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The reflection representation in the
homology of subword order

Sheila Sundaram

Abstract We investigate the homology representation of the symmetric group on rank-selected
subposets of subword order. We show that the homology module for words of bounded length,
over an alphabet of size n, decomposes into a sum of tensor powers of the Sn-irreducible
S(n−1,1) indexed by the partition (n− 1, 1), recovering, as a special case, a theorem of Björner
and Stanley for words of length at most k. For arbitrary ranks we show that the homology is
an integer combination of positive tensor powers of the reflection representation S(n−1,1), and
conjecture that this combination is nonnegative. We uncover a curious duality in homology in
the case when one rank is deleted.

We prove that the action on the rank-selected chains of subword order is a nonnegative
integer combination of tensor powers of S(n−1,1), and show that its Frobenius characteristic is
h-positive and supported on the set T1(n) = {hλ : λ = (n− r, 1r), r > 1}.

Our most definitive result describes the Frobenius characteristic of the homology for an
arbitrary set of ranks, plus or minus one copy of the Schur function s(n−1,1), as an integer
combination of the set T2(n) = {hλ : λ = (n−r, 1r), r > 2}.We conjecture that this combination
is nonnegative, establishing this fact for particular cases.

1. Introduction
Let A∗ denote the free monoid of words of finite length in an alphabet A. Subword
order is defined on A∗ by setting u 6 v if u is a subword of v, that is, the word
u is obtained by deleting letters of the word v. This makes (A∗,6) into a graded
poset with rank function given by the length |w| of a word w, the number of letters
in w. The topology of this poset was first studied by Farmer (1979) and then by
Björner, who showed in [5, Theorem 3] that any interval of this poset admits a dual
CL-shelling. The intervals are thus homotopy Cohen–Macaulay, as well as all rank-
selected subposets obtained by considering only words whose rank belongs to a finite
set S [2, Theorem 4.1], [7, Theorem 8.1]. Suppose now that the alphabet A is finite, of
cardinality n. The symmetric group Sn acts on A, and thus on A∗. To avoid trivialities
we will assume n > 2.

In this paper we describe the homology representation of intervals [r, k] of consec-
utive ranks in A∗, as well as some other rank-selected subposets, using the Whitney
homology technique and other methods developed in [21]. All homology in this paper
is taken over the field of complex numbers. We refer the reader to [17] for general
facts about rank-selection. We show that the unique nonvanishing homology of the
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rank-selected subposet A∗[r,k] decomposes as a direct sum of copies of r consecutive
tensor powers of the reflection representation of Sn, that is, the irreducible represen-
tation S(n−1,1) indexed by the partition (n− 1, 1). Theorem 3.7 on consecutive ranks
generalises a theorem in [5] (conjectured by Björner and proved by Stanley) on the
homology representation of the poset of all words of length at most k. We establish
similar results for the Whitney and dual Whitney homology modules. Both turn out
to be permutation modules in each degree, with pleasing orbit stabilisers. Theorem 4.2
establishes the nonnegativity property with respect to tensor powers of S(n−1,1) for
the case when one rank is deleted from the interval [1, k], and leads to a curious homol-
ogy isomorphism (Proposition 4.3), suggesting a homotopy equivalence between the
simplicial complexes associated to the rank sets [1, k]\{r} and [1, k]\{k − r}, for fixed
r, 1 6 r 6 k − 1. Finally Theorem 5.7 establishes that the homology is a nonnegative
sum of tensor powers of S(n−1,1) for rank-sets of size 2.

More generally, we show in Theorem 5.2 that for any nonempty subset S of ranks
[1, k], the homology representation of Sn may be written as an integer combination
of positive tensor powers of the reflection representation. We propose the following
conjecture, which is supported by Theorems 3.7, 4.2 and 5.7:
Conjecture 1.1. Let A be an alphabet of size n > 2. Then the Sn-homology module
of any finite nonempty rank-selected subposet of subword order on A∗ is a nonnegative
integer combination of positive tensor powers of the irreducible indexed by the partition
(n− 1, 1).

These considerations lead us to examine the tensor powers of the reflection repre-
sentation (see Section 6), and the question of how many tensor powers are linearly
independent characters. In answering these questions, we are led to a decomposition
(Theorem 7.7) showing that the kth tensor power of S(n−1,1) plus or minus one copy
of S(n−1,1), has Frobenius characteristic equal to a nonnegative integer combination of
the homogeneous symmetric functions {h(n−r,1r) : r > 2}. It is “almost” an h-positive
permutation module. (In general the homology itself is not a permutation module.)
Inspired by this phenomenon, we prove, in Theorem 7.1, that in fact for all rank sub-
sets T, the homology module H̃(T ) has the property that H̃(T ) + (−1)|T |S(n−1,1) has
Frobenius characteristic equal to an integer combination of the homogeneous symmet-
ric functions {h(n−r,1r) : r > 2}. Theorem 7.3 establishes the truth of the following
conjecture for the homology of several subsets of ranks.
Conjecture 1.2. Let A be an alphabet of size n > 2. Then the Sn-homology module
of any finite nonempty rank-selected subposet of subword order on A∗, plus or minus
one copy of the reflection representation of Sn, is a permutation module. In fact its
Frobenius characteristic is h-positive and supported on the set T2(n) = {hλ : λ =
(n− r, 1r), r > 2}.

We give a simple criterion for when Conjecture 1.1 will imply Conjecture 1.2 in
Lemma 7.9.

The main results of this paper are summarised below. Let A be an alphabet of size
n > 2, and T ⊆ [1, k] a subset of ranks.
Theorem 1.3. The Sn-module induced by the action of Sn on the maximal chains of
the rank-selected subposet of A∗ of words with lengths in T, is a nonnegative integer
combination of tensor powers of the reflection representation S(n−1,1). If |T | > 1, this
module has h-positive Frobenius characteristic supported on the set T1(n) = {hλ : λ =
(n− r, 1r), r > 1}.
Theorem 1.4. The homology module H̃(T ) of words with lengths in T is an integer
combination of positive tensor powers of the reflection representation S(n−1,1), with the
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property that H̃(T ) + (−1)|T |S(n−1,1) has Frobenius characteristic equal to an integer
combination of the homogeneous symmetric functions {h(n−r,1r) : r > 2}.

Both integer combinations are nonnegative when T is one of the following rank
sets: (1) [r, k], k > r > 1; (2) [1, k]\{r}, k > r > 1; (3) {1 6 s1 < s2 6 k}.

By standard symmetric function theory, any Sn-module is a (virtual) sum of per-
mutation modules whose point-stabilisers are Young subgroups. Thus a salient feature
of Theorems 1.3 and 1.4 is that only Young subgroups indexed by hooks appear.

2. Subword order
The subword order poset A∗ has a unique least element at rank 0, namely the empty
word ∅ of length zero. In this section we collect the main facts on subword order
from [5] that we will need. For general facts about posets, Möbius functions, etc. we
refer the reader to [18].

Definition 2.1 ([9]).A word α in A∗ is normal if no two consecutive letters of α are
equal.

For example, aabbccaabbcc is not normal, while abcabc is normal. Normal words are
also called Smirnov words in recent literature. Observe that the number of normal
words of length i is n(n− 1)i−1.

Theorem 2.2 (Farmer [9]).
(1) Let α be any word in A∗. Then the Möbius function of subword order satisfies

µ(0̂, α) =
{

(−1)|α|, if α is a normal word,
0, otherwise.

(2) (See also [22].) Let |A| = n and let A∗n,k denote the subposet of A∗ consisting
of the first k nonzero ranks and the empty word, i.e. of words of length at
most k, with an artificially appended top element 1̂. Then

(1) µ(A∗n,k) = µ(0̂, 1̂) = (−1)k−1(n− 1)k.
(3) [9, Theorem 5 and preceding Remark] A∗n,k has the homology of a wedge of

(n− 1)k spheres of dimension (k − 1).

Björner generalised Part (1) above to give a simple formula for the Möbius function
of an arbitrary interval (β, α), as follows.

Definition 2.3 ([5]).Given a word α = a1a2 . . . an in A∗, its repetition set is R(α) =
{i : ai−1 = ai}. An embedding of β in α is a sequence 1 6 i1 < i2 < · · · < ik 6 n
such that β = ai1ai2 . . . aik . It is called a normal embedding if in addition R(α) ⊆
{i1, i2, . . . , ik}.

Denote by
(
α
β

)
the number of embeddings of β in α, and by

(
α
β

)
n
the number of

normal embeddings of β in α.

Theorem 2.4 ([5, Theorem 1]). For all α, β ∈ A∗,

µ(β, α) = (−1)|α|−|β|
(
α

β

)
n

.

Observing that the word α is normal if and only if its repetition set R(α) is empty,
one sees that this generalises Farmer’s formula for µ(0̂, α).

Recall that the zeta function [18] of a poset is defined by ζ(β, α) = 1 if β 6 α, and
equals zero otherwise.

Theorem 2.5 ([5]). Let A be an alphabet of size n, and β a word in A∗ of length k.
The following generating functions hold:
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(1) [5, Theorem 2 (i)] For the Möbius function of subword order:∑
α∈A∗

µ(β, α)t|α| = tk(1− t)
(1 + (n− 1)t)k+1 .

(2) [5, 3. Remark.] The number of words of length p in the interval [β,∞] depends
only on the length k of β, and equals

p−k∑
i=0

(
p

i

)
(n− 1)i.

(3) [5, 3. Remark.(i)] For the zeta function of subword order:∑
α∈A∗

ζ(β, α)t|α| = tk

(1− nt)(1− (n− 1)t)k .

Farmer’s result on the homology of A∗n,k was strengthened by Björner, who showed
the following (see [2], [7], and also [23] for a survey of lexicographic shellability):

Theorem 2.6 (Björner [5, Theorem 3, Corollary 2]). Every interval (β, α) in the
subword order poset A∗ is dual CL-shellable, and hence homotopy Cohen–Macaulay.
In particular, for a finite alphabet A, the poset A∗n,k of nonempty words of length
at most k, which may be viewed as the result of rank-selection from an appropriate
interval of A∗, is also dual CL-shellable and hence also homotopy Cohen–Macaulay.

We point out three details about Farmer’s original paper:
(1) The order used in the present paper is what Farmer calls the embedding order

(see [9, p. 609]). Farmer’s “subword order” differs from ours and [5].
(2) All homology in Farmer’s paper is ordinary homology, as opposed to reduced

homology in the present paper and [17]. In keeping with his definition of
a graded poset, for the rank function d of subword order, Farmer defines
d(w) = j − 1 if w is a word of length j; in this paper we use the length of the
word as its rank.

(3) In particular, his definition of the k-skeleton Xk of a poset of words X corre-
sponds to our A∗k+1, i.e. to taking the words of length at most (k + 1).

