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Intersection Pairings for Higher Laminations

Ian Le

Abstract One can realize higher laminations as positive configurations of points in the affine
building [7]. The duality pairings of Fock and Goncharov [1] give pairings between higher
laminations for two Langlands dual groups G and G∨. These pairings are a generalization of
the intersection pairing between measured laminations on a topological surface.

We give a geometric interpretation of these intersection pairings in a wide variety of cases.
In particular, we show that they can be computed as the minimal weighted length of a network
in the building. Thus we relate the intersection pairings to the metric structure of the affine
building. This proves several of the conjectures from [9]. We also suggest the next steps toward
giving geometric interpretations of intersection pairings in general.

The key tools are linearized versions of well-known classical results from combinatorics,
like Hall’s marriage lemma, König’s theorem, and the Kuhn–Munkres algorithm, which are
interesting in themselves.

1. Introduction
This paper has two goals. The first goal is to give geometric interpretations of the in-
tersection pairings between higher laminations. For simplicity, let us restrict attention
to higher laminations on a disc. In this case, higher laminations arise as the tropical
points of configuration spaces of flags. In [7], we showed that higher laminations on a
disc are given by configurations of points in the affine building. We will later define
the affine building, but for now, the only relevant fact is that it is a metric space that
behaves in many ways like a symmetric space.

In [1] and subsequent works, Fock and Goncharov give a series of conjectures about
the properties that such a pairing should satisfy. The existence and construction of a
pairing satisfying these properties was not known until the work of Gross, Hacking,
Keel and Kontsevich [5]. The pairing is defined in [5] in a complicated, highly recursive
way. It is natural to ask whether this pairing can be defined using the geometry of
affine buildings. In this paper, we give such a geometric interpretation in a wide variety
of cases. We show that the intersection pairing is given by the minimal weighted length
of a network in the building. This suggests that such a geometric interpretation should
exist in general, and we explain some conjectures about this at the end of the paper.

Let us also note that many combinatorial questions in Lie theory (canonical bases,
structure constants, tensor multiplicities) are equivalent to counting problems for
higher laminations.
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Our strategy is as follows. The properties of the pairing, conjectured by Fock and
Goncharov and proved in [5], reduce the computation of the pairing to the computa-
tion of certain invariants of lattices that we call f tijk. The main theorem, Theorem 5.4,
gives a metric interpretation of the function f tijk. This metric interpretation is compu-
tationally considerably simpler than the original definition, and Theorem 4.3 actually
gives an algorithm for computing the function using the metric interpretation. We
start by proving Theorem 4.3, then use it to deduce Theorem 5.4. After that, we
explain how it can be used to calculate the intersection pairing in many cases.

Our second goal is to argue that Theorem 4.3 is interesting in itself, and may be of
interest to combinatorialists, particularly those studying matroid theory. The proof of
Theorem 4.3 involves linearizations of well-known theorems of combinatorics of Hall,
König and Kuhn–Munkres. We expect that conjectural generalizations of Theorem 4.3
discussed in Section 6 will also be linearizations of combinatorial statements of min-
max type. It is an interesting question to ask which statements of min-max type
have linear generalizations. Generalizations of this type may be related to min-max
statements in the theory of valuated matroids [11].

Moreover, Theorem 4.3 is valid over any discrete valuation ring. We wonder whether
it may be useful to number theorists who use buildings in their work.

Finally, we say something about the notational conventions of this paper. Theo-
rem 5.4 is essentially a reformulation of Theorem 4.3. The latter statement deals with
some other invariants of lattices, which we call c and A, which differ from f tijk by
a sign and some normalizations (see Remark 5.3). We use two sets of notation for
several reasons. First, we want to remind the reader of the subtle differences in sign
and normalization. Second, it turns out that whereas the functions c and A are well-
adapted to the proof of Theorem 4.3, they are not as natural from the point of view
of the geometry of the affine building. Finally, the notations c and A were chosen for
their similarity with the analogous quantities used in the Kuhn–Munkres theorem, of
which Theorem 4.3 is generalization.

We now summarize the contents of this paper. In Section 2, we review the theorems
of Hall, König and Kuhn–Munkres. In Section 3, we will discuss linear generalizations
of Hall’s and König’s theorems. In Section 4, we will introduce and prove a linearized
version of the Kuhn–Munkres theorem. In Section 5, we will define higher laminations,
and describe the intersection pairings and show how our generalization of the Kuhn–
Munkres theorem can be applied to give an interpretation of intersection pairings of
higher laminations in terms of the metric geometry of the affine building. In Section 6,
we discuss generalizations and the next non-trivial case of intersection pairings for
which we have only a conjectural description of the intersection pairing.

2. Hall’s theorem and its generalizations
We begin by recalling some classical theorems from combinatorics: Theorems 2.1,
2.2 and 2.3. These theorems have linear generalizations, which give Theorem 3.1,
Proposition 3.2 and Theorem 4.3, respectively. Proposition 3.2, which is a minor
extension of Theorem 3.1, will be used in the proof of Theorem 4.3 (in the same way
that Theorem 2.2, a minor extension of the more well-known Theorem 2.1, may be
used to prove Theorem 2.3). We aim to stress the analogies between the combinatorial
statements and their linear generalizations.

Let us recall the marriage problem. Consider the sets S1, S2, . . . , Sr. The marriage
problem asks whether one can find elements xi in each of the sets Si such that xi 6= xj
for i 6= j. In this situation, x1, . . . , xr will be called a system of distinct representatives
for the sets Si.
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Hall’s theorem or Hall’s Marriage Lemma gives a necessary and sufficient condition
for a system of distinct representatives to exist:

Theorem 2.1 (Hall). Let S1, S2, . . . , Sr be sets. A system of distinct representatives
of the sets Si exists if and only if ∣∣∣∣ ⋃

i∈I
Si

∣∣∣∣ > |I|
for each subset I ⊆ [r].

Hall’s theorem can be phrased in terms of bipartite graphs. Let us imagine our
bipartite graph with vertices divided into two sets, one set of vertices on the left and
one set of vertices on the right. On the left, we may put r vertices and label them
1, . . . , r. On the right, we put all elements of the sets Si. We can then draw edges
connecting each vertex i on the left to all the elements in Si. Then finding a system
of distinct representatives is the same as finding a matching in this graph using all
the vertices 1, . . . , r.

