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Dedicated to Ian Goulden and David Jackson in recognition of their
contributions to enumerative and algebraic combinatorics

Abstract Newell–Littlewood coefficients nλ
µ,ν are the multiplicities occurring in the decom-

position of products of universal characters of the orthogonal and symplectic groups. They
may also be expressed, or even defined directly in terms of Littlewood–Richardson coefficients,
cλ

µ,ν . Both sets of coefficients have stretched forms ctλ
tµ,tν and ntλ

tµ,tν , where tκ is the partition
obtained by multiplying each part of the partition κ by the integer t. It is known that ctλ

tµ,tν

is a polynomial in t and here it is shown that ntλ
tµ,tν is an Ehrhart quasi-polynomial in t with

minimum quasi-period at most 2. The evaluation of ntλ
tµ,tν is effected both by deriving its gen-

erating function and by establishing a hive model analogous to that used for the calculation
of ctλ

tµ,tν . These two approaches lead to a whole battery of conjectures about the nature of the
quasi-polynomials ntλ

tµ,tν . These include both positivity, stability and saturation conjectures
that are supported by a significant amount of data from a range of examples.

1. Introduction
There exist irreducible representations, V λ

G , of each of the classical Lie groups, G,
whose characters, ch V λ

G , are specified by their highest weights, λ, which take the form
of partitions. The decomposition of the tensor product of such irreducible represen-
tations gives rise to multiplicities, mλ

µ,ν(G), that are defined at the level of characters
by

(1) ch V µ
G ch V ν

G =
∑

λ

mλ
µ,ν(G) ch V λ

G .

In the case of the general linear group, GLr, these multiplicities are known as
Littlewood–Richardson coefficients and are denoted here by cλ

µ,ν . In the case of the
orthogonal and symplectic groups, SO2r+1, Sp2r and SO2r, with r sufficiently large,
Newell [26,27] and Littlewood [23], by means of quite different arguments, arrived at
identical results allowing the corresponding tensor product multiplicities, nλ

µ,ν , that
we refer to as Newell–Littlewood coefficients, to be expressed in terms of Littlewood–
Richardson coefficients as follows:
(2) nλ

µ,ν =
∑

α,β,γ

cµ
α,β cν

α,γ cλ
β,γ ,

where the sum is over all partitions α, β and γ.
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These Newell–Littlewood coefficients have been the subject of more recent interest
in the hands of Gao et al. [11, 12]. They took (2) as their definition and made a sys-
tematic study of their properties that included some remarks and results on stretched
Newell–Littlewood coefficients that stimulated the work presented here.

For each partition λ let its weight, i.e. the sum of its parts, be denoted by |λ| and
its length, i.e. the number of its non-zero parts, by ℓ(λ). It is well known that

(3) cλ
µ,ν = cλ

ν,µ and cλ
µ,ν = 0 unless |λ| = |µ|+|ν| and ℓ(λ) ⩽ ℓ(µ)+ℓ(ν).

It then follows from (2) that

(4)
nλ

µ,ν = nλ
ν,µ = nµ

ν,λ = nµ
λ,ν = nν

λ,µ = nν
µ,λ and

nλ
µ,ν = 0 unless |λ|+|µ|+|ν| is even, |λ| ⩽ |µ|+|ν| and ℓ(λ) ⩽ ℓ(µ)+ℓ(ν) .

It might be noted here that it follows from (2) that

(5) nλ
µ,ν = cλ

µ,ν if |λ| = |µ|+|ν| ,

since in this case |α| = 0 and this implies in turn that α = (0), β = µ and γ = ν.
For any t ∈ Z⩾0 and partition λ = (λ1, λ2, . . . , λp) let tλ denote the partition

(tλ1, tλ2, . . . , tλp). Then ctλ
tµ,tν and ntλ

tµ,tν are referred to as stretched Littlewood–
Richardson and Newell–Littlewood coefficients, respectively. Their generating func-
tions take the form:

(6) Cλ
µ,ν(w) =

∞∑
t=0

ctλ
tµ,tν wt and Nλ

µ,ν(w) =
∞∑

t=0
ntλ

tµ,tν wt .

It has been established by Rassart [28] that ctλ
tµ,tν is a polynomial in t, and as will be

shown here, it follows from the work of De Loera and McAllister [7] that ntλ
tµ,tν is a

quasi-polynomial in t of minimum quasi-period at most 2, that is to say

(7) ctλ
tµ,tν = P (t) for all t and ntλ

tµ,tν =
{

Pe(t) for t even;
Po(t) for t odd,

where P (t), Pe(t) and Po are all polynomials in t. In terms of generating functions
this implies that [32]

(8) Cλ
µ,ν(w) = F (w)

(1 − w)d
and Nλ

µ,ν(w) = G(w)
(1 − w)d1(1 − w2)d2

with F (w) and G(w) polynomials in w of degrees less than d and d1+2d2, respectively.
For example, in the Littlewood–Richardson case

(9) c
(9,7,5,4)
(6,5,3),(6,4,1) = 7 and c

t(9,7,5,4)
t(6,5,3),t(6,4,1) = (t+1)(5t2+10t+6)/6

with

(10) C
(9,7,5,4)
(6,5,3),(6,4,1)(w) = w2+3w+1

(1−w)4 .

On the other hand, in the Newell–Littlewood case

(11) n
(5,2)
(5,3),(4,1) = 6 and n

t(5,2)
t(5,3),t(4,1) =

{
(t+2)(14t2+23t+12)/24 t even;
(t+1)(14t2+37t+21)/24 t odd,

with

(12) N
(5,2)
(5,3),(4,1)(w) = 3w2+3w+1

(1−w)3(1−w2) ,

Algebraic Combinatorics, Vol. 5 #6 (2022) 1228



Stretched Newell–Littlewood coefficients

while

(13) n
(4,2)
(5,3),(4,1) = 0 and n

t(4,2)
t(5,3),t(4,1) =

{
(t+2)(19t2+40t+24)/48 t even;
0 t odd,

with

(14) N
(4,2)
(5,3),(4,1)(w) = 7w4+11w2+1

(1−w2)4 .

The two Newell–Littlewood examples illustrate some of the properties we wish to
explore in an attempt to find analogues of the following statements that apply to the
Littlewood–Richardson case:

LR(i) Theorem [Knutson–Tao] [19]: cλ
µ,ν > 0 ⇐⇒ ctλ

tµ,tν > 0, for all integers t > 0;
LR(ii) Theorem [Fulton] [20]: cλ

µ,ν = 1 ⇐⇒ ctλ
tµ,tν = 1, for all integers t > 0;

LR(iii) Theorem [Rassart] [28]: ctλ
tµ,tν is a polynomial in t with rational coefficients;

LR(iv) Conjecture [18]: All coefficients of the polynomial ctλ
tµ,tν are non-negative.

LR(v) Conjecture [18]: F (w) is a polynomial in w all of whose coefficients are non-
negative integers.

In the Newell–Littlewood case it is helpful, as in the above examples, to distinguish
between those stretched coefficients ntλ

tµ,tν for which |λ|+|µ|+|ν| is either even or odd.
Then the closest analogues of the above statements that we offer as conjectures about
stretched Newell–Littlewood coefficients are as follows:

Conjecture 1.1. If |λ|+|µ|+|ν| is even then
E(i) nλ

µ,ν > 0 ⇐⇒ ntλ
tµ,tν > 0, for all integers t > 0;

E(ii) nλ
µ,ν = 1 and n2λ

2µ,2ν = 1 ⇐⇒ ntλ
tµ,tν = 1, for all integers t > 1;

E(iii) ntλ
tµ,tν is a quasi-polynomial in t of minimum quasi-period at most 2 with

rational coefficients;
E(iv) All coefficients of the quasi-polynomial ntλ

tµ,tν are non-negative;
E(v) G(w) is a polynomial in w all of whose coefficients are non-negative integers.

