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Problem

Sridhar P. Narayanan, Digjoy Paul, Amritanshu Prasad
& Shraddha Srivastava

Abstract Character polynomials are used to study the restriction of a polynomial represen-
tation of a general linear group to its subgroup of permutation matrices. A simple formula
is obtained for computing inner products of class functions given by character polynomials.
Character polynomials for symmetric and alternating tensors are computed using generating
functions with Eulerian factorizations. These are used to compute character polynomials for
Weyl modules, which exhibit a duality. By taking inner products of character polynomials for
Weyl modules and character polynomials for Specht modules, stable restriction coefficients are
easily computed. Generating functions of dimensions of symmetric group invariants in Weyl
modules are obtained. Partitions with two rows, two columns, and hook partitions whose Weyl
modules have non-zero vectors invariant under the symmetric group are characterized. A refor-
mulation of the restriction problem in terms of a restriction functor from the category of strict
polynomial functors to the category of finitely generated FI-modules is obtained.

1. Introduction
Let K be a field of characteristic 0. Let P = K[X1, X2, . . . ], a ring of polynomials in
infinitely many variables. Regard P as a graded algebra where the variable Xi has
degree i. In this grading, the monomial Xa1

1 Xa2
2 · · · has degree

∑
i iai.

Definition 1.1. For each n > 1, let Vn be a representation of the symmetric group
Sn. The collection {Vn}∞n=1 is said to have eventually polynomial character, if there
exists q ∈ P and a positive integer N such that, for each n > N and each w ∈ Sn,

trace(w;Vn) = q(X1(w), X2(w), . . . ),
where Xi(w) is the number of i-cycles in w. The collection {Vn} is said to have
polynomial character if N = 1. The polynomial q is called the character polynomial
of {Vn}.

Character polynomials have been used to study characters of families of representa-
tions of symmetric groups that occur naturally in combinatorics, topology and other
areas. A survey of their history can be found in the article of Garsia and Goupil [6].
More recently, Church, Ellenberg and Farb [3] developed the theory of FI-modules.
They showed that each finitely generated FI-module gives rise to a family of repre-
sentations with eventually polynomial character.
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Any polynomial q ∈ P gives rise to a class function on Sn for every positive
integer n. The value of this function at w ∈ Sn is obtained by substituting for Xi the
number of i-cycles in w. For each n, we define the moment of q as the average value
of the associated class function on Sn. The ring P has a basis indexed by integer
partitions, which we call the binomial basis (Definition 2.2). We give an explicit
formula for the moment of a binomial basis element (Theorem 2.3). This formula
can be used to compute inner products of class functions coming from character
polynomials. It implies that such an inner product achieves a constant value for large
n (Corollary 2.4). This is a character-theoretic analogue of [3, Theorem 1.13], which
establishes representation stability for finitely generated FI-modules.

The homogeneous polynomial representations of degree d general linear groups
GLn(K) and the representations of the symmetric group Sd are linked via Schur–
Weyl duality (see [7]). The restriction problem explores a different relationship be-
tween polynomial representation of GLn(K) and Sn. It asks how an irreducible poly-
nomial representation of GLn(K) decomposes when it is restricted to Sn sitting inside
GLn(K) as the subgroup of permutation matrices.

For each partition λ, let Wλ denote the Weyl functor (see [1, Definition II.1.3])
associated to λ. Let P (n, d) denote the set of all partitions of d with at most n parts.
Then Wλ(Kn), as λ runs over P (n, d), are the irreducible polynomial representations
of the general linear group GLn(K) of degree d.

Following the notation and terminology of [3, Definition 2.2.5], for a partition
µ = (µ1, . . . , µm) of size |µ| and an integer n > µ1 + |µ|, let µ[n] denote the
padded partition (n− |µ|, µ1, µ2, . . . , µm). Let Vµ[n] denote the Specht module of Sn
corresponding to µ[n].

Consider the decomposition of the restriction of Wλ(Kn) to Sn into Specht
modules:

ResGLn(K)
Sn

Wλ(Kn) =
⊕
µ
V
⊕rλµ(n)
µ[n] ,

where the sum is over partitions µ such that n − |µ| > µ1. It is well-known that
the coefficients rλµ(n) are eventually constant for large n (this result is attributed
to D. E. Littlewood by Assaf and Speyer [2]). Let rλµ be their eventually constant
value, which is called the stable restriction coefficient. Finding a combinatorial
interpretation of rλµ is known as the restriction problem.

In this article we show that the family {ResGLn(K)
Sn

Wλ(Kn)} has polynomial char-
acter. We determine its character polynomial Sλ (Theorem 2.7) by applying the
Jacobi–Trudi identities to the character polynomials of symmetric and exterior pow-
ers of Kn (Theorem 2.6). The character polynomials of symmetric and exterior tensor
powers of Kn have generating functions with Eulerian factorization (Theorem 2.6).
Multiplying Sλ by the character polynomial qµ of Specht modules {Vµ[n]} (which
was computed by Macdonald [16, Example I.7.14(b)] and Garsia–Goupil [6]), and
then taking moments (Theorem 2.3) gives an algorithm to compute stable restric-
tion coefficients (Theorem 3.3). Assaf and Speyer [2] and independently, Orellana and
Zabrocki [19] introduced Specht symmetric functions to study the restriction problem.
In Section 3.3 we explain the relationship between these two approaches.

Notwithstanding several interesting recent developments [2, 8, 19, 18], a solution to
the restriction problem remains elusive. Even interpreting rλ∅ combinatorially (here
∅ denotes the empty partition of 0, so rλ∅ is the dimension of the space of Sn-
invariant vectors in Wλ(Kn) for large n) appears to be a non-trivial and interesting
problem. We provide generating functions in λ for the dimension of the space of
Sn-invariant vectors in Wλ(Kn) (Corollary 4.3). Using our main generating function
(Theorem 4.1) for the dimension of Sn-invariants in mixed tensors, we are able to
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characterize partitions with two rows, two columns and hook partitions which have
non-zero Sn-invariant vectors. To the best of our knowledge, the specific problem of
determining the Sn-invariant vectors of a Weyl-module has not been studied before.

