidence algebras and
equivariant Kazhdan–Lusztig–Stanley

theory

Nicholas Proudfoot

Abstract We establish a formalism for working with incidence algebras of posets with symme-
tries, and we develop equivariant Kazhdan–Lusztig–Stanley theory within this formalism. This
gives a new way of thinking about the equivariant Kazhdan–Lusztig polynomial and equivariant
Z-polynomial of a matroid.

1. Introduction
The incidence algebra of a locally finite poset was first introduced by Rota, and has
proved to be a natural formalism for studying such notions as Möbius inversion [11],
generating functions [4], and Kazhdan–Lusztig–Stanley polynomials [12, Section 6].

A special class of Kazhdan–Lusztig–Stanley polynomials that have received a lot
of attention recently is that of Kazhdan–Lusztig polynomials of matroids, where the
relevant poset is the lattice of flats [5, 9]. If a finite groupW acts on a matroidM (and
therefore on the lattice of flats), one can define the W -equivariant Kazhdan–Lusztig
polynomial ofM [7]. This is a polynomial whose coefficients are virtual representations
of W , and has the property that taking dimensions recovers the ordinary Kazhdan–
Lusztig polynomial of M . In the case of the uniform matroid of rank d on n elements,
it is actually much easier to describe the Sn-equivariant Kazhdan–Lusztig polynomial,
which admits a nice description in terms of partitions of n, than it is to describe the
non-equivariant Kazhdan–Lusztig polynomial [7, Theorem 3.1].

While the definition of Kazhdan–Lusztig–Stanley polynomials is greatly clarified by
the language of incidence algebras, the definition of the equivariant Kazhdan–Lusztig
polynomial of a matroid is completely ad hoc and not nearly as elegant. The purpose
of this note is to define the equivariant incidence algebra of a poset with a finite group
of symmetries, and to show that the basic constructions of Kazhdan–Lusztig–Stanley
theory make sense in this more general setting. In the case of a matroid, we show that
this approach recovers the same equivariant Kazhdan–Lusztig polynomials that were
defined in [7].
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2. The equivariant incidence algebra
Fix once and for all a field k. Let P be a locally finite poset equipped with the action
of a finite group W . We consider the category CW(P ) whose objects consist of

• a k-vector space V
• a direct product decomposition V =

∏
x6y∈P Vxy, each Vxy finite dimensional

• an action of W on V compatible with the decomposition.
More concretely, for any σ ∈W and any x 6 y ∈ P , we have a linear map

ϕσxy : Vxy → Vσ(x)σ(y),

and we require that ϕexy = idVxy and that ϕσ′

σ(x)σ(y)◦ϕ
σ
xy = ϕσ

′σ
xy . Morphisms in CW(P )

are defined to be linear maps that are compatible with both the decomposition and
the action. This category admits a monoidal structure, with tensor product given by

(U ⊗ V )xz :=
⊕

x6y6z
Uxy ⊗ Vyz.

Let IW(P ) be the Grothendieck ring of CW(P ); we call IW(P ) the equivariant incidence
algebra of P with respect to the action of W .

Example 2.1. If W is the trivial group, then IW(P ) is isomorphic to the usual inci-
dence algebra of P with coefficients in Z. That is, it is isomorphic as an abelian group
to a direct product of copies of Z, one for each interval in P , and multiplication is
given by convolution.

Remark 2.2. If W acts on P and ψ : W ′ → W is a group homomorphism, then ψ
induces a functor Fψ : CW(P )→ CW ′(P ) and a homomorphism Rψ : IW(P )→ IW

′(P ).

We now give a second, more down to earth description of IW(P ). Let VRep(W )
denote the ring of finite dimensional virtual representations of W over the field k. A
group homomorphism ψ : W ′ →W induces a ring homomorphism

Λψ : VRep(W )→ VRep(W ′).

For any x ∈ P , let Wx ⊂ W be the stabilizer of x. We also define Wxy := Wx ∩Wy

and Wxyz := Wx ∩Wy ∩Wz. Note that, for any x, y ∈ P and σ ∈W , conjugation by
σ gives a group isomorphism

ψσxy : Wxy →Wσ(x)σ(y),

which induces a ring isomorphism

Λψσxy : VRep(Wσ(x)σ(y))→ VRep(Wxy).

An element f ∈ IW(P ) is uniquely determined by a collection

{fxy | x 6 y ∈ P},

where fxy ∈ VRep(Wxy) and for any σ ∈ W and x 6 y ∈ P , fxy = Λψσxy
(
fσ(x)σ(y)

)
.

The unit δ ∈ IW(P ) is characterized by the property that δxx is the 1-dimensional
trivial representation ofWx for all x ∈ P and δxy = 0 for all x < y ∈ P . The following
proposition describes the product structure on IW(P ) in this representation.