If |λ|+|µ|+|ν| is odd then ntλ
tµ,tν = 0 for all odd integers t and

O(i) n2λ
2µ,2ν > 0 ⇐⇒ n2tλ

2tµ,2tν > 0, for all integers t > 0;
O(ii) n2λ

2µ,2ν = 1 ⇐⇒ n2tλ
2tµ,2tν = 1, for all integers t > 0;

O(iii) ntλ
tµ,tν is a polynomial in t2 with rational coefficients;

O(iv) All coefficients of the polynomial ntλ
tµ,tν are non-negative;

O(v) G(w) is a polynomial in w2 all of whose coefficients are non-negative integers,
and d1 = 0.

Of these, the validity of the quasi-polynomial and polynomial conjectures E(iii)
and O(iii) is established here in Corollary 2.2 of Proposition 2.1. It will then be noted
that E(i) and E(ii) are corollaries of E(iv), while O(i) and O(ii) are corollaries of O(iv),
with the validity of both E(iv) and O(iv) supported through the accumulation of a
considerable amount of data that also supports both E(v) and O(v). Independently
of this, the validity of O(i) is established in Corollary 2.4 of Proposition 2.3, along
with a slightly weaker form of E(i).

The key point to recognise is that Newell–Littlewood coefficients are nothing other
than Clebsch–Gordan coefficients that govern the decomposition of products of uni-
versal characters of the classical orthogonal and symplectic groups, or equivalently
their corresponding simple Lie algebras. This relationship between coefficients is ex-
plained in Section 2. This allows us to conclude immediately that stretched Newell–
Littlewood coefficients are quasi-polynomial in nature by virtue of a proposition to
this effect established by De Loera and McAllister [7]. This applies to all stretched
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Clebsch–Gordan coefficients of classical simple Lie algebras. They also established that
the minimum quasi-period of all such quasi-polynomials is at most 2. This allows us
to prove a Corollary 2.2 of their proposition that comprises parts E(iii) and O(iii) of
Conjecture 1.1.

This same relationship between Clebsch–Gordan coefficients and Newell–
Littlewood coefficients allows us to extract from the work of Kapovich and Mill-
son [14], Belkale and Kumar [2], and Sam [29] on the saturation problem for the
orthogonal and symplectic groups some conjectures on Newell–Littlewood coefficients.
These are stated at the close of Section 2. They serve to establish the validity of
part O(i) of Conjecture 1.1, and are consistent with, but weaker than part E(i).

Section 3 is concerned with a new method of calculating the generating function for
stretched Newell–Littlewood coefficients that is based on the use of known generating
functions for universal characters [9,16,22]. This is motivated by a desire to test further
the validity of the positivity conjectures E(iv) and O(iv) that were first formulated
in Conjecture 4.7 of [7] within the stretched Clebsch–Gordan coefficient context. The
required formula applicable to stretched Newell–Littlewood coefficients is provided in
Theorem 3.1 and is thereafter exploited by means of Xin’s algorithm [34] to calculate
both Nλ

µ,ν(w) and ntλ
tµ,tν , first for all the examples considered by Gao et al. [11], and

in subsequent sections for many other examples.
In order to study the nature of the quasi-polynomials ntλ

tµ,tν for various triples
(µ, ν, λ), in particular their degrees, deg ntλ

tµ,tν , it is helpful to construct a combina-
torial model for the evaluation of Newell–Littlewood coefficients nλ

µ,ν and to examine
the impact of scaling the parts of µ, ν and λ by t. Such a model was used by Gao et
al. [11] for their evaluation of Clebsch–Gordan coefficients. It expressed the required
coefficients as the number of integer points in certain BZ-polytopes that had been
defined for each of the classical simple Lie algebras by Berenstein and Zelevinsky [3,4].
These BZ-polytopes are defined by a set of linear inequalities and equalities involv-
ing the parts of µ, ν and λ. Scaling all these parts simultaneously by the stretching
parameter t allows one to identify stretched Clebsch–Gordan coefficients with the
Ehrhart quasi-polynomial [8, 32] of the BZ-polytope.

In the case of the general linear algebra, the BZ-polytope is equivalent to the
more simply defined hive polytope of Knutson and Tao [19]. This is introduced here
in Section 4 as a hive model for the evaluation of Littlewood–Richardson coefficients.
Then, rather than using the BZ-polytopes for the orthogonal and symplectic algebras
to evaluate Newell–Littlewood coefficients, we introduce from first principles a new
hive model for their evaluation. The corresponding polytopes, which we refer to as
K-polytopes, are again defined by a set of linear inequalities and equalities involving
the parts of µ, ν and λ. Scaling by the stretching parameter t in the usual way
then allows one to identify stretched Newell–Littlewood coefficients with the Ehrhart
quasi-polynomial of these K-polytopes. This hive model enables one to see that

(15) deg ntλ
tµ,tν ⩽ 3n(n − 1)/2 where n = max{ℓ(µ), ℓ(ν), ℓ(λ)} .

The use of skeletal graphs [18] in obtaining lower upper bounds for particular
triple (µ, ν, λ) is illustrated in three examples, the first of which sheds some light
on parts E(ii) and O(ii) of Conjecture 1.1 regarding the conditions under which
ntλ

tµ,tν = 1.
These bounds are satisfied by explicit calculations of ntλ

tµ,tν in the following sections
which all, more importantly, support the positivity conjectures of Conjecture 1.1
as well as giving rise to certain new stability conjectures. These arise in Section 5
which commences with an example in which the quasi-polynomials ntλ

tµ,tν are evaluated
for fixed µ = ν but arbitrary λ. One stability phenomenon takes the form of the
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independence of ntλ
tµ,tν on a in the case µ = (a, σ), ν = (a, τ) and λ = (a, ρ) for a

sufficiently large. Section 6 involves a further exploration of both the positivity and
stability conjectures in the case of Newell–Littlewood cubes for which µ = ν = λ,
with some further results relegated to Appendix A.

The concluding Section 7 includes some remarks about the connections between
the various conjectures.

2. Universal characters
The classical Lie groups, G, of interest here are the general linear groups, GLr, the
odd orthogonal group, SO2r+1, the symplectic group, Sp2r, and the even orthogonal
group, SO2r, for all r ∈ N. Let Pr be the set of all partitions λ = (λ1, λ2, . . . , λr)
with λk ∈ Z⩾0 for k = 1, 2, . . . , r and λk ⩾ λk+1 for k = 1, 2, . . . , r − 1. The partition
λ is said to have length ℓ(λ) = p if λk > 0 and λk = 0 for all k > p. In such a case,
one often drops trailing zeros and writes λ = (λ1, λ2, . . . , λp). Each of the groups G
possesses a finite-dimensional irreducible representation, V λ

G , of highest weight λ for
each λ ∈ Pr.

The characters may be evaluated through the use of Weyl’s character formula:

(16) ch V λ
G =

∑
w∈Wg

sgn(w)ew(λ+ρ)
/ ∏

α∈∆+
g

(eα/2 − e−α/2) ,

where Wg is the Weyl group of the Lie algebra g corresponding to the group G,
sgn(w) = ±1 is the signature or parity of w, ∆+

g is the set of positive roots of g and
ρg is half the sum of the positive roots. It follows that

(17)
∏

α∈∆+
g

(1 − e−α) ch V λ
G =

∑
w∈Wg

sgn(w)ew(λ+ρg)−ρg = eλ +
∑

κ

(±eκ) ,

where all terms in the sum on the right are distinct. Each κ = w(λ+ρg)−ρg with
w ̸= id, the identity element of Wg, does not, unlike λ, lie in the fundamental, positive
Weyl chamber. Hence, for any coefficients mµ

(18) [eλ]
∏

α∈∆+
g

(1 − e−α)
∑

µ

mµ ch V µ
G = mλ

where [eλ](· · · ) is the coefficient of eλ in the expansion of (· · · ). This allows one to
evaluate the coefficients appearing in (1) by means of the formula

(19) mλ
µ,ν(G) = [eλ]

∏
α∈∆+

g

(1 − e−α) ch V µ
G ch V ν

G .