We conclude this paper by placing the restriction problem in the context of strict
polynomial functors and FI-modules. Friedlander and Suslin [5] introduced strict poly-
nomial functors of degree d. The polynomial representations of degree d of GLn(K)
are obtained by evaluating strict polynomial functors of degree d at Kn. Similarly,
families of representations of Sn with stability properties can be obtained by evalu-
ating finitely generated FI-modules at {1, . . . , n} (see [3]). We define a functor from
the category of strict polynomial functors of degree d to the category of finitely gen-
erated FI-modules for every d (Section 5.3). This functor corresponds to restriction
of representations from GLn(K) to Sn under evaluation functors (Theorem 5.1).

2. Character Polynomials and their Moments
2.1. Moments and Stability.

Definition 2.1 (Moment). The moment of q ∈ P at n is defined as:

〈q〉n = 1
n!
∑
w∈Sn

q(X1(w), X2(w), . . . ).

We shall express integer partitions in exponential notation: given a partition α with
largest part r, we write:

α = 1a12a2 · · · rar ,

where ai is the number of parts of α of size i for each 1 6 i 6 r. Thus α is a partition
of the integer |α| := a1 + 2a2 + · · · + rar. For every integer partition α = 1a1 · · · rar
define

(
X
α

)
∈ P by: (

X

α

)
=
(
X1

a1

)(
X2

a2

)
· · ·
(
Xr

ar

)
.

Definition 2.2 (Binomial basis). The basis of P consisting of elements{(
X

α

) ∣∣∣∣ α is an integer partition
}

is called the binomial basis of P .

For an integer partition α = 1a12a2 · · · rar , define zα =
∏r
i=1 i

aiai!. This is the
order of the centralizer in Sn of a permutation with cycle type α.

Theorem 2.3. For every integer partition α = 1a12a2 · · · , we have:〈(
X

α

)〉
n

=
{

0 if n < |α|,
1/zα otherwise.

Proof. We have:∑
n>0

〈(
X

α

)〉
n

vn =
∑
n>0

1
n!
∑
w∈Sn

∏
i>1

(
Xi(w)
ai

)
viXi(w).

Replace the sum w ∈ Sn by a sum over conjugacy classes in Sn. If β = 1b12b2 · · · is a
partition of n, then the number of elements in Sn with cycle type β is n!∏

i
ibibi!

. We
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get: ∑
n>0

〈(
X

α

)〉
n

vn =
∑
n>0

∑
β`n

∏
i>1

vibi

ibibi!

(
bi
ai

)

=
∏
i>1

∑
bi>ai

vibi

ibibi!

(
bi
ai

)

=
∏
i>1

∑
bi>ai

vibi

ibiai!(bi − ai)!

=
∏
i>1

∑
bi>ai

viai

iaiai!
vi(bi−ai)

ibi−ai(bi − ai)!
.

Setting ci = bi − ai gives:∑
n>0

〈(
X

α

)〉
n

vn = v|α|

zα

∏
i>1

∑
ci>0

vici

icici!

= v|α|

zα

∑
n>0

vn
∑
γ`n

1
zγ
.

Since
∑
γ`n 1/zγ = 1 for every n, we get:

(1)
∑
n>0

〈(
X

α

)〉
n

vn = v|α|

zα

1
1− v ,

from which Theorem 2.3 follows. �

For two representations V and W of Sn, let:

〈V,W 〉n = dim HomSn(V,W ),

which is the same as the Schur inner product of their characters:

〈V,W 〉n = 1
n!
∑
w∈Sn

trace(w;V ) trace(w,W ).

Corollary 2.4. For any q ∈ P of degree d, 〈q〉n = 〈q〉d for all n > d. In particular,
if {Vn} and {Wn} are families of representations with polynomial characters of degree
d1 and d2, then 〈Vn,Wn〉n stabilizes for n > d1 + d2.

Proof. This follows from the fact that the polynomials
(
X
α

)
, as α runs over the set of

integer partitions, form a basis of P . �

Definition 2.5 (Stable moment). For a polynomial q ∈ P we define the stable mo-
ment 〈q〉 of q to be the eventually constant value of 〈q〉n:

〈q〉 = lim
n→∞

〈q〉n .

Let Vn = Vλ[n], the Specht module of Sn corresponding to the padded partition λ[n].
It is well-known that {Vn} is a family of representations with eventually polynomial
character [6, Proposition I.1]. In other words, for every partition λ, there exists a
polynomial qλ ∈ P such that

(2) χλ[n](w) = qλ(X1(w), X2(w), . . . ) for n > |λ|+ λ1,
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where χλ[n] denotes the character of the Specht module Vλ[n]. Given three partitions
λ, µ, and ν of the same integer k, let gλµν(n) denote the multiplicity of Vλ[n] in
Vµ[n] ⊗ Vν(n). Then

gλµν(n) = 〈qλqµqν〉n .
By Corollary 2.4, gλµν(n) is eventually constant, recovering a well-known theorem of
Murnaghan (see [15]). Church, Ellenberg, and Farb [3, Section 3.4] point out that this
result can also be obtained by showing that the families Vµ[n] ⊗ Vν[n] and Vλ[n] come
from finitely generated FI-modules.

2.2. Symmetric and Alternating Tensors. Let Symd and ∧d denote the sym-
metric and alternating tensor functors respectively. For every n > 0, Symd(Kn) and
∧d(Kn) can be regarded as representations of Sn. In this section, we will prove that
they have polynomial character by direct computation.

We shall work with generating functions that live in the ring P [[t]] of formal power
series in the variable t and coefficients in P . Let

((
Xi
j

))
=
(
Xi+j−1

j

)
. The ring P [[t]]

admits expressions of the kind

(1− ti)−Xi =
∑
j>0

((
Xi

j

))
tij ,(3)

(1 + (−t)i)Xi =
∑
j>0

(−1)ij
(
Xi

j

)
tij ,(4)

which will be needed later. Also, given w ∈ Sn for any n and q ∈ P , we write
q(w) = q(X1(w), X2(w), . . . ).

Theorem 2.6. Let {Hd}∞d=0 be the sequence of polynomials in P defined by:

(5)
∞∑
d=0

Hdt
d =

∞∏
i=1

(1− ti)−Xi ,

an identity in the formal power series ring P [[t]].
Then for every n > 1 and every w ∈ Sn,

Hd(w) = trace(w; Symd(Kn)).
Let {Ed}∞d=0 be the sequence of polynomials in P defined by:

(6)
∞∑
d=0

Edt
d =

∞∏
i=1

(1− (−t)i)Xi .

Then for every n > 1 and every w ∈ Sn,
Ed(w) = trace(w;∧d(Kn)).

