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Affine Demazure crystals for specialized
nonsymmetric Macdonald polynomials

Sami Assaf & Nicolle González

Abstract We give a crystal-theoretic proof that nonsymmetric Macdonald polynomials spe-
cialized to t = 0 are affine Demazure characters. We explicitly construct an affine Demazure
crystal on semistandard key tabloids such that removing the affine edges recovers the finite
Demazure crystals constructed earlier by the authors. We also realize the filtration on high-
est weight modules by Demazure modules by defining explicit embedding operators which, at
the level of characters, parallels the recursion operators of Knop and Sahi for specialized non-
symmetric Macdonald polynomials. Thus we prove combinatorially in type A that every affine
Demazure module admits a finite Demazure flag.

1. Introduction
Macdonald [21] defined an important family of polynomials that forms a basis of
symmetric polynomials in C(q, t)[x1, . . . , xn]. Opdam [25] defined a nonsymmetric
generalization of these polynomials, also discovered by Macdonald [23], that form a
basis of C(q, t)[x1, . . . , xn]. The symmetric Macdonald polynomials have deep connec-
tions to representation theory and geometry, and many new connections have been
discovered by studying their nonsymmetric generalizations.

Sanderson [27] made the connection between nonsymmetric Macdonald polynomi-
als and affine Demazure modules [9] through the character formula stated by De-
mazure [10] and proved rigorously by Andersen [1]. Using the recurrence formula for
nonsymmetric Macdonald polynomials discovered independently by Knop [17] and
Sahi [26], Sanderson proved the nonsymmetric Macdonald polynomials specialized at
t = 0 are affine Demazure characters. One of our main results is a crystal theoretic lift
of Knop and Sahi’s operators (specialized at t = 0) as generators of affine Demazure
crystals.

Haglund, Haiman and Loehr [11] gave a combinatorial formula for nonsymmetric
Macdonald polynomials, also based on the recurrence of Knop and Sahi. Assaf [3]
used this formula and weak dual equivalence [2] to prove the nonsymmetric Macdon-
ald polynomial specialized at t = 0 is a nonnegative q-graded sum of finite Demazure
characters. In this paper, we connect the affine and finite results for nonsymmetric
Macdonald polynomials through crystals, bridging the combinatorics with the repre-
sentation theoretic perspective of Sanderson.
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Kashiwara [13] combinatorialized certain highest weight modules through his study
of crystals which he generalized to Demazure modules with Demazure crystals [14].
Demazure modules form a filtration of highest weight modules compatible with the
Bruhat order of the corresponding Weyl group. This filtration descends to the ap-
propriate crystals via Demazure operators and is realized on the characters by the
recursion operators of Knop and Sahi. Kashiwara and Nakashima and, independently,
Littelmann gave explicit tableaux models for finite type crystals [16, 20], and in a sim-
ilar spirit Assaf and Schilling gave an explicit tableaux model for Demazure crystals
in type A [5]. Assaf and González [4] recently gave a crystal theoretic proof of Assaf’s
result [3] decomposing nonsymmetric Macdonald polynomials specialized at t = 0 as
a nonnegative q-graded sum of finite Demazure characters, leading to more explicit
formulas.

In this paper, we give an explicit construction of affine Demazure crystals on semi-
standard key tabloids, the combinatorial objects that generate nonsymmetric Mac-
donald polynomials. This gives a new combinatorial proof of Sanderson’s result that
the nonsymmetric Macdonald polynomial specialized at t = 0 is the affine Demazure
character. Generalizing our earlier finite crystal construction [4], we define affine edges
to the finite Demazure crystal on semistandard key tabloids. We provide a realiza-
tion of the Bruhat filtration on Demazure crystals via embedding operators, which
correspond to a combinatorial analogue of the Demazure operators and recover Knop
and Sahi’s operators (at t = 0) at the level of characters. As a corollary, we give
explicit formulas for affine Demazure characters as nonnegative graded sums of finite
Demazure characters.

Our combinatorial results are type A specific. Cherednik [8] uniformly generalized
nonsymmetric Macdonald polynomials to all types. Similarly, Kumar [18] gave gen-
eral type formulas for Demazure characters. Inspired by Sanderson, Ion [12] proved
a general connection between nonsymmetric Macdonald polynomials and affine De-
mazure characters. Kumar conjectures our type A result holds in greater generality,
in particular, that every affine Demazure module admits a finite Demazure flag.

2. Demazure crystals
Given a complex, semi-simple Lie algebra g with dominant integral weights P+ ⊂ P ,
there is a unique irreducible highest weight g-module V λ for each λ ∈ P+. For W
the Weyl group of g, each weight space V λw of weight w · λ is one-dimensional. The
Demazure modules Dw·λ are the b-submodules generated by the action of a Borel
subalgebra b on V λw . The Demazure modules form a filtration of V λ compatible with
Bruhat order on W , so that w 6 w′ if and only if Dw·λ ⊆ Dw′·λ. Kashiwara proved
each irreducible module V λ and Demazure module Dw·λ has a crystal basis encoding
important combinatorial data including its character.

A crystal basis for a g consists of a nonempty set B not containing 0 and crystal
operators ei, fi : B → B∪{0} such that ei(b) = b′ if and only if fi(b′) = b for b, b′ ∈ B
satisfying certain conditions. These conditions can be described in terms of the three
maps wt, ε, ϕ : B → P , called the weight map and string lengths.

For g = sln or ŝln, the integral weights are weak compositions α of length n, and the
degree of α ∈ P is α1+α2+· · ·+αn. The weight map satisfies wt(b′) = wt(b)+(ei−ei+1)
whenever ei(b) = b′ for 1 6 i < n (here ek is the composition with 1 in position k

and all other entries 0). For g = ŝln, in addition we have wt(b′) = wt(b) + (en − e1)
whenever e0(b) = b′. The string lengths satisfy ϕi(b) − εi(b) = wt(b)i − wt(b)i+1 for
i > 0 and ϕ0(b)− ε0(b) = wt(b)n − wt(b)1, and are given explicitly by

εi(b) = max{j > 0 | eji (b) 6= 0} and ϕi(b) = max{j > 0 | f ji (b) 6= 0}.
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Since the crystal basis is a basis, the dimension of a crystal is the size of the set B.
We often abuse notation by referring to the crystal data (B,wt, {ei}, {fi}) simply by
the set B when the weight map and crystal operators are already defined.

