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Minkowski decompositions for generalized
associahedra of acyclic type

Dennis Jahn, Robert Löwe & Christian Stump

Abstract We give an explicit subword complex description of the generators of the type cone
of the g-vector fan of a finite type cluster algebra with acyclic initial seed. This yields in
particular a description of the Newton polytopes of the F -polynomials in terms of subword
complexes as conjectured by S. Brodsky and the third author. We then show that the cluster
complex is combinatorially isomorphic to the totally positive part of the tropicalization of the
cluster variety as conjectured by D. Speyer and L. Williams.

1. Introduction and main results
A generalized associahedron for a cluster algebra of finite type is a simple polytope
whose face lattice is dual to that of the cluster complex. Constructing such generalized
associahedra has been a fruitful area of mathematical research since the introduction
of cluster algebras by S. Fomin and A. Zelevinsky in the early 2000s. We refer to [9,
5, 11, 17, 12] in this chronological order for some of the milestones and history. This
paper is a continuation of [3] and builds on recent results from [2, 1] and from [16].

The paper has three major results, two of which resolve conjectures by S. Brodsky
and the third author and, respectively, by D. Speyer and L. Williams. Theorem 1.1
gives a self-contained combinatorial construction of the rays of the type cone of the
g-vector fan of a finite type cluster algebra with acyclic initial seed via subword
complexes and brick polytopes. Using this construction together with recent results
from [2, 1] and [16], Theorem 1.3 yields that this construction also describes the
Newton polytopes of the F -polynomials of the cluster algebra. This description was
conjectured in [3, Conjecture 2.12]. The appearance of the F -polynomials is then
as well used to derive Theorem 1.4 showing that the totally positive part of the
tropical cluster variety is, modulo its lineality space, linearly isomorphic to the g-
vector fan. As the g-vector fan is combinatorially isomorphic to the cluster complex,
this affirmatively answers [19, Conjecture 8.1] for finite type cluster algebras with
principal coefficients and acyclic initial seed.

In order to precisely state the results, let ∆ ⊆ Φ+ ⊆ Φ>−1 ⊆ Φ denote a finite
crystallographic root system with fundamental weights ∇ and let M denote an initial
mutation matrix with principal coefficients for a cluster algebra A(M) of type Φ
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with cluster variables {uβ(x,y) | β ∈ Φ>−1} and cluster complex S(M) given by the
set of compatible cluster variables. The cluster variables have the form uβ(x,y) =
p(x,y)/xβ with x = (x1, . . . , xn) and y = (y1, . . . , yn) for p(x,y) ∈ N[x,y] and xβ =
xβ1

1 · · ·xβn
n with β = β1α1+· · ·+βnαn expanded in the root basis ∆ = {α1, . . . , αn}. Its

F -polynomials are denoted by
{
Fβ = uβ(1,y)

∣∣ β ∈ Φ+} and its g-vector fan Fg(M)
is given by the cones over compatible sets of g-vectors gβ = g1ω1 + · · · + gnωn such
that uβ(x,0) = xg1

1 · · ·xgn
n expanded in the weight basis ∇ = {ω1, . . . , ωn}. It is

well-known that these cones indeed define a complete simplicial fan which is, by
definition, isomorphic to the cluster complex S(M). Let (W,S) denote the Coxeter
system generated by S = {sα | α ∈ ∆} and let c ∈W be a standard Coxeter element
given by the product of the reflections in S in some order. One may associate to this
data an acyclic initial mutation matrix Mc with principal coefficients, and as well a
brick polytope Asso (Mc) with normal fan given by the g-vector fan Fg(Mc) of A(Mc).
In particular, Asso (Mc) is a generalized associahedron for A(Mc). Brick polytopes
for subword complexes come with natural Minkowski decompositions which in the
present context may be written in the form

(1) Asso (Mc) =
∑
β∈Φ+

Assoβ (Mc) .

The type cone TC(Fg(Mc)) of the g-vector fan is the space of all its polytopal real-
izations. We thus have
(2) Asso (Mc) ∈ TC

(
Fg(Mc)

)
.

While motivated by beautiful constructions in [2] and [16], the following result is
entirely self-contained and only uses properties of brick polytopes developed in [17]
and [3].

Theorem 1.1. For an acyclic initial mutation matrix Mc with principal coefficients,
the type cone of the g-vector fan Fg(Mc) is the open simplicial cone generated by the
natural Minkowski summands of the brick polytope Asso (Mc),

TC
(
Fg(Mc)

)
= cone

{
Assoβ (Mc)

∣∣ β ∈ Φ+} .
Remark 1.2. This theorem and its proof are combinatorial and do not use any rep-
resentation theory. The definition of a generalized associahedron Asso (Mc) in [11, 17]
extends verbatim to the noncrystallographic finite types I2(m) for m /∈ {3, 4, 6} and
H3, H4. The theorem also holds for noncrystallographic types when replacing the left-
hand side by the type cone of weak Minkowski summands of Asso (Mc) even though
mutations of cluster variables, g-vectors and F -polynomials in these types do not
behave combinatorially nicely [14].

Combining [2, Theorem 3] (simply-laced types) and [1, Theorem 6.1] (multiply-
laced types) with [16, Theorem 2.26], one obtains that the rays of the type cone of
the g-vector fan are also equal to the Newton polytopes of the F -polynomials,
(?) TC

(
Fg(Mc)

)
= cone

{
Newton (Fβ)

∣∣ β ∈ Φ+} ,
where the exponent vectors are written in the root basis ∆, and in particular that

(??)
∑
β∈Φ+

Newton (Fβ) ∈ TC
(
Fg(Mc)

)
is a generalized associahedron for A(Mc). According to [16], H. Thomas announced
that a future version of [2] will generalize (?) also to cyclic finite types. In this case, (??)
was conjectured by S. Brodsky and the third author in [3, Conjecture 2.22]. Combining
this with Theorem 1.1 and known properties of F -polynomials, we obtain the second
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main result describing Newton polytopes of F -polynomials for acyclic initial seeds in
terms of subword complexes.

Theorem 1.3 ([3, Conjecture 2.12]). Let Mc be an acyclic initial mutation matrix
with principal coefficients. For any positive root β ∈ Φ+, we have

Newton (Fβ) = Assoβ (Mc) .

In [19] the authors associate to the cluster algebra A(M) a polyhedral fan
Trop+ SpecA(M) by tropicalizing the positive part of the affine variety SpecA(M).
Using (??), we finally derive the following theorem(1).

Theorem 1.4. For acyclic initial mutation matrix Mc with principal coefficients, the
totally positive part of the tropical variety associated to the cluster algebra A(Mc) is,
modulo its lineality space L, linearly isomorphic to the g-vector fan,

Trop+ SpecA(Mc)
/
L ∼= Fg(Mc).

As the g-vector fan is combinatorially isomorphic to the cluster complex, this af-
firmatively answers a conjecture by D. Speyer and L. Williams in this situation.

Corollary 1.5 ([19, Conjecture 8.1]). In the situation of Theorem 1.4, the cluster
complex S(M) is combinatorially isomorphic to the polyhedral fan Trop+ SpecA(Mc).

1.1. Acknowledgements. The third author would like to thank Thomas Lam, Ar-
nau Padrol, Markus Reineke, Raman Sanyal and Hugh Thomas for valuable discus-
sions concerning various parts of this paper.

2. A natural Minkowski decomposition of generalized
associahedra

We follow the notions from [3] and refer to Section 2 therein for details.