For every positive integer d, we have:

Hd =
∑
α`d

d∏
i=1

((
Xi

ai

))
,(7)

Ed =
∑
α`d

(−1)a2+a4+···
d∏
i=1

(
Xi

ai

)
.(8)

Proof. The standard basis of Kn is indexed by the set [n] = {1, . . . , n}. The space
SymdKn has an induced basis indexed by multisets of size d with elements drawn
from [n]. The trace of w ∈ Sn on SymdKn is the number of such multisets that
are fixed by w. In a multiset that is fixed by w, the elements in each cycle of w
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appear with the same multiplicity. Hence a multiset fixed by w may be regarded as a
multiset of cycles of w. Assign weight wt(C) = ti to each i-cycle C of w. To a multiset
M = {Cm1

1 · · ·Cmrr } of cycles of w, assign weight wt(M) =
∏

16j6r wt(Cj)mj . Then∑
d>0

trace(w; SymdKn)td =
∑
M

wt(M),

where the sum runs over all multisets M of cycles of w. Each of the Xi(w) i-cycles of
w contributes a factor (1− ti)−1 to this generating function, so∑

d>0
trace(w; SymdKn)td =

∏
i>1

(1− ti)−Xi(w).

Similarly, ∧dKn has a basis indexed by subsets of [n] with d elements. Only subsets
fixed by w contribute to the trace, and these are unions of the cycles of w. A cycle
of length i changes the sign of the corresponding basis vector by a factor of −(−1)i.
Assign weight wt(C) = −(−t)i to each i-cycle C of w. To a subset N = {C1, . . . , Cr}
of cycles of w, assign weight wt(N) =

∏
16i6r wt(Ci). Then∑

d>0
trace(w;∧dKn)td =

∑
N

wt(N),

where the sum runs over all subsets N of the set of cycles of w. Each of the Xi(w)
i-cycles of w contributes a factor (1− (−t)i) to this generating function, so∑

d>0
trace(w;∧dKn)td =

∏
i>1

(1− (−t)i)Xi(w).

Expansion of the products in (5) and (6) using (3) and (4) gives (7) and (8) respec-
tively. �

2.3. Character Polynomials of Weyl Modules. Applying the Jacobi–Trudi
identities [16, Section I.3] to the character polynomials of Symd and ∧d gives character
polynomials for Weyl functors. For a partition λ, let λ′ denote its conjugate partition.

Theorem 2.7. For every partition λ, the element of P defined by

(9) Sλ = det(Hλi+j−i) = det(Eλ′
i
+j−i)

is such that for every positive integer n and every w ∈ Sn,

Sλ(w) = trace(w;Wλ(Kn)).

The polynomials Sλ for partitions λ of integers at most 5 are given in Table 1.
The highest degree coefficients in these expansions are character values of symmetric
groups. More precisely, we have:

Theorem 2.8. Let λ be a partition of a positive integer d. For every partition α =
1a12a2 · · · of d, the coefficient of

(
X
α

)
in the expansion of Sλ in the binomial basis

(Definition 2.2) is χλ(wα), where wα is a permutation with cycle type α.

The theorem will be a consequence of the following lemma:

Lemma 2.9. Let λ be a partition of a positive integer d. For every partition α of d,
the coefficient of

(
X
α

)
in the expansion of Hλ in the binomial basis is σλ(wα), the

value of the character σλ of the permutation representation of Sd induced from the
trivial representation of the Young subgroup Sλ1×· · ·×Sλl (see [9, Section 2.2] or [20,
Section 2.3]) at a permutation wα with cycle type α.
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λ Sλ

n = 1

(1) X1

n = 2

(2) 1
2X

2
1 + 1

2X1 +X2

(12) 1
2X

2
1 − 1

2X1 −X2

n = 3

(3) 1
6X

3
1 + 1

2X
2
1 +X1X2 + 1

3X1 +X3

(2, 1) 1
3X

3
1 − 1

3X1 −X3

(13) 1
6X

3
1 − 1

2X
2
1 −X1X2 + 1

3X1 +X3

n = 4

(4) 1
24X

4
1 + 1

4X
3
1 + 1

2X
2
1X2 + 11

24X
2
1 + 1

2X1X2 + 1
2X

2
2 +X1X3 + 1

4X1 + 1
2X2 +X4

(3, 1) 1
8X

4
1 + 1

4X
3
1 + 1

2X
2
1X2 − 1

8X
2
1 − 1

2X1X2 − 1
2X

2
2 − 1

4X1 − 1
2X2 −X4

(2, 2) 1
12X

4
1 − 1

12X
2
1 +X1X2 +X2

2 −X1X3

(2, 12) 1
8X

4
1 − 1

4X
3
1 − 1

2X
2
1X2 − 1

8X
2
1 − 1

2X1X2 − 1
2X

2
2 + 1

4X1 + 1
2X2 +X4

(14) 1
24X

4
1 − 1

4X
3
1 − 1

2X
2
1X2 + 11

24X
2
1 + 1

2X1X2 + 1
2X

2
2 +X1X3− 1

4X1− 1
2X2−X4

n = 5

(5) 1
120X

5
1 + 1

12X
4
1 + 1

6X
3
1X2 + 7

24X
3
1 + 1

2X
2
1X2 + 1

2X1X
2
2 + 1

2X
2
1X3 + 5

12X
2
1 +

5
6X1X2 + 1

2X1X3 +X2X3 +X1X4 + 1
5X1 +X5

(4, 1) 1
30X

5
1 + 1

6X
4
1 + 1

3X
3
1X2 + 1

6X
3
1 + 1

2X
2
1X3 − 1

6X
2
1 − 1

3X1X2 − 1
2X1X3 −

X2X3 − 1
5X1 −X5

(3, 2) 1
24X

5
1 + 1

12X
4
1 + 1

6X
3
1X2 − 1

24X
3
1 + 1

2X
2
1X2 + 1

2X1X
2
2 − 1

2X
2
1X3 − 1

12X
2
1 −

1
6X1X2 + 1

2X1X3 +X2X3 −X1X4

(3, 12) 1
20X

5
1 − 1

4X
3
1 −X2

1X2 −X1X
2
2 + 1

5X1 +X5

(22, 1) 1
24X

5
1 − 1

12X
4
1 − 1

6X
3
1X2 − 1

24X
3
1 + 1

2X
2
1X2 + 1

2X1X
2
2 − 1

2X
2
1X3 + 1

12X
2
1 +

1
6X1X2 − 1

2X1X3 −X2X3 +X1X4

(2, 13) 1
30X

5
1 − 1

6X
4
1 − 1

3X
3
1X2 + 1

6X
3
1 + 1

2X
2
1X3 + 1

6X
2
1 + 1

3X1X2 + 1
2X1X3 +

X2X3 − 1
5X1 −X5

(15) 1
120X

5
1 − 1

12X
4
1 − 1

6X
3
1X2 + 7

24X
3
1 + 1

2X
2
1X2 + 1

2X1X
2
2 + 1

2X
2
1X3− 5

12X
2
1 −

5
6X1X2 − 1

2X1X3 −X2X3 −X1X4 + 1
5X1 +X5

Table 1. Character polynomials of Weyl modules

Proof. Consider the set of ordered set partitions of [d] with parts of sizes given by λ:

Xλ = {(T1, . . . , Tl) | [d] = T1 ∪ · · · ∪ Tl is a set partition, with |Ti| = λi}.