1 2 3 · · · n
1 2 3 n−1

0

Figure 1. The standard crystal B̃(n) for ŝln; removing the 0-edge
gives the standard crystal B(n) for sln.

The standard crystal B(n) for sln (B̃(n) for ŝln) has crystal basis { i | 1 6 i < n},
weight map wt ( i ) = ei, and finite (and affine) crystal operators as shown in Fig. 1,
where we draw a directed i-edge from b′ to b if fi(b′) = b.

Given two crystals B1 and B2, the tensor product B1 ⊗ B2 is the set B1 ⊗ B2 with
wt(b1 ⊗ b2) = wt(b1) + wt(b2) and crystal operators ei, fi defined by

(1) fi(b1 ⊗ b2) =
{
fi(b1)⊗ b2 if εi(b2) < ϕi(b1),
b1 ⊗ fi(b2) if εi(b2) > ϕi(b1).

For example, Fig. 2 shows the tensor product of two copies of the standard crystal
B̃(3) which, as an ŝln-crystal, is connected. However, as an sln-crystal, we ignore the 0
edges resulting in two connected components, one of dimension 6 with highest weight
(2, 0, 0) and the other of dimension 3 with highest weight (1, 1, 0).

1 ⊗ 1 2 ⊗ 1 3 ⊗ 1

1 ⊗ 2 2 ⊗ 2 3 ⊗ 2

1 ⊗ 3 2 ⊗ 3 3 ⊗ 3

1

1 1

1

2

2

22
0

0

0 0

Figure 2. Tensor product of two standard crystals B̃(3), giving the
degree 2 affine crystal for ŝl3.

For g = sln or ŝln, the Weyl group W for g acts on α ∈ P by

si · (α1, . . . , αn) = (α1, . . . , αi−1, αi+1, αi, αi+2, . . . , αn),(2)
s0 · (α1, . . . , αn) = (αn + 1, α2, . . . , αn−1, α1 − 1),(3)

where the si are the simple reflections that generate W . We extend Bruhat order to
P by writing each α ∈ P as w · λ for a unique minimum length w ∈W and unique λ,
where in the finite case λ ∈ P+ and in the affine case, λ of degree k is

(4) ηn,k = (
r︷ ︸︸ ︷

m+ 1, . . . ,m+ 1,
n−r︷ ︸︸ ︷

m, . . . ,m),

where k can be expressed uniquely as k = mn+ r with m > 0 and 0 6 r < n.
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A highest weight element is any u ∈ B such that ei(u) = 0 for all 1 6 i < n. From
the relations between the crystal operators and the weight map and string lengths, it
follows that each highest weight element u satisfies wt(u) ∈ P+ and each connected
component of a finite crystal has a unique highest weight element.

Let λ ∈ P+ be a dominant integral weight of degree k. For g = sln, the crystal
basis B(λ) for the irreducible module V λ is any connected component of B(n)⊗k with
highest weight λ. For g = ŝln, the finite-dimensional crystal basis B̃(λ) for the finite-
dimensional V λ is the connected crystal B̃(n)⊗k. For example, Fig. 2 shows the affine
crystal B̃(2, 0, 0) for ŝl3 and, ignoring the 0 edges, the two finite crystals B(2, 0, 0) and
B(1, 1, 0) for sl3.

To realize the crystals for the Demazure modules, we consider the Demazure oper-
ators Di defined on any subset X of a crystal B by
(5) DiX = {b ∈ B | eji (b) ∈ X for some j > 0}.
These operators satisfy the Coxeter relations for W , and so we set Dw = Di1 · · ·Di`

for any reduced expression si1 · · · si` for w ∈W .
For λ ∈ P+ and w ∈ W , the (affine) Demazure crystal Bw(λ) or B̃w(λ) for the

Demazure module Dw·λ is
(6) Bw(λ) = Dw{uλ} or B̃w(λ) = Dw{ũλ}
where uλ is the unique highest weight element in B(λ) of weight λ, and ũλ is the
highest weight element

(7)
(

1 ⊗ · · · ⊗ n
)⊗m

⊗ 1 ⊗ · · · ⊗ r

of B̃(λ), where λ has degree k = mn+ r with m > 0 and 0 6 r < n.

1 ⊗ 2 ⊗ 3 1 ⊗ 2 ⊗ 1

1 ⊗ 3 ⊗ 1

1 ⊗ 2 ⊗ 2

2 ⊗ 3 ⊗ 1

2 ⊗ 3 ⊗ 2

0

1

2 1

1

Figure 3. The affine Demazure crystal B̃s1s2s0(1, 1, 1).

For example, Fig. 3 shows the affine Demazure crystal B̃w(λ) for ŝl3 with λ =
(1, 1, 1) of degree 3 and w = s1s2s0, where ũλ is the leftmost element.

The Demazure crystals Bw(λ) and B̃w(λ) form a filtration of the highest weight
crystal B(λ) and B̃(λ) compatible with Bruhat order in exactly the same way De-
mazure modules form a filtration of irreducible modules. One of our main results is
to give an explicit construction of affine Demazure crystals on tableaux-like objects
that avoids the construction of the tensor product. Moreover, our direct construction
circumvents the iterative use of Demazure operators, but we nonetheless give nested
crystal embeddings that realize the filtration under the Bruhat order.

3. Tabloid crystals
For g = sln, the character of the irreducible module V λ is the Schur polynomial
sλ(x1, . . . , xn), defined combinatorially as the generating polynomial of semi-standard
Young tableaux. Thus tableaux are the natural choice for the underlying set of the
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crystal basis B(λ) as realized by Kashiwara and Nakashima [16] and Littelmann [20].
More generally, the Demazure character κw·λ(x1, . . . , xn) of the Demazure module
V λw can be defined combinatorially as the generating polynomial of semi-standard key
tableaux, making this a natural choice for the underlying set of the Demazure crystal
basis Bw(λ) as realized by Assaf and Schilling [5].