Proposition 2.3. For any f, g ∈ IW(P ),

(fg)xz :=
∑

x6y6z

|Wxyz|
|Wxz|

IndWxz

Wxyz

((
ResWxy

Wxyz
fxy

)
⊗
(

ResWyz

Wxyz
gyz

))
.
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Remark 2.4. It may be surprising to see the fraction |Wxyz|
|Wxz| in the statement of

Proposition 2.3, since VRep(Wxy) is not a vector space over the rational numbers.
We could in fact replace the sum over [x, z] with a sum over one representative of
each Wxz-orbit in [x, z] and then eliminate the factor of |Wxyz|

|Wxz| . Including the fraction
in the equation allows us to avoid choosing such representatives.

Remark 2.5. Proposition 2.3 could be taken as the definition of IW(P ). It is not so
easy to prove associativity directly from this definition, though it can be done with
the help of Mackey’s restriction formula (see for example [3, Corollary 32.2]).

Remark 2.6. Suppose that ψ : W ′ → W is a group homomorphism, and for any
x, y ∈ P , consider the induced group homomorphism ψxy : W ′xy →Wxy. For any f ∈
IW(P ), we have, Rψ(f)xy = Λψxy (fxy). In particular, if W ′ is the trivial group, then
Rψ(f)xy is equal to the dimension of the virtual representation fxy ∈ VRep(Wxy).

Before proving Proposition 2.3, we state the following standard lemma in repre-
sentation theory.

Lemma 2.7. Suppose that E =
⊕

s∈S Es is a vector space that decomposes as a direct
sum of pieces indexed by a finite set S. Suppose that G acts linearly on E and acts by
permutations on S such that, for all s ∈ S and γ ∈ G, γ ·Es = Eγ·s. For each x ∈ S,
let Gx ⊂ G denote the stabilizer of s. Then there exists an isomorphism

E ∼=
⊕
s∈S

|Gs|
|G|

IndGGs
(
Es
)

of representations of G.(1)

Proof of Proposition 2.3. By linearity, it is sufficient to prove the proposition in the
case where we have objects U and V of CW(P ) with f = [U ] and g = [V ]. This means
that, for all x 6 y 6 z ∈ P , fxy = [Uxy] ∈ VRep(Wxy), gyz = [Vyz] ∈ VRep(Wyz),
and

(fg)xz =
[
(U ⊗ V )xz

]
=
[ ⊕
x6y6z

Uxy ⊗ Vyz

]
∈ VRep(Wxz).

The proposition then follows from Lemma 2.7 by taking E = (U ⊗ V )xz, S = [x, z],
and G = Wxz. �

Let R be a commutative ring. Given an element f ∈ IW(P ) ⊗ R and a pair of
elements x 6 y ∈ P , we will write fxy to denote the corresponding element of
VRep(Wxy)⊗R.

Proposition 2.8.An element f ∈ IW(P )⊗R is (left or right) invertible if and only
if fxx ∈ VRep(Wx) ⊗ R is invertible for all x ∈ P . In this case, the left and right
inverses are unique and they coincide.

Proof. By Proposition 2.3, an element g is a right inverse to f if and only if gxx = f−1
xx

for all x ∈ P and∑
x6y6z

|Wxyz|
|Wxz|

IndWxz

Wxyz

((
ResWxy

Wxyz
fxy

)
⊗
(

ResWyz

Wxyz
gyz

))
= 0

(1)As in Remark 2.4, we may eliminate the fraction at the cost of choosing one representative of
each W -orbit in S.
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for all x < z ∈ P .(2) The second condition can be rewritten as(
ResWx

Wxz
fxx

)
⊗ gxz = −

∑
x<y6z

|Wxyz|
|Wxz|

IndWxz

Wxyz

((
ResWxy

Wxyz
fxy

)
⊗
(

ResWyz

Wxyz
gyz

))
.

If fxx is invertible in VRep(Wx)⊗R, then ResWx

Wxz
fxx is invertible in VRep(Wxz)⊗R,

and this equation has a unique solution for g. Thus f has a right inverse if and only
if fxx ∈ VRep(Wx) ⊗ R is invertible for all x ∈ P . The argument for left inverses is
identical, so it remains only to show that left and right inverses coincide.