A refinement of Hall’s theorem is König’s theorem. Instead of giving conditions for
a matching using all r vertices to exist, it provides a formula for the maximum size
of a matching:

Theorem 2.2 (König). Let S1, S2, . . . , Sr be sets. The maximum number of distinct
representatives of the sets Si is

min
I⊆[r]

(|∪i∈ISi|+ r − |I|) .

As was the case with Hall’s theorem, this can be interpreted in terms of bipartite
graphs. Again suppose we have r vertices on the left representing the sets Si, and
vertices on the right representing the elements of the sets Si. Suppose that I ⊂ [r] is
chosen to minimize (|∪i∈ISi|+ r − |I|) . Then we can find a vertex cover of the graph
(a set of vertices of the graph such that each edge is incident to at least one of these
vertices): take all the vertices corresponding to the elements in ∪i∈ISi and all the
vertices in [r]\I. This is a vertex cover of size |∪i∈ISi| + r − |I|. It is clear that any
vertex cover must be larger than the size of any matching. König’s theorem says that
the maximal matching has the same size as the minimal vertex cover. Note that if
we fix a minimal vertex cover, any maximal matching must use each vertex of the
minimal cover exactly once. (Also, if we fix a maximal matching, any minimal cover
must cover exactly one of the vertices of each edge in the matching.)

Finally, König’s theorem can be used to prove a theorem of Kuhn and Munkres.
Let [cij ] be an n× n real matrix. A transversal of [cij ] is a choice of n entries of the
matrix, one entry in each row and each column. There are n! such transversals. For
each transversal, we can consider the sum over that transversal. We would like to find
the maximal possible value for this sum.

Suppose we have some real numbers ai and bj for 1 6 i, j 6 n such that ai+bj > cij .
We can call the set of real numbers ai and bj a potential. It is clear that the sum of
any transversal is less than or equal to

∑
i ai+

∑
j bj . Thus the sum of any transversal

is less than the sum of any potential. Then we have the following theorem:

Theorem 2.3 (Kuhn and Munkres). Let [cij ] be a real n×n matrix. Then the maximal
sum of a transversal of [cij ] equals the minimal sum

∑
i ai +

∑
j bj, where we require

that for all i, j, ai + bj > cij. Moreover, if the cij are integers, the a’s and b’s can be
taken to be integral as well.

In fact, the theorem above is actually an algorithm for constructing both the
transversal and the potential. Once we find a transversal that is equal to the sum
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of the potential, then we know we have found both the maximal transversal and the
minimal potential. Alternatively, we may interpret this as saying that the potential
witnesses the fact that we have found a maximal potential.

Remark 2.4. Let us point out that the algorithm for constructing the transversal and
the potential is much more efficient than computing all n! transversals.

Replacing [cij ] by [−cij ] we can prove a similar theorem that the minimal transver-
sal is equal to the maximal sum of a potential ai and bj where ai + bj 6 cij .

Note that in the theorems of both König and Kuhn–Munkres, we have that the
maximum of one quantity is equal to the minimum of some other quantity. The linear
generalizations which we will consider will also share this feature.

3. Linearization
We will need a linearization of Hall’s marriage theorem. This theorem is a specializa-
tion of Rado’s theorem on matroids, and was rediscovered by Moshonkin [12], [10]:

Theorem 3.1 (Rado). Let W1,W2, . . . ,Wr be subspaces of an ambient vector space
V . Then a system of linearly independent representatives of the Wi exists if and only
if for each subset I ⊆ [r],

dim
∑
i∈I

Wi > |I|.

Here
∑
i∈IWi is the sum of the vector subspacesWi. As in Hall’s marriage theorem,

the condition is clearly necessary, and it turns out to be sufficient.
One can imagine a bipartite graph with the set [r] on the left, and all the vectors

in the vector space V on the right. We connect a vertex i on the left with the set of
vectors in Wi. Instead of considering the cardinality of a set on the right hand side,
we are considering the dimension of a vector space spanned by that set.

Rado’s theorem has a slight generalization, which is a linear version of König’s
theorem. It will be the key input to our proof:

Proposition 3.2 ([9]). If V1, . . . , Vr are subspaces of an ambient space V , the maxi-
mum number of linearly independent representatives from different Vi’s is

(1) min
I⊆[r]

[
dim

(∑
i∈I

Vi

)
+ r − |I|

]
.

Moreover, suppose that I ⊂ [r] is a subset attaining the minimum in the theorem.
Then any system of linearly independent representatives must use a basis of

∑
i∈I Vi

as well as one vector from each of the spaces Vj for j ∈ [r]\I.

4. Main Theorem
Let us now describe our main result. Let O be a discrete valued ring and K its field of
fractions. Although all the arguments in this section work in this generality, for the
purposes of the later application to higher laminations, we will take O = F[[t]] and
K = F((t)) for some field F. The valuation val(x) of an element

x =
∞∑

i=−N
ait

i ∈ K

is the minimum i such that ai 6= 0.
We are interested in rank n, O-submodules of Kn. Such full-rank O-submodules

are called lattices.
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Let L1, L2, . . . , Ln be lattices in Kn. We wish to find the maximum value of
− val(det(v1, . . . , vn)),

under the condition that vi ∈ Li. Equivalently, we would like to find the minimum
value of val(det(v1, . . . , vn)). Let us then define

A(L1, L2, . . . , Ln) = min{val(det(v1, . . . , vn))|vi ∈ Li}.
It is not difficult to see that the minimum value is attained for generic choices of
v1, . . . , vn using the upper semi-continuity of the valuation function.

Given any vector w ∈ Kn, let us define
c(w,Li) := min{λ ∈ Z|tλw ∈ Li}.

It will be convenient for us to define
c(L,Li) = min{c(w,Li)|w is a generator of L}.

Here, w ∈ L is a generator of L if and only if w belongs to some set of vectors in Kn
which form a basis for L as an O-module. We will say that w is a tight generator for
L with respect to Li if w is a generator for L and c(w,Li) = c(L,Li). Let us remark
that it is immediate from this definition that if vi ∈ Li, then t−c(L,Li)vi ∈ L.

Example 4.1. Let n = 3. Let e1, e2, e3 be the standard basis of K3. Consider the
standard lattice L = 〈e1, e2, e3〉. Let v = t3e1 − 3t2e2. Then c(v, L) = −2.

Now let M be the lattice 〈t2e1, te2, t
−1e3〉. Then c(M,L) = −2.

Let us define
val(det(L)) = A(L,L, . . . , L).

(In other words, we take Li = L for all i in the expression A(L1, L2, . . . , Ln).) The
expression {val(det(v1, . . . , vn))|vi ∈ L} is minimized exactly when v1, . . . , vn form a
set of generators for the lattice L.