2.1. Generalized associahedra for acyclic type. Let (W,S) be a finite type
Coxeter system of rank n and let ∆ ⊆ Φ+ ⊆ Φ>−1 ⊆ Φ ⊆ V be a finite root system
for (W,S) inside an Euclidean vector space V , with simple roots ∆ = {αs | s ∈ S},
positive roots Φ+ and almost positive roots Φ>−1 = Φ+ t −∆. Denote by N = |Φ+|
the number of positive roots and n + N = |Φ>−1|. Let C = (ast)s,t∈S denote the
corresponding Cartan matrix given by s(αt) = αt−astαs and set ∇ = {ωs | s ∈ S} ⊆
V to be the fundamental weights given by

αs =
∑
t∈S

atsωt.

One then has s(ωt) = ωt−δs=tαs for s, t ∈ S. Throughout this paper, we consider V ∼=
R∆ to have fixed basis ∆, though in the examples we simultaneously consider the
vector space with standard basis and standard inner product.

We consider a fixed Coxeter element c ∈W and a reduced word c = s1 · · · sn for c.
To avoid double indices we write αi for αsi

and ωi = ωsi
. The initial mutation matrix

Mc = (mij) is then obtained from the Cartan matrix by

mij =


0 if i = j,

−ast if s = si appears before t = sj in the reduced word c,
ast if s = si appears after t = sj in the reduced word c,

for 1 6 i, j 6 n, together with an identity matrix below.

(1)In response to a first preprint, Thomas Lam informed us that a more general version of this
theorem also follows from [1, Theorems 4.1 & 4.2] which implies the first part of [19, Conjecture 8.1].
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cluster variable d-vector g-vector F -polynomial

Example A3

x1 100∆ 100∇ = 1
4321∆

x2 010∆ 010∇ = 1
4121∆

x3 001∆ 001∇ = 1
4123∆

x4 = x2+y1
x1

100∆ 110∇ = 1
4200∆ F100∆ = y1 + 1

x5 = x1y1y2+x3y1+x2x3
x1x2

110∆ 101∇ = 1
4202∆ F110∆ = y1y2 + y1 + 1

x6 = x1x2y1y2y3+x1y1y2+x3y1+x2x3
x1x2x3

111∆ 100∇ = 1
4321∆ F111∆ = y1y2y3 + y1y2 + y1 + 1

x7 = x1y2+x3
x2

010∆ 011∇ = 1
4002∆ F010∆ = y2 + 1

x8 = x1x2y2y3+x1y2+x3
x2x3

011∆ 010∇ = 1
4121∆ F011∆ = y2y3 + y2 + 1

x9 = x2y3+1
x3

001∆ 001∇ = 1
4123∆ F001∆ = y3 + 1

Example B2

x1 10∆ 10∇ = 11∆

x2 01∆ 01∇ = 1
212∆

x3 = x2
2+y1
x1

10∆ 12∇ = 01∆ F10∆ = y1 + 1

x4 = x1y1y2+y1+x2
2

x1x2
11∆ 11∇ = 1

210∆ F11∆ = y1y2 + y1 + 1

x5 = x2
1y1y

2
2+2x1y1y2+y1+x2

2
x1x2

2
12∆ 10∇ = 11∆ F12∆ = y1y

2
2 + 2y1y2 + y1 + 1

x6 = x1y2+1
x2

01∆ 01∇ = 1
212∆ F01∆ = y2 + 1

Figure 1. The cluster variables with its d-vectors, g-vectors and F -
polynomials for the initial mutation matrices in Examples 2.1 and 2.2.

Example 2.1 (A3-example). TakeW = S4 the symmetric group with adjacent trans-
positions as simple generators

S =
{
s1 = (1, 2), s2 = (2, 3), s3 = (3, 4)

}
acting on V =

{
(λ1, λ2, λ3, λ4) ∈ R4 | λ1 + λ2 + λ3 + λ4 = 0

} ∼= R4/R(1, 1, 1, 1),
equipped with the standard inner product, by permuting the standard basis. Here
and below we write shorthand λ := −λ for scalars λ. We choose

∆ =
{
α1 = 1100, α2 = 0110, α3 = 0011

}
as a basis of V . We may express an element in V as 1010 = 110∆ = α1 +α2 where the
first expression 1010 = (1, 0, 1, 0) is the genuine element in V ⊂ R4 and the second
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expression 110∆ = (1, 1, 0)∆ is in the chosen basis ∆ in the given order. We obtain

Φ+ =
{

1100 , 1010 , 1001 , 0110 , 0101 , 0011
}

=
{

100∆, 110∆, 111∆, 010∆, 011∆, 001∆
}
,

and finally Φ>−1 = Φ+ t −∆ and Φ = Φ+ t −Φ+. In this case, n = |S| = 3 and
N = |Φ+| = 6. The corresponding Cartan matrix is

C =

2 1 0
1 2 1
0 1 2


and the fundamental weights are

∇ =
{
ω1 = 1000 = 1

4 (321∆), ω2 = 1100 = 1
4 (121∆), ω3 = 1110 = 1

4 (123∆)
}
.

Fix the Coxeter element c = (1, 2, 3, 4) ∈ S4 to be the long cycle with reduced word
c = s1s2s3. Figure 1 shows cluster variables, d- and g-vectors and F -polynomials for
the initial mutation matrix

Mc =


0 1 0
1 0 1
0 1 0
1 0 0
0 1 0
0 0 1

 .

Example 2.2 (B2-example). Take W = SB
2 the group of signed permutations with

simple generators
S =

{
s1 = (1, 2), s2 = (2, 2)

}
where s1 is the usual adjacent transposition interchanging the standard basis elements
e1 and e2, and where s2 interchanges e2 and −e2. W acts on V = R2, equipped with
the standard inner product. We choose

∆ =
{
α1 = 22, α2 = 02

}
as a basis of V . With notation as above, we obtain

Φ+ =
{

22 , 20 , 22 , 02
}

=
{

10∆, 11∆, 12∆, 01∆
}
,

and finally Φ>−1 = Φ+ t −∆ and Φ = Φ+ t −Φ+. In this case, n = |S| = 2 and
N = |Φ+| = 4. The corresponding Cartan matrix is

C =
(

2 1
2 2

)
and the fundamental weights are

∇ =
{
ω1 = 20 = 11∆, ω2 = 11 = 1

2 (12∆)
}
.

Fix the Coxeter element c = (1, 2, 1, 2) ∈ SB
2 to be the long cycle with reduced word

c = s1s2. Figure 1 shows cluster variables, d- and g-vectors and F -polynomials for the
initial mutation matrix

Mc =


0 1
2 0
1 0
0 1

 .
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α1

α2

y1

1

y1

y1y2

1

y1

y1y
2
2

1

y2

1

Figure 2. The g-vector fan of type B2 from Example 2.2 (left) is the common
refinement of the normal fans of the Newton polytopes (blue) of the F -
polynomials.

as a basis of V . With notation as above, we obtain

Φ+ =
{

22 , 20 , 22 , 02
}

=
{

10∆, 11∆, 12∆, 01∆

}
,

and finally Φ>−1 = Φ+ t −∆ and Φ = Φ+ t −Φ+. In this case, n = |S| = 2 and N = |Φ+| = 4.
The corresponding Cartan matrix is

C =

(
2 1
2 2

)

and the fundamental weights are

∇ =
{
ω1 = 20 = 11∆, ω2 = 11 = 1

2 (12∆)
}
.