3. Rank-selection in A∗

In this section we will assume the alphabet A is finite of size n.
We follow the standard convention as in [17], [18]: By the homology of a poset P

with greatest element 1̂ and least element 0̂, we mean the reduced homology H̃(P ) of
the simplicial complex whose faces are the chains of P\{0̂, 1̂}. In order to determine
the homology of rank-selected subposets of A∗n,k, we will use the techniques developed
in [21]. For an elementary treatment of these and more general methods, see [20].

Whitney homology was originally defined by Baclawski [1]. Björner showed [3] that
the ith Whitney homology of a graded Cohen–Macaulay poset P with least element
0̂ is given by the isomorphism
(2) WHi(P ) '

⊕
x:rank(x)=i

H̃i−2(0̂, x).

Note that if P has a top element 1̂, then the top Whitney homology coincides with
the top homology of P.

If G is a group acting on the Cohen–Macaulay poset P , then WHi(P ) is also a
G-module. The present author observed that the isomorphism (2) is in fact group-
equivariant, and also established the equivariant acyclicity of Whitney homology
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(see [21]). Thus (2) becomes an effective tool for computing both the G-module
structure of Whitney homology as well as the homology of the full poset, as an
equivariant analogue of the inherently recursive structure in the Möbius function.
This technique was then exploited in [21] and [20] to determine group actions on the
homology of posets.

It is also computationally useful to consider the dual Whitney homology of the
Cohen–Macaulay poset P when P has a top element 1̂, that is, the Whitney homology
of the dual poset P ∗, which we denote by WH∗(P ). Note that we now have an
equivariant isomorphism
(3) WH∗i (P ) '

⊕
x:rank(x)=r−i

H̃i−2(x, 1̂), 0 6 i 6 r.

Here r is the length of the longest chain from 0̂ to 1̂.
See [21] and [20] for a more general version of the following theorem (for arbitrary

posets), and also [23] for additional background on Whitney homology.

Theorem 3.1 ([21, Lemma 1.1, Theorem 1.2, Proposition 1.9]). Let P be a graded
Cohen–Macaulay poset of rank r carrying an action of a group G. Then the unique
nonvanishing top homology of P coincides with the top Whitney homology module
WHr(P ), and as a G-module, can be computed as an alternating sum of Whitney
homology modules:

(4) H̃r−2(P ) '
r−1⊕
i=0

(−1)iWHr−1−i(P ).

In particular, if P (k) denotes the subposet consisting of the first k nonzero ranks, with
a bottom and top element attached, then one has the G-module decomposition
(5) H̃k−2(P (k − 1))⊕ H̃k−1(P (k)) 'WHk(P ), r > k > 1.
Note that WH0(P ) is the trivial G-module, while WHr(P ) gives the reduced top ho-
mology of the poset P .

Richard Stanley proved Björner’s conjecture that

Theorem 3.2 ([5, Theorem 4]). The Sn-action on the unique nonvanishing homology
H̃k−1(A∗n,k,C) is the module given by the kth tensor power of the irreducible repre-
sentation indexed by the partition (n− 1, 1).

In the following theorem, we formalise Stanley’s insight into subword order, as used
in the proof of the above theorem. For more background on the Hopf trace formula
and its use in poset homology, see [20]. Recall that the Lefschetz module of a poset P is
the alternating sum (by degree) of the homology modules of (the order complex) of P.

Denote by Sλ the irreducible representation of the symmetric group Sn indexed by
the partition λ of n, and write S⊗iλ for the ith tensor power of the module Sλ.

Theorem 3.3. Let {Pn} be any sequence of finite posets each carrying an action of
the symmetric group Sn, such that

(1) For any g ∈ Sn, the fixed-point subposet P gn is isomorphic to the poset Pfix(g),
where fix(g) is the number of fixed points of g as a permutation of Sn, and

(2) the Möbius number µ(Pn) is a polynomial in (n− 1), say
∑
i>0 bi(n− 1)i.

Then the Lefschetz module of Pn decomposes as a sum of ith tensor powers of the
irreducible indexed by the partition (n− 1, 1), with coefficient equal to bi, i > 0. (Note
that the 0th tensor power corresponds to the trivial Sn-module S(n).) In particular,
the Sn-module structure of the Lefschetz module of Pn is completely determined by its
Möbius number.
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Now assume Pn is Cohen–Macaulay, as well as all the fixed-point subposets P gn .
If for all k > 0, the Betti number of WHk(Pn) is a polynomial in (n − 1), then this
polynomial determines the trace of g ∈ Sn on the kth Whitney homology of Pn. The
representation of Sn on WHk(Pn) is therefore a linear combination of tensor powers
of the irreducible S(n−1,1).

Proof. This is clear since

(1) ([17, 18, 20]) the Lefschetz module of Pn has (virtual) degree µ(Pn), the Euler
characteristic of the order complex of Pn;

(2) ([18, 20]) by the Hopf trace formula, the trace of an element g ∈ Sn on this
Lefschetz module is the Möbius number µ(P gn) of the fixed-point poset P gn ,
since it is the Euler characteristic of the order complex of P gn ;

(3) by hypothesis, µ(P gn) = µ(Pfix(g)) =
∑
i bi(fix(g)− 1)i, and finally

(4) the trace of g on the irreducible Sn-module indexed by (n− 1, 1) is fix(g)− 1.

Similar conclusions hold for Whitney homology in the case when the posets are
Cohen–Macaulay. The key observation here is that from Björner’s formulation Equa-
tion (2), it follows that the Whitney homology of the fixed-point subposet P gn coincides
with the Whitney homology of Pfix(g). �

Our motivating example for the poset Pn satisfying the conditions of Theorem 3.3
is clearly subword order A∗ when |A| = n. More generally, fix an integer k > 1, and
let S be any subset of the ranks [1, k]. Then the rank-selected subposet A∗n,k(S) of A∗
consisting of elements with ranks belonging to S also satisfies the conditions of Theo-
rem 3.3. When S = [1, k] we denote this rank-selected subposet A∗[1,k] simply by A∗n,k.

Using the generating function for the Möbius function of A∗ given in Theorem 2.5,
Theorem 3.5 below computes all but the top Whitney homology Sn-modules for sub-
word order. The proof requires a key formula, which we derive from the generating
function for the Möbius function of A∗ given in Theorem 2.5. We isolate this compu-
tation in the following lemma.

Lemma 3.4. Let β be any element of A∗n,k\{1̂}, where the alphabet A has cardinality n.
Then

µ(β, 1̂)A∗
n,k

(−1)k+1−|β| =
(
k

|β|

)
(n− 1)k−|β|.

In particular this Möbius number depends only on the rank (length) of the word β.

Proof. For convenience let |β| = i. We have, using the defining recurrence for the
Möbius function and the generating function in (1) of Theorem 2.5,

µ(β, 1̂)A∗
n,k

(−1)k+1−|β| = (−1)k+1−i(−1)
∑

α∈A∗
n,k

α<1̂

µ(β, α)

= (−1)k−i
k∑
j=i

∑
α∈A∗

n,k

|α|=j

µ(β, α)

= (−1)k−i
k∑
j=i

[tj ](1− t)ti(1 + t(n− 1))−(i+1)

= (−1)k−i
k∑
j=i

[tj−i](1− t)(1 + t(n− 1))−(i+1).
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Setting u = j − i, this in turn equals

(−1)k−i
k−i∑
u=0

[tu](1− t)(1 + t(n− 1))−(i+1) = (−1)k−i[tk−i](1 + t(n− 1))−(i+1),

(since for any power series f(t), one has
∑m
j=0[tj ](1− t)f(t) = [tm]f(t)),

= (−1)k−i
(
−(i+ 1)
k − i

)
(n− 1)k−i

=
(
i+ 1 + k − i− 1

k − i

)
(n− 1)k−i.

The last line follows since
(−m
j

)
= (−1)j

(
m+j−1

j

)
, thereby completing the proof. �

Theorem 3.5. Consider the subword order poset A∗n,k, with |A| = n. As Sn-modules,
the Whitney homology WH(A∗n,k) and the dual Whitney homology WH∗(A∗n,k), for
1 6 i 6 k, are as follows. Note that WH0(A∗n,k) = S(n) = WH∗k+1(A∗n,k) (the trivial
Sn-module).

(6) WHi(A∗n,k) = S⊗i(n−1,1) ⊕ S
⊗(i−1)
(n−1,1);

WH∗k+1−i(A∗n,k) =
(
k

i

)
S
⊗(k−i)
(n−1,1) ⊗ (S(n−1,1) ⊕ S(n))⊗i(7)

=
i⊕

j=0

(
k

i

)(
i

j

)
S
⊗j+(k−i)
(n−1,1) .(8)

Proof. Equation (6) is immediate from Theorems 3.1 and 3.2.
For fixed k, we will show that the Betti number of the kth dual Whitney homology

is a polynomial in (n− 1) with nonnegative coefficients. By Theorem 3.3, to compute
the action of Sn, it is enough to carry out the appropriate Möbius number (in effect,
Betti number) computations.

For the dual Whitney homology, for 0 6 i 6 k we have
WH∗k+1−i(A∗n,k) =

⊕
x:|x|=i

H̃(x, 1̂)A∗
n,k
.

Computing Betti numbers, and using Lemma 3.4, we have that the dimension of the
dual Whitney homology module equals∑

x any word
|x|=i

(−1)k+1−iµ(x, 1̂)A∗
n,k

=
∑

x any word
|x|=i

(
k

i

)
(n− 1)k−i = ni

(
k

i

)
(n− 1)k−i.

This expression translates into the one in the statement of the proposition, since the
trace of g on S(n−1,1)⊕S(n) is the number of fixed points of g. The second expression
is obtained from the binomial expansion of ni into powers of (n− 1). �

Corollary 3.6. The top homology of A∗n,k as an Sn-module is also given by the
alternating sums
k∑
i=0

(−1)k−i
(
S(n−1,1) ⊕ S⊗i(n) ⊗

(
k

i

)
S
⊗(k−i)
(n−1,1)

)
=

k∑
i=0

(−1)k−i
i⊕

j=0

(
k

i

)(
i

j

)
S
⊗j+(k−i)
(n−1,1) ,

and thus both are equal to S⊗k(n−1,1).

Proof. The two expressions are simply the alternating sums of dual Whitney homology
modules in (7). They equal the top homology module by Theorem 3.1. �
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We can now prove the main result of this section, which generalises Theorem 3.2
to the rank-set [r, k] consisting of the interval of consecutive ranks r, r + 1, . . . , k. To
do this, we must rewrite the partial alternating sums of terms appearing in the dual
Whitney homology (7) as a nonnegative linear combination rather than a signed sum.
The poset of words in an alphabet of size n, with lengths bounded above by k and
below by r, has homology as follows.