Proposition 4.2. For any lattice L, we have

val(det(L)) +
n∑
i=1

c(L,Li) 6 A(L1, L2, . . . , Ln).

Let us give a quick proof. If
A(L1, L2, . . . , Ln) = val(det(v1, . . . , vn))

where vi ∈ Li, then t−c(L,Li)vi ∈ L, so that the vectors t−c(L,Li)vi generate some
sublattice of L, and so

val(det(L))6 val(det(t−c(L,L1)v1, . . . , t
−c(L,Ln)vn)) =A(L1, L2, . . . , Ln)−

n∑
i=1

c(L,Li).

We use that if L′ is a sublattice of L, then val(det(L)) 6 val(det(L′)).
The previous fairly simple proposition is complemented by the following theorem,

which is the main theorem of this paper, and whose proof is more involved:

Theorem 4.3. There exists a lattice L for which we have the equality

val(det(L)) +
n∑
i=1

c(L,Li) = A(L1, L2, . . . , Ln).

In particular, this means:
(1) There exist wi ∈ L such that if we define vi := tc(L,Li)wi then vi ∈ Li. In

other words, the wi are tight generators for L with respect to Li.
(2) The wi generate L.

Algebraic Combinatorics, Vol. 4 #5 (2021) 827



Ian Le

As we shall see, this theorem is a linearized version of the Kuhn–Munkres theo-
rem, and in order to prove it, we generalize the Kuhn–Munkres algorithm to give an
algorithm for finding such an L.

Remark 4.4. The above theorem is a statement of max-min type. For any choice of
wi ∈ Li, we have that

A(L1, L2, . . . , Ln) 6 val(det(w1, . . . , wn)).

Thus for any choice of wi ∈ Li and any choice of a lattice L, we have that

val(det(L)) +
n∑
i=1

c(L,Li) 6 val(det(w1, . . . , wn)).

The above theorem says that the minimal value of the right hand side is the maximal
value of the left hand side. We may therefore interpret the theorem as saying that we
have found a lattice L which is a witness to the minimal value of val(det(w1, . . . , wn)).

Remark 4.5. Let e1, . . . en be a basis of Kn. Then we can recover the usual Kuhn–
Munkres theorem by considering lattices of the form

Li = 〈tci1e1, t
ci2e2, . . . , t

cinen〉.

For more details, see [9].

Proof of Theorem 4.3. We will start with an arbitrary lattice L. At each step we will
modify the lattice L until we find one which satisfies the equality.

First note that n vectors w1, . . . , wn will generate L if and only if their images
w̃1, . . . , w̃n in L/tL form a basis.

For each Li, let Wi ⊂ L be the set of tight generators for L with respect to Li.
Then let W̃i ⊂ L/tL be the projection of this set to L/tL. It is easy to verify that
W̃i is a vector subspace of L/tL. We wish to choose one vector w̃i from each W̃i such
that the w̃1, . . . , w̃n form a basis of L/tL. In other words, for the subspaces W̃i, we
wish to find a system of linearly independent representatives.

We are now equipped to explain the basic idea of the algorithm. Recall that for
any L, we have

val(det(L)) +
n∑
i=1

c(L,Li) 6 A(L1, L2, . . . , Ln),

where equality holds exactly when we have a system of linearly independent repre-
sentatives of the subspaces W̃i. At each stage, we will either make the left hand side
bigger by some integer value, or we will increase the size of the system of linearly
independent representatives. The only way this terminates is that we have a system
of n linearly independent representatives.

Here is the algorithm for finding L. Start with an arbitrary lattice L.
We have the subspace W̃i ⊂ L/tL for each i 6 n. Start by finding the maximum

number of linearly independent representatives w̃i for i ∈ J , where J ⊂ [n]. Then we
have that by Theorem 3.2, there exists a set I ⊂ [n] such that

|J | = dim
(∑
i∈I

W̃i

)
+ n− |I|.

Moreover, we have that among the w̃i, some form a basis for W̃ :=
∑
i∈I W̃i, while

the rest have indices in [n] r I. Thus we may write J = J1
∐
J2, where w̃i for i ∈ J1

give a basis of W̃ , and J2 ⊂ [n] r I.
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Choose any lift of W̃ to an O-submodule of L. Call this lift W ⊂ L. Now let
L′ = t−1W + L. We claim that

(2) val(det(L)) +
n∑
i=1

c(L,Li) 6 val(det(L′)) +
n∑
i=1

c(L′, Li).

To see this, first note that

val(det(L′)) = val(det(L))− dimW.

Also note that

c(L′, Li) = c(L,Li) + 1 for i ∈ I
c(L′, Li) = c(L,Li) for i ∈ [n] r I.

Note also that dimW 6 |I| with equality only when we have a complete system of
linearly independent representatives. This yields the inequality (2).

This inequality tells us that, at each stage, if we have not found a complete system of
linearly independent representatives, we may modify L to get a lattice L′ for which the
inequality is strictly closer. We can then iterate this process–find another maximum
set of linearly independent representatives; if they still do not span, we can modify the
lattice again. The process cannot continue indefinitely, and it will end with a lattice
for which we have n linearly independent representatives, and this lattice will satisfy
the equality of our theorem. �

Remark 4.6. The algorithm for finding the lattice L gives a simple way of computing

A(L1, L2, . . . , Ln).

Compare it with the alternative: one may pick n generators of each of the lattices Li.
Then one may consider all nn determinants formed by choosing one generator from
each lattice and look for the one with minimal valuation. One can do slightly better
than this by choosing the generators carefully, but in any case, the computation will
be much more laborious than the algorithm given above. Compare with Remark 2.4.

Remark 4.7. Here are some heuristics which may help give a sense of the difficulties
in finding L. For any lattice L, there are always tight generators for L with respect
to any other lattice M . The difficulty is finding tight generators wi for L with respect
to each of L1, . . . , Ln such that the wi will generate L. Typically, we can find tight
generators wi which may be linearly independent in Kn, but they will not necessarily
generate all of L. (And if we take the lattice L′ spanned by the wi, the wi may not
be tight generators for L′.)

Example 4.8. Consider the lattices

L1 = 〈e1, e2, e3〉,
L2 = 〈t3e1, e2, t

−3e3〉,
L3 = 〈t4e1,−(t+ t2)e1 − t−1e2, e1 + t−2e2 + t−3e3〉.