Let K[Xλ] be the permutation representation associated to the action of Sd on Xλ.
This representation is isomorphic to the representation of Sd induced from the trivial
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representation of its Young subgroup Sλ1 × · · ·×Sλl . Therefore σλ is the character of
K[Xλ], and σλ(wα) = |Xwα

λ |, the number of fixed points of a permutation wα in Xλ.
Take (T1, . . . , Tl) ∈ Xwα

λ . Then each Ti is formed by taking a union of cycles of wα.
Suppose that bij is the number of j cycles of wα in Ti. Then the array (bij) satisfies
the constraints:

bi1 + 2bi2 + · · · = λi for each i,(10)
b1j + b2j + · · · = aj for each j,(11)

where aj is the number of j-cycles in α. Let B(λ;α) denote the set of such arrays.
We have:

(12) trace(wα,K[Xλ]) =
∑

(bij)∈B(λ;α)

∏
j

(
aj

b1j b2j · · ·

)
.

On the other hand, by (7),

Hλ =
∑

bi1+2bi2+···=λi

∏
i>1

∏
j>1

((
Xj

bij

))
.

The terms of homogeneous degree d in this product come from the top degree terms
in each factor. When |α| = |λ|, such a term has leading coefficient

∏
j X

aj
j if and only

if (bij) ∈ B(λ;α). Hence the coefficient of
(
X
α

)
is the expression on the right hand side

of (12) and the lemma follows. �

Proof of Theorem 2.8. For partitions λ and µ of d, let Kµλ denote the number of
semistandard Young tableaux of shape µ and weight λ. Then K = (Kµλ) is a unitri-
angular integer matrix with rows and columns indexed by partitions of d. We have:

Hλ =
∑
µ

KµλSµ,(13)

σλ =
∑
µ

Kµλχµ.(14)

Let K−1
µλ be the entries of the inverse matrix K−1. Then

Sλ =
∑
µ

K−1
µλHµ by (13)

≡
∑
µ

K−1
µλ

∑
α

σµ(α)
(
X

α

)
ignoring lower deg. terms (Lemma 2.9)

=
∑
α`d

∑
µ

K−1
µλ σµ(α)

(
X

α

)
=
∑
α

χλ(α)
(
X

α

)
by (14),

thereby completing the proof of Theorem 2.8. �

Theorem 2.10. For every partition λ = (λ1, . . . , λl), Sλ is the coefficient of tλ1
1 · · · t

λl
l

in ∏
i<j

(1− tj/ti)
l∏

r=1

∏
i>1

(1− tir)−Xi .

Algebraic Combinatorics, Vol. 4 #4 (2021) 710



Character Polynomials and the Restriction Problem

Proof. For every vector λ = (λ1, . . . , λl) with non-negative integer coefficients, define:

Sλ = det(Hλi−i+j).

When λ is a partition this coincides with the character polynomial of the Weyl module
Wλ. Then, for every partition λ, Sλ is the coefficient of tλ in

∑
λ>0 Sλt

λ. Here λ > 0
indicates that the sum is over all vectors in Zl>0, and tλ = tλ1

1 · · · t
λl
l . Now

∑
λ>0

Sλt
λ =

∑
λ>0

∑
w∈Sl

sgn(w)
l∏

r=1
Hλr−r+w(r)t

λr
r

=
∑
w∈Sl

sgn(w)
l∏

r=1
tr−w(r)
r

∑
λr>0

Hλr−r+w(r)t
λr−r+w(r)
r

=
∑
w∈Sl

sgn(w)
l∏

r=1
tr−w(r)
r

∑
λr>0

Hλr t
λr
r

=
∏
i<j

(1− tj/ti)
l∏

r=1

∏
i>1

(1− tir)−Xi .

Here we have used the convention that Hd = 0 when d < 0. �

2.4. Duality. Going through the entries of Table 1, the reader may have noticed
that the coefficients in the expansion of Sλ agree up to sign with those of Sλ′ for
every partition λ. For each vector µ = (µ1, . . . , µm) with non-negative integer entries,
let Xµ = Xµ1

1 · · ·Xµm
m , and |µ| = µ1 + · · ·+ µm.

Theorem 2.11. For every partition λ, if Sλ =
∑
µ a

λ
µX

µ, then

Sλ′ =
∑
µ

(−1)|λ|−|µ|aλµXµ.

Proof. Let τd : P → P denote the linear involution defined by Xµ 7→ (−1)d−|µ|Xµ.
Comparing equations (5) and (6) shows that:

τd(Hd) = Ed.

It follows that, if |µ| = d, then

τd(Hµ1 · · ·Hµm) = Eµ1 · · ·Eµm .

When λ is a partition of d, then every term in the expansion of the Jacobi–Trudi
determinants det(Hλi+j−i) is of the form Hµ or Eµ for integer vector µ with |µ| = d.
Therefore τd(det(Hλi+j−i)) = det(Eλi+j−i). By the Jacobi–Trudi identities (9),

τd(Sλ) = τd(det(Hλi+j−i)) = det(Eλi+j−i) = Sλ′ ,

as claimed. �

3. The Restriction Problem
3.1. Character Polynomials of Specht Modules. Recall that for partitions λ
and µ, we say that λ − µ is a vertical strip if the Young diagram of µ is contained
inside the Young diagram of λ, and each row of the Young diagram of λ contains at
most one box that is not in the Young diagram of µ [16, Section I.1].
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For any partition λ, Macdonald [16, Example I.7.14(b)] gave the character polyno-
mials qλ ∈ P of (2) as follows:

(15) qλ =
∑

{µ|λ−µ is a vertical strip}

(−1)|λ|−|µ|
∑
α`|µ|

χµ(α)
(
X

α

)
.