Theorem 3.7. Fix k > 1 and let S be the interval of consecutive ranks [r, k] for
1 6 r 6 k. Then the rank-selected subposet A∗n,k(S) has unique nonvanishing homology
in degree k−r, and the Sn-homology representation on H̃k−r(A∗n,k(S)) is given by the
decomposition

(9)
k⊕

i=1+k−r
bi S

⊗i
(n−1,1), where bi =

(
k

i

)(
i− 1
k − r

)
, i = 1 + k − r, . . . , k.

Proof. For brevity we will simply write H̃([i, k]) for the homology of the subposet
A∗n,k(S) when S = [i, k]. Shellability implies that the rank-selected subposet A∗n,k(S)
has unique nonvanishing homology in degree k − i.

Recall again from Theorem 3.3 that it suffices to work with the Betti numbers,
for which (5) in Theorem 3.1, in conjunction with Theorem 3.5, gives the following
recurrence for 1 6 i 6 k − 1 :

(10) dim H̃([i, k])⊕ dim H̃([i+ 1, k]) = dimWH∗k+1−i(A∗n,k) = ni
(
k

i

)
(n− 1)k−i.

We will prove the Betti number version of (9) by induction on i. Note that the result
is true for i = 1, since in that case the formula in (9) gives simply S⊗k(n−1,1), with Betti
number (n− 1)k, in agreement with Theorem 2.2.

When r = k, the formula (9) reduces to
∑k
i=1
(
k
i

)(
i−1

0
)
(n−1)i, which equals nk−1.

This is easily seen to be the correct Möbius number (up to sign) since we then have a
single rank consisting of the nk words of length k. Also observe that when i = k − 1,
the recurrence (10) gives

dim H̃([k − 1, k]) = nk−1k(n− 1)− nk + 1 = (k − 1)nk − knk−1 + 1.

Let i = 1. The recurrence (10) gives

dim H̃([2, k]) = n

(
k

1

)
(n− 1)k−1 − dim H̃([1, k])

= kn(n− 1)k−1 − (n− 1)k = (k − 1)(n− 1)k + k(n− 1)k−1,

and this coincides with (9) for r = 2.
Assume that (9) holds for the rank-set S = [r, k]. We will show that it must hold

for S = [r+1, k]. By hypothesis we have dim H̃([r, k]) =
∑k
j=1+(k−r)

(
k
j

)(
j−1
k−r
)
(n−1)j ,

and hence the recurrence (10) gives, for dim H̃([r + 1, k]), the expression(
k

r

)
(n− 1)k−rnr −

k∑
j=1+(k−r)

(
k

j

)(
j − 1
k − r

)
(n− 1)j .

Expanding nr in powers of (n− 1), we obtain(
k

r

)
(n− 1)k−r

r∑
i=0

(
r

i

)
(n− 1)i −

k∑
j=1+(k−r)

(
k

j

)(
j − 1
k − r

)
(n− 1)j .
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The coefficient of (n − 1)k−r is clearly
(
k
r

)
=
(
k
k−r
)(
r
0
)
, in agreement with (9). For

j = 1 + (k − r), . . . , r + (k − r), the term (n− 1)j appears with coefficient cj where

cj =
(
k

r

)(
r

j − k + r

)
−
(
k

j

)(
j − 1
k − r

)
=
(
k

j

)(
j!(k − j)!
r!(k − r)!

r!
(j − k + r)!(k − j)! −

(
j − 1
k − r

))
=
(
k

j

)((
j

k − r

)
−
(
j − 1
k − r

))
=
(
k

j

)(
j − 1

k − r − 1

)
,

which is precisely as predicted by (9) for S = [r + 1, k]. This finishes the inductive
step, and hence the proof. �

This proof establishes the following combinatorial identity, which will be instru-
mental in the proof of Theorem 7.3 later in the paper.

Corollary 3.8.
k+1−r∑
i=0

(−1)i dimWH∗k+1−(r+i)(A∗n,k) =
k−r∑
i=0

(−1)i
(

k

r+ i

)
nr+i(n−1)k−(r+i) +(−1)k+1−r

=
k∑

i=1+k−r

(
k

i

)(
i− 1
k − r

)
(n− 1)i.

4. Deleting one rank from A∗n,k: a curious isomorphism of
homology

In this section we will determine the homology representation of the rank-selected
subposet A∗n,k(S) of A∗n,k when S is obtained by deleting one rank from the interval
[1, k]. In this special case the computation will reveal a curious duality in homology.

Again we use a method developed in [21] which is particularly useful for Lefschetz
homology computations when the deleted set is an antichain. The version below is
the special case when one rank is deleted.

Theorem 4.1 ([21, Theorem 1.10], [20]). Let P be a Cohen–Macaulay poset of rank
r, G a group of automorphisms of P and let Q be a subposet obtained by deleting a
rank-set T consisting of one rank in P . Thus Q is also G-invariant, and Q is graded
and has homology concentrated in the highest degree rank(Q) − 2. Then one has the
G-equivariant decomposition

(−1)r−rank(Q)H̃(Q)− H̃r−2(P ) =
⊕

x∈T/G
(−1) · (H̃(0̂, x)P ⊗ H̃(x, 1̂)P ) ↑Gstab(x),

where the sum runs over one element x ∈ T in each orbit of G.
Here stab(x) denotes the stabiliser subgroup of G which fixes the element x.

We apply this theorem to the poset A∗n,k and the rank-set S = [1, k]\{r}, removing
all words of length r, for a fixed r in [1, k].

Theorem 4.2.As an Sn-module, we have

H̃k−2(A∗n,k(S)) '
[(
k

r

)
− 1
]
S⊗k(n−1,1) ⊕

(
k

r

)
S⊗k−1

(n−1,1).

Proof. We invoke Theorem 3.3 by fixing a rank-set S and considering the family of
posets Pn = A∗n,S = A∗n,k(S), where n = |A|. Once again we need only compute
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Möbius numbers in Theorem 4.1. Writing simply µ(P ) for the Möbius number of the
poset P , the Betti number identity given by the theorem is

− (−1)k−2µ(A∗n,k(S))− (−1)k−1µ(A∗n,k)

= (−1) ·
∑

x:|x|=r

(−1)rµ(0̂, x)A∗
n,k
· (−1)k+1−rµ(x, 1̂)A∗

n,k
,

or equivalently, clearing signs,

µ(A∗n,k(S))− µ(A∗n,k) = (−1) ·
∑

x:|x|=r

µ(0̂, x)A∗
n,k
· µ(x, 1̂)A∗

n,k
.

The summand corresponding to a word x of length r in the right-hand side of this
equation is nonzero only if x is a normal word, by Theorem 2.2. We therefore obtain,
using Lemma 3.4,

µ(A∗n,k(S))− µ(A∗n,k) = (−1) · (−1)rn(n− 1)r−1µ(x0, 1̂)A∗
n,k

= (−1) · (−1)rn(n− 1)r−1(−1)k−r+1(n− 1)k−r
(
k

r

)
= (−1)kn(n− 1)k−1

(
k

r

)
,

for any fixed normal word x0 of length r.
Hence

(−1)kµ(A∗n,k(S)) = (−1)kµ(A∗n,k) + n(n− 1)k−1
(
k

r

)
= −(n− 1)k +

(
k

r

)
n(n− 1)k−1

=
[(
k

r

)
− 1
]

(n− 1)k +
(
k

r

)
(n− 1)k−1.

Since A∗n,k(S) has rank k, this is precisely the Betti number version of the statement
of the theorem, thereby completing the proof. �

An immediate and intriguing corollary is the following.

Proposition 4.3. Let |A| = n. Fix a rank r ∈ [1, k − 1]. Then the homology modules
of the subposets A∗n,k([1, k]\{r}) and A∗n,k([1, k]\{k − r}) are Sn-isomorphic.

It would be interesting to explain this isomorphism topologically. More precisely:

Question 4.4. Is there a combinatorial map giving an Sn-homotopy equivalence
between the simplicial complexes associated to the subposets A∗n,k([1, k]\{r}) and
A∗n,k([1, k]\{k − r})?

5. The action on chains, and arbitrary rank-selected homology
Assume |A| = n. For a subset S ⊆ [1, k], denote by αn(S) the permutation module
of Sn afforded by the maximal chains of the rank-selected subposet A∗n,k(S). In this
section we derive a recurrence for the action, and hence an explicit formula. We begin
with an analogue of Theorem 3.3 for the chains.

Proposition 5.1. Let {Pn} be any sequence of finite posets each carrying an action
of the symmetric group Sn, such that for any g ∈ Sn, the fixed-point subposet P gn is
isomorphic to the poset Pfix(g), where fix(g) is the number of fixed points of g as a
permutation of Sn. Suppose that the number of maximal chains of Pn is a polynomial
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in (n − 1), say
∑
i>0 ai(n − 1)i. Then the permutation action of Sn on the maximal

chains of Pn decomposes as a sum of ith tensor powers of the irreducible indexed by
the partition (n−1, 1), i > 0, with coefficient equal to ai. In particular, the Sn-module
structure of the maximal chains of Pn is completely determined by its dimension.

Proof. Since Sn acts by permuting the chains, the trace of g ∈ Sn on the chains of
Pn is equal to the number of chains fixed by g. As in the proof of Theorem 3.3, the
key point is that this in turn is the number of chains in the fixed-point poset P gn , and
the latter coincides with Pfix(g). �

Note that, as was the case with Theorem 3.3, Proposition 5.1 applies to all rank-
selected subposets of A∗n,k. Before we apply this, we state the following reformulation
of an observation of Björner recorded in Theorem 2.5. Let S = {1 6 s1 < s2 < · · · <
sp 6 k} be a subset of [1, k]. By Part (2) of Theorem 2.5, the number of words in
[β,∞] depends only on |β|. This immediately gives the following recurrence for the
dimensions of the modules αn(S) :

(11) dimαn(S) = dimαn(S\{sp})
sp−sp−1∑
i=0

(
sp
i

)
(n− 1)i,

and dimαn({s1}) = ns1 =
∑s1
i=0
(
s1
i

)
(n− 1)i.

Theorem 5.2. For any subset S ⊆ [1, k], the Sn-module induced by the action of Sn
on the maximal chains of the rank-selected subposet A∗n,k(S) is a nonnegative integer
combination of tensor powers of the irreducible indexed by (n − 1, 1). Hence the Sn-
representation on the homology of the rank-selected subposet A∗n,k(T ), T 6= ∅, is an
integer combination of positive tensor powers of the irreducible indexed by (n− 1, 1).
The highest tensor power that can occur is the mth, where m = max(T ).

Proof. Let S = {1 6 s1 < s2 < · · · < sp 6 k}. From Proposition 5.1, it suffices to
compute the dimension of the module of maximal chains in A∗n,k(S) as a polynomial
in (n − 1). Hence (11) immediately gives the following recursive description for the
modules αn(S).