Let us apply our algorithm to find L satisfying the theorem.
We can start with any L, for example L = 〈e1, e2, e3〉. We have val(det(L)) = 0,

c(L,L1) = 0, c(L,L2) = c(L,L3) = −3, while

A(L1, L2, L3) = val(det(e1, t
−3e3, e1 + t−2e2 + t−3e3)) = −5.

The tight generators for L with respect to L1, when projected to L/tL give the
three-dimensional vector space W1 spanned by e1, e2, e3. The tight generators for L
with respect to L2 or L3, when projected to L/tL give the one-dimensional vector
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space W2 = W3 spanned by e3. The maximum number of linearly independent rep-
resentatives is 2. Then let I = {2, 3}, so that W = W2 + W3 is the one-dimensional
space spanned by e3. Let L′ = t−1W + L = 〈e1, e2, t

−1e3〉.
It turns out that our algorithm terminates after one step, as val(det(L′)) = −1,

c(L,L1) = 0, c(L,L2) = c(L,L3) = −2.
The reader may also try starting with L = 〈e1, e2, te3〉. It will then take two steps

to implement the algorithm.

5. Buildings and Laminations
We can now apply our main theorem, Theorem 4.3, to the study of intersection pair-
ings between higher laminations. These intersection pairings extend the intersection
pairing between laminations on a surface defined by Thurston, which arise in the spe-
cial case when G = SL2. (See [2] for the relationship between laminations and cluster
algebras in this case.)

The next few subsections will introduce higher laminations and translate the main
theorem into this language. We start by introducing the objects used to define higher
laminations, the affine Grassmannian and the affine building. We will then describe
some invariants f tijk of configurations in the affine Grassmannian and the affine build-
ing that are tropicalizations of invariants of configurations of flags. Our main theorem,
once translated to this context, will give an interpretation of the functions f tijk in terms
of the metric geometry of the building.

5.1. Affine Grassmannian and affine buildings. Let G be one of the groups
GLn, PGLn or SLn. Write G∨ for its Langlands dual group, GLn, SLn or PGLn,
respectively. Let F be a field, which for our purposes will always be R or C. Let
O = F[[t]] and K = F((t)) as before. Note that O is naturally a valuation ring.

The affine Grassmannian for G is an (ind-)scheme whose F -points are the set

Gr(F) = Gr(G) = G(K)/G(O).

Here is a concrete description of this set when G = GLn, PGLn and SLn. For
G = GLn, a point in the affine Grassmannian is given by a lattice in Kn (a finitely
generated, rank n, O-submodule of Kn). For G = SLn, a point in the affine Grassman-
nian corresponds to a lattice which has the property that this lattice has generators
v1, . . . , vn such that

v1 ∧ · · · ∧ vn = e1 ∧ · · · ∧ en.
Here e1, . . . , en is the standard basis of Kn. For G = PGLn, a point in the affine
Grassmannian corresponds to an equivalence class of lattices up to scale: two lattices
L and L′ are equivalent if L = cL′ for some k ∈ K. In all three cases, the affine
Grassmannian consists of some set of lattices. Moreover, in each case, G(K) acts on
the set of such lattices, and the stabilizer of any lattice is isomorphic to G(O).

The affine Grassmannian has a metric naturally taking values in the dominant
coweights of G. Recall that the coweight lattice Λ is defined as Hom(Gm, T ) (the
set of group homomorphisms from a one-dimensional torus into the maximal torus
T ⊂ G). The dominant coweights are those coweights lying in the dominant cone. For
example, for G = GLn, the set of dominant coweights is exactly the set of

µ = (µ1, . . . , µn) ∈ Zn

where µ1 > µ2 > · · · > µn. For G = SLn and PGLn, the coweights are given by
similar conditions. For SLn, the dominant coweights further satisfy the relation µ1 +
· · ·+ µn = 0. For PGLn, the dominant coweights lie in the quotient Zn/(1, 1, . . . , 1).
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Pairs of elements of Gr up to the action of G(K) are in bijection with double cosets

G(O)\G(K)/G(O).

These cosets are parameterized by the set Λ+ of dominant coweights of G. Let us
explain further.

Fix a basis e1, . . . , en of Kn. For any dominant coweight µ = (µ1, . . . , µm), we can
consider the element of G(K) which is given by the matrix with diagonal entries t−µi .
Applying this element to the trivial lattice 〈e1, . . . , en〉 gives us a lattice which we will
call tµ. Any two points p and q of the affine Grassmannian can be translated by some
element of G(K) to t0 and tµ, respectively. It turns out that µ will be unique. This
gives the identification of the double coset space with Λ+.

For p and q as above, we will write

d(p, q) = µ

and say that the distance from p to q is µ. Note that this is a non-symmetric distance
function. We have the relation

d(q, p) = −w0d(p, q)

where w0 is the longest element of the Weyl group of G. There is a partial order on Λ+

defined by λ > µ if λ−µ is a positive linear combination of positive co-roots). Under
this partial ordering, the distance function satisfies a version of the triangle inequality.
If we take this metric on the affine Grassmannian, then G(K) acts by isometries.

We can now introduce the affine building for G = PGLn, the case which is of the
most interest to us. The affine building is a simplicial complex which captures the
geometry of the above metric on the affine Grassmannian.

The set of vertices of the affine building for PGLn are in bijection with the points of
the affine Grassmannian Gr(PGLn). The simplices of the affine building are as follows:
for any lattices L0, L1, . . . , Lk, there is a k-simplex with vertices at L0, L1, . . . , Lk if
and only if

L0 ⊂ L0 ⊂ · · · ⊂ Lk ⊂ t−1L0.

(Recall that Gr(PGLn) consists of lattices up to scale. For this reason, we will need to
choose appropriate representatives L0, . . . , Lk. Note that it may be necessary to scale
some of the Li in order to fulfill this condition.) The non-symmetric, coweight-valued
metric we defined above descends to a metric on the affine building.

5.2. Invariants of Flags. We now define some functions of triples of principal
affine flags as well as their tropical analogues, which are functions of triples of points
in the affine Grassmannian.

We start by defining principal affine flags for G = SLn. We will work over a field
F. The space of principal affine flags is parameterized by the quotient G/U , where
U ⊂ G is the subgroup of unipotent upper triangular matrices. Concretely, we can
specify a principal affine flag by giving an ordered basis v1, . . . , vn for a vector space
over F. These n vectors determine a flag, where the k-dimensional subspace of this
flag is spanned by v1, . . . , vk for k 6 n. Additionally, the data of a principal affine flag
includes the volume forms

v1 ∧ · · · ∧ vk
on these subspaces. Finally, we require that

v1 ∧ · · · ∧ vn
is the standard volume form (without this requirement, we would be dealing with
GLn flags). Two sets of basis vectors will determine the same principal affine flag if
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they give the same k-forms v1 ∧ · · · ∧ vk for k 6 n. We will sometimes abbreviate
“principal affine flags” by calling them principal flags.