It immediately follows that the leading coefficients of qλ in the binomial basis are
the same as those of Sλ (see Theorem 2.8):

Theorem 3.1. Let λ be a partition of a positive integer d. For every partition α of d,
the coefficient of

(
X
α

)
in the expansion of qλ in the binomial basis of P is χλ(α).

Corollary 3.2. The sets:

S = {Sλ | λ is an integer partition},
q = {qλ | λ is an integer partition}

are bases of P .

Proof. Regard P as a graded algebra where the degree of Xi is i for each i > 1. Let
Pd denote the homogeneous elements of degree d in P . The degree d homogeneous
parts of

(
X
α

)
, as α runs over all partitions of d, form a basis of Pd. Theorem 2.8 and

the identity (15) imply that the degree d homogeneous parts of Sλ and qλ also form
such a basis as λ runs over all partitions of d, since the character table of Sd forms a
non-singular matrix. Therefore S and q are bases of P . �

3.2. Stable Restriction Coefficients. The coefficients in the expansion of the
elements of the basis S in terms of the basis q:

Sλ =
∑
µ

rλµqµ

are called the stable restriction coefficients. They determine the decomposition of a
Weyl module Wλ(Kn) into irreducible representations of Sn:

ResGLn(K)
Sn

Wλ(Kn) =
⊕
µ
V
⊕rλµ
µ[n] .

The following result, which is now immediate, is an algorithm for computing the stable
restriction coefficients:

Theorem 3.3. For any partitions λ and µ,

rλµ = 〈Sλqµ〉 .

The polynomial Sλ can be computed using Theorem 2.7, qµ using (15). After
expanding the product in the binomial basis, the moment can be computed using
Theorem 2.3. The matrix of the stable restriction coefficients rλµ, as λ and µ run over
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partitions of 0 6 n 6 5 is given by:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 7 5 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0
2 7 5 6 2 3 1 0 1 0 0 0 0 0 0 0 0 0 0
2 3 4 1 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 3 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
7 12 9 5 5 3 0 2 1 0 0 0 1 0 0 0 0 0 0
5 14 13 12 6 9 3 2 3 1 1 0 0 1 0 0 0 0 0
4 10 11 8 6 8 2 1 3 2 1 0 0 0 1 0 0 0 0
0 3 4 8 1 7 6 0 2 1 3 1 0 0 0 1 0 0 0
1 3 4 3 2 5 1 0 1 2 2 0 0 0 0 0 1 0 0
0 0 0 1 0 1 3 0 0 0 2 2 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1



.

The blocks demarcate the partitions of each integer n, and within each block, the
partitions of n are enumerated in reverse lexicographic order.

3.3. Relation to Symmetric Functions. Let Λ denote the ring of symmetric
functions (as in [16, Section I.2]). Macdonald [16, Example I.7.13] constructed an
isomorphism φ : Λ → P taking the Schur function sλ to the character polynomial
qλ. In this section we study a different isomorphism Φ : Λ→ P , due to Orellana and
Zabrocki [19], which takes sλ to Sλ. Under this isomorphism qλ is the image of s̃λ the
Specht symmetric functions of [2, 19].

Following [19, Proposition 12], define an algebra homomorphism Φ : Λ→ P by:

(16) Φ : pk 7→
∑
d|k

dXd.

For each k > 0, define

Ξk = 1, e2π i /k, e4π i /k, . . . , e2(k−1)π i /k,

and for an integer partition µ = (µ1, . . . , µm),

Ξµ = Ξµ1 , . . . ,Ξµm .

Let Rn denote the space of K-valued class functions on Sn. For every n > 0 there
is a map evnΛ : Λ→ Rn defined by:

evnΛ f(w) = f(Ξµ),

where µ is the cycle type of w. In other words, the symmetric function is evaluated
on |µ| variables, whose values are given by the list Ξµ, the remaining variables being
set to 0. With this definition, evnΛ(sλ) is the character of ResGLn(K)

Sn
Wλ(Kn).

For each q ∈ P consider the function evnP (q) ∈ Rn given by:

evnP (q)(w) = q(X1(w), X2(w), . . . ).

This defines a ring homomorphism evnP : P → Rn.
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Observe that ⊕∞n=1 evnP : P → ⊕∞n=1Rn is injective, for if evnP (q) ≡ 0 for all n, then
q vanishes whenever X1, X2, . . . take non-negative integer values, and hence q must
be identically 0.

Theorem 3.4. The algebra homomorphism Φ is the unique K-linear map Λ→ P such
that the diagram

(17) Λ Φ //

evnΛ   

P

evnP~~
Rn

commutes for every n > 1.

Proof. From the definition of evnΛ,

evnΛ(pk)(w) =
∑
d

Xd(w)
d−1∑
j=0

(e2π i /d)jk.

Now observe that
d−1∑
j=0

(e2π i /d)jk =
{
d if d | k,
0 otherwise.

It follows that
evnΛ(pk)(w) =

∑
d|k

dXd(w) = evnP (Φ(pk)).

Since ⊕n evnP : P → ⊕Rn is injective, Φ(pk) is completely determined by the commu-
tativity of (17). Since the polynomials {pk}k>1 generate Λ, Φ is completely determined
by its values on pk. �

Lemma 3.5. The homomorphism Φ : Λ→ P is an isomorphism of rings.

Proof. The inverse of Φ is obtained using the Möbius inversion formula:

Xk 7→
1
d

∑
d|k

µ(k/d)pd,

where µ denotes the number-theoretic Möbius function (see, e.g. [13, Section 3.1.1]).
�

Theorem 3.6. For every partition λ, we have:
Φ(sλ) = Sλ,(18)
Φ(s̃λ) = qλ.(19)

Proof. This follows immediately from Theorem 3.4. �

Remark 3.7. The second identity (19) is [19, Prop. 12].

4. Moment Generating Functions
4.1. The Main Generating Function. In this and the following subsections, we
shall frequently use the following elementary identities:

exp(t/i) =
∑
b>0

1
ibb! t

b,(A)

log 1
1− t =

∞∑
i=1

ti/i.(B)
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We shall use α = 1a12a2 · · · , β = 1b12b2 · · · , γ = 1c12c2 · · · . Let Par denote the set of
all integer partitions. We use the notation λ = (λ1, . . . , λl), µ = (µ1, . . . , µm). Also,
tλ = tλ1

1 · · · t
λl
l and uµ = uµ1

1 · · ·uµmm . We shall interpret λ > 0 as λi > 0 for i = 1, . . . , l
and µ > 0 as µi > 0 for i = 1, . . . ,m.