Fix the Coxeter element c = (1, 2, 1, 2) ∈ SB
2 to be the long cycle with reduced word c = s1s2.

Figure 1 shows cluster variables, d- and g-vectors and F -polynomials for the initial mutation
matrix

Mc =




0 1
2 0
1 0
0 1


 .

For later reference, Figure 2 shows the g-vector fan in the weight basis and the Newton polytopes
of the F -polynomials in the root basis in this case.

Let w◦ ∈ W be the unique longest element in weak order. For a given word Q = q1 · · · qm in
the simple system S define the (spherical) subword complex SC(Q) as the simplicial complex
of sets of (positions of) letters in Q whose complement contains a reduced word of w◦. A more
general version of these complexes were introduced by A. Knutson and E. Miller in [13]. By
definition, the facets of SC(Q) are subwords of Q whose complements are reduced words for w◦.
We consider facets as sorted lists of indices, written in set notation. Moreover define Ig and
Iag to be the lexicographically first and last facets, respectively, and call them greedy facet
and antigreedy facet. The following notions were introduced and studied for general subword
complexes in [4, 17]. For Q = q1 · · · qm and any facet I ∈ SC(Q) associate a root function
r(I, ·) : [m]→ Φ = W (∆) ⊆ V and a weight function w(I, ·) : [m]→W (∇) ⊆ V defined by

r(I, k) = ΠQ[k−1]rI(αqk) and w(I, k) = ΠQ[k−1]rI(ωqk),

where ΠQX denotes the product of the simple reflections qx ∈ Q, for x ∈ X ⊆ [m], in the order
given by Q. It is well known, see [13, Theorem 3.7], that SC(Q) is a simplicial sphere, thus for
a given facet I and index i ∈ I there exists a unique adjacent facet J and index j ∈ J with
I r i = J r j. We call the transition from I to J the flip of i in I and if i < j such a flip is called
increasing, in which case we write I ≺ J . This yields a poset structure on the set of facets of
SC(Q) with Ig as unique minimal element and Iag as unique maximal element.

Following [4], the (abstract) cluster complex S(Mc) can be seen as a subword complex as follows.
Denote by w◦(c) the Coxeter-sorting word (or c-sorting word) of w◦, i.e., the lexicographically
first subword of cN that is a reduced word for w◦. The notion of Coxeter-sorting words was
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Figure 2. The g-vector fan of type B2 from Example 2.2 (left) is
the common refinement of the normal fans of the Newton polytopes
(blue) of the F -polynomials.

For later reference, Figure 2 shows the g-vector fan in the weight basis and the Newton
polytopes of the F -polynomials in the root basis in this case.

Let w◦ ∈ W be the unique longest element in weak order. For a given word Q =
q1 · · · qm in the simple system S define the (spherical) subword complex SC(Q) as the
simplicial complex of sets of (positions of) letters in Q whose complement contains a
reduced word of w◦. A more general version of these complexes were introduced by
A. Knutson and E. Miller in [13]. By definition, the facets of SC(Q) are subwords of Q
whose complements are reduced words for w◦. We consider facets as sorted lists of
indices, written in set notation. Moreover define Ig and Iag to be the lexicographically
first and last facets, respectively, and call them greedy facet and antigreedy facet.
The following notions were introduced and studied for general subword complexes
in [4, 17]. For Q = q1 · · · qm and any facet I ∈ SC(Q) associate a root function
r(I, ·) : [m] → Φ = W (∆) ⊆ V and a weight function w(I, ·) : [m] → W (∇) ⊆ V
defined by

r(I, k) = ΠQ[k−1]rI(αqk
) and w(I, k) = ΠQ[k−1]rI(ωqk

),

where ΠQX denotes the product of the simple reflections qx ∈ Q, for x ∈ X ⊆ [m], in
the order given by Q. It is well known, see [13, Theorem 3.7], that SC(Q) is a simplicial
sphere, thus for a given facet I and index i ∈ I there exists a unique adjacent facet J
and index j ∈ J with Ir i = Jr j. We call the transition from I to J the flip of i in I
and if i < j such a flip is called increasing, in which case we write I ≺ J . This yields
a poset structure on the set of facets of SC(Q) with Ig as unique minimal element
and Iag as unique maximal element.

Following [4], the (abstract) cluster complex S(Mc) can be seen as a subword com-
plex as follows. Denote by w◦(c) the Coxeter-sorting word (or c-sorting word) of w◦,
i.e. the lexicographically first subword of cN that is a reduced word for w◦. The no-
tion of Coxeter-sorting words was introduced by N. Reading in [18] and is an essential
ingredient in the combinatorial descriptions of finite type cluster algebras and, in par-
ticular, in the description of cluster complexes in terms of subword complexes. In this
setting we get the cluster complex as

(3) S(Mc) ∼= SC
(
cw◦(c)

)
.

Example 2.3 (A3-example). For the Coxeter element c = s1s2s3 with fixed reduced
word c = s1s2s3 we identify the letter si with its index i. The c-sorting word of w◦
then is w◦(c) = 123121 and we obtain cw◦(c) = 123123121 for the subword complex
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SC
(
cw◦(c)

)
. The values of the root function are given by

I
r(I, ·)

1 2 3 4 5 6 7 8 9
123 = Ig 1100 0110 0011 1100 1010 1001 0110 0101 0011
129 1100 0110 0011 1100 1001 1010 0101 0110 0011
137 1100 0110 0101 1010 1100 1001 0110 0101 0011
178 1100 0110 0101 1010 1001 1100 0011 0101 0011
189 1100 0110 0101 1010 1001 1100 0011 0110 0011
234 1100 1010 0011 1100 1010 1001 0110 0101 0011
249 1100 1010 0011 1100 1001 1010 0101 0110 0011
345 1100 1010 1001 0110 1010 1001 0110 0101 0011
357 1100 1010 1001 0110 1100 1001 0110 0101 0011
456 1100 1010 1001 0110 0011 1001 0110 0101 0011
469 1100 1010 1001 0110 0011 1010 0101 0110 0011
567 1100 1010 1001 0110 0101 1001 0110 0101 0011
678 1100 1010 1001 0110 0101 1100 0011 0101 0011
689 = Iag 1100 1010 1001 0110 0101 1100 0011 0110 0011

and the values of the weight function are given by

I
w(I, ·)

1 2 3 4 5 6 7 8 9
123 = Ig 1000 1100 1110 1000 1100 1110 0100 0110 0010
129 1000 1100 1110 1000 1100 1101 0100 0101 0001
137 1000 1100 1110 1000 1010 1110 0010 0110 0010
178 1000 1100 1110 1000 1010 1011 0010 0011 0010
189 1000 1100 1110 1000 1010 1011 0010 0011 0001
234 1000 1100 1110 0100 1100 1110 0100 0110 0010
249 1000 1100 1110 0100 1100 1101 0100 0101 0001
345 1000 1100 1110 0100 0110 1110 0100 0110 0010
357 1000 1100 1110 0100 0110 1110 0010 0110 0010
456 1000 1100 1110 0100 0110 0111 0100 0110 0010
469 1000 1100 1110 0100 0110 0111 0100 0101 0001
567 1000 1100 1110 0100 0110 0111 0010 0110 0010
678 1000 1100 1110 0100 0110 0111 0010 0011 0010
689 = Iag 1000 1100 1110 0100 0110 0111 0010 0011 0001