We would like to consider the space of three flags up to the left diagonal action of G:
G\(G/U)3.

Let F1, F2, F3 be three flags which are represented by bases u1, . . . , un, v1, . . . , vn and
w1, . . . , wn respectively. For non-negative integers i, j, k such that i + j + k = n we
can consider the function

fijk(F1, F2, F3) = det(u1, u2, . . . , ui, v1, v2, . . . vj , w1, w2, . . . , wk).
This function is manifestly G-invariant. Note that if one of i, j, k is 0, these functions
only depend on two of the flags. We call such functions edge functions, while the
functions depending on three flags will be called face functions.

Remark 5.1. The functions fijk were used to define the cluster structure on config-
uration spaces of flags in [1]. These are building blocks for the cluster structure on
the space AG,S . The space of configurations of m principal flags is AG,S where S is
a disc with m marked points. For any triangulation of an m-gon, the edge and face
functions form a cluster for the space of configurations of m principal flags.

The functions fijk have tropical analogues, f tijk, which will be functions of three
points in the affine Grassmannian for SLn. The functions f tijk were first defined in [6],
where they were called Hijk.

Let x1, x2, x3 be three points in the affine Grassmannian for SLn, thought of as
lattices. For i, j, k as above with i+ j + k = n, we consider

− val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk))
as u1, . . . , ui range over elements of the O-submodule x1, v1, . . . , vj range over ele-
ments of x2, and w1, . . . , wk range over elements of x3. Define f tijk(x1, x2, x3) as the
maximum value attained by this quantity.

Remark 5.2. The edge functions recover the distance between two points in the affine
Grassmannian. More precisely, for i+ j = n, let us define

f tij(x1x2) := f tij0(x1, x2, x3).
Then we have

f tij(x1x2) = ωj · d(x1, x2) = ωi · d(x2, x1).
Here ωi and ωj are fundamental weights for SLn.

The functions f tijk have a straightforward extension to any triple of GLn lattices.
Let us call that extension f̃ tijk. This allows us to extend f tijk to a function on the
affine Grassmannian for PGLn in the following way. Let x1, x2, x3 be three points in
the affine Grassmannian for PGLn, represented by three lattices L1, L2, L3. For i, j, k
as above, we can again maximize

− val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk))
as before. Call the resulting maximum

f̃ tijk(L1, L2, L3).

Note that f̃ tijk(L1, L2, L3) will depend on the representative lattices L1, L2, L3 that
we chose, which are only determined up to scale. To fix this, we renormalize, defining
(3)

f tijk(x1, x2, x3) := f̃ tijk(L1, L2, L3) + i val(det(L1)) + j val(det(L2)) + k val(det(L3))
n

.
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Note that if L1, L2, L3 have determinant 1 (and hence correspond to points in the
affine Grassmannian for SLn) our definition reduces to the previous definition.

Remark 5.3. The functions f tijk and di are related to those used in our main theorem,
Theorem 4.3. Observe that

• f̃ tn(L) = −A(L,L, . . . , L) = − val(det(L)), so that we always have f tn(L) = 0,
• f̃ tijk(L1, L2, L3) = −A(L1, . . . , L1︸ ︷︷ ︸

i

, L2, . . . , L2︸ ︷︷ ︸
j

, L3, . . . , L3︸ ︷︷ ︸
k

),

• d1(L,L′) = −c(L,L′)− 1
n f̃n(L′) + 1

n f̃n(L) = f̃n−1,1(L,L′) + (n−1) val(det(L))
n +

val(det(L′))
n ,

• −c(L,L′) = f̃n−1,1(L,L′) + val(det(L)).
The functions of the type f tijk or di therefore differ from functions of the type A

or c by normalizations and a change of sign. We chose to use the functions A and c
in the first part of this paper because they were better suited to the arguments of
Theorem 4.3. However, the functions f tijk or di are in some ways more fundamental,
and better suited to the study of buildings and laminations.

It is straightforward to define similar functions

f ti1i2...ik (x1, x2 . . . , xk)

where i1 + i2 + · · ·+ ik = n. Here, x1, x2, . . . , xk are points in the affine building for
PGLn or SLn.

5.3. Metric interpretation of the functions f tijk. We now give another way to
compute the tropical functions f tijk. Whereas f tijk was defined in a valuation-theoretic
way, it turns out that it is determined by the coweight-valued metric on the affine
Grassmannian (and affine building).

We need some notation first. Let ωi be the i-th fundamental weight for SLn:
ωi = (1, . . . , 1, 0, . . . , 0) where there are i 1’s and n − i 0’s. Recall that for any two
points p, q in the affine Grassmannian, d(p, q) is an element of the coweight lattice for
SLn.

Define, for 1 6 i 6 n− 1,

di(L,M) = ωi · d(L,M).

Note that if L,M are both in the affine Grassmannian for SLn, then di(L,M) is an
integer for all i, while if they are in the affine Grassmannian for PGLn, di(L,M) may
have denominator n.

We will extend the definition of di(L,M) to the case when L,M are both in the
affine Grassmannian for PGLn. We will need to view the coweight lattice of PGLn
as containing the coweight lattice of SLn as an index n sublattice. Recall that the
coweight lattice for SLn is the subset of Zn given by

{(x1, . . . , xn)|x1 + · · ·+ xn = 0}.

The coweight lattice for PGLn is given by

Zn/(1, 1, . . . , 1).

Any point in Zn can be translated into the plane x1 + · · ·+xn = 0 using some multiple
of (1, 1, . . . , 1), at the cost of possibly introducing entries in 1

nZ. One can then easily
see that the weight lattice for PGLn naturally contains as an index n sublattice the
coweight lattice of SLn.
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Therefore if p and x are in the affine Grassmannian for PGLn, viewing the
coweights of PGLn in the same space as the coweights of SLn, we can define pairings
with SLn weights. Thus we may consider the quantities

di(p, x) := ωi · d(p, x).

These quantities lie in 1
nZ. Finally, note that

di(p, x) = dn−i(x, p).