For g = ŝln, Sanderson [27] proved the graded character of the module V λ is (up
to rescaling) the specialized symmetric Macdonald polynomial Pλ(x1, . . . , xn; q, 0),
using notation from [21]. The character of the Demazure module V λw is the specialized
nonsymmetric Macdonald polynomial Ew·λ(x1, . . . , xn; q, 0), using notation from [11].
The specialized nonsymmetric Macdonald polynomials can be defined combinatorially
as the generating polynomial of semi-standard key tabloids, defined below following
notation in [3, 4], and so this is the natural choice for the underlying set of the
Demazure crystal basis B̃w(λ).

The diagram of a weak composition α has αi cells left-justified in row i, indexed
in coordinate notation with row 1 on the bottom and column 1 on the left. A filling
of a diagram is an assignment of positive integers as entries of cells of the diagram.
Two cells are attacking if they lie in the same column or lie in adjacent columns with
the cell on the left strictly higher than the cell on the right. A filling is non-attacking
if no two cells with the same entry are attacking. The basement cells lie to the left of
the first column and have entry equal to their row index. All fillings in this paper are
non-attacking, including the basement cells.

A triple is a collection of three cells, possibly including basement cells, with two
row adjacent and either (Type I) the third cell is above the left and the lower row
is strictly longer, or (Type II) the third cell is below the right and the higher row
is weakly longer. The orientation of a triple is determined by reading the entries of
the cells from smallest to largest, where a basement cell has entry equal to its row
index and if two cells have equal entry we regard the one on the right as smaller.
A co-inversion triple is a Type I triple oriented counterclockwise or a Type II triple
oriented clockwise, as illustrated in Fig. 4.

k
... 	
i j

Type I

i j

�
...
k

Type II

i < j < k or
j < k < i or
k < i < j

Figure 4. The positions and orientation for co-inversion triples.

Given a weak composition α, a semistandard key tabloid of shape α is a non-
attacking filling of the diagram of α with no co-inversion triples. Denote the set of
semistandard key tabloids of shape α by SSKD(α).

2
1 3

2
1 1

3
1 1

1
2 2

3
2 1

3
2 2

0
1

2 1

1

Figure 5. The affine Demazure crystal on SSKD(0, 2, 1).
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The weight of a semistandard key tabloid T is the weak composition wt(T ) whose
ith part is the number of entries equal to i. The column reading word w(T ) of a
semistandard key tabloid T is the word obtained by reading the entries of T up the
columns from left to right. For instance, the reading word of the leftmost tabloid in
Fig. 5 is 123. Each tabloid is uniquely determined by its reading word.

In [4] the authors define finite raising and lowering operators on semi-standard key
tabloids of shape α giving rise to a finite Demazure crystal structure on SSKD(α).
We recall these operators here; see [4, Section 5] for further details.

Definition 3.1 ([4]). For T ∈ SSKD(α) and 1 6 i < n, we i-pair the cells of T with
entries i or i+1 as follows: i-pair i and i+1 whenever they occur in the same column,
and then iteratively i-pair an unpaired i+ 1 with an unpaired i to its left whenever all
entries i or i+ 1 lying between them are already i-paired.

Definition 3.2 ([4]). For i > 1, the lowering operator fi acts on T ∈ SSKD(α) by
• if all entries i of T are i-paired or if the leftmost unpaired i is in row i and
all columns to its left have an i in the same row and an i + 1 above, then
fi(T ) = 0;

• otherwise, fi changes the leftmost unpaired i to i+ 1 and
– swaps the entries i and i + 1 in each of the consecutive columns left of

this entry that have an i in the same row and an i+ 1 above, and
– swaps the entries i and i+ 1 in each of the consecutive columns right of

this entry that have an i in the same row and an i+ 1 below.

5 3 1
3 2 h2 2 5 5 5 2

2 1 4 4 3 1 1

5 2 1
3 3 3 2 5 5 5 h2
2 1 4 4 3 1 1

5 2 1
3 3 3 2 5 5 5 3

2 1 4 4 3 1 1
0

f2 f2 f2

Figure 6. The 2-string for a semistandard key tabloid, with 2-paired
letters in red and the leftmost unpaired 2 circled.

Definition 3.3 ([4]). For i > 1, the raising operator ei acts on T ∈ SSKD(α) by
• if all entries i+ 1 of T are i-paired, then ei(T ) = 0;
• otherwise, ei changes the rightmost unpaired i+ 1 to i and

– swaps the entries i and i + 1 in each of the consecutive columns left of
this entry that have an i+ 1 in the same row and an i above, and

– swaps the entries i and i+ 1 in each of the consecutive columns right of
this entry that have an i+ 1 in the same row and an i below.

When nonzero, these operators are well-defined inverses of each other.

Theorem 3.4 ([4]). For 1 6 i < n, the raising and lowering operators are well-
defined maps ei, fi : SSKD(α) → SSKD(α) ∪ {0} such that for S, T ∈ SSKD(α), we
have ei(S) = T if and only if fi(T ) = S.

In an analogous manner, we extend these notions to the affine setting.

Definition 3.5. For T ∈ SSKD(α), we affine 0-pair the cells of T with entries n or 1
as follows: 0-pair together n and 1 whenever they occur in the same column, and then
iteratively 0-pair an unpaired n with an unpaired 1 to its right whenever all entries n
or 1 that lie between them are already 0-paired.
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Definition 3.6. The affine lowering operator f0 acts on T ∈ SSKD(α) by
• if all entries n of T are 0-paired or if the leftmost unpaired n is in the leftmost
column of T and α has more than one nonzero part, then f0(T ) = 0;

• otherwise, f0 changes the leftmost unpaired n to 1 and
– swaps the entries n and 1 in each of the consecutive columns left of this

entry that have an n in the same row and a 1 above, and
– swaps the entries n and 1 in each of the consecutive columns right of this

entry that have an n in the same row and a 1 below.

5 2 h5
3 3 3 2 5 5 5 2

2 1 4 4 3 1 1

5 2 1
3 3 3 2 h5 5 5 2

2 1 4 4 3 1 1

5 2 1
3 3 3 2 1 1 1 2

2 1 4 4 3 5 5
0

f0 f0 f0

Figure 7. The 0-string for a semistandard key tabloid, with 0-paired
letters in red and the leftmost unpaired 5 circled.