In each case of interest here the character ch V λ
G may be expressed in terms of a

sequence of indeterminates x = (x1, x2, . . .) whose non-vanishing components may be
identified either with eigenvalues xi of group elements or with formal exponentials
xi = eϵi in the Euclidean basis of the root space of the algebra g. For each of our
reductive Lie groups, G, the corresponding simple classical Lie algebra, g, and their
positive roots are given in the (20).

(20)

G g ∆+
g

GLr Ar−1+̇D1 {ϵi − ϵj | 1 ⩽ i < j ⩽ r}
SO2r+1 Br {ϵi ± ϵj | 1 ⩽ i < j ⩽ r} ∪ {ϵi | 1 ⩽ i ⩽ r}
Sp2r Cr {ϵi ± ϵj | 1 ⩽ i < j ⩽ r} ∪ {2ϵi | 1 ⩽ i ⩽ r}
SO2r Dr {ϵi ± ϵj | 1 ⩽ i < j ⩽ r}
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It is convenient to set xi = eϵi and xi = x−1
i = e−ϵi for i = 1, 2, . . . , r. In this

Euclidean basis λ = λ1ϵ1 +λ2ϵ2 + · · ·+λrϵr and eλ = xλ = xλ1
1 xλ2

2 · · · xλr
r for any

partition λ of length ℓ(λ) ⩽ r, with the inclusion where necessary of trailing zeros.
The products in (18) take the form shown in (21).

(21)

G
∏

α∈∆+
g

(1 − e−α)

GLr

∏
1⩽i<j⩽r(1 − xixj)

SO2r+1
∏

1⩽i<j⩽r(1 − xixj)(1 − xixj)
∏

1⩽i⩽r(1 − xi)
Sp2r

∏
1⩽i<j⩽r(1 − xixj)(1 − xixj)

∏
1⩽i⩽r(1 − x2

i )
SO2r

∏
1⩽i<j⩽r(1 − xixj)(1 − xixj)

The connection between complex Lie algebras and compact Lie groups is such that
the parameters xi and xi, together with 1, may also be interpreted as eigenvalues of
group elements, in which case the relevant characters can be specified in the following
way:

(22)

ch V λ
GLr

= glλ(x) with x = (x1, x2, . . . , xr, 0, 0, . . .)
ch V λ

SO2r+1
= ooλ(x) with x = (x1, x2, . . . , xr, x1, x2, . . . , xr, 1, 0, 0, . . .)

ch V λ
Sp2r

= spλ(x) with x = (x1, x2, . . . , xr, x1, x2, . . . , xr, 0, 0, . . .)
ch V λ

SO2r
= eoλ(x) with x = (x1, x2, . . . , xr, x1, x2, . . . , xr, 0, 0, . . .)

Here each character is expressed as a specialisation of an appropriate universal char-
acter gλ(x) with x = (x1, x2, . . .) a countably infinite sequence. The corresponding
universal characters themselves, without any restrictions on x are defined by means
of the generating functions [9, 16,22]:

(23)

∏
i,a

(1 − xiya)−1 =
∑

λ

glλ(x) glλ(y) ;

∏
i,a

(1 − xiya)−1
∏
a⩽b

(1 − yayb) =
∑

λ

ooλ(x) glλ(y) ;

∏
i,a

(1 − xiya)−1
∏
a<b

(1 − yayb) =
∑

λ

spλ(x) glλ(y) ;

∏
i,a

(1 − xiya)−1
∏
a⩽b

(1 − yayb) =
∑

λ

eoλ(x) glλ(y) ,

where x = (x1, x2, . . .) and y = (y1, y2, . . .) and the sum is over all partitions λ.
The universal character glλ(x) is nothing other than the Schur function sλ(x) whose

product rule [24] defines the Littlewood–Richardson coefficients cλ
µ,ν . The product

rules for the universal characters take the form [9,16,23,26]

(24)

glµ(x) glν(x) =
∑

λ

cλ
µ,ν glλ(x) ;

ooµ(x) ooν(x) =
∑

λ

nλ
µ,ν ooλ(x) ;

spµ(x) spν(x) =
∑

λ

nλ
µ,ν spλ(x) ;

eoµ(x) eoν(x) =
∑

λ

nλ
µ,ν eoλ(x) ,

where the coefficients nλ
µ,ν are precisely the Newell–Littlewood coefficients given

by (2).
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The product rules are universal in that they apply in the case of all countably
infinite sequences x = (x1, x2, . . .). However, under the rank-dependent specialisations
of (22) the characters gλ(x) appearing on the right in (24) may not all be independent.
In such a case those for which ℓ(λ) > r are subject to modification rules that can
be expressed in a variety of different ways [5, 15, 21, 26]. However, if r ⩾ ℓ(µ)+ℓ(ν)
then no modifications are required so that the product rules (24) apply directly to
products of characters of GLr, SO2r+1, Sp2r and SO2r for all r ⩾ ℓ(µ)+ℓ(ν). As
we shall see in Section 3 this observation gives us a way not only of evaluating the
quasi-polynomial stretched Newell–Littlewood coefficients but also of evaluating their
generating functions.

The coefficients mλ
µ,ν(G) appearing (1) are referred to variously as Clebsch–Gordan

coefficients, Kronecker product coefficients or tensor product coefficients in those cases
for which G is a Lie group with corresponding Lie algebra g. To distinguish various
cases of interest we adopt the following notation:

(25)

G g mλ
µ,ν(G)

GLr Ar−1 ∔ D1 mλ
µ,ν(glr)

SO2r+1 Br mλ
µ,ν(oor)

Sp2r Cr mλ
µ,ν(spr)

SO2r Dr mλ
µ,ν(eor)

where r is the rank of the relevant finite-dimensional complex simple Lie algebra.
Following the observation made previously,

(26) mλ
µ,ν(oor) = mλ

µ,ν(spr) = mλ
µ,ν(eor) = nλ

µ,ν

for all r ⩾ ℓ(µ) + ℓ(ν). That is to say, as the rank r increases, each of these Clebsch–
Gordan coefficients attains a stable limit and this limit coincides with the corre-
sponding Newell–Littlewood coefficient specified by the same triple of partition labels
(µ, ν, λ). This result extends to the stretched case:

(27) mtλ
tµ,tν(oor) = mtλ

tµ,tν(spr) = mtλ
tµ,tν(eor) = ntλ

tµ,tν

for all t ∈ Z⩾0 and all r ⩾ ℓ(µ) + ℓ(ν).
The behaviour with respect to rank r of stretched Clebsch–Gordan coefficients

for each of the Lie algebras Br, Cr and Dr is illustrated in Table 1 in the case
µ = ν = λ = (2, 1, 1) for which it is required that r ⩾ 3.

The data underlying this tabulation were compiled both by using the software
package SCHUR [30] to evaluate the decomposition of products of characters in ac-
cordance with (1) and by using the well-known character formulae appearing for
example in [10] and exploiting (19). In this way Clebsch–Gordan coefficients were
explicitly calculated for various stretching parameters t for each of the Lie algebras
of rank r, with r ranging from its minimum possible value 3 to the value 6 where
stability is known to set in. The expressions displayed in Table 1 were then obtained
by fitting the data to quasi-polynomials of quasi-period 2. The results illustrate the
fact that the stable limits of the stretched Clebsch–Gordan coefficients of all three Lie
algebras coincide, as claimed in (27). The fact, that these coefficients differ for lower
values of the rank r is a consequence of the modification rules applying to universal
characters being different for each of the three families of Lie algebras [5, 15,21,26].