Here is our main theorem giving a metric interpretation of the functions f tijk. The
most general form can be found in Theorem 5.10.

Theorem 5.4. Let x1, x2, x3 be any configuration of points in the affine Grassmannian
for PGLn. Then

(4) f tijk(x1, x2, x3) = min
p

[di(p, x1) + dj(p, x2) + dk(p, x3)],

where the minimum is taken over all p in the affine Grassmannian for PGLn.

Remark 5.5. Note that both sides of the expression are in 1
nZ. A special case of the

theorem is when x1, x2, x3 is a configuration of points in the affine Grassmannian for
SLn. In this case, both sides of the expression are integers. The integrality on the left
comes from a valuation, while the integrality on the right is slightly more subtle. In
general, it is easy to check that the expression

di(p, x1) + dj(p, x2) + dk(p, x3)

is determined mod 1 by x1, x2, x3, i.e. it does not depend on p when considered mod 1.
Clearly if x1, x2, x3, p are all in the affine Grassmannian for SLn, the pairing between
coweights and weights guarantees that the expression is integral, hence it is integral
for any p.

Remark 5.6. Note that even in the case that x1, x2, x3 are all in the affine Grassman-
nian for SLn, the minimizing point p may be in the affine Grassmannian for PGLn.
For example, let x1 correspond to the lattice 〈e1, e2, e3〉, x2 the lattice 〈te1, t

−1e2, e3〉,
and x3 the lattice 〈te1, e2, t

−1e3〉. There is a unique minimizing point p given the
lattice 〈te1, e2, e3〉 which is in the affine Grassmannian for PGLn but not for SLn.

Remark 5.7. We now have a description of the functions f tijk that is completely of a
metric nature. Therefore the functions f tijk may also be naturally viewed as functions
on configurations of points in the affine building. We observed in [7] that for positive
configurations of points in the affine building, the functions f tijk only depended on
metric properties of the configuration within the building. Moreover, we did not give
an explicit formula for this dependence. We now have an explicit formula that holds
for all configurations, not just positive ones.

Proof of Theorem 5.4. Let us now show how the theorems above follow from Theo-
rem 4.3. We will give the proof in the case that G = PGLn, which is more general
than the case when G = SLn.

We wish to show that

f tijk(x1, x2, x3) = min
p
di(p, x1) + dj(p, x2) + dk(p, x3).

First let x1, x2, x3 be represented by lattices L1, L2, L3. Let us take in the Theorem 4.3
the n lattices

L1, . . . , L1︸ ︷︷ ︸
i

, L2, . . . , L2︸ ︷︷ ︸
j

, L3, . . . , L3︸ ︷︷ ︸
k

.
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The theorem gives us that there exists a lattice L such that

(5) val(det(L)) + i · c(L,L1) + j · c(L,L1) + k · c(L,L3)
= A(L1, . . . , L1, L2, . . . , L2, L3, . . . , L3),

where A(L1, . . . , L1, L2, . . . , L2, L3, . . . , L3) is the minimal value of

val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk))

as u1, . . . , ui range over elements L1, v1, . . . vj range over elements of L2, and
w1, . . . , wk range over elements of L3.

Because

A(L1, . . . , L1, L2, . . . , L2, L3, . . . , L3) = −f̃ tijk(L1, L2, L3),

the theorem tells us that there are vectors

u1, . . . , ui, v1, . . . vj , w1, . . . , wk

minimizing
val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk))

such that the vectors

t−c(L,L1)u1, . . . , t
−c(L,L1)ui

t−c(L,L2)v1, . . . , t
−c(L,L2)vj

t−c(L,L3)w1, . . . , t
−c(L,L3)wj

all lie in L, and moreover are a set of generators for L. Moreover, these vectors are
tight generators for L with respect to L1, L2, and L3.

Let us unravel what this tells us. This means, for example, that if we view d(L,L1)
as an element of Zn (viewing L, and Li as GLn lattices temporarily), then d(L,L1)
has as its first i entries −c(L,L1). A simple calculation then tells us that

di(L,L1) = −i · c(L,L1) + i

n
(val(det(L1))− val(det(L))).

Similarly,

dj(L,L2) = −j · c(L,L2) + j

n
(val(det(L2))− val(det(L))).

dk(L,L3) = −k · c(L,L3) + k

n
(val(det(L3))− val(det(L))).

Putting this together with Equation (3) yields the result. �

Remark 5.8. The above theorem gives a way of computing f tijk(L1, L2, L3), an invari-
ant of three points in the affine building, in terms of distances between points in the
building. The latter are easy to compute using Birkhoff factorization. In practice, the
most efficient way to compute f tijk(L1, L2, L3) is to find a lattice L which is generated
the appropriate tight vectors, as in the proof of the theorem. The proof therefore
gives an algorithm for calculating f tijk(L1, L2, L3). The only other method the author
knows of is to find a basis of generators of L1, L2, L3 and compute all the possible(

n

i

)(
n

j

)(
n

k

)
determinants of various subsets of generators. (This is essentially how these functions
were defined in [6].) Compare with Remarks 2.4, 4.6.
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Example 5.9. The proof above shows that a lattice L satisfying Equation (5) au-
tomatically satisfies Equation (4). However, the reverse is not true. In fact, this al-
ready fails for the functions f tij of two arguments. To take a simple example, let
L1 = 〈e1, e2, e3〉 and L2 = 〈t−2e1, t

−1e2, e3〉. Suppose we are interested in f t1,2(L1, L2).
If L = 〈e1, e2, e3〉, we clearly have

d1(L,L1) + d2(L,L2) = 0 + 1 = f t1,2(L1, L2)
so that L satisfies Equation (4). However

val(det(L) + c(L,L1) + 2c(L,L2) = 0 + 0 + 2 · (−2) = −4〈−3 = A(L1, L2, L2),
so that L does not satisfy Equation (5).

However we may take L = 〈t−1e1, e2, e3〉 so that

d1(L,L1) + d2(L,L2) = 1
3 + 2

3 = f t1,2(L1, L2)

and
val(det(L) + c(L,L1) + 2c(L,L2) = −1 + 0 + 2 · (−1) = −3 = A(L1, L2, L2).

It is not hard to see that the theorem has the following mild generalization. Let
i1 + i2 + · · · + ik = n. For points x1, x2, . . . , xk in the affine building for PGLn or
SLn, we have that

Theorem 5.10.
f ti1i2...ik (x1, x2 . . . , xk) = min

p
[di1(p, x1) + di2(p, x2) + · · ·+ dik (p, xk)]

where the minimum is taken over all p in the affine Grassmannian for PGLn.