(12) αn(S) = αn(S\{sp})⊗
sp−sp−1⊕
i=0

(
sp
i

)
S⊗i(n−1,1),

and

(13) αn({s1}) =
s1⊕
i=0

(
s1

i

)
S⊗i(n−1,1).

By induction it is clear that αn(S) is a nonnegative integer combination of
S⊗j(n−1,1), 0 6 j 6 m = max(S). It is also clear that the 0th tensor power, that
is, the trivial module S(n), occurs exactly once in each αn(S).

Note that when S = ∅, the homology is simply the trivial module. The claim about
the decomposition of the homology into tensor powers of S(n−1,1) now follows from
Stanley’s theory of rank-selected homology representations [17]. We have

(14) αn(T ) =
∑
S⊆T

βn(S) and thus βn(T ) =
∑
S⊆T

(−1)|T |−|S|αn(S),

where βn(S) is the representation of Sn on the homology of the rank-selected subposet
A∗n,k(S) of A∗n,k.When T is nonempty, it is clear from the previous paragraph that the
occurrences of the 0th tensor power, which equals S(n), all cancel in (14); the trivial
module occurs with coefficient

∑
S⊆T (−1)|T |−|S|, which is zero. Hence only positive

tensor powers will appear. �
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Thus Theorem 5.2 supports Conjecture 1.1. Note that it is easy to concoct signed
integer combinations of tensor powers that are not true Sn-modules. For instance, the
integer combination S⊗2

(n−1,1) − 2S(n−1,1) decomposes into S(n) + S(n−2,2)S(n−2,1,1) −
S(n−1,1), while S⊗2

(n−1,1) − S(n−1,1) = S(n) + S(n−2,2) + S(n−2,1,1) is a true Sn-module.
Also see Theorem 8.1 later in the paper.

It is worth pointing out the special case for the full poset A∗n,k.

Theorem 5.3. The action of Sn on the maximal chains of A∗n,k decomposes into the
direct sum of tensor powers

S(n) ⊕
k⊕
j=1

c(k + 1, j)S⊗k+1−j
(n−1,1) ,

where c(k + 1, j) is the number of permutations in Sk+1 with exactly j cycles in its
disjoint cycle decomposition.

Proof. Specialising (11) to the case S = [1, k] gives the recurrence dimαn([1, k]) =
dimαn([1, k − 1])(1 + k(n− 1)), and clearly dimαn([1, 1]) = n. It follows that

dimαn([1, k]) =
k∏
i=1

(1 + i(n− 1)),

a formula due to Viennot [22, Lemma 4.1, Proposition 4.2].
Using the generating function (see [18])

∑m
j=1 c(m, j)tj = t(t + 1)(t + 2) . . . (t +

(m− 1)), we find that

dimαn([1, k]) = 1 +
k∑
j=1

c(k + 1, j)(n− 1)k+1−j .

Invoking Proposition 5.1, the result follows, noting that the constant term in the
above expression corresponds to the occurrence of the trivial representation. �

By expanding the expression for αn(S) in (12), we have the following observation.
Although S(n−1,1) is a quotient of two permutation modules, it is not clear how to
deduce this corollary directly. Later in the paper we will examine these tensor powers
more carefully; see Lemma 7.9.

Corollary 5.4. The Sn-module S(n) ⊕
⊕k

j=1 c(k + 1, j)Sk+1−j
(n−1,1) is in fact a permu-

tation module. More generally, for any subset S = {1 6 s1 < · · · < sp 6 k} of [1, k],
the Sn-module

(15)
p⊗
r=1

(
sr−sr−1⊕
i=0

(
sr
i

)
S⊗i(n−1,1)

)
, s0 = 1,

is a permutation module.

Proof. The expression (15) gives the Sn-action on the chains of the rank-selected
subposet A∗n,k(S) and is therefore a permutation module. �

By applying Proposition 5.1, we have the following two descriptions of the action
on chains between two ranks.

Proposition 5.5. For S = {1 6 s1 < s2 6 k}, αn({s1 < s2}) is given by

(1)
(

s1⊕
j=0

(
s1

j

)
S⊗j(n−1,1)

)⊗(
s2−s1⊕
i=0

(
s2

i

)
S⊗i(n−1,1)

)
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(2) and also by

(S(n−1,1) ⊕ S(n))⊗s1
⊗ s2−s1⊕

j=0

[(
s1 + j − 1

j

)
S⊗j(n−1,1)

⊗
(S(n−1,1) ⊕ S(n))⊗s2−s1−j

]
.

Proof. From Proposition 5.1, it suffices to compute the dimension of the module of
chains as a polynomial in (n−1). From Equation (11), the dimension of αn({s1 < s2})
is given by

(A) ns1

s2−s1∑
i=0

(
s2

i

)
(n− 1)i.

Recall Björner’s generating function for the zeta function of subword order, Part (3)
of Theorem 2.5, which we now use to count the number of chains from a fixed element
to all elements above it of a fixed rank. This gives (by extracting the coefficient of ts2

in the right-hand side of Part (3)):

(B) ns1
∑

i,j>0,i+j=s2−s1

(
s1 + j − 1

j

)
(n− 1)jni

= ns1

s2−s1∑
j=0

(
s1 + j − 1

j

)
(n− 1)jns2−s1−j .

Since as usual (n − 1) is the dimension of S(n−1,1) and n is the dimension of S(n) ⊕
S(n−1,1), invoking Proposition 5.1, we conclude that (A) and (B) correspond respec-
tively to the Sn-module decompositions in Part (1) and Part (2). �

Remark 5.6. By expanding in powers of (n−1), the equivalence of the two expressions
for the dimension of αn({s1 < s2}) is equivalent to the following binomial coefficient
identity: (

a+ r

i

)
=

i∑
j=0

(
r − j
i− j

)(
a+ j − 1

j

)
for 0 6 i 6 r,

or equivalently, putting k = r − i,(
a+ r

a+ k

)
=
r−k∑
j=0

(
r − j
k

)(
a+ j − 1
a− 1

)
for 0 6 k 6 r.

We can now show that Conjecture 1.1 is true for rank sets of size 2.

Theorem 5.7. Let S = {1 6 s1 < s2 6 k} be a rank-set of size 2 in A∗n,k. The
homology representation of A∗n,k(S) is given by

s1∑
v=1

S⊗v(n−1,1)

(
cv −

(
s1

v

))⊕ s2∑
v=1+s1

S⊗v(n−1,1)cv,

where cv is the following positive integer:

cv =
min(v,s2−s1)∑

j=1

(
s2 − j
v − j

)(
s1 + j − 1

j

)
.

Moreover cv >
(
s1
v

)
when v 6 s1, and hence the homology is a nonnegative integer

combination of positive tensor powers of S(n−1,1).
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Proof. In order to establish the positivity, it is (curiously) easier to work with the
second formulation of Proposition 5.5. By Theorem 3.3, it is enough to show that
the dimension of the homology module is a polynomial in (n − 1) with nonnegative
integer coefficients. We have

βn({s1 < s2}) = αn({s1 < s2})− αn({s1})− αn({s2}) + αn(∅)

which yields, (in terms of dimensions, from (B) in the proof of Proposition 5.5)

ns1

s2−s1∑
j=0

ns2−s1−j(n− 1)j
(
s1 + j − 1

j

)
− ns2 − ns1 + 1

=
s2−s1∑
j=1

ns2−j(n− 1)j
(
s1 + j − 1

j

)
− (ns1 − 1).

Expanding ns1 and ns2−j in nonnegative powers of (n− 1) gives

βn({s1 < s2})

=
s2−s1∑
j=1

s2−j∑
u=0

(
s2 − j
u

)
(n− 1)u+j

(
s1 + j − 1

j

)
−

s1∑
j=1

(
s1

j

)
(n− 1)j(16)

=
s2∑
v=1

(n− 1)vcv −
s1∑
j=1

(
s1

j

)
(n− 1)j ,(17)

where
cv =

∑
(u,j):u+j=v

16j6s2−s1, 06u6s2−j

(
s2 − j
v − j

)(
s1 + j − 1

j

)
.

The latter sum runs over all j such 1 6 j 6 s2 − s1 and 0 6 v − j 6 s2 − j, i.e. over
all j = 1, . . . ,min(v, s2 − s1), as stated.

Now cv is a sum of nonnegative integers for each v = 1, . . . , s2. When v 6 s1, the
j = 1 summand of cv can be seen to be

(
s2−1
v−1

)
s1, and so

cv −
(
s1

v

)
>

(
s2 − 1
v − 1

)
s1 −

(
s1

v

)
= s1!
v!(s2 − v)!

(
v

(s2 − 1)!
(s1 − 1)! −

(s2 − v)!
(s1 − v)!

)
= s1!(s2 − s1)!

v!(s2 − v)!

(
v

(
s2 − 1
s2 − s1

)
−
(
s2 − v
s2 − s1

))
and this is clearly nonnegative, since

(
s2−1
s2−s1

)
>
(
s2−v
s2−s1

)
for v > 1.We have shown that

the Betti number of βn({s1 < s2}) is a nonnegative integer combination of positive
powers of (n− 1), as claimed. �

Remark 5.8. Let s1 = 1, and consider the two ranks {1 < s2}. The homology of the
rank-selected subposet is then

s2−1⊕
v=2

(
s2

v − 1

)
S⊗v(n−1,1)

⊕
(s2 − 1)S⊗s2

(n−1,1).

6. Tensor powers of the reflection representation I
In this section we explore the tensor powers S⊗k(n−1,1). The paper [10] gives a com-
binatorial model for determining the multiplicity of an irreducible in the kth tensor
power, and an explicit formula in the case when n is sufficiently larger than k. We
give general formulas that apply to the case of arbitrary tensor powers.
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We use symmetric functions to describe some of the results that follow. The ho-
mogeneous symmetric function hn is the Frobenius characteristic, denoted ch, of the
trivial representation of Sn. Also let ∗ denote the internal product on the ring of
symmetric functions, so that the Frobenius characteristic of the Kronecker product
of two Sn-modules is the internal product of the two characteristics. See [14, p. 115]
and [19, Chapter 7, p. 476]. Recall that the natural representation of Sn is the per-
mutation action on a set of n objects. The stabiliser of any one object is the Young
subgroup S1 × Sn−1, and hence the natural representation is given by the induced
module 1 ↑SnS1×Sn−1

, with Frobenius characteristic h1hn−1. In particular we have the
decomposition

1 ↑SnS1×Sn−1
= S(n) ⊕ S(n−1,1) = S(n,1) ↓

Sn+1
Sn

.

The following lemma is an easy exercise in permutation actions. We sketch a proof
for completeness.