Example 2.4 (B2-example). For the Coxeter element c = s1s2 with reduced word
c = s1s2 we identify the letters si with its index i. The c-sorting word of w◦ then is
w◦(c) = 1212 and we obtain cw◦(c) = 121212 for the subword complex SC

(
cw◦(c)

)
.
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The values of the root and weight function are given by

I
r(I, ·) w(I, ·)

1 2 3 4 5 6 1 2 3 4 5 6
12 = Ig 22 02 22 20 22 02 20 11 20 11 02 11
16 22 02 22 20 22 02 20 11 20 11 02 11
23 22 20 22 20 22 02 20 11 02 11 02 11
34 22 20 22 20 22 02 20 11 02 11 02 11
45 22 20 22 02 22 02 20 11 02 11 20 11
56 = Iag 22 20 22 02 22 02 20 11 02 11 20 11

As described in [17], one may construct a generalized associahedron as follows by
means of subword complexes and brick polytopes. Define the brick vector of the facet I
of SC

(
cw◦(c)

)
as

b(I) =
N∑
k=1

(
w(I, n+ k)− w(Iag, n+ k)

)
∈ V,(4)

and the brick polytope Asso (Mc) in V as the convex hull of all brick vectors of
SC
(
cw◦(c)

)
, that is,

Asso (Mc) = conv
{

b(I)
∣∣ I facet of SC

(
cw◦(c)

)}
.

It was shown in [17, Corollary 6.10] that this polytope is indeed a generalized associ-
ahedron.

As explained in [3], we consider g-vectors to be expressed in the weight basis. That
is, we embed a g-vector (g1, . . . , gn) into the vector space V as g1ω1 + · · ·+ gnωn ∈ V .
With this convention, we have the following previously known proposition, see [17,
Corollary 6.36]. We briefly provide an alternative proof that does not rely on properties
of Cambrian fans but on the direct relation between g-vectors of clusters and the
weight function of the corresponding facet of the subword complex.

Proposition 2.5. The normal fan of Asso (Mc) is the g-vector fan. That is,

Asso (Mc) ∈ TC
(
Fg(Mc)

)
.

Proof. It is shown in [17, Proposition 6.6] that the facet normals of all facets of
Asso (Mc) containing a given brick vector b(I) for some facet I of SC

(
cw◦(c)

)
are

{w(I, i) | i ∈ I}. With the above embedding of the g-vectors into V , it was then shown
in [3, Corollary 2.10] that this set coincides with the set of g-vectors inside the cluster
of A(Mc) corresponding to I inside SC

(
cw◦(c)

)
under the isomorphism in (3) which

is also explained in more detail in Remark 2.6. �

The given definition of the brick polytope differs from the definition given in [17]
by a translation and is chosen so that the brick vector b(Iag) of the antigreedy facet
is the origin. This translation corresponds to the shifted weight function as used
in [3, Conjecture 2.12]. Furthermore, we have for any facet I of SC

(
cw◦(c)

)
that

w(I, k) = w(Iag, k) for all 1 6 k 6 n. This clarifies why we do not consider the first n
weight vectors in the summation in (4).

The root function of the greedy facet provides a bijection between the set of positive
roots and the positions n+1, . . . , n+N . That is, {r(Ig, n+ k) | 1 6 k 6 N} = Φ+. As
observed in [3, Lemma 3.7], we moreover have r(Ig, n+k) = w(Ig, n+k)−w(Iag, n+k)
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for all 1 6 k 6 N . For β = r(Ig, n + k) ∈ Φ+ and a facet I, we sometimes write
w(I, β) := w(I, n+ k) for simplicity, and define

Assoβ (Mc) = conv
{

w(I, β)− w(Iag, β)
∣∣ I facet of SC

(
cw◦(c)

)}
.

Remark 2.6. This identification of the positions n + 1, . . . , n + N and Φ+ is the
same as the isomorphism in (3) in the following sense. As known since [8], sending
a cluster variable uβ(x,y) to its d-vector β is a bijection between cluster variables
and almost positive roots Φ>−1. Identifying the positions 1, . . . , n with the simple
negative roots −α1, . . . ,−αn in this order and the above identification between posi-
tions n + 1, . . . , n + N and Φ+ is a bijection between cluster variables and positions
1, . . . , n, n+ 1, . . . , n+N and this bijection induces the bijection used in (3). In par-
ticular, the polytope Assoβ (Mc) naturally correspond to the cluster variable uβ . This
correspondence turns out to be a structural correspondence as discussed in Section 3
where we show that Assoβ (Mc) = Newton (Fβ) = Newton (uβ(1,y)) is the Newton
polytope of the F -polynomial associated to this cluster variable.

Example 2.7 (A3-example). We display the shifted weight function for positions n+
1, . . . , n+N and the brick vector in the following shifted weight table.

I
w(I, ·)− w(Iag, ·) b(I)

4 5 6 7 8 9
123 1100 = 100∆ 1010 = 110∆ 1001 = 111∆ 0110 = 010∆ 0101 = 011∆ 0011 = 001∆ 3113 = 343∆

129 1100 = 100∆ 1010 = 110∆ 1010 = 110∆ 0110 = 010∆ 0110 = 010∆ 0000 = 000∆ 3140 = 340∆

137 1100 = 100∆ 1100 = 100∆ 1001 = 111∆ 0000 = 000∆ 0101 = 011∆ 0011 = 001∆ 3113 = 323∆

178 1100 = 100∆ 1100 = 100∆ 1100 = 100∆ 0000 = 000∆ 0000 = 000∆ 0011 = 001∆ 3311 = 301∆

189 1100 = 100∆ 1100 = 100∆ 1100 = 100∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 3300 = 300∆

234 0000 = 000∆ 1010 = 110∆ 1001 = 111∆ 0110 = 010∆ 0101 = 011∆ 0011 = 001∆ 2213 = 243∆

249 0000 = 000∆ 1010 = 110∆ 1010 = 110∆ 0110 = 010∆ 0110 = 010∆ 0000 = 000∆ 2240 = 240∆

345 0000 = 000∆ 0000 = 000∆ 1001 = 111∆ 0110 = 010∆ 0101 = 011∆ 0011 = 001∆ 1203 = 133∆

357 0000 = 000∆ 0000 = 000∆ 1001 = 111∆ 0000 = 000∆ 0101 = 011∆ 0011 = 001∆ 1113 = 123∆

456 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0110 = 010∆ 0101 = 011∆ 0011 = 001∆ 0202 = 022∆

469 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0110 = 010∆ 0110 = 010∆ 0000 = 000∆ 0220 = 020∆

567 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0101 = 011∆ 0011 = 001∆ 0112 = 012∆

678 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0011 = 001∆ 0011 = 001∆

689 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆ 0000 = 000∆

Especially, the gray marked column corresponds to the polytope
Asso111∆(Mc) = conv

{
111∆, 110∆, 100∆, 000∆

}
.

Example 2.8 (B2-example). We display the shifted weight function for positions n+
1, . . . , n+N and the brick vector in the following shifted weight table.