Notice if f0 swaps entries n and 1 in T , then those two are in the same column
and so are 0-paired to one another both in T and in f0(T ). Thus since f0 acts on the
leftmost unpaired n, it neither creates nor destroys a 0-pairing. Moreover, analogous
to Lemmas 5.6 and 5.7 in [4], when f0 swaps 0-paired entries, we obtain information
about their relative row lengths as follows.

Lemma 3.7. Let T ∈ SSKD(α) such that f0(T ) 6= 0. Suppose cells x, y are 0-paired
together in T , say with x having entry n in T and entry 1 in f0(T ). Then

• if y lies above x, then the row of x is strictly longer than the row of y;
• if y lies below x, then the row of x is weakly longer than the row of y.

Proof. The proofs are entirely analogous to those in Lemma 5.6 and 5.7 in [4]. �

Using this, we show the affine lowering operator is well-defined on SSKD(α).

Theorem 3.8. For T ∈ SSKD(α), if f0(T ) 6= 0, then f0(T ) ∈ SSKD(α).

Proof. For T ∈ SSKD(α), if f0(T ) 6= 0, then f0(T ) is a filling of shape α. To show
f0(T ) ∈ SSKD(α), we must show no cells of f0(T ) are attacking and f0(T ) has no
co-inversion triples. We take each in turn.

From its definition, f0 will never create attacking cells within the same column.
Suppose we have two cells, y above and left of x, in attacking position with entries 1
or entries n and f0 acts nontrivially on at least one of the cells, since otherwise they
remain non-attacking. If, in T , y has entry n and x has entry 1, then, since these cells
lie in the same column, f0 acts nontrivially only if it changes both entries, in which
case they still have different entries in f0(T ). Otherwise, in T , y has entry 1 and x has
entry n. If the row of y is weakly longer, then the cell above x and immediately right
of y must have entry 1 and thus, x will be 0-paired with a 1 above it. By Lemma 3.7,
this implies f0 does not change the entry in x. However, by the way f0 is defined,
this in turn implies f0 also does not change the entry of y, and so no attacking pair
is created. If instead, the row of y is strictly shorter than the row of x, then the cell
immediately to the left of x must also have entry n and thus, under f0 the values of
these three cells get exchanged, avoiding the creation of attacking cells. Thus f0(T )
is non-attacking.

Now consider three cells forming a triple, labeled as in Fig. 4. If f0 changes the
entries in none, one, or all of the three cells, then the orientations of the triple will be
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unaltered, and so no co-inversion triple is created. Thus we may assume exactly two
cells of a triple are altered by the affine lowering operator. If the two affected cells
have the same entry, either 1 or n, then these cells lie in the same row. If both cells
have entry n (resp. 1) then f0 will act either on the left (resp. right) cell or on both.
In either case, the correct orientations are always preserved. Thus we may assume the
affected cells have different entries.

Suppose first the triple is of Type I. If (k, j) = (n, 1), then by Lemma 3.7 f0 cannot
simultaneously act on both cells. However, if f0 acts only on j, then j is necessarily
0-paired with an n attacking k, a contradiction, and if f0 acts only on k, then j must
be 0-paired with an n which is either in the same row as k, contradicting the fact that
k was in a row strictly shorter than j, or in a row strictly shorter than j, contradicting
the fact that f0 acted nontrivially on k. If (i, j) = (1, n), then by Lemma 3.7 f0 acts
only on j by sending it to 1, which preserves the correct orientation. If (k, i) = (1, n),
then again by Lemma 3.7 f0 acts nontrivially on the triple if and only if j = n, in
which case all values are exchanged and no co-inversion triples are created. Lastly, if
(k, j) = (1, n) (resp. (k, i) = (n, 1)) then necessarily i = n (resp. j = 1) in which case
f0 acts by swapping all entries, hence maintaining the correct orientations.

Suppose next the triple is of Type II. If (i, j) = (1, n) then by Lemma 3.7 f0 cannot
act on both cells. If it acts only on j, then the orientation is maintained. If it acts only
on i, then by Lemma 3.7, i is 0-paired with an n above it, which is impossible since
this would attack j. If (j, k) = (1, n), (j, k) = (n, 1), or (i, k) = (1, n)), then i = 1,
i = n, or j = 1, respectively, in which case f0 acts on all three cells by swapping their
values. Hence, in all cases f0 preserves the correct orientation and thus never creates
co-inversion triples of any kind. Thus f0(T ) has no co-inversion triples. �

In an entirely analogous manner, we define affine raising operators to be inverse to
the affine lowering operators whenever both act nontrivially.

Definition 3.9. The affine raising operator e0 acts on T ∈ SSKD(α) by
• if all entries 1 of T are 0-paired or if the rightmost unpaired 1 is in a row
with index less than n and all columns to its left have a 1 in the same row
with an n above, then e0(T ) = 0;

• otherwise, e0 changes the rightmost unpaired 1 to n and
– swaps the entries 1 and n in each of the consecutive columns left of this

entry that have a 1 in the same row and an n above, and
– swaps the entries 1 and n in each of the consecutive columns right of this

entry that have a 1 in the same row and an n below.

Proposition 3.10. For S, T ∈ SSKD(α), f0(S) = T if and only if e0(T ) = S.

Proof. Suppose S, T ∈ SSKD(α) and f0(S) = T . Let c denote the column index of
the leftmost unpaired cell with value n of S. Since f0 acts on the leftmost unpaired
n, then all columns left of c have no unpaired n’s and all columns right of c have no
unpaired 1’s. Hence, the action of f0 on S will not create a new 0-pair in T since the
new 1 that is created by f0 in column c has no n to pair with to its left. Thus, the
rightmost unpaired 1 of S is precisely the same 1 located in column c. Since e0 acts on
consecutive columns adjacent to this 1 with n’s and 1’s distributed in an inverted way
to the columns on which f0 acts, then e0(S) 6= 0 and evidently e0(S) = e0(f0(T )) = T .
The case e0(T ) = S is completely analogous. �

In [4], the authors show each connected component of the finite crystal on SSKD(α)
is isomorphic to a finite Demazure crystal Bw(λ) for some λ ∈ P+ and some w ∈W .
Using the affine raising and lowering operators on semistandard key tabloids, we may
define the affine tabloid crystal for a weak composition α to be the set SSKD(α), the

Algebraic Combinatorics, Vol. 4 #5 (2021) 784



Affine Demazure crystals

weight map wt, and the finite and affine raising and lowering operators. Our main
result is to show this crystal is isomorphic to the affine Demazure crystal B̃w(λ),
where w · λ = α.