This data fitting approach is justified by the fact that De Loera and McAllis-
ter [7] have already established in their Proposition 1.2 the quasi-polynomial nature
of stretched Clebsch–Gordan coefficients for all classical Lie algebras, and shown that
the minimum quasi-period is at most 2. By taking r sufficiently large, that is to say
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g

G(w)/(1−w)d1(1−w2)d2{
Pe(t) t even
Po(t) t odd

Br ≃ so(2r+1)
r = 3

(w2+w+1)/(1−w)3(1−w2){
(t+2)(2t2+5t+4)/8 t even
(t+1)(2t2 + 7t+7)/8 t odd

Br ≃ so(2r+1)
r ⩾ 4

(w6+w5+8w4+4w3+5w2+w+1)/(1−w)3(1−w2)4{
(t+2)2(t+4)(7t3+43t2+126t+240)/3840 t even
(t+1)(t+3)(7t4+71t3+305t2+697t+840)/3840 t odd

Cr ≃ sp(2r)
r = 3

(w4+w2+1)/(1−w)(1−w2)3{
(t+2)(t2+4t+8)/16 t even
(t+1)(t2 + 2t+5)/16 t odd

Cr ≃ sp(2r)
r ⩾ 4

(w6+w5+8w4+4w3+5w2+w+1)/(1−w)3(1−w2)4{
(t+2)2(t+4)(7t3+43t2+126t+240)/3840 t even
(t+1)(t+3)(7t4+71t3+305t2+697t+840)/3840 t odd

Dr ≃ so(2r)
r = 3

1/(1−w){
1 t even
1 t odd

Dr ≃ so(2r)
r = 4

(w5 + 3w4+5w3+5w2+3w+1)/(1−w)4(1−w2)2{
(t+2)(6t4+33t3+104t2+152t+80)/160 t even
(t+1)(6t4+39t3+131t2+229t+155)/160 t odd

Dr ≃ so(2r)
r ⩾ 5

(w6+w5+8w4+4w3+5w2+w+1)/(1−w)3(1−w2)4{
(t+2)2(t+4)(7t3+43t2+126t+240)/3840 t even
(t+1)(t+3)(7t4+71t3+305t2+697t+840)/3840 t odd

Table 1. The rank dependence of stretched Clebsch–Gordan coefficients

r ⩾ ℓ(µ) + ℓ(ν) as in (27), their Proposition 1.2 as applied to Newell–Littlewood
coefficients takes the form:

Proposition 2.1. For all triples of partitions (λ, µ, ν) and all t ∈ Z⩾0 the stretched
Newell–Littlewood coefficients ntλ

tµ,tν are quasi-polynomials in t with minimum quasi-
period at most 2.

As a consequence of this we have

Corollary 2.2.
• E(iii) If |λ|+|µ|+|ν| is even and nλ

µ,ν > 0 then ntλ
tµ,tν is a quasi-polynomial

in t with minimum quasi-period at most 2 with rational coefficients.
• O(iii) If |λ|+|µ|+|ν| is odd and n2λ

2µ,2ν > 0 then ntλ
tµ,tν is a polynomial in t2

with rational coefficients.

Proof. As pointed out in the Introduction, Proposition 2.1 is equivalent to the state-
ment that the generating function of (6) for Newell–Littlewood coefficients takes the
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form

(28)
Nλ

µ,ν(w) =
∞∑

t=0
ntλ

tµ,tν wt = G(w)
(1−w)d1 (1−w2)d2

=
∑

t≡0(mod 2)

Pe(t) wt +
∑

t≡1(mod 2)

Po(t) wt ,

where G(w), Pe(t) and Po(t) are all polynomials. The fact that ntλ
tµ,tν is a non-negative

integer for all t ensures that the coefficients in G(w), Pe(t) and Po(t) are rational.
If |λ|+|µ|+|ν| is even this completes the proof of E(iii). If |λ|+|µ|+|ν| is odd then

ntλ
tµ,tν = 0 for all odd t, that is to say Po(t) = 0. It follows that d1 = 0 and G(w) must

be a polynomial in w2, thereby completing the proof of O(iii). □

The fact that Newell–Littlewood coefficients are special cases of Clebsch–Gordan
coefficients or tensor product multiplicities of characters of complex reductive Lie
groups or their associated Lie algebras also allows one to make considerable progress
towards the verification of the saturation conjectures E(i) and O(i). In particular,
Theorem 1.1 of Kapovich and Millson in [14], Theorems 6 and 7 of Belkale and
Kumar [2], and Theorem 1.1 of Sam in [29] reveal, when applied to our universal
characters of the orthogonal and symplectic groups the validity of the following:

Proposition 2.3. For all partitions µ, ν and λ, and integer t

(29) ntλ
tµ,tν > 0 for some t ⩾ 1 =⇒

{
n4λ

4µ,4ν > 0, [14],
n2λ

2µ,2ν > 0, [2, 29].

To justify this one notes that by taking the rank r of the Lie algebra g of the relevant
group G to be such that r ⩾ ℓ(µ) + ℓ(ν) ⩾ ℓ(λ) then nλ

µ,ν = mλ
µ,ν(g), as explained

previously. Moreover, by also taking r > ℓ(λ) the irreducible representation of highest
weight λ will be self-contragredient so that mλ

µ,ν(g) = m0
µ,ν,λ(g), where the latter is

the multiplicity of the identity representation in the product of the three irreducible
representations of highest weights µ, ν and λ. This allows a direct connection to be
made with the three-fold case of the tensor products encountered in [2, 14, 29]. That
the result in [14] may be applied to Newell–Littlewood coefficients follows from the
fact that for any three dominant integral weights µ, ν and λ, their sum lies in the
root lattice of Br, even though that may not be the case for Cr or Dr.

As a consequence of this we have

Corollary 2.4.
• E′(i) For |λ|+|µ|+|ν| even, if ntλ

tµ,tν > 0 for some t ⩾ 1, then n2λ
2µ,2ν > 0:

• O′(i) For |λ|+|µ|+|ν| odd, if ntλ
tµ,tν > 0 for some t ⩾ 1, then n2λ

2µ,2ν > 0.
and for |λ|+|µ|+|ν| odd, we have

• O(i) n2λ
2µ,2ν > 0 ⇐⇒ n2tλ

2tµ,2tν > 0, for all integers t > 0.

Proof. Both E′(i) and O′(i) are immediate consequences of Proposition 2.3. To de-
rive O(i) from O′(i) one first notes that for |λ|+ |µ|+ |ν| odd, ntλ

tµ,tν may only be
> 0 if t is even. This implies the right to left implication of O(i). The left to
right implication follows from the fact that n2λ

2µ,2ν > 0 implies that there exist α,
β and γ such that c2µ

α,β c2ν
α,γ c2λ

β,γ > 0. This implies in turn, by virtue of LR(i), that
c2tµ

tα,tβ c2tν
tα,tγ c2tλ

tβ,tγ > 0. □

This still leaves open the conjecture E(i) that was first proposed by Gao et al. [11].
To test this and all remaining unproven parts of Conjecture 1.1 we proceed by gath-
ering together more data.
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3. Generating function approach
Although the data of the previous section also supports the positivity conjec-
tures E(iv) and O(iv) on the coefficients of Pe(t) and Po(t), as well as the positivity
conjectures E(v) and O(v) on the coefficients of G(w), these are far from being proved
as yet. In fact the positivity of the coefficients of the polynomials Pe(t) and Po(t)
were first proposed by De Loera and McAllister in Conjecture 4.7 of [7] within the
context of their study of stretched Clebsch–Gordan coefficients. This conjecture was
based on an extraordinary wealth of data accumulated by the random selection of
hundreds of triples (λ, µ, ν) involving partitions of impressively high weight. However,
the calculations were only feasible for Lie algebras of comparatively low rank. As
a result their tabulation of results in support of the positivity conjecture in the
Clebsch–Gordan context does not include any Newell–Littlewood examples. It there-
fore seems worthwhile calculating some more Newell–Littlewood quasi-polynomials
from first principles. This may be done by means of the following