Remark 5.11. Note that if we phrase this theorem in terms of the functions purely
in terms of lattices, it becomes somewhat more cumbersome. For example, we could
write

f̃ ti1i2...ik (L1, L2 . . . , Lk) = min
L

(−n+ 1)f̃ tn(L) +
k∑
j=1

f̃ tn−ij ,ij (L,Lj)


where the minimum is taken over all lattices L in the affine Grassmannian for PGLn.

Remark 5.12. Taking i1 = i2 = · · · = in = 1 in the above theorem, and then adjusting
for normalizations, recovers Theorem 4.3.

5.4. Higher Laminations. We will now specialize to the case of positive config-
urations of points in the affine building, which give tropical points of AG,S in the
case that S is a disc with marked points. First we recall the definition of a positive
configurations in the affine building, which is a particular type of higher lamination.

Definition 5.13. Take m points of the real affine Grassmannian,
x1, x2, . . . , xm.

This configuration of points will be called a positive configuration of points in the
affine Grassmannian if and only if we have a collection of ordered bases for each xi,

vi1, vi2, . . . , vin

such that for each triple of integers p, q, r, 1 6 p < q < r 6 m, and each triple of
non-negative integers i, j, k such that i+ j + k = n,

• f tijk(xp, xq, xr) = − val(det(vp1, . . . , vpi, vq1, . . . vqj , vr1, . . . , vrk)), and more-
over

• the leading coefficient of det(vp1, . . . , vpi, vq1, . . . vqj , vr1, . . . , vrk) is positive.
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We can use the same definition when G = SLn or PGLn.

Remark 5.14. It is sufficient to check the above two conditions for only those triples
p, q, r that are vertices of a triangle in a particular triangulation of the m-gon. If the
conditions hold in one triangulation, they hold in any other triangulation.

Positive configurations of points in the affine Grassmannian, up to metric equiv-
alence given by the metric on the affine building, give the integral tropical points
of AG,S , which we write AG,S(Zt). More generally, the tropical points AG,S(Rt) are
higher laminations.

5.5. Relationship to the Duality Conjectures. Cluster algebras naturally oc-
cur as rings of functions on cluster varieties. For any cluster variety A, there is an
associated cluster variety X as well as a map, π : A → X , which intertwines cluster
structures on both these varieties. The pair (A,X ) forms what is called a cluster
ensemble.

The duality conjectures of Fock and Goncharov relate the two spaces AG,S and
XG∨,S , where G∨ is the Langlands dual group of G. These two spaces are both cluster
varieties, and they are conjectured to be mirror duals to each other.

The Fock–Goncharov conjectures roughly state that the tropical points of one space
parameterize a canonical basis of functions on the other space. This means that, for
example, XG∨,S(Zt) parameterizes a basis of functions forAG,S . This bijection satisfies
many compatibility relations which we will not discuss here. These conjectures are
an active area of research, and have been proven in many cases by Goncharov and
Shen [4], building on the work of Gross, Hacking, Keel and Kontsevich [5].

The work of [5] places these duality conjectures in the framework of mirror sym-
metry. They construct a canonical basis that they call the theta basis. The theta basis
comes from the combinatorics of scattering diagrams, which in turn encode certain
tropical curve counts on these spaces.

The duality conjectures further imply that there should be a pairing between trop-
ical spaces:

XG∨,S(Zt)×AG,S(Zt)→ Z.
This pairing will carry much combinatorial information about the cluster varieties
XG∨,S and AG,S .

Our goal here is to give a way to compute the intersection pairing which is explicit,
and doesn’t depend on construction of, for example, theta bases. Our computation
foregrounds the tropical, piecewise-linear nature of the intersection pairing, and is
geometric and combinatorial, whereas the constructions of [5] are recursive and fairly
complicated.

Let us now explain how to construct this pairing. A tropical point l ∈ XG∨,S(Zt)
corresponds to a function fl on AG,S by duality conjectures. A point l′ ∈ AG,S(Zt)
arises by taking valuations of some (positive) Laurent-series valued point xl′ ∈
AG,S(K):

− val(xl′) = l′.

Then we get a pairing I:
I(l, l′) = − val fl(xl′).

The value of I(l, l′) is independent of the choice of the point xl′ , because fl should
be a Laurent polynomial in the cluster coordinates.

Alternatively, we can perform the dual construction. A lamination l′ ∈ AG,S(Zt)
corresponds to a function fl′ on XG∨,S . Then

I(l, l′) = − val fl′(xl)
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where − val(xl) = l for xl ∈ XvG,S(K). Surprisingly, these dual constructions conjec-
turally give the same answer.

The pairing I can be interpreted as an intersection pairing between higher lami-
nations, once one identifies the tropical spaces XG∨,S(Zt) and AG,S(Zt) with higher
laminations for the groups G∨ and G, respectively. When G = SL2, I specializes to
the usual intersection pairing between A- and X -laminations on a surface S ([1]).

The functions fijk are particular examples of cluster variables on AG,S . Cluster
variables onAG,S–in fact, all cluster monomials–are conjecturally part of the canonical
basis parameterized by XG∨,S(Zt). Consider a cluster for the space AG,S consisting of
functions a1, . . . , aN . Let the corresponding cluster X -variables on the space XG∨,S be
x1, . . . , xN . (There is a notion of “corresponding variable” because AG,S and XG∨,S

are part of dual cluster ensembles.) Then for integers di > 0 the cluster monomial

ad1
1 · · · a

dN

N

should correspond to the tropical point in (d1, . . . , dN ) ∈ XG∨,S(Zt) in the coordinate
chart x1, . . . , xN .

Theorem 4.3 gives a way of computing f tijk(l′) for any point l′ ∈ AG,S(Zt). Thus
it gives a geometric interpretation of the intersection pairings.

Furthermore, for any cluster chart coming from a triangulation of S, the associated
cluster monomials are parameterized by a cone in XG∨,S(Zt). The tropical pairing is
additive on this cone. In other words, if f and g are cluster monomials for the same
cluster, we have

(fg)t(l) = f t(l) + gt(l).
Thus, for any cluster that consists of only functions of the type fijk (there are many
of these, one for each ideal triangulation of S), we can calculate f t whenever f is a
cluster monomial in such a cluster. We therefore understand the pairing between a
union of cones in XG∨,S(Zt) and the whole space AG,S(Zt).