We use the notation R @ [l] to signify that R is a multiset with elements drawn
from [l]. We write tR for the monomial where ti is raised to the multiplicity of i in R.
Similarly, for any S ⊂ [m], we write uS =

∏
i∈S ui.

Theorem 4.1. We have:

∑
n>0,λ>0,µ>0

〈HλEµ〉n t
λuµvn =

∏
R@[l]

∏
S⊂[m], |S| odd

(1 + uStRv)

∏
S⊂[m], |S| even

(1− uStRv)
.

Proof. Using (5) and (6), we have:

∑
λ>0,µ>0

HλEµt
λuµ =

l∏
r=1

m∏
s=1

∏
i>1

(
1− (−us)i

1− tir

)Xi
.

Now proceeding as in the proof of Theorem 2.3,

∑
n>0,λ>0,µ>0

〈HλEµ〉n t
λuµvn =

∏
i>1

∑
bi>0

vibi

ibibi!

l∏
r=1

m∏
s=1

(
1− (−us)i

1− tir

)bi
(A)=
∏
i>1

exp
(
vi

i

l∏
r=1

m∏
s=1

[
1− (−us)i

1− tir

])

= exp

∑
i>1

∑
R@[l]

∑
S⊂[m]

(−1)|S| (t
R(−1)|S|uSv)i

i


(B)=

∏
R@[l]

∏
S⊂[m]

(
1− (−1)|S|tRuSv

)(−1)|S|+1

,

which is equivalent to the desired expression. �

Corollary 4.2. We have:∑
λ>0,µ>0

〈HλEµ〉 tλuµ =
∏
R,S

(1− (−1)|S|uStR)(−1)|S|+1
,

where the product is over R @ [l], S ⊂ [m], with at least one of R and S non-empty.

Corollary 4.3. For every partition λ, 〈Wλ〉n is the coefficient of tλvn in∏
i<j

(1− tj/ti)
∏
R@[l]

(1− tRv)−1.

Proof. From Theorem 4.1 we get:

(20)
∑

λ>0,n>0
〈Hλ〉n t

λvn =
∏
R@[l]

(1− tRv)−1.

Using this, the corollary can be deduced from Theorem 2.10 by taking moments. �
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4.2. Sn-invariant Vectors. For a representation Vn of Sn, let V Snn denote the
subspace of Sn-invariant vectors. If a family {Vn} of representations has polynomial
character q ∈ P , then

〈q〉n = dim(V Snn ) for all n > 0.
Therefore, for any partition λ, dimWλ(Kn)Sn = 〈Sλ〉n. In particular, Wλ(Kn) has a
non-zero Sn-invariant vector if and only if 〈Sλ〉n 6= 0.
Theorem 4.4. For every positive integer n and every partition λ with at most n parts,

dimWλ(Kn)Sn 6 dimWλ(Kn+1)Sn+1 .

Proof. We use Littlewood’s plethystic formula [15, Theorem XI] (see also, [17, Theo-
rem 2.6]) for restriction coefficients. This formula asserts that, for every partition λ
with at most n parts, and every partition µ of n, the multiplicity of the Specht module
Vµ in ResGLn(K)

Sn
Wλ(Kn) is given by (sλ, sµ[H]). Here (−,−) denotes the Hall inner

product on symmetric functions, and sµ[H] denotes the plethystic substitution of H
into sµ (for definitions, see [6, Section 1]). Taking µ = (n) in Littlewood’s formula
gives

dimWλ(Kn)Sn = (sλ, hn[H]).
Recall [6, Eq. 1.8] that

hn+1[H]− hn[H] = hn+1[H − 1],
so that

dimWλ(Kn+1)Sn+1 − dimWλ(Kn)Sn = (sλ, hn+1[H − 1]) > 0.
The inequality above holds because the plethystic substitution of a Schur-positive
symmetric function into another is Schur-positive. �

Definition 4.5 (Vector Partitions). Let v ∈ Zl>0. A vector partition of v is an
unordered collection v1, . . . ,vn of non-zero vectors in Zl>0 such that

v = v1 + · · ·+ vn.
Let pn(v) (resp. p6n(v)) denote the number of vector partitions of v with exactly
(resp. at most) n parts.
Theorem 4.6. For every partition λ = (λ1, . . . , λl),

dimWλ(Kn)Sn =
∑
w∈Sl

sgn(w)p6n(λ1 − 1 + w(1), . . . , λl − l + w(l)).

Proof. The coefficient of tλvn in the right hand side of (20) is p6n(λ). Therefore,
(21) 〈Hλ〉n = p6n(λ) for every λ ∈ Zl>0.

By the Jacobi–Trudi identity (9),

Sλ =
∑
w∈Sl

sgn(w)Hλ1−1+w(1),...,λl−l+w(l),

so by (21),

〈Sλ〉n =
∑
w∈Sl

sgn(w)p6n(λ1 − 1 + w(1), . . . , λl − l + w(l)),

as claimed. �

Remark 4.7. In general, we do not know of a combinatorial proof of the non-negativity
of
∑
w∈Sl sgn(w)p6n(λ1−1+w(1), . . . , λl− l+w(l)), which follows from Theorem 4.6.

When l = 2, this is the main result of Kim and Hahn [10], who refer to it as a
conjecture of Landman, Brown and Portier [14].
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The problem of characterizing those partitions λ for which Wλ(Kn) has a non-zero
Sn-invariant vector for large n appears to be quite hard. The following result solves
this problem for partition with two rows, two columns, and for hook-partitions.

Theorem 4.8. Let λ be a partition.
(4.8.1) If λ = (λ1, λ2), then 〈Sλ〉 > 0 unless λ = (1, 1).
(4.8.2) If λ′ = (λ1, λ2), then 〈Sλ〉 > 0 if and only if λ1 = λ2 (in which case 〈Sλ〉 = 2)

or λ1 = λ2 + 1 (in which case 〈Sλ〉 = 1).
(4.8.3) If λ = (a+ 1, 1b), then 〈Sλ〉 > 0 if and only if a >

(
b+1

2
)
.