Theorem 3.1. Let λ, µ and ν be partitions of lengths m, p and q, respectively, with
m ⩽ p + q. Let x = (x1, x2, . . . , xr), y = (y1, y2, . . . , yp) and z = (z1, z2, . . . , zq) with
r = p + q, and let xi = x−1

i , yi = y−1
i and zi = z−1

i for all i. Then

(30) nλ
µ,ν = [xλyµzν ] K(x, y)K(x, z)A(y)A(z)C(x)V (x)V (y)V (z)

and

(31) Nλ
µ,ν(w) = [x0y0z0] K(x, y)K(x, z)A(y)A(z)C(x)V (x)V (y)V (z)

(1 − w/(xλyµzν))
where

(32)

K(x, y) =
(r,p)∏

(i,a)=(1,1)

(1 − xiya)−1(1 − xiya)−1;

K(x, z) =
(r,p)∏

(i,c)=(1,1)

(1 − xizc)−1(1 − xizc)−1;

C(x) =
∏

1⩽i⩽j⩽r

(1 − xixj);

A(y) =
∏

1⩽a<b⩽p

(1 − yayb); A(z) =
∏

1⩽c<d⩽q

(1 − zczd);

V (x) =
∏

1⩽i<j⩽r

(1 − xixj);

V (y) =
∏

1⩽a<b⩽p

(1 − yayb); V (z) =
∏

1⩽c<d⩽q

(1 − zczd);

and [xλ yµ zµ](· · · ) means the coefficient of xλ1
1 · · · xλr

s yµ1
1 · · · y

µp
p zν1

1 · · · z
νq
q in (· · · ).

Proof. Let x = (x1, x2, . . . , xr, x1, x2, . . . , xr, 0, 0, . . .), y = (y1, y2, . . . , yp, 0, 0, . . .) and
z = (z1, z2, . . . , zq, 0, 0, . . .) for the moment. Then the symplectic case of (23) yields,
with the notation of (32),

(33) K(x, y) A(y) =
∑

σ

spσ(x) glσ(y) and K(x, z) A(z) =
∑

τ

spτ (x) glτ (z) .

The choice of p = ℓ(µ) and q = ℓ(ν) in defining y and z are the lowest possible values
so as to ensure that the sums over σ and τ include the cases σ = µ and τ = ν by
virtue of the non-vanishing of glµ(y) = sµ(y) and glν(z) = sν(z). This choice also
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ensures that ℓ(σ) ⩽ p and ℓ(τ) ⩽ q in the case of all non-vanishing terms. Taking the
product of these two expressions yields

(34) K(x, y) K(x, z) A(y) A(z) =
∑
ρ,σ,τ

nρ
σ,τ spρ(x) glσ(y) glτ (z) .

This time the choice of r = p + q ⩾ ℓ(σ) + ℓ(τ) in defining x ensures by virtue of (4)
and (24) that all possible terms spρ(x) appearing in the product of the universal
characters spσ(x) and spτ (x) also appear in (34). This includes spλ(x) since r =
p + q > m, the length of λ.

To project out the coefficients nλ
µ,ν it is necessary to pick out of this expression

the coefficient of spλ(x) glµ(y) glν(z). This can be done through the use of (18) and
the products taken from (21) for Sp2r, GLp and GLq. Again in the notation of (32),
these take the form C(x) V (x), V (y) and V (z). Putting these results together and
taking the coefficient of [xλ yµ zν ] yields nλ

µ,ν as in (30), where it is important to note
that the reversion to x = (x1, x2, . . . , xr), y = (y1, y2, . . . , yp) and z = (z1, z2, . . . , zq)
is allowed since λ, µ and ν are partitions of lengths m ⩽ p + q = r, p and q.

To evaluate ntλ
tµ,tν for any stretching parameter t, one merely has to replace λ, µ

and ν in (30) by the stretched partitions tλ, tµ and tν, respectively, The fact that
there is no change in the lengths of these partitions obviates the necessity of making
any changes to the parameters r, p and q in (32).

The generating function Nλ
µ,ν(w) of (31) then follows immediately by expanding

1/(1−w/Z) in the form 1+w/Z +w2/Z2 +· · ·+wt/Zt +· · · with Zt = xtλ ytµ ztν . □

Similar, but distinct formulae of the same type may be obtained by exploiting the
orthogonal cases of (23) and the SO(2r) and SO(2r + 1) cases of (21). However, in
each case the result is slightly less efficient as a means of calculating nλ

µ,ν and Nλ
µ,ν(w).

By exploiting the self-contragredient nature of the relevant irreducible representations
it is also straightforward to write down expressions for nλ

µ,ν and Nλ
µ,ν(w), analogous

to those in Theorem 3.1, but that are manifestly symmetric in µ, ν and λ, namely

nλ
µ,ν = [v0xλyµzν ] K(v, x)K(v, y)K(v, z)A(x)A(y)A(z)C(v)V (v)V (x)V (y)V (z)

and

Nλ
µ,ν(w) = [v0x0y0z0] K(v, x)K(v, y)K(v, z)A(x)A(y)A(z)C(v)V (v)V (x)V (y)V (z)

(1 − w/(v0xλyµzν))
where v = (v1, v2, . . . , vs) with s = p + q + r. However, the use of these expressions is
again computationally more demanding than the use of those in Theorem 3.1.

To exploit Theorem 3.1 it is convenient to use Xin’s algorithm [34] as implemented
in the Maple package Ell2.mpl. This proceeds by successively picking out the constant
terms in each xi, each ya and each zc. To do this it is necessary to multiply xi and xi

in K(x, y) by a parameter u, and in K(x, z) by a parameter v, only setting u = v = 1
after the elimination of xi. The result is an explicit expression for Nλ

µ,ν(w) in the form
G(w)/(1 − w)d1(1 − w2)d2 from which can be extracted polynomial expressions Pe(t)
and Po(t) for ntλ

tµ,tν in the cases t even and odd, respectively.
The results of Gao et al. in section 5.4 of [11], displayed here in Table 2, have been

confirmed by this means.
To illustrate cases in which µ and ν are fixed and λ varies over all partitions of

weight |λ| ranging from 0 to |µ| + |ν| it is instructive to consider, for example, the
case µ = ν = (3, 1) with λ arbitrary. The results are tabulated in Tables 3 and 4,
stratified by |λ| which varies from 8 down to 0. One can see that in each case the
positivity of all coefficients in Pe(t), Po(t) and G(w) is confirmed, thereby supporting
the parts E(iv), O(iv), E(v) and O(v) of Conjecture 1.1.
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µ

ν

λ

G(w)/(1−w)d1(1−w2)d2{
Pe(t) t even
Po(t) t odd

(1, 1)
(1, 1)
(1, 1)

1/(1−w)(1−w2){
(t+2)/2 t even
(t+1)/2 t odd

(2, 1, 1)
(2, 1, 1)

(1, 1, 1, 1)

1/(1−w)2(1−w2)2{
(t+2)(t+3)(t+4)/24 t even
(t+1)(t+3)(t+5)/24 t odd

(2, 1, 1)
(2, 1, 1)
(2, 1, 1)

(w6+w5+8w4+4w3+5w2+w+1)/(1−w)3(1−w2)4{
(t+2)2(t+4)(7t3+43t2+126t+240)/3840 t even
(t+1)(t+3)(7t4+71t3+305t2+697t+840)/3840 t odd

Table 2. Examples of Gao et al.