4. Crystal filtration
To establish the isomorphism between the affine tabloid crystal and the corresponding
affine Demazure crystal, we construct injective maps SSKD(α) ↪→ SSKD(β) whenever
α � β in Bruhat order, meaning if we write α = u · λ and β = v · λ with λ minimal
and u, v minimal length, then u 6 v in Bruhat order. We begin with the finite case.

Definition 4.1. Given a weak composition α and an index 1 6 i < n such that
αi > αi+1, the embedding map Ei sends T ∈ SSKD(α) to the filling Ei(T ) of shape
si · α constructed as follows. Let yk, xk denote the entries in rows i+ 1, i and column
k, respectively, for k = 0, . . . , αi+1, with k = 0 corresponding to the basement. For
k > 0, place entries yk+1, xk+1 into rows i, i+ 1, column k + 1 of Ei(T ) by

• if yk is above xk in Ei(T ), then place yk+1 above xk+1 unless doing so creates
a Type II co-inversion triple for xk+1, yk, yk+1, in which case place xk+1 above
yk+1;

• else xk is above yk, so place xk+1 above yk+1 unless doing so creates a Type
II co-inversion triple for yk+1, xk, xk+1, in which case place yk+1 above xk+1.

For all remaining cells, set entries of Ei(T ) to match those of T .

4 6 5 8 9
2 1 1 6 3 3 2

4 1 1 8 3 3 2
2 6 5 6 9E3

Figure 8. An example of the embedding E3 : SSKD(0, 0, 7, 5) ↪→ SSKD(0, 0, 5, 7).

The embedding map is constructed precisely so the following local result holds.

Lemma 4.2. Let α be a weak composition with αj = 0 for j 6= i, i + 1, and suppose
αi > αi+1. For any T ∈ SSKD(α), we have Ei(T ) ∈ SSKD(si · α).

Proof. Observe all triples are of Type I for T and of Type II for Ei(T ). Since T is non-
attacking, entries in column k+1 are distinct, and so changing their order reverses the
orientation of the Type II triple for those cells and the upper cell in column k. Thus
by construction Ei(T ) has no co-inversion triples. Since Ei preserves the column sets,
the only potential attacking cells are in consecutive columns, but two such entries,
say in columns k, k+ 1, necessarily create a Type II co-inversion triple. Thus Ei(T ) is
non-attacking as well, and so Ei(T ) ∈ SSKD(si · α). �

Before establishing more properties of Ei, we present the affine case.

Definition 4.3. Given α such that αn > α1 > 0, the affine embedding map E0 sends
T ∈ SSKD(α) to the filling E0(T ) of shape s0 · α constructed as follows. Let yk, xk
denote the entries in rows n, 1 and column k, respectively, for k = 0, . . . , α1, with
k = 0 corresponding to the basement. For k > 1 place entries yk, xk+1 into the cells
in row n, column k and row 1, column k + 1 of E0(T ) by

• if xk is in row 1, column k of E0(T ), then place yk above it in row n unless
doing so creates a Type I co-inversion triple or attacking pair for xk, xk+1, yk,
in which case place xk+1 in row n above xk;
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• else yk−1 is in row 1, column k, so place xk+1 above it in row n unless doing
so creates a Type I co-inversion triple or attacking pair for yk−1, yk, xk+1, in
which case place yk in row n above yk−1.

For all remaining cells, set entries of E0(T ) to match those of T , then remove the
entries in row n, columns α1, . . . , αn and append them to the end of row 1.

3 3 8 6 3 3

1 4 5 5 7 2

3 5 5 6 2

1 4 3 8 7 3 3

E0

Figure 9. An example of the embedding E0 : SSKD(6, 0, 0, 6) ↪→ SSKD(7, 0, 0, 5).

As in the finite case, we have the following affine analog of Lemma 4.2.

Lemma 4.4. Let α be a weak composition with αj = 0 for j 6= 1, n, and suppose
αn > α1 > 0. For any T ∈ SSKD(α), we have E0(T ) ∈ SSKD(s0 · α).

Proof. Observe all triples are of Type II for T and of Type I for E0(T ). Since T
is non-attacking, entries along a northwest to southeast diagonal are distinct, and
so changing their order reverses the orientation of the Type I triple for those cells
and their southwest neighbor. Thus by construction E0(T ) has no co-inversion triples.
Since E0 preserves the diagonal sets, the only potential attacking cells are in the same
column, but two such entries necessarily create a Type I co-inversion triple. Thus
E0(T ) is non-attacking as well, and so E0(T ) ∈ SSKD(s0 · α). �

The embedding maps are defined so that locally there are no co-inversion triples.
This property holds globally as well, showing we have a map of tabloids.

Theorem 4.5. If α � si · α, then Ei(T ) ∈ SSKD(si · α) for any T ∈ SSKD(α).

Proof. We begin with the non-attacking condition. For i > 0, Ei acts only on rows
i and i + 1 of T and, by Lemma 4.2, does not create attacking cells within these
two rows. Thus Ei does not create attacking cells between rows i, i + 1 and any row
above or below them. Similarly for i = 0, E0 acts only on rows 1 and n of T and,
by Lemma 4.4, does not create attacking cells within these two rows. Two cells are
attacking exactly when they are within n letters in the column reading word of T
(accounting for empty rows), and so E0 does not create attacking cells between rows
1, n and any row in between them. Thus Ei(T ) is non-attacking for i > 0.

By the local nature of the embedding maps, Ei(T ) has no co-inversion triples be-
tween two unaffected rows. By Lemmas 4.2 and 4.4, Ei(T ) has no co-inversion triples
between the two affected rows. Suppose, for contradiction, Ei(T ) has a co-inversion
triple between one of the affected rows, say j, and an unaffected row, say k. By [4,
Proposition 2.9], the co-inversion triple must involve the basement. Any Type I co-
inversion triple involving the basement implies an attacking pair as well, so we may
assume any co-inversion triple is Type II.