Let g be right inverse to f . Then g is also left inverse to some function, which we
will denote h. We then have

f = fδ = f(gh) = (fg)h = δh = h,

so g is left inverse to f , as well. �

3. Equivariant Kazhdan–Lusztig–Stanley theory
In this section we take R to be the ring Z[t] and for each f ∈ IW(P )⊗ Z[t] and x 6
y ∈ P , we write fxy(t) for the corresponding component of f . One can regard fxy(t)
as a polynomial whose coefficients are virtual representations of Wxy, or equivalently
as a graded virtual representation of Wxy. We assume that P is equipped with a
W -invariant weak rank function in the sense of [2, Section 2]. This is a collection of
natural numbers {rxy ∈ N | x 6 y ∈ P} with the following properties:

• rxy > 0 if x < y
• rxy + ryz = rxz if x 6 y 6 z
• rxy = rσ(x)σ(y) if x 6 y and σ ∈W .

Following the notation of [9, Section 2.1], we define

IW(P ) :=
{
f ∈ IW(P )⊗ Z[t]

∣∣∣ deg fxy(t) 6 rxy for all x 6 y
}

along with

IW
1/2 (P ) :=

{
f ∈ IW(P )⊗ Z[t]

∣∣∣ deg fxy(t) < rxy/2 and fxx(t) = δxx(t)
}
.

Note that IW(P ) is a subalgebra of IW(P ), and we define an involution f 7→ f of
IW(P ) by putting fxy(t) := trxyfxy(t−1). An element κ ∈ IW(P ) is called a P -kernel
if κxx(t) = δxx(t) for all x ∈ P and κ = κ−1.

Theorem 3.1. If κ ∈ IW(P ) is a P-kernel, there exists a unique pair of functions
f, g ∈ IW

1/2 (P ) such that f = κf and g = gκ.

Proof. We follow the proof in [9, Theorem 2.2]. We will prove existence and uniqueness
of f ; the proof for g is identical. Fix elements x < w ∈ P . Suppose that fyw(t) has
been defined for all x < y 6 w and that the equation f = κf holds where defined.
Let

Qxw(t) :=
∑

x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
κxy(t)

)
⊗
(

ResWyw

Wxyw
fyw(t)

))
,

which is an element of VRep(Wxw)⊗Z[t]. The equation f = κf for the interval [x,w]
translates to

fxw(t)− fxw(t) = Qxw(t).

(2)If the ring R has integer torsion, then we rewrite this equation without the fractions as described
in Remark 2.4.
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It is clear that there is at most one polynomial fxw(t) of degree strictly less than
rxw/2 satisfying this equation. The existence of such a polynomial is equivalent to
the statement

trxwQxw(t−1) = −Qxw(t).
To prove this, we observe that

trxwQxw(t−1)

= trxw
∑

x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
κxy(t−1)

)
⊗
(

ResWyw

Wxyw
fyw(t−1)

))
=

∑
x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
trxyκxy(t−1)

)
⊗
(

ResWyw

Wxyw
trywfyw(t−1)

))
=

∑
x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
κxy(t)

)
⊗
(

ResWyw

Wxyw
fyw(t)

))
=

∑
x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
κxy(t)

)
⊗
(

ResWyw

Wxyw
(κf)yw(t)

))
.

This is formally equal to the expression for (κ(κf))xw−(κf)xw, which by associativity
is equal to the expression for

((κκ)f)xw − (κf)xw = fxw − (κf)xw.
Thus we have

trxwQxw(t−1) = −
∑

x<y6w

|Wxyw|
|Wxw|

IndWxw

Wxyw

((
ResWxy

Wxyw
κxy(t)

)
⊗
(

ResWyw

Wxyw
fyw(t)

))
= −Qxw(t).

Thus there is a unique choice of polynomial fxw(t) consistent with the equation f = κf
on the interval [x,w]. �

We will refer to the element f ∈ IW
1/2 (P ) from Theorem 3.1 is the right equivari-

ant KLS-function associated with κ, and to g as the left equivariant KLS-function
associated with κ. For any x 6 y, we will refer to the graded virtual representations
fxy(t) and gxy(t) as (right or left) equivariant KLS-polynomials. WhenW is the trivial
group, these definitions specialize to the ones in [9, Section 2].

Example 3.2. Let ζ ∈ IW(P ) be the element defined by letting ζxy(t) be the trivial
representation of Wxy in degree zero for all x 6 y, and let χ := ζ−1ζ. The function
χ is called the equivariant characteristic function of P with respect to the action of
W . We have χ−1 = ζ

−1
ζ = χ, so χ is a P -kernel. Since ζ = ζχ, ζ is equal to the left

KLS-function associated with χ. However, the right KLS-function f associated with
χ is much more interesting! See Propositions 4.1 and 4.3 for a special case of this
construction.

We next introduce the equivariant analogue of the material in [9, Section 2.3]. If κ
is a P -kernel with right and left KLS-functions f and g, we define Z := gκf ∈ IW(P ),
which we call the equivariant Z-function associated with κ. For any x 6 y, we will
refer to the graded virtual representation Zxy(t) as an equivariant Z-polynomial.