4. Hive model
In the case of the Lie algebra gl(n) the Littlewood–Richardson coefficients may be
evaluated using the hive model introduced by Knutson and Tao [19], with properties
described in more detail by Buch [6]. An integer n-hive is a labelling of the vertices
of a planar, equilateral triangular graph of side length n with integers aij , for 0 ⩽
i ⩽ j ⩽ n, satisfying certain rhombus inequalities which are to be applied to each
elementary rhombus formed from the union of any pair of elementary triangles having
a common edge whatever their orientation. One such hive is illustrated below on the
left in the case n = 4. The elementary triangles and rhombi are shown on the right.
They are provided with both vertex and edge labels [18,33].
(35)

a00

a01

a02

a03

a04

a11

a12

a13

a14

a22

a23

a24

a33

a34

a44•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

µ1

µ2

µ3

µ4 ν1

ν2

ν3

ν4

λ1 λ2 λ3 λ4

• •

•

a b

c

α β

γ •

••

c

ba

α β

γ

•

••

•
a

bc

d

α α′

γ

γ′

• •

•

•

a b

c

d

α

α′

β′

β

•

••

•
a

bc

d

β β′

γ

γ′

An edge between vertices labelled a and b is given the label b − a if b is to the right
of a. Thus in each of the two elementary triangles we have
(36) α = c − a, β = b − c, γ = b − a so that γ = α + β.

For all three elementary rhombi, the rhombus constraints take the form
(37) a + b ⩾ c + d so that α ⩾ α′, β ⩾ β′, γ ⩾ γ′ .

This is indicated in the above diagram by making the edge with the potentially larger
edge label thicker than the other for each pair of parallel edges.
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λ Nλ
(3,1),(3,1)(w) ntλ

t(3,1),t(3,1)

(62), (612), (53), (513), (42),
(422), (4212), (322), (3212)

1
(1 − w) 1

(521), (431) 1
(1 − w)2 (t + 1)

(61), (413), (322), (3212) 1
(1 − w2)

1 t even
0 t odd

(52), (512), (43), (321) 1
(1 − w2)4

(t + 2)(t + 4)(t + 6)/48 t even
0 t odd

(421) (1 + 3w2)
(1 − w2)5

(t + 2)2(t + 4)(t + 6)/96 t even
0 t odd

(6), (23), (2212) 1
(1 − w) 1

(51), (412) 1
(1 − w)3(1 − w2)

(t + 2)(t + 4)(2t + 3)/24 t even
(t + 1)(t + 3)(2t + 7)/24 t odd

(42) 1
(1 − w)4 (t + 1)(t + 2)(t + 3)/6

(32) 1
(1 − w)2(1 − w2)

(t + 2)2/4 t even
(t + 1)(t + 3)/4 t odd

(321) 1
(1 − w)4(1 − w2)

(t + 2)(t + 4)(t2 + 6t + 6)/48 t even
(t + 1)(t + 3)2(t + 5)/48 t odd

(5), (213) 1
(1 − w2)2

1 t even
0 t odd

(41) (1 + 6w2 + 4w4)
(1 − w2)4

(t + 2)(11t2 + 26t + 24)/48 t even
0 t odd

(32) (1 + 7w2 + 5w4)
(1 − w2)4

(t + 2)(13t2 + 28t + 24)/48 t even
0 t odd

(312) (1 + 3w2)
(1 − w2)4

(t + 2)(t + 4)(2t + 3)/24 t even
0 t odd

(221) (1 + w2)
(1 − w2)4

(t + 2)(t + 3)(t + 4)/24 t even
0 t odd

Table 3. All non-zero Nλ
(3,1),(3,1)(w) and ntλ

t(3,1),t(3,1) with |λ| > 4.

As emphasised elsewhere [33], one consequence of the rhombus constraints is that if
they are paired together as in the following three diagrams they imply the betweenness
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λ Nλ
(3,1),(3,1)(w) ntλ

t(3,1),t(3,1)

(4) 1
(1 − w)2 (t + 1)

(31) (1 + w + w2)
(1 − w)3(1 − w2)

(t + 2)(2t2 + 5t + 4)/8 t even
(t + 1)(2t2 + 7t + 7)/8 t odd

(22) 1
(1 − w)3 (t + 1)(t + 2)/2

(212) 1
(1 − w)3(1 − w2)

(t + 2)(t + 4)(2t + 3)/24 t even
(t + 1)(t + 3)(2t + 7)/24 t odd

(14) 1
(1 − w) 1

(3) (1 + w2)
(1 − w2)2

(t + 1) t even
0 t odd

(21) (1 + w2)(1 + 4w2)
(1 − w2)4

(t + 2)(5t2 + 11t + 12)/24 t even
0 t odd

(13) 1
(1 − w2)2

(t + 1)/2 t even
0 t odd

(2) 1
(1 − w)2 (t + 1)

(12) 1
(1 − w)2(1 − w2)

(t + 2)2/4 t even
(t + 1)(t + 3)/4 t odd

(1) 1
(1 − w2)2

(t + 2)/2 t even
0 t odd

(0) 1
(1 − w) 1

Table 4. All non-zero Nλ
(3,1),(3,1)(w) and ntλ

t(3,1),t(3,1) with |λ| ⩽ 4.

conditions as specified below each diagram:

(38)
α

α′′

α′ β′

β

β′′
γ γ′′

γ′

α ⩾ α′ ⩾ α′′ β ⩾ β′ ⩾ β′′ γ ⩾ γ′ ⩾ γ′′

.

This immediately implies that the sequence of edge labels along any line parallel
to one or other of the boundaries of the hive, including the boundaries themselves,
constitute a partition if read from bottom left to top right parallel to the left-hand
boundary, or from top left to bottom right parallel to the right-hand boundary or
from left to right parallel to the bottom boundary.
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Definition 4.1. For fixed integer n, and partitions µ, ν and λ of lengths
ℓ(µ), ℓ(ν), ℓ(λ) ⩽ n, let H(n)(µ, ν; λ) be the set of integer n-hives H, satisfying
the constraints (36) and (37) whose boundary edge labels are specified by the parts of
the partitions µ, ν and λ in accordance with the formulae
(39) µi = a0,i − a0,i−1, νi = ai,n − ai−1,n, λi = ai,i − ai−1,i−1 for i = 1, 2, . . . , n .

This labelling of boundary edges is illustrated for the case n = 4 in the above
diagram (35).

With this definition, Fulton has established in the Appendix of [6] a bijection
between such hives and the tableaux whose enumeration serves to evaluate the
Littlewood–Richardson coefficients cλ

µ,ν . This implies the validity of the following
hive model formula for these coefficients as given in Appendix 2 of [19].
Proposition 4.2. Let µ, ν and λ be partitions of lengths ℓ(µ), ℓ(ν), ℓ(λ) ⩽ n. Then
(40) cλ

µ,ν = #{H ∈ H(n)(µ, ν; λ)} .