Proof of (4.8.1). By Theorem 4.6 we need to show that, for every λ1 > λ2 > 1,
p6n(λ1, λ2) > p6n(λ1 + 1, λ2 − 1)

for sufficiently large n, unless λ1 = λ2 = 1. From the main result of Kim and Hahn [10]
(the result on the last line of the first page), it follows that

pn(λ1, λ2) > pn(λ1 + 1, λ2 − 1) for all n > 1.
Therefore, it suffices to prove that pn(λ1, λ2) > pn(λ1 + 1, λ2 − 1) for at least one
value of n. When k > l > 1 are such that at least one of k and l is even, p2(k, l) >
p2(k+1, l−1). When both k and l are odd and (k, l) 6= (1, 1), p3(k, l) > p3(k+1, l−1).
These inequalities will be proved in Lemmas 4.10 and 4.11 below. �

Lemma 4.9. For all k, l > 0,

p2(k, l) =
{

(k+1)(l+1)−1
2 if both k and l are even,

(k+1)(l+1)
2 − 1 otherwise,

(22)

p3(k, l) = 1
6(A+ 3B + 2C),(23)

where

A =
(
k + 2

2

)(
l + 2

2

)
− 3(k + 1)(l + 1) + 3,

B =


(k/2 + 1)(l/2 + 1)− 2 if k and l are even,
(k + 1)(l + 2)/4− 1 if k is odd and l is even,
(k + 2)(l + 1)/4− 1 if k is even and l is odd,
(k + 1)(l + 1)/4− 1 otherwise,

C =
{

1 if k and l are divisible by 3,
0 otherwise.

Proof. Consider the set of all ordered triples ((k1, l1), (k2, l2), (k3, l3)) such that∑
i(ki, li) = (k, l) and no (ki, li) = (0, 0). The group S3 acts by permutation on the

set of all such triples, and the number of orbits if p3(k, l). The quantities A, B, and C
in Lemma 4.9 are the number of such triples that are fixed by permutations in S3 of
cycle types (1, 1, 1), (2, 1), and (3), respectively. The formula for p3(k, l) then follows
from Burnside’s lemma. The formula for p2(k, l) is obtained in a similar fashion. �

Lemma 4.10. For all integers k > l > 1 such that at least one of k and l is even,
p2(k, l) > p2(k + 1, l − 1).

Proof. By Lemma 4.9, we also have:

p2(k + 1, l − 1) =
{

(k+2)l−1
2 if k and l are odd,

(k+2)l
2 − 1 otherwise.
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Thus, if k and l are both even and k > l, then

p2(k, l)− p2(k + 1, l − 1) = (k + 1)(l + 1)− 1
2 −

(
(k + 2)l

2 − 1
)

= k − l
2 + 1 > 0.

If one of k and l is even and the other is odd, then

p2(k, l)− p2(k + 1, l − 1) = (k + 1)(l + 1)
2 − 1−

(
(k + 2)l

2 − 1
)

= k − l + 1
2 > 0,

thereby completing the proof of Lemma 4.10. �

Lemma 4.11. If k > l > 1, both k and l are odd, and (k, l) 6= (1, 1), then p3(k, l) >
p3(k + 1, l − 1).

Proof. When k and l are odd, Lemma 4.9 gives:

12(p3(k, l)−p3(k+1, l−1)) =
{

(kl + 2l)(k − l) + k(k − 3) + 3l + 4 if 3 | k and 3 | l,
(kl + 2l)(k − l) + k(k − 3) + 3l otherwise.

This is clearly positive for all k > l such that k > 3 and l > 1. �

Proof of (4.8.2). By the second Jacobi–Trudi identity,
(24) Wλ′ = Eλ1Eλ2 − Eλ+1Eλ2−1.

Taking l = 0 and m = 2 Corollary 4.2 gives:∑
λ1,λ2>0

〈Eλ1Eλ2〉u
λ1
1 uλ2

2 = (1 + u1)(1 + u2)
(1− u1u2) .

Therefore the coefficient of uλ1
1 uλ2

2 is the number p′(λ1, λ2) of ways of writing (λ1, λ2)
as a sum of vectors of the form (1, 1), (1, 0) and (0, 1), where the vectors (0, 1) and
(1, 0) are used at most once. Clearly

p′(λ1, λ2) =


2 if λ1 = λ2 > 1,
1 if |λ1 − λ2| = 1,
0 otherwise.

By (24), for any partition λ = (λ1, λ2) with two parts,

〈Wλ′〉 = p′(λ1, λ2)− p′(λ1 + 1, λ2 − 1) =


2 if λ1 > λ2 > 1,
1 if λ1 − λ2 = 1,
0 otherwise,

as claimed. �

Proof of (4.8.3). Using Pieri’s rule, we have:
hkel = s(k−1|l) + s(k|l−1),

whence
s(a|b) = ha+1eb − ha+2eb−1 + · · ·+ (−1)bha+b+1e0.

It follows that

(25)
〈
W(a|b)

〉
=

b∑
j=0

(−1)j 〈Ha+j+1Eb−j〉 .
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Taking l = m = 1 in Corollary 4.2 gives:

(26)
∑
a,b>0

〈HiEj〉 tiuj =
∏∞
k=0(1 + tku)∏∞
k=1(1− tk)

.

The coefficient of tiuj in the above expression is the number p̃(i, j) of ways of writing
the vector (i, j) as a sum of vectors of the form (a, 0) where a > 0, and (a, 1) where
a > 0, and vectors of the form (a, 1) are used at most once. If p̃(i, j) > 0, then j

distinct vectors of the form (a, 1) are used, so that i >
(
j
2
)
. Therefore

(27) p̃(i, j) = 0 for all i <
(
j

2

)
.

If a <
(
b+1

2
)
, then a− j <

(
b+j+1

2
)
for all j > 0. By (27) 〈Ha−jEb+j+1〉 = 0 for all

j > 0. This allows us to extend the index of summation in the right hand side of (25)
without changing the sum:

〈
W(a|b)

〉
=

b∑
j=−a−1

(−1)j 〈Ha+j+1Eb−j〉 =
∑

k+l=a+b+1
〈HkEl〉 =

〈
W(0|a+b+1)

〉
.

Taking l = 0 and m = 1 in Corollary 4.2 can be used to show that 〈Ek〉 = 0 for all
k > 1, so

〈
W(0|a+b+1)

〉
= 〈Ea+b+2〉 = 0 for all a, b > 0. Therefore,

〈
W(a|b)

〉
= 0 for

a <
(
b+1

2
)
.