I
w(I, ·)− w(Iag, ·) b(I)

3 4 5 6
12 22 = 10∆ 20 = 11∆ 22 = 12∆ 02 = 01∆ 62 = 34∆

16 22 = 10∆ 22 = 10∆ 22 = 10∆ 00 = 00∆ 66 = 30∆

23 00 = 00∆ 20 = 11∆ 22 = 12∆ 02 = 01∆ 44 = 24∆

34 00 = 00∆ 00 = 00∆ 22 = 12∆ 02 = 01∆ 24 = 13∆

45 00 = 00∆ 00 = 00∆ 00 = 00∆ 02 = 01∆ 02 = 01∆

56 00 = 00∆ 00 = 00∆ 00 = 00∆ 00 = 00∆ 00 = 00∆
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The gray marked column corresponds to the polytope
Asso12∆(Mc) = conv

{
12∆, 10∆, 00∆

}
,

and the brick polytope Asso (Mc) can be seen in Figure 3.
MINKOWSKI DECOMPOSITIONS FOR GENERALIZED ASSOCIAHEDRA

00∆

01∆

13∆ 24∆

34∆

30∆

Figure 3. The brick polytope Asso (Mc) of type B2 from Example 2.8 and its
outer normal fan, centered at 1

2 (34∆).

Moreover for the brick vectors we obtain

b(J) = b(I)− λr(I, i) for some λ ∈ Z>0.

For a set X ⊆ Φ+ of positive roots, we set bX(I) =
∑
β∈X

(
w(I, β) − w(Iag, β)

)
and define the

polytope AssoX(Mc) ⊂ V as

AssoX(Mc) := conv
{
bX(I)

∣∣ I facet of SC
(
cw◦(c)

) }
.

We state the following mild generalization of [17, Proposition 5.17] for the present context. The
proof given there also applies in the present generality and indeed for all root independent subword
complexes as briefly defined in Section 2.2.1 below.

Proposition 2.10. We have the Minkowski decomposition

AssoX(Mc) =
∑

β∈X
Assoβ (Mc) .

Proof. We may neglect the contributions of the shifts by w(Iag, ·), as these cancel in all consider-
ations. By definition we have

AssoX(Mc) ⊆
∑

β∈X
Assoβ (Mc) .

To obtain equality we show that every vertex of
∑
β∈X Assoβ (Mc) is also a vertex of AssoX(Mc).

Consider a linear functional f : V → R. For two adjacent facets I r i = J r j of SC
(
cw◦(c)

)
and

a positive root β ∈ X we have by Lemma 2.9 that either f(w(I, β)) = f(w(J, β)) or f(w(I, β))−
f(w(J, β)) has the same sign as f(bX(I)) − f(bX(J)). Therefore a facet If maximizes f(bX(·))
among all facets if and only if it maximizes f(w(·, β)) for every β ∈ X.

Let now v be a vertex of the Minkowski sum
∑
β∈X Assoβ (Mc) and let f : V → R be a linear

functional maximized at v. Thus, v =
∑
β∈X vβ such that vβ maximizes f for Assoβ (Mc).

On the other hand, f is also maximized by some vertex bX(If ) of AssoX(Mc). By the previous
consideration, f thus maximizes w(If , β) for every β ∈ X and we obtain vβ = w(If , β). Hence
v =

∑
β∈X w(If , β) = bX(If ). �

The description of the Minkowski decomposition of the brick polytope in the previous proposi-
tion also yields the following corollary.

Algebraic Combinatorics, draft (27th April 2021) 9

Figure 3. The brick polytope Asso (Mc) of type B2 from Exam-
ple 2.8 and its outer normal fan, centered at 1

2 (34∆).

We next collect several properties of the polytopes Assoβ (Mc). We first recall the
following crucial lemma.

Lemma 2.9 ([17, Lemmas 4.4 & 4.5]). Let I, J be two adjacent facets of SC
(
cw◦(c)

)
with I r i = J r j for i < j. For any k ∈ {1, . . . , n+N} we have

w(J, k) = w(I, k)− λr(I, i) for some λ ∈ Z>0.

Moreover for the brick vectors we obtain
b(J) = b(I)− λr(I, i) for some λ ∈ Z>0.

For a set X ⊆ Φ+ of positive roots, we set bX(I) =
∑
β∈X

(
w(I, β)− w(Iag, β)

)
and

define the polytope AssoX(Mc) ⊂ V as
AssoX(Mc) := conv

{
bX(I)

∣∣ I facet of SC
(
cw◦(c)

)}
.

We state the following mild generalization of [17, Proposition 5.17] for the present
context. The proof given there also applies in the present generality and indeed for
all root-independent subword complexes as briefly defined in Section 2.2.1 below.

Proposition 2.10. We have the Minkowski decomposition

AssoX(Mc) =
∑
β∈X

Assoβ (Mc) .

Proof. We may neglect the contributions of the shifts by w(Iag, ·), as these cancel in
all considerations. By definition we have

AssoX(Mc) ⊆
∑
β∈X

Assoβ (Mc) .
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To obtain equality we show that every vertex of
∑
β∈X Assoβ (Mc) is also a vertex

of AssoX(Mc). Consider a linear functional f : V → R. For two adjacent facets
I r i = J r j of SC

(
cw◦(c)

)
and a positive root β ∈ X we have by Lemma 2.9

that either f(w(I, β)) = f(w(J, β)) or f(w(I, β)) − f(w(J, β)) has the same sign as
f(bX(I))−f(bX(J)). Therefore a facet If maximizes f(bX(·)) among all facets if and
only if it maximizes f(w(·, β)) for every β ∈ X.

Let now v be a vertex of the Minkowski sum
∑
β∈X Assoβ (Mc) and let f : V → R

be a linear functional maximized at v. Thus, v =
∑
β∈X vβ such that vβ maximizes f

for Assoβ (Mc).
On the other hand, f is also maximized by some vertex bX(If ) of AssoX(Mc). By

the previous consideration, f thus maximizes w(If , β) for every β ∈ X and we obtain
vβ = w(If , β). Hence v =

∑
β∈X w(If , β) = bX(If ). �

The description of the Minkowski decomposition of the brick polytope in the pre-
vious proposition also yields the following corollary.

Corollary 2.11. The set of vertices of AssoX(Mc) is
{

bX(I)
∣∣ I facet of SC

(
cw◦(c)

)}
.

Example 2.12 (A3-example). For X = Φ+ r {111∆} the polytope AssoX(Mc) is
given by

AssoX(Mc) = conv
{

2112, 2130, 2112, 2211, 2200, 1212, 1230,
0202, 0112, 0202, 0220, 0112, 0011, 0000

}
= conv

{
232∆, 230∆, 212∆, 201∆, 200∆, 132∆, 130∆,

022∆, 012∆, 022∆, 020∆, 012∆, 001∆, 000∆
}
.

For later reference we note that r(Ig, 6) = 111∆ and

bX({345}) = bX({456}) = 022∆, bX({357}) = bX({567}) = 012∆.

Example 2.13 (B2-example). For X = Φ+ r {12∆} the polytope AssoX(Mc) is
given by

AssoX(Mc) = conv
{

40, 44, 22, 02, 02, 00
}

= conv
{

22∆, 20∆, 12∆, 01∆, 01∆, 00∆
}
.

For later reference we note that bX({34}) = bX({45}) = 01∆ and 12∆ = r(Ig, 5).

We next introduce the following canonical long flip sequence in the subword com-
plex SC

(
cw◦(c)

)
from the greedy to the antigreedy facet,

Ig = I0 ≺ I1 ≺ · · · ≺ IN = Iag

where I`+1 is obtained from I` by flipping the unique index i in I` such that I`+1 r
{`+ 1 + n} = I` r {i}. Indeed, up to commutation of consecutive commuting letters,
the index i is the smallest index that yields an increasing flip. Indeed, there is some
flexibility in defining this sequence—any sequence of flips corresponding to source
mutations in the associated cluster algebra would work.