It is then a simple matter to exploit the definition (2) of Newell–Littlewood coeffi-
cients in terms of Littlewood–Richardson coefficients to arrive at a hive model formula
for the former. To this end, let K be the composite n-hive constructed from three
standard n-hives as shown below.
(41)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
a00

a01

a02

a03

a04

a11

a12

a13

a14

a15

a22

a23

a24

a25

a26

a33

a34

a35

a36

a37

a44

a45

a46

a47

a48

a55

a56

a57

a58

a66

a67

a68

a77

a78

a88

α1

α2

α3

α4

γ1

γ2

γ3

γ4 α1

α2

α3

α4

β1

β2

β3

β4

µ1 µ2 µ3 µ4 ν1 ν2 ν3 ν4

λ1 λ2 λ3 λ4

Such a trapezoidal composite n-hive is constructed from three constituent triangular
integer n-hives, Hµ, Hν and Hλ, with horizontal boundary edge labels specified by
the parts of µ, ν and λ, respectively. The λ triangular n-hive has been turned upside
down, so that it shares common boundaries with both the µ and ν triangular n-hives.
We refer to these internal boundaries as the β and γ boundaries, respectively, and the
sloping outer boundaries as left and right α-boundaries.
Definition 4.3. For some fixed positive integer n, and partitions µ, ν and λ of lengths
ℓ(µ), ℓ(ν) and ℓ(λ) all ⩽ n, let K(n)(µ, ν; λ) be the set of all composite n-hives K with
horizontal lower boundary edge labels specified by the parts of µ followed by the parts
of ν and horizontal upper boundary edge labels specified by the parts of λ, all read
from left to right, such that:

(i) the triangle rule (36) is satisfied by each elementary triangle;
(ii) the rhombus constraints (37) apply to each elementary rhombus that does not

cross either the β- or the γ-boundary;
(iii) the bottom to top edge labels on the left α-boundary coincide with the top to

bottom edge labels on the right α-boundary.
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With this definition we have:

Proposition 4.4. Let µ, ν and λ be partitions of lengths ℓ(µ), ℓ(ν), ℓ(λ) ⩽ n. Then

(42) nλ
µ,ν = #{K ∈ K(n)(µ, ν; λ)} .

Proof. First it should be noted that the sets of triangle conditions (36) and rhombus
constraints (37) are unchanged by turning the triangles and rhombi upside down. In
enumerating all possible composite hives K with horizontal boundary edges deter-
mined by µ, ν and λ the rhombus constraints alone on Hµ, Hν and Hλ would lead
to hives with α-, β- and γ-boundary edge labels specified by all possible partitions
α, β, γ, α′, β′, γ′ such that cµ

α,β′ , cν
γ,α′ and cλ

β,γ′ are non-zero. However, the juxtaposi-
tion of Hµ, Hν and Hλ imposes the constraints β′ = β and γ′ = γ, while the above
requirement (iii) in the definition of a composite n-hive requires that α′ = α. The
enumeration of such composite n-hives therefore yields the product of the Littlewood–
Richardson coefficients cµ

α,β , cν
γ,α and cλ

β,γ , with of course cν
γ,α = cν

α,γ for all possible
partitions α, β and γ such that these coefficients are non-zero. The formula (2) for
nλ

µ,ν involving a sum over partitions α, β and γ then immediately gives (42). □

In this model, the enumeration of all composite hives K ∈ K(n)(µ, ν; λ) involves
edge labels specified by the parts of α, β and γ that are restricted in the first instance
only by the constraints

(43) 2|α| = |µ| + |ν| − |λ|, 2|β| = |λ| + |µ| − |ν|, 2|γ| = |ν| + |λ| − |µ| ,

as can be established by repeated use of the triangle conditions (36), but also seen
directly of course from (2). Since α, β and γ are partitions, these constraints (43)
suffice to show that nλ

µ,ν = 0 if |µ| + |ν| + |λ| is odd.

Definition 4.5. For a triple of partitions (µ, ν, λ) with ℓ(µ), ℓ(ν), ℓ(λ) ⩽ n, let k =
(3n + 2)(n + 1)/2. Then k is the number of vertices of the composite n-hive K of
edge length n with lower and upper edge labels specified by the parts of (µ, ν) and λ,
respectively. Then the K-polytope Pλ

µ,ν ⊂ Rk is the convex hull of the points ai,j ∈
Rk for j = 0, 1, . . . , n and i = 0, 1, . . . , 2n − j subject to the linear equalities and
inequalities:

(i) a0,0 = 0, and a0,n−a0,0 = (|µ|+|ν|−|λ|)/2;
(ii) an+j,2n−an,2n = a0,j −a0,0 for j = 1, 2, . . . , n − 1;
(iii) µi = ai,i−ai−1,i−1, νi = an+i,n+i−an+i−1,n+i−1, λi = ai,n+i−ai−1,n+i−1 for

i = 1, 2, . . . , n;
(iv) Ri,j , Ui,j , Li,j , Ri+1,j+n, Ui,j+n−1, Li,j+n−1, Ri+n,j+n, Ui+n,j+n, Li+n,j+n all

⩾ 0 for 1 ⩽ i < j ⩽ n, where Ri,j = ai−1,j−1 + ai,j−1 − ai,j − ai−1,j−2,
Ui,j = ai−1,j−1+ai,j −ai−1,j −ai,j−1, Li,j = ai−1,j−1+ai+1,j −ai,j −ai,j−1.

The first part a0,0 = 0 of (i) is just an anchoring condition, with all other conditions
involving differences of the form ai,j − ak,l. The second part of (i) is the constraint
on |α| given in (43), while (ii) is the left and right boundary matching condition.
Part (iii) corresponds to the lower and upper boundary conditions, while part (iv)
corresponds to the rhombus conditions (37) applied to the three different orientations
of a rhombus in each of the three constituent n-hives Hµ, Hν and Hλ.

We then have:

Theorem 4.6. With the notation of Definition 4.5 we have

(44) nλ
µ,ν = i(Pλ

µ,ν , 1) := #{Pλ
µ,ν ∩ Zk} and ntλ

tµ,tν = i(Pλ
µ,ν , t) := #{Ptλ

tµ,tν ∩ Zk}

where i(P, t) is the Ehrhart quasi-polynomial of the polytope P.
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Proof. The first claim is just a restatement of the fact that nλ
µ,ν is the number of

composite K-hives with vertices labelled by integers ai,j subject to the given equalities
and inequalities applicable to Pλ

µ,ν . All of these can be expressed in the form E(a) = b
and I(a) ⩽ c for some rectangular matrices E and I with integer elements, where a
is a sequence of length k of the labels ai,j , and b and c are linear in the parts of µ,
ν and λ. Scaling these parts by t serves to specify Ptλ

tµ,tν whose intersection with Zk

necessarily yields ntλ
tµ,tν . □

Propositions 4.2 and 4.4 imply that both Littlewood–Richardson and Newell–
Littlewood coefficients are independent of the parameter n that determines the bound-
ary edge lengths of the n-hives and the composite n-hives, respectively, provided that
these edge lengths are large enough to accommodate the numbers of non-vanishing
parts of the partitions µ, ν and λ. This can be seen within the context of the hive
models themselves. In the case of any cλ

µ,ν > 0, if λ has a trailing 0, then so must
both µ and ν, and the corresponding hive takes the typical form:

(45)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•λ1 λ2 λ3

µ1

µ2

µ3 ν1

ν2

ν3

ν1

ν2

ν3

ν1

ν2

ν3

0

0

0

0 0
0

The fact that µ and ν must also have a trailing 0 is a consequence of the triangle
and rhombus conditions (36) and (37), respectively. These conditions also suffice to
fix all edge labels of the ladder on the right, with its rungs labelled 0 and its side and
remaining interior labels specified by the parts of ν. This reduces the enumeration of
4-hives to that of 3-hives. In this way the evaluation of cλ

µ,ν can always be reduced to
the enumeration of all n-hives with n = ℓ(λ).

The same type of argument applies to the evaluation of nλ
µ,ν , which can be re-

duced to the enumeration of composite n-hives with n = max{ℓ(µ), ℓ(ν), ℓ(λ)}. The
reduction process is illustrated in the following example.

(46)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•µ1 µ2 µ3 ν1 ν2 ν3

λ1 λ2 λ3

α1

α2

α3

α1

α2

α3

α1

α2

α3

α1

α2

α3

β1

β2

β3

β1

β2

β3

β1

β2

β3

γ1

γ2

γ3

γ1

γ2

γ3

γ1

γ2

γ3

0

0

0

0

0

0

0

00

0

0

0

0
0 0

0
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Removal of the three ladders, all of whose edges are fixed by a combination of
triangle and rhombus conditions, reduces the composite 4-hive to a composite 3-hive.