Suppose first i > 0 and k > i + 1, so that row k is weakly longer than row j in
Ei(T ). Denote the entries in column 1 rows k, i+ 1, i of Ei(T ) by z, y, x, respectively.
We must have αi > αk > αi+1, since otherwise rows i, i+ 1 are both weakly shorter
than row k, and so T must also have a Type II co-inversion triple. Thus j = i, and
x must have been in row i of T as well so as to avoid creating the same triple in T .
Now, since Ei did not swap x and y, we must have x < y 6 i+1 < k. Thus the alleged
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co-inversion triple x, z, k in Ei(T ) must have z < x < k, which then forces the triple
y, z, k to be a Type II co-inversion triple in T , a contradiction.

Next suppose i > 0 and k < i, so that row k is weakly shorter than row j in
Ei(T ). Denote the entries in column 1 rows k, i, i+ 1 of Ei(T ) by x, y, z, respectively.
Similar to before, we must have αi > αk > αi+1, since otherwise rows i, i+1 are both
weakly longer than row k, and so T must also have a Type II co-inversion triple. Thus
j = i+ 1, and z must have been in row i+ 1 of T as well so as to avoid creating the
same triple in T . Since Ei did not swap y and z, we must have y < z 6 i + 1. Thus
the alleged co-inversion triple x, z, i+ 1 in Ei(T ) must have z < x < i+ 1, which then
forces the triple x, y, i+ 1 to be a Type II co-inversion triple in T , a contradiction.

Finally suppose i = 0. If j = 1, then the entry in column 1, row 1 is unchanged
and row 1 is longer in E0(T ) than in T , so the same cells form a Type II co-inversion
triple in T , a contradiction. Thus j = n, and since row n is shorter in E0(T ) than in
T , we must the entry, say z in column 1 of row n of E0(T ) was previously in column
2, row 1 of T . Let x denote the entry in column 1, row k. Since row n of E0(T ) is
weakly longer than row k, we must have α1 > αk. Thus to avoid a Type I triple for
1, z, x in T , we must have 1 < x < z. However, to have a Type II triple for x, z, n in
E0(T ), we must have z < x < n, a contradiction. �

We next show the embedding map Ei is injective and the heads of all i-strings
are contained in the image. Thus the only elements not in the image of Ei are those
obtained by following i-strings from elements in the image.

Lemma 4.6. For α � si · α, the embedding map Ei is injective. Moreover, for T ∈
SSKD(si · α), if ei(T ) = 0 then there exists S ∈ SSKD(α) such that Ei(S) = T .

Proof. The embedding map is reversed by considering the opposite type of triples and
working right to left. In particular, if Ei(S) = Ei(S′) for two tabloids S, S′ ∈ SSKD(α),
then by reversing the embedding map as described above, the preimage of Ei(S) and
Ei(S′) will have a unique column set. Hence, S and S′ have the same column set and
thus by [4, Proposition 2.9] must be the same tabloid.

Now suppose that T ∈ SSKD(si · α) satisfying ei(T ) = 0. For i 6= 0 this implies
that every i + 1 appearing in T has an i below it or in a column to its left. Let S
denote the preimage of T upon reversing the embedding map Ei. The only way in
which a co-inversion triple of Type I with the basement in S could arise, and thus
prevent S from being in SSKD(α), is if in T the cell in row i+ 1 of the first column
has value i + 1. Since ei(T ) = 0 this implies that the cell immediately below it has
value i. This in turn causes the cell in column 2 in S to the right of i + 1 to have
value i+ 1. Hence, in T the second column has an i in row i and an i+ 1 in row i+ 1.
Using the fact that ei(T ) = 0 and iterating this procedure by passing back and forth
from S to T it can be deduced that in T all the entries in row i+ i have value i+ 1
and in row i have value i. Since α � si · α this means T has an unpaired i+ 1 which
contradicts the fact that ei(T ) = 0. Hence i and i+ 1 do not get flipped in S, thus S
is indeed in SSKD(α).

If i = 0 then since the first entry in row 1 must have value 1 and E0 does not modify
this cell at all, then after reversing the affine embedding map no matter what value is
placed in the first entry of row n, this triple will always have the correct orientation
with respect to the basement, thus S will always be in SSKD(α). �

We now show the embedding maps respect the crystal structure.

Theorem 4.7. For α � si · α and T ∈ SSKD(α), we have ϕj(T ) = ϕj(Ei(T )) for any
0 6 j < n and if fj(T ) 6= 0 for some j > 0, then Ei(fj(T )) = fj(Ei(T )).

Algebraic Combinatorics, Vol. 4 #5 (2021) 787



Sami Assaf & Nicolle González

Proof. Let T ∈ SSKD(α). By [4, (3.16)], ϕj(T ) for a tabloid T counts the number
of cells of T with entry j that are not j-paired (or 0-paired in the case j = n). For
i 6= 0, the column sets of T and Ei(T ) coincide, hence the j-pairing of both tableaux
will be the same for any j. For i = 0, although the location of j-paired cells might be
modified, the net quantity of pairs remains intact under E0. Thus, ϕj(T ) = ϕj(Ei(T ))
for any 0 6 j < n as claimed.