Lemma 6.1. Let Vj,n denote the permutation module obtained from the Sn-action on
the cosets of the Young subgroup Sj1 ×Sn−j . Then the kth tensor power of the natural
representation V1,n of Sn decomposes into a sum of S(k, j) copies of Vj,n, where S(k, j)
is the Stirling number of the second kind:

(18) V ⊗k1,n =
min(n,k)∑
j=1

S(k, j)Vj,n, and thus (h1hn−1)∗k =
min(n,k)∑
j=1

S(k, j)hj1hn−j .

Proof. If the module V1,n is realised as Cn with basis {v1 . . . , vn}, say, then V ⊗k1,n is
realised by the kth tensor power of Cn, with nk basis elements vi1 ⊗ · · · ⊗ vik , 1 6
i1, . . . , ik 6 n. The Sn-action now permutes these nk basis elements. To determine the
orbits, note that there is a surjection from this basis of tensors to the set partitions of
a k-element set into nonempty blocks. Each such partition with j blocks indexes an
orbit of the Sn-action, with stabiliser (conjugate to) Sj1×Sn−j . The blocks correspond
to repetitions of a vi in the tensor; thus a, b belong in the same block if va = vb in
the tensor. The orbit is the transitive permutation representation with Frobenius
characteristic hj1hn−j .

The last statement is now immediate. �

Example 6.2.We illustrate the above argument with an example. With n = 5 and
k = 7, the tensor v5 ⊗ v2 ⊗ v2 ⊗ v4 ⊗ v2 ⊗ v4 ⊗ v5 maps to the partition 17− 235− 46
of a set of size k = 7 into j = 3 blocks, corresponding to the three distinct basis
elements v2, v4, v5 of Cn. Its orbit under S5 consists of all basis tensors vi1 ⊗ · · · ⊗ vi7
such that vi1 = vi7 , vi2 = vi3 = vi5 , and vi4 = vi6 . Writing SA for the permutations
of the elements of A, for any subset A of positive integers, the stabiliser is S{5} ×
S{2}×S{4}×S{1,3}, conjugate to the Young subgroup indexed by the integer partition
(2, 1, 1, 1) of 5.

Remark 6.3. This lemma can also be proved by iterating a standard representation
theory result, namely that for finite groups G and H with H a subgroup of G, and
G-module W, H-module V, W ⊗ (V ↑GH) = (W ↓H ⊗V ) ↑GH . In our case G = Sn and
H is the Young subgroup S1 × Sn−1.

Theorem 6.4. The top homology of A∗n,k has Frobenius characteristic

min(n,k)∑
i=0

hi1hn−i

(
k−i∑
r=0

(−1)r
(
k

r

)
S(k − r, i)

)
.
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Proof. Observe that the Frobenius characteristic of (S(n−1,1))⊗k is the k-fold inter-
nal product of (h1hn−1 − hn). Standard properties of the tensor product make ∗ a
commutative and associative product in the ring of symmetric functions, so we have

(h1hn−1 − hn)∗k =
k∑
j=0

(
k

j

)
(−1)k−j(h1hn−1)∗j ∗ (hn)∗(k−j)

= (−1)khn +
k∑
j=1

(
k

j

)
(−1)k−j(h1hn−1)∗j

= (−1)khn+
k∑
j=1

(
k

j

)
(−1)k−j

min(n,j)∑
i=1

S(j, i)hi1hn−i from Lemma 6.1

=
k∑
j=0

(
k

j

)
(−1)k−j

min(n,j)∑
i=0

S(j, i)hi1hn−i

=
min(n,k)∑
i=0

hi1hn−i

 k∑
j=i

(−1)k−j
(
k

j

)
S(j, i)

 .

Note that S(0, 0) = 1 and S(j, 0) = 0 for j > 1. Putting r = k − j in the last step
gives the result. �

Theorem 7.7 gives a different description of this module, from which it will be
evident that the coefficients of hi1hn−i are positive for i > 2.

We can now determine the multiplicity of the trivial representation in the top
homology of A∗n,k:

Corollary 6.5. Let n > 2. The following are equal:
(1) the multiplicity of the trivial representation in S⊗k(n−1,1);
(2) the multiplicity of the irreducible S(n−1,1) in S⊗k−1

(n−1,1);
(3) the number

k∑
r=0

(−1)r
(
k

r

)min(n,k)∑
i=0

S(k − r, i).

When n > k, this multiplicity equals the number of set partitions of {1, . . . , k} with
no singleton blocks.

Proof. The first two multiplicities are equal by standard properties of the tensor
product, since

〈V ⊗W,S(n)〉 = 〈V, S(n) ⊗W 〉 = 〈V,W 〉.

The equivalence with the third formula follows from Theorem 6.4, since 〈hi1hn−i, hn〉 =
1 for all i (alternatively, 1 ↑Sn

Si1×Sn−i
is a transitive permutation module). Let B>2

n

denote the number of set partitions of [n] = {1, . . . , n} with no blocks of size 1, and
let Bn denote the nth Bell number, that is, the total number of set partitions of [n].
Inclusion-exclusion shows that

(19) B>2
n =

n∑
r=0

(−1)r
(
n

r

)
Bn−r,
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since the number of partitions containing a fixed set of r singleton blocks is Bk−r.
When n > k, the formula in Part (3) simplifies to

k∑
r=0

(−1)r
(
k

r

) k−r∑
i=0

S(k − r, i) =
k∑
r=0

(−1)r
(
k

r

)
Bk−r.

That this number is B>2
k , the number of partitions of [k] with no singleton blocks,

now follows from Equation (19). (This is sequence A000296 in OEIS.) �

Corollary 7.8 in the next section will give a different expression for the multiplicity
of the trivial representation, for arbitrary n, k, as a sum of positive integers.

7. “Almost” an h-positive permutation module
We begin by recalling basic facts about permutation modules. V is a permutation
module for Sn if there exists a basis for V that is permuted by the Sn-action. In
particular the character values of a permutation module are all nonnegative. For
example, the character χ(n−1,1) of the reflection representation S(n−1,1) has values
χ(n−1,1)(g) = fix(g)−1 for each permutation g ∈ Sn, so it is negative for permutations
without fixed points, and the same is true for odd tensor powers of S(n−1,1). Thus odd
tensor powers of S(n−1,1) are not permutation modules. In particular, the homology
of An,k itself need not be a permutation module.

A special case of a permutation module occurs when its Frobenius characteristic is
h-positive, that is, the coefficients in the basis of homogeneous symmetric functions
are nonnegative. It is well known that the homogeneous symmetric function hλ is
the Frobenius characteristic of the transitive permutation representation whose orbit
stabiliser is the Young subgroup of Sn indexed by λ. Hence the h-positivity of the
Frobenius characteristic implies that it is a permutation module (whose point sta-
bilisers are Young subgroups), but not conversely. A nice example is provided by the
set partitions of [4] into two blocks of size 2, viz. 12− 34, 13− 24, and 14− 23. The
action of S4 is a transitive permutation module whose point stabiliser is the wreath
product S2[S2], but its Frobenius characteristic is h4 + h2

2 − h1h3, not h-positive.
The goal of this section is to prove the following theorem.

Theorem 7.1. Let T ⊆ [1, k] be any nonempty subset of ranks in A∗n,k. The following
statements hold for the Frobenius characteristic Fn,k(T ) of the homology representa-
tion H̃(A∗n,k(T )) :

(1) its expansion in the basis of homogeneous symmetric functions is an integer
combination supported on the set T1(n) = {hλ : λ = (n− r, 1r), r > 1}.

(2) Fn,k(T ) + (−1)|T |s(n−1,1) is supported on the set T2(n) = {hλ : λ = (n −
r, 1r), r > 2}.

When Fn,k(T ) + (−1)|T |s(n−1,1) is in fact a nonnegative integer combination of
T2(n) = {hλ : λ = (n − r, 1r), r > 2}, we may view Fn,k(T ) as being almost a
permutation module, hence the title of this section. First we prove a stronger result
for the action on the chains.

Theorem 7.2. Let S ⊆ [1, k]. If |S| > 1, the Sn-module induced by the action of Sn
on the space of chains αn(S) has h-positive Frobenius characteristic supported on the
set T1(n) = {hλ : λ = (n − r, 1r), r > 1}. Furthermore, h1hn−1 always appears with
coefficient 1 in the h-expansion of αn(S).

Proof. Recall that ∗ denotes the inner tensor product. Note that the case of a sin-
gle rank has already been established in Lemma 6.1: if S = {s1}, then chαn(S) =
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(h1hn−1)∗s1 since the dimension of the module is ns1 , and the coefficient of h1hn−1
in the h-expansion is the Stirling number S(s1, 1) = 1.

We proceed by induction, using the decomposition (12) of Theorem 5.2. We have,
with |S| > 2,

αn(S) = αn(S\{sp})⊗
sp−sp−1∑
i=0

(
sp
i

)
S⊗i(n−1,1)

= αn(S\{sp})⊗
(
sp−sp−1∑
i=1

(
sp
i

)
S⊗i(n−1,1) ⊕ S(n)

)
.

Translating Remark 6.3 into Frobenius characteristics gives the well-known sym-
metric function formula (h1hn−1) ∗ f = h1

∂
∂p1

f for any symmetric function f of
homogeneous degree n [19, Exercise 7.81, p. 477], [14, Example 3 (c), p. 75]. It is easy
to check that for a > 1, a+ b = n,

(20) (ha1hb) ∗ s(n−1,1) =
{

(a− 1)ha1hb + ha+1
1 hb−1, a > 2;

ha+1
1 hb−1, a = 1.

Note the factor h2
1 when a 6= 0. Let T2(n) = {hλ : λ = (n − r, 1r), r > 2}.

Iterating (20) gives the fact that when µ ∈ T1(n−1), (h1hµ)∗s∗k(n−1,1) is a nonnegative
integer combination of terms in T2(n).

Assume S = {1 6 s1 < · · · < sp 6 k}, and |S| > 2. In terms of symmetric
functions, the decomposition (12) of Theorem 5.2 becomes

chαn(S) = chαn(S\{sp}) ∗
(
hn +

sp−sp−1∑
i=1

(
sp
i

)
s∗i(n−1,1)

)
(21)

= chαn(S\{sp}) + chαn(S\{sp}) ∗
(
sp−sp−1∑
i=1

(
sp
i

)
s∗i(n−1,1)

)
.

Suppose now that the first term above, chαn(S\{sp}), is a nonnegative integer com-
bination of terms in T1(n), in which h1hn−1 appears with coefficient 1. By (20), the
h-expansion of the second term contains only terms in T2(n); the crucial point here
is that, since p > 2, the h-expansion of chαn(S\{sp}) does not contain the function
hn. It follows that chαn(S) must be a nonnegative integer combination of terms in
T1(n), and the coefficient of h1hn−1 is inherited from chαn(S\{sp}). It is therefore
equal to 1. This completes the induction. �

Proof of Theorem 7.1. Using Stanley’s equation for rank-selected homology, Equa-
tion (14) in Theorem 5.2, we have

Fn,k(T ) =
∑
S⊆T

(−1)|T |−|S| chαn(S).