Example 2.14 (A3-example). For cw◦(c) = 123123121 the canonical long flip se-
quence is given by

Ig = {1, 2, 3} ≺ {2, 3, 4} ≺ {3, 4, 5} ≺ {4, 5, 6} ≺ {5, 6, 7} ≺ {6, 7, 8} ≺ {6, 8, 9} = Iag.

Example 2.15 (B2-example). For cw◦(c) = 121212 the canonical long flip sequence
is given by

Ig = {1, 2} ≺ {2, 3} ≺ {3, 4} ≺ {4, 5} ≺ {5, 6} = Iag.
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This flip sequence already appeared in [17, Proposition 6.7] and in the proof of [3,
Lemma 3.7], where in particular the following property was used.

Lemma 2.16. For every index j ∈ {n+ 1, . . . , n+N} there exists a unique pair I` ≺
I`+1 in the canonical long flip sequence and an index i such that I` r i = I`+1 r j.
Moreover, in this case the weight function w(I`+1, ·) is obtained from w(I`, ·) by

w(I`+1, k) =
{

w(I`, k)− r(I`, i) if k = j,

w(I`, k) otherwise.

In particular, w(I`, ·) and w(I`+1, ·) only differ for the index j.

Proof. Up to commutations of consecutive commuting letters in the word cw◦(c) =
q1q2 . . . qn+N , the facet I` consists of the letters q`+1 . . . q`+n. Indeed, we may assume
without loss of generality that for each 0 6 ` < N we have I`+1 r I` = {` + n + 1}.
Moreover, {q`+1, . . . , q`+n} = S (this follows, for example, from [4, Theorem 2.7]) and
the facets I` ≺ I`+1 may be visualized inside the word cw◦(c) as

I` = q1 . . . q` q̂`+1q̂`+2 . . . q̂`+n q`+n+1 q`+n+2 . . . qn+N

I`+1 = q1 . . . q` q`+1q̂`+2 . . . q̂`+n q̂`+n+1 q`+n+2 . . . qn+N

where the letters with hats are omitted and where we assumed, again without loss of
generality, that q`+1 = q`+n+1. The statement of the lemma now follows with
r(I`, `+1) = r(I`, `+n+1) = r(I`+1, `+1) = −r(I`+1, `+n+1) = q1 . . . q`(sq`+1). �
This lemma yields an interesting combinatorial property of the polytopes

Assoβ (Mc) that we do not use further below.

Corollary 2.17. For every β ∈ Φ+ the segment connecting 0 and β is an edge of
Assoβ (Mc).

Proof. As the brick polytope Asso (Mc) realizes SC
(
cw◦(c)

)
its edges are in one-to-one

correspondence to flips in SC
(
cw◦(c)

)
. Combining Lemma 2.9 and Proposition 2.10

we obtain a similar result for Assoβ (Mc) saying its edges are in one-to-one correspon-
dence with flips that change the weight function w(·, β). Applying Lemma 2.16 to the
canonical long flip sequence

Ig = I0 ≺ I1 ≺ . . . ≺ IN−1 ≺ IN = Iag

we obtain for β = r(Ig, n+ i) that
w(Ig, β) = w(I1, β) = . . . = w(Ii−1, β),

and
w(Ii, β) = . . . = w(IN−1, β) = w(Iag, β).

As w(Ig, β)− w(Iag, β) = β we conclude the statement. �
2.2. Generators of the type cone. The following definitions mostly follow [16].
Let F be an essential complete simplicial fan in Rd. A polytopal realization of F is
a convex polytope in Rd whose outer normal fan is F . The space of all polytopal
realizations of F is called the type cone of F , denoted by TC(F), see also [15]. A
parametrization of TC(F) is commonly described as follows. Denote by G ∈ Rm×d
the matrix whose rows generate the rays of F . Each height vector h ∈ Rm defines a
polytope

Ph =
{
x ∈ Rd | Gx 6 h

}
.

Now the type cone of F can be parametrized as the open polyhedral cone
TC(F) = {h ∈ Rm | Ph has normal fan F} .
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We write Ph ∈ TC(F) by identifying a polytope Ph with its height vector h ∈ Rm.
With this definition, TC(F) has d-dimensional lineality space corresponding to trans-
lations in Rd. More specifically, for Ph ∈ TC(F) and a translation vector b ∈ Rd we
have

Ph + b = Ph+Gb ∈ TC(F) ,

Thus the lineality space of TC(F) is given by the image of the matrix G. We iden-
tify TC(F) with its pointed quotient TC(F)/GRd. The closure TC(F) is called the
closed type cone. The faces of TC(F) correspond to (weak) Minkowki summands of P
with the same normal fan (which are coarsenings of F). In particular, the (extremal)
generators of TC(P ) correspond to the indecomposable Minkowski summands of P .

We aim at the description of the type cone TC(Fg(Mc)) of the g-vector fan Fg(Mc)
given in Theorem 1.1. We first state the following lemma which we then use to un-
derstand the rays of the type cone.

Lemma 2.18. Let C ⊂ Rm be a full-dimensional closed polyhedral cone and let x =
x1 + · · ·+ xm for x1, . . . , xm ∈ C with

(i) x is an interior point of C and
(ii) x− xi is contained in the boundary of C for every i ∈ {1, . . . ,m}.

Then C = cone{x1, . . . , xm}. In particular, the cone C is simplicial.

One crucial ingredient in the proof is the following observation for polyhedral cones.
Consider a face F of C, i.e. F = {x ∈ C | f(x) = 0} for some linear functional f :
Rm → R with f(y) > 0 for all y ∈ C. For any y1, . . . , yk ∈ C, one then has

(†) y1, . . . , yk ∈ F ⇐⇒ y1 + · · ·+ yk ∈ F.

Proof of Lemma 2.18. Write X = {x1, . . . , xm}. We first show that X is linearly
independent. Assuming the contrary, one may express some xi in terms of X r {xi}.
By condition (ii), x − xi is in some proper boundary face F of C. By (†), we obtain
X r {xi} ⊂ F and thus xi ∈ F . This would mean that x = (x− xi) + xi ∈ F , which
contradicts condition (i) saying that this point is in the interior of C. It follows that
cone(X) is a simplicial full-dimensional cone inside C. As condition (ii) implies that
its boundary is also contained in the boundary of C, we conclude the statement. �

Proof of Theorem 1.1. The g-vector fan Fg(Mc) is an essential complete simplicial fan
in Rn with n+N rays. Therefore, after passing to the quotient by its n-dimensional
lineality space, the closed type cone TC(Fg(Mc)) is an N -dimensional pointed poly-
hedral cone. We aim at applying Lemma 2.18 using the points {Assoβ (Mc) | β ∈ Φ+}.
We have seen in (2) that

Asso (Mc) =
∑
β∈Φ+

Assoβ (Mc)

is an interior point of TC(Fg(Mc)). Therefore, it suffices to show that for each γ ∈ Φ+

the polytope AssoΦ+r{γ}(Mc) is contained in the boundary of TC(Fg(Mc)).
Let γ ∈ Φ+ and let j ∈ {n+1, . . . , n+N} be the unique index such that r(Ig, j) = γ.

Lemma 2.16 ensures the existence of a unique index ` such that j is contained in I`+1
but not in I` in the canonical long flip sequence I0 ≺ · · · ≺ IN . Since w(I`, ·) and
w(I`+1, ·) only differ for the index j, it follows that

bΦ+r{γ}(I`) = bΦ+r{γ}(I`+1).