Conversely, suppose a >
(
b+1

2
)
. By Theorem 4.4, it suffices to show that Wλ(Kn)

contains a non-zero Sn-invariant vector for some positive integer n. We shall show
that Wλ(Kb+1) contains a non-zero Sb+1-invariant vector. The hook partition λ =
(a+ 1, 1b) dominates the partition µ = (a−

(
b
2
)

+ 1, b, b− 1, . . . , 2, 1), which has b+ 1
distinct parts. Therefore W(a|b)(Ka+b+1) contains a non-zero vector v with weight µ.
For each w ∈ Sn let vw = ρ(a|b)(w)v. Then vw lies in the weight space of w·µ. Hence the
vectors {vw | w ∈ Sn} are linearly independent, and generate a representation that is
isomorphic to the regular representation of Sn. In particular, the trivial representation
is contained in W(a|b)(Ka+b+1). �

5. Strict Polynomial Functors and FI-modules
In this section we may take K to be any field (not necessarily of characteristic zero).
Friedlander and Suslin [5] introduced strict polynomial functors to unify homoge-
neous polynomial representations of GLn(K) of degree d across all n. Later, Church,
Ellenberg and Farb [3] introduced FI-modules to unify representations of Sn across
all n. In this section, we lift the restriction functor ResGLn(K)

Sn
to a functor from the

category of strict polynomial functors to the category of FI-modules.

5.1. Strict Polynomial Functors. The Schur category (also known as the di-
vided power category, see [22]) Γd is the category whose objects are finite dimensional
vector spaces over K. Given objects V and W ,

HomΓd(V,W ) = HomSd(V ⊗d,W⊗d).

The category of strict polynomial functors is the category Rep Γd whose objects areK-
linear covariant functors from Γd to the category of K-vector spaces, and morphisms
are natural transformations between functors (see [5, Section 2]). When K has char-
acteristic zero, Rep Γd is semisimple, and its simple objects are functors known as
Weyl functors (see [11]). For each partition λ of d let Wλ denote the Weyl functor
corresponding to λ.
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Let RepdGLn(K) denote the category of homogeneous polynomial representa-
tions of GLn(K) of degree d. Define a functor evn : Rep Γd → RepdGLn(K) as
follows: for each strict polynomial functor F : Γd → Vec define evn(F ) = F (Kn).
Let T ∈ GLn(K) act on F (Kn) by F (T⊗d). This makes F (Kn) a representation of
GLn(K) which turns out to be a homogeneous polynomial representation of degree
d. For each n > 1 and λ ∈ P (n, d), evn(Wλ) = Wλ(Kn) is the irreducible polyno-
mial representation of GLn(K) corresponding to λ (consistent with the notation of
Section 1).

5.2. FI-modules. The category FI is the one that has finite sets as objects, and
injective functions as morphisms. The category of FI-modules is the category FI-mod
whose objects are covariant functors from FI to the category of K-vector spaces, and
morphisms are natural transformations of functors. Let RepSn denote the category
of representations of Sn over K. The evaluation functor evn : FI-mod → RepSn is
defined by setting evn(V ) = V ([n]), where [n] = {1, . . . , n}.

For each partition λ = (λ1, . . . , λl) there exists an FI-module V (λ) (see [3, Propo-
sition 3.4.1]) such that, for every n > |λ|+ λ1, we have:

evn(V (λ)) = Vλ[n].

5.3. The Restriction Functor. For each object A of FI let F [A] be the vector
space of all functions A → K. Given an injective function i : A → B, define F(i) :
F [A]→ F [B] by:

F(i)(f)(b) =
{
f(a) if there exists a ∈ A such that i(a) = b,

0 otherwise,

for all f ∈ F [A]. Then F : FI → Γ1 is a functor. For every positive integer d, define
Fd : FI→ Γd by

Fd(A) = F [A], Fd(i) = F(i)⊗d.
The restriction functor

Resd : Rep Γd → FI-mod
is defined by:

Resd F = F ◦ Fd for every object F of Rep Γd.

Theorem 5.1. The diagram of functors

Rep Γd Resd //

evn
��

FI-mod

evn
��

RepdGLn(K)
ResGLn(K)

Sn

// RepSn

commutes, in the sense that ResGLn(K)
Sn

◦ evn is naturally isomorphic to evn ◦Resd.

Proof. Given F ∈ Rep Γd, evn(K) is F (Kn). Given w ∈ Sn, let Tw ∈ GLn(K) denote
the linear map the takes the ith coordinate vector ei of Kn to ew(i). An element
w ∈ Sn acts on F (Kn) via F (T⊗dw ). On the other hand,

evn ◦Resd(F ) = F ◦ Fd([n]).

An element w ∈ Sn acts on F (Fd([n])) by F (Fd(w)) = F (F(w)⊗d). These two actions
of Sn coincide under the isomorphism Kn → Fd([n]) given by ei 7→ δi, where δi is
the Kronecker delta function on [n] supported at i. Thus we get an isomorphism
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ResGLn(K)
Sn

◦ evn → evn ◦Resd(F ) of representations of Sn. The naturality of this
isomorphism follows tautologically from unwinding the definitions. �

Church, Ellenberg and Farb introduced the notion of finite generation of FI-
modules [3, Definition 1.2]. In characteristic zero, finitely generated FI-modules
have eventually polynomial character [3, Theorem 1.5], and in general characteristic,
have eventually polynomial dimension [4, Theorem B]. Therefore, the stability of
restriction coefficients (discussed in Section 3.3) is also a consequence of the following
theorem.

Theorem 5.2. For every finitely generated strict polynomial functor F of degree d,
the FI-module Resd F is finitely generated in degree d.

Proof. Let Γd denote the strict polynomial functor Γd(V ) = (V ⊗d)Sd , the subspace
of Sd-invariant tensors in V ⊗d. For λ = (λ1, . . . , λl), let Γλ(V ) = Γλ1(V ) ⊗ · · · ⊗
Γλl(V ). The functors Γλ, as λ runs over all partitions of d, generate Rep Γd [12,
Proposition 2.9]. Therefore, it suffices to prove the theorem for the functors F = Γλ.
Since Γλ is a subobject of ⊗d in the Rep Γd, Resd Γd is a subobject of Resd⊗d in
FI-mod. By the Noetherian property of FI-modules [4, Theorem A], it suffices to show
that Resd⊗d is finitely generated. But Resd⊗d(A) = F1(A)⊗d ∼= F1(Ad), which is
finitely generated in degree d by [3, Proposition 2.3.6]. �
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