From Theorem 7.2, this has an expansion in the h-basis in which hn appears only
in αn(∅) with coefficient 1, and h1hn−1 appears in αn(S) with coefficient 1 for all
nonempty S. Hence the coefficient of hn in the right-hand side above is (−1)|T |, while
the coefficient of h1hn−1 is

∑
S⊆T,S 6=∅

(−1)|T |−|S| = (−1)|T |
 |T |∑
i=0

(
|T |
i

)
(−1)− 1

 = (−1)|T |−1.

But (−1)|T |s(n−1,1) = (−1)|T |h1hn−1 − (−1)|T |hn, and the conclusion follows. �
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The preceding theorem motivates Conjecture 1.2 in the Introduction. We will show
that Conjecture 1.2 is true in the following cases of rank-selection:

Theorem 7.3. For any nonempty rank set T ⊆ [1, k], consider the module VT =
H̃k−2(A∗n,k(T )) + (−1)|T |S(n−1,1). In each of the following cases, VT is a nonnega-
tive combination of transitive permutation modules with orbit stabilisers of the form
Sd1 × Sn−d, d > 2. Equivalently, the symmetric function Fn,k(T ) + (−1)|T |s(n−1,1) is
supported on the set T2(n) = {hλ : λ = (n − r, 1r), r > 2} with nonnegative integer
coefficients in each of the following cases:

(1) T = [r, k], k > r > 1.
(2) T = [1, k]\{r}, k > r > 1.
(3) T = {1 6 s1 < s2 6 k}.

The proof relies on the homology computations of the preceding sections, but we
also need to develop additional tools. In particular Theorem 7.7 will be crucial to the
proof. We begin by deriving a different expression for the Whitney homology modules
of A∗n,k, thereby obtaining a new expression for the top homology module as well.

Proposition 7.4. Let α be a nonempty word in A∗n,k. Then

(1) If α is not a normal word, the (order complex of the) interval (0̂, α) is con-
tractible and hence its homology vanishes in all degrees;

(2) If α is a normal word, the (order complex of the) interval (0̂, α) is homotopy
equivalent to a single sphere in the top dimension, and the stabiliser subgroup
of α acts trivially on the homology.

Proof. The topological conclusions in both parts are immediate from the formula
for the Möbius number in Theorem 2.2 and Björner’s dual CL-shellability result of
Theorem 2.6.

If α is normal, then it consists of some m 6 n distinct letters {x1, . . . , xm}, and
consecutive letters are distinct. The stabiliser is the subgroup which fixes each xi
pointwise, and permutes the remaining n−m letters arbitrarily. It is thus a product
of m copies of the trivial group S1 and the group Sn−m. Clearly this subgroup fixes
every element in the interval (0̂, α) pointwise, and hence the action on the unique
nonvanishing homology is trivial. �

Let S∗(j, d) denote the number of set partitions of [j] into d blocks, with the
property that no block contains consecutive integers (a reduced Stirling number).
The surjection in the following lemma will be needed in what follows.

Lemma 7.5. There is a surjection ψ from the set of words of length j in an alphabet of
size n to the set partitions into d blocks of [j], where d is the number of distinct letters
in α. This surjection maps normal words onto set partitions with the property that no
two consecutive integers are in the same block. In particular, the number n(n− 1)j−1

of normal words of length j > 2 on an alphabet of size n is also equal to
min(n,j)∑
d=1

n!
(n− d)!S

∗(j, d).

Proof. The idea of the proof is similar to that of Lemma 6.1. A word α of length j
with d distinct letters maps to a set partition ψ(α) of [j] with d blocks, where positions
corresponding to integers in the same block have equal letters in α. For instance, the
word α = abbcbca, of length 7 with 3 distinct letters. Then the set partition of [7]
associated to α is ψ(α) = 17− 235− 46.
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Now suppose α is normal. Then no two consecutive positions have equal letters,
which is precisely the condition that no block of the set partition ψ(α) contains
consecutive integers.

The last statement is verified by observing that a normal word in the pre-image
of every set partition of [j] with d blocks contains d distinct letters chosen out of n,
which can be permuted amongst themselves in d ways. �

Recall that the ordinary Stirling numbers of the second kind satisfy the recurrence
S(n+ 1, d) = S(n, d− 1) + dS(n, d) with initial conditions S(0, 0) = 1 and S(n, 0) =
0 = S(0, d) if n, d > 0. It is easy to verify similarly that the reduced Stirling numbers
S∗(j, d) satisfy the recurrence S∗(n+1, d) = S∗(n, d−1)+(d−1)S∗(n, d), by examining
the possibilities for inserting (n+1) into a partition of [n] into d blocks. A comparison
of the recurrences immediately shows that in fact

S∗(n+ 1, d) = S(n, d− 1) for all n > 0, d > 1.

See [15] for generalisations of these numbers. Recall that in Theorem 3.5, the jth
Whitney homology of A∗n,k j > 2, was determined as a sum of two consecutive tensor
powers of S(n−1,1). From Lemma 7.5 and Proposition 7.4 we now have the following
surprising result.

Proposition 7.6. Each Whitney homology module of subword order, and hence the
sum of two consecutive tensor powers of the reflection representation, has h-positive
Frobenius characteristic, and in particular it is a permutation module. We have
chWH0 = hn, chWH1 = h1hn−1, and for k > j > 2, the jth Whitney homology of
A∗n,k has Frobenius characteristic

(22)

(h1hn−1) ∗ s∗(j−1)
(n−1,1) =

j∑
d=2

S(j − 1, d− 1)hd1hn−d

=
j∑
d=2

S∗(j, d)hd1hn−d = h1(h1hn−2)∗j−1,

a permutation module with orbits whose stabilisers are Young subgroups indexed by
partitions of the form (n− d, 1d), d > 0.

Proof. From Equation (6) and Theorem 3.5, for k > j > 2, we have

WHj(A∗n,k) = S⊗j(n−1,1) ⊕ S
⊗j−1
(n−1,1) = (S(n) ⊕ S(n−1,1))⊗ S⊗j−1

(n−1,1).

Now by definition we also have

WHj(A∗n,k) =
∑

x∈A∗
n,k

,|x|=j

H̃(0̂, x).

Proposition 7.4 says that the sum runs over only normal words x, and each homology
module is trivial for the stabiliser of x. Collecting the summands into orbits and using
the surjection of Lemma 7.5 gives Equation (22). The last expression is obtained by
shifting the index in the sum:

j∑
d=2

S(j − 1, d− 1)hd1hn−d = h1

j−1∑
d′=1

S(j − 1, d′)hd
′

1 h(n−1)−d′ ,

and this equals h1(h1hn−2)∗j−1 by Lemma 6.1. �

Recall [14] that the homogeneous symmetric functions hλ form a basis for the ring
of symmetric functions.
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Theorem 7.7. Fix k > 1. The kth tensor power of the reflection representation
S⊗k(n−1,1), i.e. the homology module H̃k−1(A∗n,k), has the following property: S⊗k(n−1,1)⊕
(−1)kS(n−1,1) is a permutation module Un,k whose Frobenius characteristic is h-
positive, and is supported on the set {hλ : λ = (n − r, 1r), r > 2}. If k = 1, then
Un,1 = 0.

More precisely, the k-fold internal product s∗k(n−1,1) has the following expansion in
the basis of homogeneous symmetric functions hλ :

(23)
n∑
d=0

gn(k, d)hd1hn−d,

where gn(k, 0) = (−1)k, gn(k, 1) = (−1)k−1, and

gn(k, d) =
k∑
i=d

(−1)k−iS(i− 1, d− 1), for 2 6 d 6 n.

Hence
s∗k(n−1,1) = (−1)k−1s(n−1,1) + ch(Un,k),

where ch(Un,k) =
∑n
d=2 gn(k, d)hd1hn−d.

The integers gn(k, d) are independent of n for k 6 n, nonnegative for 2 6 d 6 k,
and gn(k, d) = 0 if d > k. Also:

(1) gn(k, 2) = 1+(−1)k
2 .

(2) gn(k, k − 1) =
(
k−1

2
)
− 1, k 6 n.

(3) gn(k, k) = 1, k < n.

In particular the coefficient of hn1 in the expansion (23) of chS⊗k(n−1,1) is
gn(k, n) + gn(k, n− 1) if k > n,(
n−1

2
)

if k = n,

1 if k = n− 1,
0 otherwise.

Proof. If k = 1, the terms for d > 2 in the summation in (23) vanish and thus the
right-hand side equals the characteristic of the top homology.

The first statement, about the homology module H̃k−1(A∗n,k), follows from Propo-
sition 7.6 and Theorem 3.1. Fix m and d such that m > d > 2. Let ḡ(m, d) be the
alternating sum of Stirling numbers ḡ(m, d) =

∑m
i=d(−1)m−iS(i−1, d−1). Note that

ḡ(m, d) equals

[S(m− 1, d− 1)− S(m− 2, d− 1)] + [S(m− 3, d− 1)− S(m− 4, d− 1)] + · · ·

· · ·+
{

[S(d+ 1, d− 1)− S(d, d− 1)] + S(d− 1, d− 1), m− d even,
[S(d, d− 1))− S(d− 1, d− 1)], m− d odd.

Since S(n, d) is an increasing function of n > d for fixed d, the coefficient ḡ(m, d)
is always nonnegative. It is also clear that ḡ(m, d) = S(m− 1, d− 1)− ḡ(m− 1, d) for
all m > d > 2.

The remaining parts follow from the facts that S(k, k − 1) =
(
k
2
)
, S(k, k) = 1, and

the observation that for k > n, the coefficient of hn1 is gk(k, n) + gk(k, n − 1). This
equals S(n− 1, n− 2)− 1 when k = n. �

Corollary 7.8. Let k > 2.
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(1) For min(n, k) > d > 2, the coefficient of hd1hn−d in s∗k(n−1,1) = chS⊗k(n−1,1) is
the nonnegative integer gn(k, d) given by the two equal expressions:

(24)
k∑
j=d

(−1)k−jS(j − 1, d− 1) =
k−d∑
r=0

(−1)r
(

k

k − r

)
S(k − r, d).

In particular, when n > k, this multiplicity is independent of n.
(2) The positive integer βn(k) =

∑min(n,k)
d=2 gn(k, d) is the multiplicity of the trivial

representation in S⊗k(n−1,1). When n > k, it equals the number of set partitions
B>2
k of the set {1, . . . , k} with no singleton blocks. We have βn(n + 1) =

B>2
n+1 − 1 and βn(n+ 2) = B>2

n+2 −
(
n+1

2
)
.