One would like to have a geometric interpretation of these intersection pairings
in general, for all points of XG∨,S(Zt) and AG,S(Zt). We will discuss further steps
towards this in Section 6.

Remark 5.15. We close this section by mentioning a surprising consequence. First
recall that the functions fijkl satisfy various identities, for example, for i+j+k+l = n,
we have:

fijklfi+1,j−1,k+1,l−1 = fi,j,k+1,l−1fi+1,j−1,k,l + fi+1,j,k,l−1fi,j−1,k+1,l.

Then we can tropicalize this to get that evaluating the three functions
f tijkl + f ti+1,j−1,k+1,l−1,

f ti,j,k+1,l−1 + f ti+1,j−1,k,l,

f ti+1,j,k,l−1 + f ti,j−1,k+1,l

on four points in the affine building gives three numbers such that the two largest of
these numbers are equal. However, if we use the metric interpretation of the functions
f tijkl, this statement seems to be fairly non-trivial.

6. Generalizations
We explained in the previous section how our metric formula for the function f tijk gave
a way to compute intersection pairings between a subset of XG∨,S(Zt) and AG,S(Zt).
The key observation was that if f is a cluster variable in some cluster, then giving
a metric interpretation of f t gives us a way of computing some set of intersection
pairings. More precisely, if fl is the function on AG,S(Zt) which corresponds to the
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tropical point l ∈ XG∨,S(Zt), then giving a metric interpretation of f tl is the same as
computing I(l,−). Our goal for this section will therefore be to give a metric formula
for f t for several more instances where f is a cluster variable.

One can show using the sequence of mutations for a flip and an inductive argument
that the functions

fi1i2...ik

are cluster variables. Then Theorem 5.10 gives a metric formula for

f ti1i2...ik .

We will now show how this can be further extended to other cluster variables.

6.1. Tropicalization of Functions. We begin by recalling from [3] and [7] how
to evaluate f t on a higher lamination for a cluster variable f . Our treatment will be
slightly different from those papers, and will be tailored to our particular goals.

Let A denote the variety of principal affine flags, G/U . The space of configurations
of m flags, denoted Confm(A), the quotient of (G/U)n by the diagonal action of G.

It is well-known that the functions on AG are naturally isomorphic to⊕
λ∈Λ+

Vλ

as a G-representation under the left action of G. Moreover, it is a fact that any cluster
variable f in the space of functions O(Confm(A)) is given by an invariant in

[V ∗λ1
⊗ V ∗λ2

⊗ · · · ⊗ V ∗λm
]G

for some set of dominant weights λi. Here, V ∗ is the representation dual to V . We
use the dual representations here for convenience.

For example, the functions fijk defined previously are given by invariants in

[V ∗ωi
⊗ V ∗ωj

⊗ V ∗ωk
]G.

A point in A gives a compatible family of vectors vµ ∈ Vµ for all highest weights
µ. A point in (G/U)n gives a vectors

vµ1 ⊗ vµ2 ⊗ · · · ⊗ vµm ∈ Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµm

for all m-tuples of highest weights (µ1, µ2, . . . , µm). Up to the action of G, we get a
vector in

[Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµm
]G.

Then the function f evaluated on a point in Confm(A) is then given by contracting
f with the vector

vλ1 ⊗ vλ2 ⊗ · · · ⊗ vλm
.

Let us now describe how to tropicalize f . A point in the affine Grassmannian of G
gives us not only a lattice, but a lattice in every representation of G. Let x1, . . . , xm
be a configuration of points in the affine Grassmannian. For each xi, we have a lattice
Li ⊂ Vλi

⊗K. We maximize the expression

− val(f(v1, v2, . . . , vm))

over vectors vi ∈ Li. This maximum value will give f t(x1, x2, . . . , xm).
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6.2. Some examples. Now, let us first make an easy observation. Because the outer
automorphism of SLn acts on everything in sight, we have a dual statement to The-
orem 5.10. Note that the outer automorphism of SLn takes any representation to
its dual representation, and hence interchanges the weights ωa and ωn−a. Now sup-
pose that i1 + i2 + · · · + ik = (k − 1)n. Then if we put js = n − is, we have that
j1 + j2 + · · ·+ jk = n. We can then define the function

fi1i2...ik

which is dual to the function fj1j2...jk
. These functions also turn out to be cluster

variables [4, 8].
For points x1, x2, . . . , xk in the affine building for PGLn or SLn, we can define the

functions
f ti1i2...ik (x1, x2 . . . , xk)

by the procedure given in the previous section. Then we have that
Theorem 6.1.

f ti1i2...ik (x1, x2 . . . , xk) = min
p

[di1(p, x1) + di2(p, x2) + · · ·+ dik (p, xk)]

where the minimum is taken over all p in the affine Grassmannian for PGLn.
This is an easy theorem given the above discussion, but it motivates the first

example that goes beyond the results of this paper.
We will consider a function in the cluster algebra for Conf4(A) constructed in [8].

Let 1 6 a, b, c, d < n be four integers satisfying a + b > n and a + b + c + d = 2n.
Then there an invariants inside

[Vωa ⊗ Vωb
⊗ Vωc ⊗ Vωd

]SLn

given by the web in below.

a

n− a

d

n− d

b c

a+ b− n

Here is a more concrete description of the function. Given four flags
t1, . . . , tn;
u1, . . . , un;
v1, . . . , vn;
w1, . . . , wn;

first consider the forms
Ta := t1 ∧ · · · ∧ ta,
Ub := u1 ∧ · · · ∧ ub,
Vc := v1 ∧ · · · ∧ vc,
Wd := w1 ∧ · · · ∧ wd.
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There is a natural map
φa+b−n,n−a :

∧b
V →

∧a+b−n
V ⊗

∧n−a
V.

There are also natural maps
Wd ∧ − ∧ Vc :

∧a+c−n
V →

∧n
V ' F

and
Ta ∧ − :

∧n−a
V →

∧n
V ' F.

Applying these maps to the first and second factors of φa+c−n,n−a(Ub), respectively,
and then multiplying, we get get the value of our function. This is a function on
Conf4ASLn . Let us call this function F .

Conjecture 6.2. F t(x1, x2, x3, x4) is given by the minimum value of
da(p, x1) + db(p, x2) + da+b−n(q, p) + dc(q, x3) + dd(q, x4)

over p and q in the affine building for PGLn.

In other words, the function F t is given by the minimal weighted distance over a
graph embedded in the building. The leaves of the graph are prescribed to land on
the points x1, x2, x3, x4, while the weights are determined by the web calculating the
function F .
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