Now suppose fj(T ) 6= 0. Then ϕj(T ) > 0 and so ϕj(Ei(T )) > 0 as well. In the
finite embedding case, where i > 0, T and Ei(T ) have the same column sets, and
so fj will act on the same column for both. This ensures fj(T ) and fj(Ei(T )) have
the same column set. Since Ei(fj(T )) and fj(T ) have the same column sets by defi-
nition of Ei, we conclude fj(Ei(T )) and Ei(fj(T )) also agree on column sets, and so
fj(Ei(T )) = Ei(fj(T )) by [4, Proposition 2.9]. Similarly for the affine embedding E0,
the preservation of the j-pairing rule and the fact that j, j+1 compare the same with
all letters k 6= j, j + 1 ensures fj(E0(T )) and E0(fj(T )) have the same column sets.
Thus [4, Proposition 2.9] again ensures fj(Ei(T )) = Ei(fj(T )). �

3
2
1 1 2

3
2
1 1 3

3
2
1 1 1

f2

f0

E1

3
2 1 2
1

3
2 1 3
1

3
2 2 3
1

3
2 1 1
1

3
2 2 1
1

3
2 2 2
1

f2

f1 f0

f1

f1

E0

2 1 2
1 3

2 1 3
1 3

2 2 3
1 3

2 1 1
1 3

2 2 3
1 1

2 2 1
1 3

2 2 1
1 1

2 2 2
1 3

2 2 2
1 1

f2

f1 f0

f0 f1

f0 f1

f1 f0

Figure 10. Examples of embedding maps for η3,5 = (2, 2, 1), giving
the filtration B̃s0s2(η3,5) ⊂ B̃s1s0s2(η3,5) ⊂ B̃s0s1s0s2(η3,5).

For example, Fig. 10 shows the embedding for η3,5 = (2, 2, 1) from B̃s0s2(η3,5) to
B̃s1s0s2(η3,5) via E1 and then into B̃s0s1s0s2(η3,5) via E0. These embeddings display
the Bruhat filtrations of the Demazure modules on their corresponding crystals. At
each step Ei enlarges the preceeding crystal by complete i-strings only.
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We now present our main theorem, an explicit realization of the affine Demazure
crystal on semistandard key tabloids.
Theorem 4.8. For any weak composition α with α = w · ηn,k and w minimal length,
there is a weight-preserving bijection θα : SSKD(α) → B̃w(ηn,k) that intertwines
the crystal operators. That is, for T ∈ SSKD(α), we have fi(T ) 6= 0 if and only if
fi(θα(T )) 6= 0 and, in this case, fi(θα(T )) = θα(fi(T )).
Proof. For w length 0, observe SSKD(ηn,k) contains the single tabloid Uηn,k

of shape
ηn,k with all entries equal to their row index. The column reading word (bottom to top,
left to right) of Uηn,k

coincides with the word for affine highest weight element ũηn,k
.

Thus Uηn,k
and ũηn,k

have the same weight and, moreover, ϕi(ũηn,k
) = ϕi(Uηn,k

) for
all i. Thus we proceed by induction on the length of w, assuming a weight-preserving
bijection θα : SSKD(α) → B̃w(ηn,k) that intertwines the crystal operators and that
preserves string lengths, and we consider si · α � α.

The Demazure operator Di gives the inclusion B̃w(ηn,k) ⊂ B̃siw(ηn,k) where every
b′ ∈ B̃siw(ηn,k)rB̃w(ηn,k) can be written uniquely as b′ = fki (b) for some b ∈ B̃w(ηn,k)
and k > 0. By Theorem 4.5, the embedding map Ei gives the inclusion Ei(SSKD(α)) ⊂
SSKD(si ·α). By Lemma 4.6, every T ′ ∈ SSKD(si ·α)r Ei(SSKD(α)) can be written
uniquely as T ′ = fki (Ei(T )) for some T ∈ SSKD(α) and k > 0. By induction, if
θα(T ) = b, then ϕi(T ) = ϕi(b), and so by Theorem 4.7, ϕi(Ei(T )) = ϕi(b) as well.
Thus we have a weight-preserving bijection between SSKD(si ·α)rEi(SSKD(α)) and
B̃siw(ηn,k)r B̃w(ηn,k). By Theorem 4.7, the crystal operators intertwine with Ei, and
so we may extend θα to a bijection θsi·α as claimed. �

Notice in the proof above we make explicit use of the affine highest weight element
ũηn,k

. In fact, we can describe the image of ũηn,k
in SSKD(α) for any suitable weak

composition α as follows.
Proposition 4.9. For a weak composition α of length n, define Ũα to be the filling of
the diagram of α by columns left to right, bottom to top with entries 1, . . . , n repeating
as needed. Then Ũα ∈ SSKD(α) with wt(Ũα) = ηn,k where k = |α|.
Proof. By definition the reading word of Ũα is (12 . . . n)m12 . . . r where k = mn + r
is the unique decomposition described beneath equation (4). It clearly follows that
wt(Ũα) is exactly ηn,k.

Now, since each column of Ũα has at most n rows then by construction no column
will have the same entry twice. Moreover, if a value x occurs in both columns c and
c+ 1 of Ũα, since the number of boxes weakly above x in column c plus the number
of boxes strictly below x in column c+ 1 must be precisely n, then the x on the right
must lie in a row weakly higher than the x of the left (otherwise this would imply
that column c has more than n boxes). Thus, Ũα has no attacking cells.

To see Ũα has no co-inversion triples consider three cells of Type I with entries
i, j, k as in the left image in Figure 4. Suppose that i < k. In order for these cells to
form a co-inversion triple then necessarily i < j < k. However, this would imply that
there is a cell between i and k in the left column with value j, which is impossible
since we showed that Ũα cannot have attacking cells. If instead i > k then the cells
form a co-inversion triple if either k > j or j > i. However, both of these cases result
in cells that attack j. Hence Ũα has no co-inversion triples of Type II. Now consider
a triple of cells of Type II with entries i, j, k as in the right image of Figure 4. Once
again, the cells form a co-inversion triple for k < j only if k < i < j and for k < j
only if i < j or k < i. However, as in the cases above, by the definition of Ũα these
cases give rise to attacking cells. Hence, Ũα has no attacking cells of Type II and is
indeed a semistandard key tabloid of shape α. �
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It is easy to see Ũα is a highest weight element in SSKD(α) for any weak compo-
sition α. Indeed, Ũα is the unique such filling that satisfies this property for all α.
That is, if there exists a word w = w1 . . . wk such that for all weak compositions α its
corresponding tabloid of shape α, U ′α, is always contained in SSKD(α) and satisfies
ei(U ′α) = 0 for all 1 6 i 6 n, then U ′α = Ũα. Moreover, under the bijections described
in Theorem 4.8, we have θα(Ũα) = ũηn,k

.