Proof. This follows from Theorem 6.4 and Corollary 6.5.
We have βn(n) =

∑n
d=2 g(n, d) = B>2

n = βn(k) for n > k, and from (23),

βn(n+ 1) =
n∑
d=2

gn(n+ 1, d) =
n+1∑
d=2

gn+1(n+ 1, d)− gn+1(n+ 1, n+ 1)

= B>2
n+1 − 1,

βn(n+ 2) =
n+2∑
d=2

gn+2(n+ 2, d)− gn+2(n+ 2, n+ 2)− gn+2(n+ 2, n+ 1)

= B>2
n+2 − 1− [

(
n+ 1

2

)
− 1] = B>2

n+2 −
(
n+ 1

2

)
. �

We need one final observation in order to prove Theorem 7.3.

Lemma 7.9. Suppose V is an Sn-module which can be written as an integer combina-
tion V = ⊕mk=1ckS

⊗k
(n−1,1) of positive tensor powers of S(n−1,1). Then

(1) The character value of V on fixed-point-free permutations is
∑m
k=1(−1)kck.

(2) If
∑m
k=1(−1)k−1ck = 0, then the Frobenius characteristic of V is supported

on the set {hλ : λ = (n− r, 1r), r > 2}.
(3) If

∑m
k=1(−1)k−1ck = 0 and ck > 0 for all k > 2, it is h-positive and hence V

is a permutation module.

Proof. The first part follows because the value of the character of the reflection rep-
resentation S(n−1,1) on permutations without fixed points is (−1).

The second and third parts are immediate from Theorem 7.7, since we have

V =
(

m∑
k=1

(−1)k−1ck

)
S(n−1,1) ⊕

m∑
k=2

ckUn,k =
m∑
k=2

ckUn,k,

and Un,k is h-positive with support {hλ : λ = (n − r, 1r), r > 2}. Note that
Un,1 = 0. �

In particular from Theorem 5.3, this gives a direct proof that the action of Sn on the
chains in A∗n,k is also a nonnegative linear combination of {hλ : λ = (n−r, 1r), r > 2}.

Proof of Theorem 7.3. Note that in all three cases, the module VT = H̃k−2(A∗n,k(T ))+
(−1)|T |S(n−1,1) has already been shown to be an integer combination of kth tensor
powers of S(n−1,1), with nonnegative coefficients when k > 2, in Theorems 3.7, 4.2
and 5.7. Hence, by Lemma 7.9, it remains only to verify that the alternating sum of
coefficients of the tensor powers vanishes for VT in each case.
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Consider the case T = [r, k]. From Theorem 3.7, we must show that (−1)k−r+1

added to the signed sum of the (−1)i−1bi, for the coefficients bi =
(
k
i

)(
i−1
k−r
)
, is zero,

i.e.

(25)
k∑

i=1+k−r
bi(−1)i−1 = (−1)k−r.

It is easiest to use the combinatorial identity of Corollary 3.8. Consider the two
polynomials of degree k > 2 in x defined by

F (x) =
k−r∑
i=0

(−1)i
(

k

r + i

)
(x+ 1)r+ixk−(r+i) + (−1)k+1−r,

G(x) =
k∑

i=1+k−r

(
k

i

)(
i− 1
k − r

)
xi.

Corollary 3.8 says F (x) and G(x) agree for all x = n−1 > 1, and hence F (x) = G(x)
identically.

In particular F (−1) = G(−1). But F (−1) = (−1)k+r−1 and clearly (−1)G(−1) is
precisely the sum in the left-hand side of (25). The claim follows.

For the second case, T is the rank-set [1, k]\{r}, and from Theorem 4.2 the alter-
nating sum of coefficients in VT is clearly

(26) (−1)k−1 +
[(
k

r

)
− 1
]

(−1)k−1 +
(
k

r

)
(−1)k−2 = 0.

For the final case, the rank set is T = {1 6 s1 < s2 6 k}. From the homology
formula in Theorem 5.7, we need to show that the following sum, the alternating sum
of coefficients in VT , vanishes:

1 +
s1∑
v=1

(−1)v−1
[
cv −

(
s1

v

)]
+

s2∑
v=1+s1

(−1)v−1cv,

where

cv =
min(v,s2−s1)∑

j=1

(
s2 − j
v − j

)(
s1 + j − 1

j

)
.

But 1+
∑s1
v=1(−1)v−1(−

(
s1
v

)
) = 0, so this reduces to showing that

∑s2
v=1(−1)vcv = 0.

Split the summation over v at s2 − s1. This gives that
∑s2
v=1(−1)vcv equals

s2−s1∑
v=1

(−1)v
v∑
j=1

(
s2 − j
v − j

)(
s1 + j − 1

j

)
︸ ︷︷ ︸

(A)

+
s2∑

v>s2−s1

(−1)v
s2−s1∑
j=1

(
s2 − j
v − j

)(
s1 + j − 1

j

)
︸ ︷︷ ︸

(B)

.

Switching the order of summation, (A) is equal to
s2−s1∑
j=1

(
s1 + j − 1

j

) s2−s1∑
v=j

(
s2 − j
v − j

)
(−1)v,

while (B) is
s2−s1∑
j=1

(
s1 + j − 1

j

) s2∑
v>s2−s1

(−1)v
(
s2 − j
v − j

)
(−1)v.
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Hence
∑s2
v=1(−1)vcv equals

s2−s1∑
j=1

(
s1 + j − 1

j

) s2∑
v=j

(
s2 − j
v − j

)
(−1)v =

s2−s1∑
j=1

(
s1 + j − 1

j

) s2−j∑
w=0

(
s2 − j
w

)
(−1)w−s2 ,

where we have put w = s2−v. But 1 6 j 6 s2−s1 < s2, so the inner sum vanishes. �

Note that the left-hand side of Equation (25) is the character value on fixed-point-
free permutations for the homology module H̃(T ), T = [r, k]. Hence this shows that
the homology module itself cannot be a permutation module when k− r is odd, since
the right-hand side then gives a value of (−1) for the character.

Similarly, from Theorem 4.2, the character value on fixed-point-free permutations
for H̃(T ), for T = [1, k]\{r}, is

[(
k
r

)
− 1
]

(−1)k+
(
k
r

)
(−1)k−1, and this equals (−1)k−1.

Once again we can conclude that this homology module is also not a permutation
module when k is even.

Corollary 7.10. The dual Whitney homology modules WH∗k+1−i(A∗n,k), 1 < i 6 k,
are permutation modules whose Frobenius characteristic is a nonnegative integer com-
bination of the set T2 = {hλ : λ = (n− r, 1r), r > 2}.

Proof. From Theorem 3.1 and (5), we have WH∗k+1−i = H̃([i, k])⊕ H̃([i+ 1, k]). This
in turn can be rewritten as
WH∗k+1−i =

(
H̃([i, k]) + (−1)k−i+1S(n−1,1)

)
⊕
(
H̃([i+ 1, k]) + (−1)k−iS(n−1,1)

)
;

by Part (2) of Theorem 7.3, each of the summands in parentheses is h-positive with
Frobenius characteristic supported by the set T2. �

8. Tensor powers of the reflection representation II
In light of the preceding results, in this section we return to consider the tensor powers
S⊗k(n−1,1) more closely. The paper [10] gives a combinatorial model for determining the
multiplicity of an irreducible in the kth tensor power, and an explicit formula in the
case when n is sufficiently larger than k. We give general formulas that apply to the
case of arbitrary tensor powers.

Burnside proved that given a faithful representation V of a finite group G, every
G-irreducible occurs in some tensor power of V. A simple and beautiful proof of
a generalisation of this was given by Brauer in [8]. See also [11, Theorem 4.3]. In
the present context, it states that since S(n−1,1) is a faithful representation whose
character takes on n distinct values (viz. −1, 0, 1, . . . , n − 1, but not n − 2), every
irreducible Sλ occurs in at least one of the n tensor powers S⊗j(n−1,1), 0 6 j 6 n− 1.

In view of these results, the next fact is interesting. We were unable to find it in
the literature. Our proof mimics Brauer’s elegant argument.

Theorem 8.1. Let G be any finite group and X any character of G. Suppose X
takes on k distinct nonzero values b1, . . . , bk. Then the first k tensor powers of X
are linearly independent functions on G, and form a basis for the subspace of class
functions spanned by all the positive tensor powers. If Xk+1 =

∑k
i=1 ciX

i, then the
polynomial P (t) = tk+1 −

∑k
i=1 cit

i has the factorisation t
∏k
i=1(t− bi).

Let X0 = 1G denote the trivial character of G. Then Xk =
∑k
i=1 ciX

i−1 if and
only if the character X never takes the value zero.

Proof. Let U be the vector space spanned by the characters Xj of the positive tensor
powers of X. Suppose X takes the distinct values {bi 6= 0 : 1 6 i 6 k}. For each
i = 1, . . . , k, choose an arbitrary element in the preimage of bi, that is, ai ∈ X−1(bi).
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Let A = {ai : 1 6 i 6 k}. We may thus view U as a subspace of the space of
functions defined on the set A of size k; this space has dimension exactly k, and hence
dim(U) 6 k.We will show that the characters Xi, 1 6 i 6 k, are linearly independent.

We now claim that the k functions

{Xj ↓A, 1 6 j 6 k}

are linearly independent. Suppose cj are scalars such that
∑k
j=1 cjX

j is the zero
function. This implies

∑k
j=1 cjX

j(aj) = 0. But Xj(ai) = bji , so the coefficient matrix
(Xj(ai)) is a k by k Vandermonde with determinant (b1 . . . bk)

∏
16i<j6k(bj − bi),

which is nonzero by hypothesis. Hence cj = 0 for 1 6 j 6 k. This establishes the first
statement.

Now let Xk+1 =
∑k
i=1 ciX

i for some scalars ci. If X never takes on the value zero
we can clearly simplify the dependence relation to Xk =

∑k
i=1 ciX

i−1. If however 0
is a value of X, the set {1G, Xi : 1 6 i 6 k} must be linearly independent, since the
trivial character equals 1 everywhere. This finishes the proof. �

Remark 8.2. For k > 2, the representation S⊗(k−1)
(n−1,1) is contained in S⊗k(n−1,1). For this

it suffices to note that
(1) this is true for k = 2, since S⊗2

(n−1,1) − S(n−1,1) = S(n−2,2) ⊕ S(n−1,12) ⊕ S(n),

and thus
(2) S⊗k(n−1,1) − S

⊗(k−1)
(n−1,1) = S

⊗(k−2)
(n−1,1) ⊗ (S⊗2

(n−1,1) − S(n−1,1)) is a true module.