Proposition 2.10 and the second part of Lemma 2.9 now show that the number of
vertices of AssoΦ+r{γ}(Mc) is strictly less than the number of vertices of Asso (Mc).
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This means that it is a proper weak Minkowski summand and it is thus not contained
in the interior of TC(Fg(Mc)). Invoking Lemma 2.18 yields the proposed statement

TC(Fg(Mc)) = cone
{

Assoβ (Mc) | β ∈ Φ+}
and that the type cone is in particular simplicial. �

2.2.1. Generators of the type cone for general spherical subword complexes. We close
this section with a brief discussion of properties of type cones for examples of general
subword complexes. It turns out that the situation for cluster complexes is particularly
special. Most importantly, the conclusion of Lemma 2.16 does not hold in general for
spherical subword complexes.

The complex SC
(
cw◦(c)

)
is known to have the following properties. For a word Q,

we call a spherical subword complex SC(Q) root-independent if the multiset

R(I) =
{{

r(I, i)
∣∣ i ∈ I}}

is linearly independent for any (and thus every) facet I and it is of full support if every
position in Q is contained in some facet (meaning that all elements of the ground set
are indeed vertices). Observe that spherical subword complexes of full support are also
full-dimensional, meaning that R(I) generates V for any facet I. This is an immediate
consequence of [17, Proposition 3.8].

We conjecture that these properties identify cluster complexes among spherical
subword complexes.

Conjecture 2.19. Let Q be a word in S. The following statements are equivalent:
(i) Up to commutations of consecutive commuting letters Q = cw◦(c) for some

Coxeter element c.
(ii) SC(Q) is root-independent and of full support.

Remark that the first property was shown, for words of length n+N , to be equiv-
alent to the so-called SIN-property in [4, Theorem 2.7]. Furthermore they conjecture
these subword complexes to maximize the number of facets among subword complexes
with words of this length [4, Conjecture 9.8].

We next show that relaxing one of the two conditions yields examples for which the
conclusion of Theorem 1.1 does not hold. We denote by Pi the polytope corresponding
to the i-th column in the shifted weight table,

Pi = conv
{

w(I, i)− w(Iag, i)
∣∣ I facet of SC(Q)

}
for the given subword complex SC(Q).

Example 2.20 (B2-example). For Q = 1212121, the subword complex SC(Q) is of
full support but not root-independent as R(Ig) = R({1, 2, 3}) =

{{
10∆, 01∆, 10∆

}}
.

The list of facets is{
{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {1, 6, 7},

{2, 3, 7}, {3, 4, 7}, {4, 5, 7}, {5, 6, 7}
}
.

One may easily check that its brick polytope is the permutahedron of type B2 whose
normal fan is the Coxeter fan. The complete list of polytopes is

P1 = P2 = conv{00∆}
P3 = P7 = conv{00∆, 10∆}
P4 = conv{00∆, 10∆, 11∆}
P6 = conv{00∆, 01∆, 11∆}
P5 = P3 + P? = conv{00∆, 10∆, 12∆, 22∆},
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where P? = conv{00∆, 12∆} is a missing generator of the type cone. Furthermore the
sum of P4 and P6 can be decomposed into

P4 + P6 = conv{00∆, 10∆}+ conv{00∆, 01∆}+ conv{00∆, 11∆}.

In particular, the type cone of the brick polytope is not simplicial.

Example 2.21 (B2-example). For Q = 212212 the subword complex SC(Q) is root-
independent and full-dimensional but not of full support as R(Ig) = R({1, 3}) ={{

10∆, 12∆
}}

and the list of facets is{
{1, 3}, {1, 4}, {3, 6}, {4, 6}

}
.

The positions 2 and 5 are not contained in any facet. The complete list of polytopes is

P1 = P2 = conv{00∆}
P3 = P6 = conv{00∆, 01∆}
P5 = P3 + P6 = conv{00∆, 02∆}
P4 = P3 + P? = conv{00∆, 01∆, 11∆, 12∆},

where P? = conv{00∆, 11∆} is the missing generator of the type cone.

3. Newton polytopes of F -polynomials from subword complexes
Let A(Mc) be the finite type cluster algebra with acyclic initial mutation matrix
Mc with principal coefficients and denote by Fg(Mc) its g-vector fan. We have seen
in Theorem 1.1 that the type cone TC(Fg(Mc)) is generated by the natural Minkowski
summands of the brick polytope Asso (Mc),

TC
(
Fg(Mc)

)
= cone

{
Assoβ (Mc)

∣∣ β ∈ Φ+} .
A description of the generators of TC

(
Fg(Mc)

)
was also obtained by combining re-

sults from [2, 1] and [16] as follows. In [2, Theorem 1] the authors provide polytopal
realizations of Fg(Mc). This construction produces a generalized associahedron Xp for
each p ∈ RΦ+

>0 . It was then shown in [2, Theorem 3] (simply-laced types) and in [1,
Theorem 6.1] (multiply-laced types) that Xp for p = eβ and β ∈ Φ+ equals the New-
ton polytope of the F -polynomial Fβ . In [16, Theorem 2.26], the authors explain that
within the latter constuction RΦ+

>0 can be understood as (a linear transformation of)
the type cone TC

(
Fg(Mc)

)
. In particular, this establishes the fact that the Newton

polytopes of the F -polynomials generate the type cone,

TC(Fg(Mc)) = cone
{

Newton (Fβ)
∣∣ β ∈ Φ+} .

In order to prove Theorem 1.3, it remains to properly identify which Newton poly-
tope of an F -polynomial corresponds to which Minkowski summand of the brick
polytope. This is done using the following property of F -polynomials.

Proposition 3.1 ([7] (simply-laced types), [6] (multiply-laced types)). For every
β ∈ Φ+, the F -polynomial Fβ = Fβ(y) has constant term 1 and a unique compo-
nentwise highest exponent vector given by β. In particular, 0 and β are both vertices
of Newton (Fβ).

Proof. For simply-laced types, this is [7, Proposition 3.1 & Theorem 5.1] and for
multiply-laced types, this is [6, Proposition 9.4]. �

This proposition can be rechecked in types A3 and B2 in Figure 1. Now we are
ready to prove our second main result.
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Proof of Theorem 1.3. Since TC
(
Fg(Mc)

)
is a simplicial cone of dimension N = |Φ+|

we already know that the two sets of generators,{
Newton (Fβ)

∣∣ β ∈ Φ+} and
{

Assoβ (Mc)
∣∣ β ∈ Φ+} ,

are non-redundant and coincide up to scalar factors. Let β ∈ Φ+. By Proposition 3.1
the unique maximal and minimal vertices of Newton (Fβ) are β and 0, respectively.
Since β = b{β}(Ig) and 0 = b{β}(Iag), these vectors are by Proposition 2.10 vertices
of Assoβ (Mc) as well. Applying Lemma 2.9 we see that they are the maximal and
minimal vertices of Assoβ (Mc), respectively. Thus the polytopes Newton (Fβ) and
Assoβ (Mc) coincide. �

4. The tropical positive cluster variety
In this section, we prove Theorem 1.4 starting from the type cone description (??)
on page 758 in terms of Newton polytopes of F -polynomials. It is independent of the
subword complex description and does not make use of it. We again emphasize that
a more general version of Theorem 1.4 follows from [1, Theorems 4.1 & 4.2].

Following [19], we start with the needed notions from tropical geometry. Let E ⊂
Zd>0 be non-empty and finite and let f =

∑
e∈E feue ∈ Q[u] with fe 6= 0 for all e ∈ E

be a rational polynomial supported on E. For each weight w ∈ Rd we define

E(w) = arg max
e∈E

(w · e).