5. Characters
Recall the specialized nonsymmetric Macdonald polynomials Eα(x1, . . . , xn; q, 0) in-
clude the parameter q. Combinatorially, this parameter is given by the major index
statistic defined as follows. For a semi-standard key tabloid T , the major index of T ,
denoted by maj(T ), is the sum of the legs of all cells c such that the entry in c is
strictly less than the entry immediately to its right, as seen in Fig. 11.

··· i

leg︷ ︸︸ ︷
j ···

Figure 11. The leg of a cell contributing to the major index, where
i < j.

Theorem 5.1 ([11]). The specialized nonsymmetric Macdonald polynomial is

(8) Eα(x1, . . . , xn; q, 0) =
∑

T∈SSKD(α)

qmaj(T )x
wt(T )1
1 · · ·xwt(T )n

n .

In [4], we show the major index is constant on connected components of the finite
Demazure crystal on semistandard key tabloids. By Theorem 4.8, the affine Demazure
crystal on semistandard key tabloids is connected, and so we wish to understand the
role of the parameter q in this context.

An energy function on a crystal B is a function H : B ⊗ B → Z satisfying the
following conditions for all 0 6 i < n and b1 ⊗ b2 ∈ B ⊗ B such that ei(b1 ⊗ b2) 6= 0.

(9) H(ei(b1 ⊗ b2)) =


H(b1 ⊗ b2) i 6= 0,
H(b1 ⊗ b2) + 1 i = 0, ϕ0(b1) > ε0(b2),
H(b1 ⊗ b2)− 1 i = 0, ϕ0(b1) < ε0(b2).

Given two crystals B,B′, there is a unique map R, called the combinatorial R-matrix,
from B ⊗ B′ to B′ ⊗ B that intertwines the crystal operators [15]. Using the combi-
natorial R-matrix and a local energy function H, we may consider the global energy
function E : B⊗n → Z such that,

(10) E(b1 ⊗ · · · ⊗ bn) =
n−1∑
i=1

(n− i) ·H(bi ⊗ bi+1).

This produces an important grading on finite dimension modules that connects to the
major index statistic above as follows.

Proposition 5.2. The major index maj : SSKD(α)→ Z is a global energy function.

Proof. Let α be a weak composition consisting of one row of length n. If n = 2 it is
straight forward to see that maj will correspond to an energy function for SSKD(α).
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Now suppose that n > 2 and for any T ∈ SSKD(α) let bi be the entry in the ith
column of T . Then,

maj
(
b1 . . . bn

)
=
n−1∑
i=1

leg(bi) ·maj
(
bi bi+1

)
=
n−1∑
i=1

(n− i) ·maj
(
bi bi+1

)
=
n−1∑
i=1

(n− i) ·H(bi ⊗ bi+1)

= E(b1 ⊗ · · · ⊗ bn).
Since for any multi-row weak composition α, the major index of any T ∈ SSKD(α)
is the sum of the major index along each row of T , then the general result follows
immediately. �

Nakayashiki and Yamada [24] first made the connection between Hall–Littlewood
polynomials, given by Pλ(X; 0, t), and ŝl by showing the celebrated charge statistic [6,
7, 19] is (up to rescaling) an energy function in solvable lattice models. For details
relating Hall–Littlewood polynomials with the nonsymmetric Macdonald polynomials
specialized at t = 0, see [3, Cor. 5.7].

In [27], Sanderson proves that specialized nonsymmetric Macdonald polynomials
are characters of affine Demazure modules by defining a family of operators Hi for
0 6 i < n on Z[q, q−1][X], previously introduced by Knop [17] and Sahi [26], which
generate these polynomials and satisfy the relation HiEα(X; q, 0) = Esi·α(X; q, 0) for
each i (cf. [27, Theorem 1]). Our embedding operators are precisely crystal theoretic
lifts of Sanderson’s operators, thus an immediate consequence of our work is a new
proof of Sanderson’s result [27, Theorem 6].

Corollary 5.3. Given α = w · ηn,k, we have Eα(x1, . . . , xn; q, 0) = ch(B̃w(ηn,k)).

As a final application, by forgetting the 0-edges in the affine Demazure crystal on
semistandard key tabloids, we recover the finite Demazure crystal on semistandard
key tabloids from [4], and so we can also now interpret [3, Theorem 4.9] in terms of
characters.

Corollary 5.4. The affine Demazure characters decompose as q-graded sums of finite
Demazure characters.

For example, taking the q-graded character of the Demazure crystals in Fig. 10,
the characters of B̃s0s2(2, 2, 1), B̃s1s0s2(2, 2, 1), and B̃s0s1s0s2(2, 2, 1) are precisely

E(3,1,1)(X; q, 0) = qκ(2,1,2)(X) + κ(3,1,1)(X),
E(1,3,1)(X; q, 0) = qκ(1,2,2)(X) + κ(1,3,1)(X),
E(2,3,0)(X; q, 0) = q2κ(1,2,2)(X) + qκ(1,3,1)(X) + qκ(2,2,1)(X) + κ(2,3,0)(X).

In particular, the affine crystal operator f0 connects the finite Demazure subcrytals
of each affine Demazure crystal and, unlike the finite crystal operators, does not
preserve the major index. Similarly, only the affine embedding operator E0 changes
the q-grading of each of the finite Demazure subcrystals, increasing it by a factor of
q each time. At the level of characters, we see that E1 and E0 recover the action of
Sanderson’s operators H1 and H0 on the specialized nonsymmetric polynomials.

Recall the Schur polynomials form an important basis for symmetric polynomi-
als whose structure constants give the multiplicities of the irreducible components in
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the tensor product of irreducible representations. The structure constants for the
Hall–Littlewood symmetric polynomials, on the other hand, are not nonnegative
(see [22, (III.3)]). We can understand this failure through the crystal interpretation of
E(λn,...,λ1)(x1, . . . , xn; q, 0) as an affine Demazure character since the tensor product of
(affine) Demazure crystals is not, in general, a(n affine) Demazure crystal. Neverthe-
less, this perspective might lead to a better understanding of these Hall–Littlewood
structure constants as tensor products are well-defined on crystals, even when the
resulting structure is not well understood.

Acknowledgements. The authors thank Shrawan Kumar for insightful conversations
about Demazure modules, finite and affine.
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