Example 8.3.WriteXk
n for S⊗k(n−1,1).Maple computations with Stembridge’s SF pack-

age show that
(1) X3

3 = X2
3 + 2X3.

(2) X4
4 = 3X3

4 +X2
4 − 3X4.

(3) X5
5 = 6X4

5 − 7X3
5 − 6X2

5 + 8X5.
(4) X6

6 = 10X5
6 − 30X4

6 + 20X3
6 + 31X2

6 − 30X6
(5) X7

7 = 15X6
7 − 79X5

7 + 165X4
7 − 64X3

7 − 180X2
7 + 144X7

(6) X8
8 = 21X7

8 − 168X6
8 + 630X5

8 − 1029X4
8 + 189X3

8 + 1198X2
8 − 840X8.

We conclude this section by pointing out a representation-theoretic consequence,
and some enumerative implications, of Theorem 7.7 and in particular of the expan-
sion (23). Fix n > 3 and consider the n by n − 1 matrix Dn whose kth column
consists of the coefficients gn(n − k, n − d), d = 1, . . . , n − 1. Thus the kth col-
umn contains the coefficients in the expansion of S⊗n−k(n−1,1) in the h-basis: we have
chS⊗k(n−1,1) =

∑n
d=1 gn(k, n−d)hn−d1 hd, 1 6 k 6 n−1. From Theorem 7.7 it is easy to

see that the matrix Dn has rank (n− 1); the last two rows, consisting of alternating
±1s, differ by a factor of (−1), and the matrix is lower triangular with 1’s on the di-
agonal, hence it has rank (n− 1). Similarly the (n+ 1) by (n− 1) matrix obtained by
appending to Dn a first column consisting of the h-expansion of the nth tensor power
of S⊗n(n−1,1) also has rank (n − 1). We therefore have a second proof of Theorem 8.1,
for the specific case of the modules S(n−1,1). In this special case we can now be more
precise about the linear combination of tensor powers:

Theorem 8.4. The first n− 1 tensor powers of S(n−1,1) are an integral basis for the
vector space spanned by the positive tensor powers. The nth tensor power of S(n−1,1)
is an integer linear combination of the first (n− 1) tensor powers:

S⊗n(n−1,1) =
n−1⊕
k=1

ak(n)S⊗k(n−1,1),
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with an−1(n) =
(
n−1

2
)
. The coefficients ak(n) are determined by the polynomial P (t) =

tn −
∑n−1
k=1 ak(n)tk, defined by

(27) P (t) = t+ 1
t− (n− 2)

n∑
j=1

c(n, j)tj(−1)n−j

where c(n, j) is the number of permutations in Sn with exactly j disjoint cycles.

Proof. We invoke Theorem 8.1. The linear combination of tensor powers in the state-
ment translates into a polynomial equation for the character values, whose zeros are
the n distinct values −1, 0, 1, . . . , n−3, n−1, taken by the character of S(n−1,1). Hence
we have

Pn(t) = tn −
n−1∑
k=1

ak(n)tk = (t+ 1)t
n−1∏

i=1,i6=n−2
(t− i) = t+ 1

(t− (n− 2))

n−1∏
i=0

(t− i).

But
∏n−1
j=0 (t − j) is the generating function for the signless Stirling numbers of the

first kind [18], so the result follows. �

The preceding result gives a recurrence for the coefficients ak(n); we have

an−1(n) =
(
n− 1

2

)
;

(n− 2)aj(n)− aj−1(n) = (−1)n−j [c(n, j)− c(n, j − 1)], 2 6 j 6 n− 1;
(n− 2)a1(n) = c(n, 1)(−1)n−1

=⇒ a1(n) = (n− 1)!
n− 2 (−1)n−1 = (−1)n−1[(n− 2)! + (n− 3)!].

Question 8.5. The identity (24) holds for all d = 2, . . . , k. Is there a combinatorial
explanation?

Question 8.6. For fixed k and n, what do the positive integers gn(k, d) count? Is there
a combinatorial interpretation for βn(k) =

∑min(n,k)
j=d gn(k, d), the multiplicity of the

trivial representation in the top homology of A∗n,k, in the nonstable case k > n? Recall
that for k 6 n this is the number B>2

k of set partitions of [k] with no singleton blocks,
and is sequence OEIS A000296.

Question 8.7. Recall that an−1(n) =
(
n−1

2
)
. Is there a combinatorial interpretation

for the signed integers ai(n)? There are many interpretations for (−1)n−1a1(n) =
(n−2)!+(n−3)!, see OEIS A001048. For n > 4 it is the size of the largest conjugacy
class in Sn−1. We were unable to find the other sequences {ai(n)}n>3 in OEIS.

9. The subposet of normal words
Let Nn,k denote the poset of normal words of length at most k in A∗n,k, again with
an artificial top element 1̂ appended. Farmer showed that

Theorem 9.1 (Farmer [9]). µ(Nn,k) = (−1)k−1(n − 1)k = µ(A∗n,k), and An,k, Nn,k
both have the homology of a wedge of (n− 1)k spheres of dimension (k − 1).

Björner and Wachs [7] showed that Nn,k is dual CL-shellable and hence homotopy
Cohen–Macaulay; it is therefore homotopy-equivalent to a wedge of (n− 1)k spheres
of dimension (k − 1). The order complexes of the posets A∗n,k and Nn,k are thus
homotopy-equivalent.

Using Quillen’s fibre theorem ([16]) we can establish a slightly stronger result:
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Lemma 9.2. Let α ∈ N∗n,k. Then the intervals (0̂, α)Nn,k and (0̂, α)A∗
n,k

are stab(α)-
homotopy equivalent, for the stabiliser subgroup stab(α) of α. In particular the ho-
mology groups are all stab(α)-isomorphic.

If α ∈ A∗n,k, but α /∈ N∗n,k, then we know that the interval (0̂, α)A∗
n,k

is contractible.

Proof. Let Jm be the set of words of length m that are not normal. Let
Bj = (0̂, α)A∗

n,k
\(∪km=jJm)

be the subposet obtained by removing all normal words at rank j and higher. Thus
B1 = (0̂, α)Nn,k . Set Bk+1 = (0̂, α)A∗

n,k
. We claim that the inclusion maps

(28) (0̂, α)Nn,k = B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂ Bj+1 ⊂ Bk+1 = (0̂, α)A∗
n,k

are group equivariant homotopy equivalences. Note that
Bj = Bj+1\{non-normal words of length j + 1},

and Bj coincides with Bj+1 for the first j ranks. The fibres to be checked are F6w =
{β ∈ Bj : β 6 α}, for w ∈ Bj+1. If w is a normal word in Bj+1, then w ∈ Bj and the
fibre is the half-closed interval (0̂, w] in Bj ; it is therefore contractible. If w ∈ Bj+1
is not a normal word, then w /∈ Bj and the interval (0̂, w)Bj coincides with the same
interval in A∗n,k, so by Part (1) of Proposition 7.4, it is contractible. Hence by Quillen’s
fibre theorem, the inclusion induces a homotopy equivalence. �

Proposition 9.3. The Whitney homology modules of A∗n,k and Nn,k are Sn-
isomorphic. In particular the jth Whitney homology of Nn,k is isomorphic to the
Sn-action on the elements at rank j.

This statement is false for the dual Whitney homology. For instance,
µ(ab, abab)A∗

n,k
= +3, but µ(ab, abab)Nn,k = +1.

The first interval is a rank-one poset with four elements bab, aab, abb, aba, whereas the
second consists only of two elements aba, bab.

It is also easy to find examples showing that the rank-selected homology is not the
same for each poset.
Example 9.4. Let n = 2 and consider the rank-set {1, 3} for the poset A∗2,k and for
its subposet of normal words N2,k.

The words of length 3, all of which cover the two rank 1 elements a and b, are
aaa, aab, aba, abb, baa, bab, bba, bbb.

It is clear that the Möbius function values are
µ(0̂, aaa) = 0 = µ(0̂, bbb), µ(0̂, w) = −1 for all w /∈ {aaa, bbb}.

Hence the Möbius number of the rank-selected subposet of all words is −5, and from
Theorem 4.2 the S2-representation on homology is 3S(2)⊕2S(1,1). The order complex
is a wedge of 5 one-dimensional spheres.

Now consider the corresponding rank-selected subposet of normal words: there are
only two normal words of length 3, namely aba, bab and hence the Möbius number of
the rank-selected subposet of normal words is −1, with trivial homology representa-
tion. The order complex is a one-dimensional sphere.
Example 9.5.More generally, let S be the rank-set [2, k], and consider the posets
A2,k(S) and N2,k(S) obtained by deleting the atoms. Then by Theorem 4.2 the ho-
mology of A2,k(S) is (k − 1)S⊗k(12) + kS(2), while the homology of the normal word
subposet N2,k(S) is seen to be S⊗k(12), which is either the trivial or the sign module,
depending on the parity of k.
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Remark 9.6. In fact it is easy to see that N2,k is the ordinal sum [18] of k copies
of an antichain of size 2, with a bottom and top element attached. Hence for any
subset T of [1, k], there is an S2-equivariant poset isomorphism between N2,k(T ) and
N2,|T |. Since the Sn-homology of N2,k is easily seen to be the k-fold tensor power of
the sign representation, this determines H̃(N2,k(T )) for all rank-sets T. Also, S2 acts
on the chains of any rank-selected subposet N2,k(T ) like 2|T |−1 copies of the regular
representation of S2, since the 2k chains of N2,k break up into orbits of size 2.

Recall from [18] that a finite graded poset P with 0̂ and 1̂ is Eulerian if its Möbius
function µP satisfies µ(P ) = (−1)rank(y)−rank(x) for all intervals (x, y) ⊆ (0̂, 1̂). It is
known that all intervals (x, y), y 6= 1̂, in Nn,k are Eulerian (see e.g. [18, Exercise 188]).
In fact Björner and Wachs observed in [7] that for a finite alphabet A = {ai : 1 6 i 6
n}, the poset of normal words without the top element Nn,k\{1̂} is simply Bruhat
order on the Coxeter group with n generators ai and relations a2

i = 1. Thus by
lexicographic shellability [6], all intervals (x, y), y 6= 1̂ are homotopy equivalent to a
sphere.

In fact this makes Nn,k\{1̂} a CW -poset as defined in [4], and hence its order com-
plex is isomorphic to the face poset of a regular CW -complex K [4, Proposition 3.1].
It is easy to see from the definitions that if a finite group G acts on a CW -poset P ,
then there is a G-module isomorphism between the jth Whitney homology WHj(P )
and the G-action on the (j − 1)-cells of the associated CW -complex K(P ), which
are simply the elements of P at rank j. This provides another explanation for the
observation of Proposition 9.3.

An EL-labelling of the dual poset of normal (or Smirnov) words appears in [12].
In [13] the program of the present paper is carried out for the subposet of Smirnov
words.
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