Proposition 3.3.We have Z = Z.

Proof. Since g = gκ, we have Z = gκf = gf . Since f = κf , we have Z = gκf = gf .
Thus Z = gf = gf = gf = Z. �
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Remark 3.4. Suppose that κ ∈ IW(P ) is a P -kernel and f, g, Z ∈ IW(P ) are the
associated equivariant KLS-functions and equivariant Z-function. It is immedi-
ate from the definitions that, if ψ : W ′ → W is a group homomorphism, then
Rψ(f), Rψ(g), Rψ(Z) ∈ IW

′(P ) are the equivariant KLS-functions and equivari-
ant Z-function associated with the P -kernel Rψ(κ) ∈ IW

′(P ). In particular, if we
take W ′ to be the trivial group, then Remark 2.6 tells us that the ordinary KLS-
polynomials and Z-polynomials are recovered from the equivariant KLS-polynomials
and Z-polynomials by sending virtual representations to their dimensions.

4. Matroids
Let M be a matroid, let L be the lattice of flats of M equipped with the usual weak
rank function, and let W be a finite group acting on L. Let OSWM (t) be the Orlik–
Solomon algebra of M [8], regarded as a graded representation of W . Following [7,
Section 2], we define

HW
M (t) := trkMOSWM (−t−1) ∈ VRep(W )⊗ Z[t].

If W is trivial, then HW
M (t) ∈ Z[t] is equal to the characteristic polynomial of M . For

any F 6 G ∈ L, let MFG be the minor of M with lattice of flats [F,G] obtained by
deleting the complement of G and contracting F ; this matroid inherits an action of
the stabilizer group WFG ⊂ W . Define H ∈ IW(L) by putting HFG(t) = HWFG

MFG
(t)

for all F 6 G.
Proposition 4.1. The function H is the equivariant characteristic function of L.
Proof. It is proved in [7, Lemma 2.5] that ζH = ζ. Multiplying on the left by ζ−1, we
have H = ζ−1ζ, which is the definition of the equivariant characteristic function. �

Remark 4.2. The proof of [7, Lemma 2.5] is surprisingly difficult.(3) Consequently,
Proposition 4.1 is a deep fact about Orlik–Solomon algebras, not just a formal con-
sequence of the definitions.

The equivariant Kazhdan–Lusztig polynomial PWM (t) ∈ VRep(W )⊗ Z[t] was intro-
duced in [7, Section 2.2]. Define P ∈ IW

1/2 (L) by putting PFG(t) = PWFG

MFG
(t) for all

F 6 G. The defining recursion for PWM (t) in [7, Theorem 2.8] translates to the formula
P = HP , which immediately implies the following proposition.
Proposition 4.3. The function P is the right equivariant KLS-function associated
with H.

The equivariant Z-polynomial ZWM (t) ∈ VRep(W ) ⊗ Z[t] was introduced in [10,
Section 6]. Define Z ∈ IW(L) by putting ZFG(t) = ZWFG

MFG
(t) for all F 6 G. The

defining recursion for ZWM (t) in [10, Section 6] translates to the formula Z = ζP .
Proposition 4.4. The function Z is the Z-function associated with H.
Proof. Example 3.2 tells us that the right KLS-function associated with H is ζ and
Proposition 4.3 tells us that the left KLS-function associated with H is P , thus the
Z-function is equal ζHP = ζP = Z. �

The following corollary was asserted without proof in [10, Section 6], and follows
immediately from Propositions 3.3 and 4.4.
Corollary 4.5. The polynomial ZWM (t) is palindromic. That is,

trkMZWM (t−1) = ZWM (t).

(3)The difficult part appears in the proof of Lemma 2.4, which is then used to prove Lemma 2.5.
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When W is the trivial group, Gao and Xie define polynomials QM (t) and Q̂M (t) =
(−1)rkMQM (t) with the property that

(
P−1)

FG
(t) = Q̂MFG

(t) [6]. If 0̂ and 1̂ are the
minimal and maximal flats of M , this is equivalent to the statement that QM (t) =
(−1)rkM (P−1)

0̂1̂ (t). The polynomial QM (t) is called the inverse Kazhdan–Lusztig
polynomial of M .(4) Using the machinery of this paper, we may extend their defini-
tion to the equivariant setting by defining the equivariant inverse Kazhdan–Lusztig
polynomial

QWM (t) := (−1)rkM (P−1)
0̂1̂ (t).

If we then define Q̂ ∈ IW
1/2 (L) by putting Q̂FG(t) = (−1)rFGQWFG

MFG
(t) for all F 6 G,

we immediately obtain the following proposition.

Proposition 4.6. The functions P and Q̂ are mutual inverses in IW(L).
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