That is, E(w) is the intersection of E with the face of Newton (f) = conv(E) that is
maximized in direction w. The tropical hypersurface Trop(f) ⊂ Rd is the collection of
those weights w ∈ Rd for which E(w) contains at least two elements. Trop(f) naturally
carries the structure of a polyhedral fan, whose cones are formed by those weights
w ∈ Trop(f) that yield the same E(w). This fan thus agrees with the codimension-one
skeleton of the normal fan of Newton (f).

The positive part Trop+(f) of the tropical hypersurface was introduced in [19] and
is defined as follows. Split E = E+

f tE
−
f according to the signs of the coefficients of f .

That is,
E+
f = {e ∈ E | fe > 0}, E−f = {e ∈ E | fe < 0}.

Now Trop+(f) is defined as the subfan of Trop(f) consisting of those weights for
which neither E(w) ∩ E+

f nor E(w) ∩ E−f is empty,

Trop+(f) =
{
w ∈ Rd

∣∣ E(w) ∩ E+
f 6= ∅ and E(w) ∩ E−f 6= ∅

}
.

For any ideal I ⊂ Q[u] the positive tropical variety Trop+(I) is defined as the inter-
section of all positive tropical hypersurfaces Trop+(f) for f ∈ I.

We next move to the positive tropical variety considered here. Let A(M) be a finite
type cluster algebra of rank n with (not necessarily acyclic) initial mutation matrix M
with principal coefficients. We denote by X∆ = {x1, . . . , xn} the set of initial cluster
variables and by XΦ+ = {xβ | β ∈ Φ+} the set of non-initial cluster variables. Thus
the set of all cluster variables is the disjoint union X = X∆ t XΦ+ . Furthermore,
let Y = {y1, . . . , yn} be the set of principle coefficient variables. Recall that each
non-initial cluster variable xβ ∈ XΦ+ is expressed in terms of the initial seed by

xβ = pβ(x,y)
xβ

where pβ(x,y) is a subtraction-free polynomial in the initial cluster and coefficient
variables and xβ = xβ1

1 . . . xβn
n for β = (β1, · · · , βn)∆ ∈ R∆.
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Following [19] we embed SpecA(M) as the affine variety V (IM) ⊂ QXtY , where
IM is the ideal generated by the non-initial cluster variables, i.e.

IM =
〈
xβ · xβ − pβ(x,y)

∣∣ β ∈ Φ+〉 .
Note that in this case the special form of the generators immediately yields a
subtraction-free parametrization Ψ : (Q∗)X∆tY → V (IM) ∩ (Q∗)XtY given as the
graph of the map

(Q∗)X∆tY −→ (Q∗)XΦ+ ,

(x,y) 7−→
(
pβ(x,y)

xβ

)
β∈Φ+

We denote by Trop Ψ : RX∆tY → RXtY the tropicalization of the map Ψ. This is the
piecewise linear map obtained by replacing every × in Ψ with a +, every / with a
− and every + with a max. The following result is an immediate consequence of [19,
Proposition 2.6].

Proposition 4.1. The map Trop Ψ : RX∆tY → RXtY is a piecewise linear
parametrization of the positive tropical variety Trop+(IM).

It should be mentioned here that in [19] the authors are working over the field of
complex Puiseux series, one of the prototypical examples of a field with non-trivial
valuation. This is standard in tropical geometry since it reveals strong connections
between classical algebraic geometry and tropical geometry. The ideal IM in Propo-
sition 4.1 is understood over the complex Puiseux series and for the definition of
a positive tropical hypersurface for a complex Puiseux polynomial we refer to [19].
However, the map Trop Ψ stays unchanged when working over Q.

The domains of linearity of Trop Ψ form a polyhedral fan in RX∆tY , which we de-
note by FΨ. Following [19, Definition 4.2] we equip Trop+(IM) with the fan structure
obtained by applying Trop Ψ to FΨ. Whenever we refer to Trop+(IM) as a polyhedral
fan we consider this fan structure.

Proof of Theorem 1.4. By Proposition 4.1 the map Trop Ψ : RX∆tY → Trop+(IM)
is a piecewise linear parametrization of Trop+(IM). Moreover, Trop+(IM) is piece-
wise linearly isomorphic to FΨ by construction . For each β ∈ Φ+ denote by Fβ
the normal fan of Newton (pβ). The domains of linearity of the coordinate function
Trop Ψβ(x,y) = Trop(pβ(x,y)/xβ) are the maximal cones of Fβ . Thus the domains
of linearity of Trop Ψ, and hence the fan structure FΨ of the positive tropical vari-
ety Trop+(IM), are given by the common refinement of these fans Fβ for β ∈ Φ+.

It follows from [10, Corollary 6.3] that there exists an affine transformation T :
RY → RX∆tY such that for all β ∈ Φ+ we have

Newton (pβ) = T (Newton (Fβ)) .

Conversely, Newton (Fβ) is obtained from Newton (pβ) by the coordinate projection

RX∆tY → RY .

Therefore each fan Fβ is linearly isomorphic to the normal fan of Newton (Fβ). By
Theorem 1.3 the common refinement of these normal fans is the g-vector fan Fg. This
shows that FΨ is piecewise linearly isomorphic to Fg. �

Example 4.2 (B2-example). We continue Example 2.2. We denote by X∆ = {x1, x2}
the initial cluster variables and by Y = {y1, y2} the principle coefficient variables.
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This yields the non-initial cluster variables
x3 = x10∆ = (x2

2 + y1)/x1

x4 = x11∆ = (x1y1y2 + x2
2 + y1)/x1x2

x5 = x12∆ = (x2
1y1y

2
2 + 2x1y1y2 + x2

2 + y1)/x1x
2
2

x6 = x01∆ = (x1y2 + 1)/x2

as given in the above example. The piecewise linear map Trop Ψ : RX∆tY → RXtY
has non-trivial coordinate functions

Trop Ψ10∆ = max(2x2 , y1)− x1

Trop Ψ11∆ = max(x1 + y1 + y2 , 2x2 , y1)− x1 − x2

Trop Ψ12∆ = max(2x1 + y1 + 2y2 , x1 + y1 + y2 , 2x2 , y1)− x1 − 2x2

Trop Ψ01∆ = max(x1 + y2 , 0)− x2.

The domains of linearity of Trop Ψ define a complete four-dimensional polyhedral fan
FΨ in RX∆tY = R4 with two-dimensional lineality space. By intersecting FΨ with
the coordinate plane RY by setting x1 = x2 = 0 we obtain an essential 2-dimensional
fan. This fan is the the common coarsening of the normal fans of the F -polynomials
F10∆ , F11∆ , F12∆ , F01∆ , see Figures 2 and 4. The normal fans are depicted in the dual
basis of the root basis, known as the coweight basis, which in this case is given as

∇∨ = {ω∨1 , ω∨2 } =
{ 1

2 (10), 1
2 (11)

}
.

ω∨
1

ω∨
2

y1

0 y1 + y2

0

y1

y1 + 2y2

0

y1 0

y2

max{0, y1} max{0, y1, y1 +y2} max{0, y1, y1 + 2y2} max{0, y2}

Figure 4. The g-vector fan of type B2 (left) is the common refine-
ment of the domains of linearity of the coordinate functions of Trop Ψ
from Example 4.2 after intersecting with the (y1, y2)-plane.
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