Dealing with trailing zeros common to all three partitions µ, ν and λ by the it-
eration of this process enables any composite n-hive to be reduced to one for which
n = max{ℓ(µ), ℓ(ν), ℓ(λ)}. This immediately implies that the degree of the correspond-
ing Ehrhart quasi-polynomial i(Pλ

µ,ν , t) is bounded by k with k = (3n + 2)(n + 1)/2.
This maximum degree can be reduced still further by using all the equalities in
the definition of the K-polytope. This can be done by noting that, for given µ,
ν and λ, the parts (i)–(iii) of Definition 4.5 fix the vertex labels on the top and
bottom horizontal boundary and the right hand diagonal boundary. It follows that
the maximum degree of ntλ

tµ,tν is 3n(n − 1)/2, that is to say 0, 3, 9, 18, . . . for n =
1, 2, 3, 4, . . .

That this upper bound on the degree of ntλ
tµ,tν is not reached in any of the three

examples of Table 2 is clear. However, a lower upper bound on the degree may found
by exploiting the notion of skeletal graphs [18]. In the present context a skeletal graph
is a partial labelling of the underlying graph of the appropriately shaped composite
K-hive in which edges are identified for which the labels are fixed from a knowledge
of the parts of µ, ν and λ, including trailing zeros. These are shown in the examples
below as thick lines along with their labels as determined by the triangle conditions
and rhombus constraints. Since the labels on the right-hand boundary are determined
by those on the left-hand boundary, the edges of the former are shown as dashed
lines. All remaining edges are represented as dotted lines to indicate that their labels
are not fixed. The remaining degrees of freedom in enumerating the composite K-
hives contributing to ntλ

tµ,tν is then the number of components of the skeletal graph,
including isolated vertices, that are disconnected from the lower and upper horizontal
boundaries.

All this is illustrated in the case of the three examples of Table 2 as follows.
For µ = ν = λ = (1, 1) the skeletal K-hive takes the form:

(47)

•

•

•

•

•

•

•

•

•

•

•

•

•

t t t t

t t

t t t

The skeletal graph contains a single component disconnected from the horizontal
boundaries and this is signified by marking its left-most vertex by means of an en-
larged bullet point. There is therefore just one degree of freedom in enumerating the
corresponding composite K-hives, so the quasi-polynomial n

t(1,1)
t(1,1),t(1,1) is of degree 1

in agreement with Table 2. In this particular case it is easy to go further. The left-
hand boundary edge labels α = (α1, α2) must be such that with α1 + α2 = 2t with
t ⩾ α1 ⩾ α2, leading to the conclusion that n

t(1,1)
t(1,1),t(1,1) = (t + 2)/2 if t is even, and

(t + 1)/2 if t is odd, as first found by Gao et al. [11]. It can also be seen in this case
that nλ

µ,ν = 1 and n2λ
2µ,2ν = 2, thereby ruling out any notion that nλ

µ,ν = 1 might
always imply ntλ

tµ,tν = 1 for all t > 0, as in LR(ii). However, as yet, we have uncovered
no counterexample to the conjecture that, taken together, nλ

µ,ν = 1 and n2λ
2µ,2ν = 1

imply ntλ
tµ,tν = 1 for all t > 0, as would be required by E(ii).
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In the case µ = ν = (2, 1, 1) and λ = (1, 1, 1, 1) the skeletal K-hive takes the form:

(48)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0

0

0

0

0

0

0

00 0

2t t t 0

t

2t t t 0

t

t t t t

t t t

t t

t

.

Here, there are 5 components disconnected from the horizontal boundaries, but only
3 of them have been signified by an enlarged bullet point at their left-hand extremity.
This is because the skeletal upper bound of 5 in the degree of the quasi-polynomial
n

t(1,1,1,1)
t(2,1,1),t(2,1,1) can be lowered to 3 by noting the requirement that the edge labels

on the right- and left-hand boundaries coincide. This leads to the expectation that
the quasi-polynomial is of degree 3, as first established in [11] and confirmed here in
Table 2.

For µ = ν = λ = (2, 1, 1) the skeletal K-hive is given by:

(49)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

• • •

2t 2tt t t t

2t t t

t t

t

.

This time there are 8 components disconnected from the horizontal boundaries. How-
ever, the coincidence of right and left hand boundary edge labels means that there are
just 6 degrees of freedom, leading to the expectation that n

t(2,1,1)
t(2,1,1),t(2,1,1) is a quasi-

polynomial of degree 6, as confirmed in Table 2 and first established in a footnote
of [11].

5. Stability phenomena
While continuing to support the validity of the various positivity conjectures, an
interesting new stability phenomenon shows itself by considering the effect of adding
a fixed integer a to the first part of all three partitions µ, ν and λ. The results for
three choices of µ, ν and λ are given in Tables 5, 6 and 7, in which the stability of
the stretched Newell–Littlewood coefficients for sufficiently large a occurs for a ⩾ 4,
5 and 4, respectively, as tested by explicit calculation for 0 ⩽ a ⩽ 20.

On the basis of this and many similar results, we offer the following

Conjecture 5.1. For any partitions µ, ν and λ, let µ = (µ1, σ), ν = (ν1, τ) and
λ = (λ1, ρ). Then for integer a there exists N ∈ N such that n

(a+λ1,ρ)
(a+µ1,σ),(a+ν1,τ), and

more generally n
t(a+λ1,ρ)
t(a+µ1,σ),t(a+ν1,τ) for all t ∈ N, are independent of a for all a ⩾ N .

A similar stability conjecture of the same type is supported by a good deal of
evidence of the same type, namely
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a N
(a+3,2)
(a+3,3),(a+2,1)(w) n

t(a+3,2)
t(a+3,3),t(a+2,1)

a = 0 1
(1−w)2(1−w2)

(t+2)2/4 t even
(t+1)(t+3)/4 t odd

a = 1 (6w4+8w2+1)
(1−w2)4

(t+2)(5t2+10t+8)/16 t even
0 t odd

a = 2 (3w2+3w+1)
(1−w)3(1−w2)

(t+2)(14t2+23t+12)/24 t even
(t+1)(14t2+37t+21)/24 t odd

a = 3 (17w4+20w2+1)
(1−w2)4

(t+2)(19t2+28t+12)/24 t even
0 t odd

a ⩾ 4
a even

(4w+1)
(1−w)4 (t+1)(t+2)(5t+3)/6 all t

a ⩾ 5
a odd

(17w4+22w2+1)
(1−w2)4

(t+1)(t+2)(5t+3)/6 t even
0 t odd

Table 5. Cases µ = (a+3, 3), ν = (a+2, 1) and λ = (a+3, 2) showing
stability for a ⩾ 4.

a N
(a+2,2)
(a+3,3),(a+2,1)(w) n

t(a+2,2)
t(a+3,3),t(a+2,1)

a = 0 1
(1 − w2)

1 t even
0 t odd

a = 1 1
(1−w)3(1−w2)

(t+2)(t+4)(2t+3)/24 t even
(t+1)(t+3)(2t+7)/24 t odd

a = 2 (7w4+11w2+1)
(1−w2)4

(t+2)(19t2+40t+24)/48 t even
0 t odd

a = 3 (3w+1)
(1−w)4 (t+1)(t+2)(4t+3)/6 for all t

a = 4 (17w4+21w2+1)
(1−w2)4

(t+2)(13t2+20t+8)/16 t even
0 t odd

a ⩾ 5
a odd

(4w+1)
(1−w)4 (t+1)(t+2)(5t+3)/6 all t

a ⩾ 6
a even

(17w4+22w2+1)
(1−w2)4

(t+1)(t+2)(5t+3)/6 t even
0 t odd

Table 6. Cases µ = (a+3, 3), ν = (a+2, 1) and λ = (a+2, 2) showing
stability for a ⩾ 5.

Conjecture 5.2. For integer a and any partitions σ, τ and ρ, let µ = (a, σ), ν =
(a, τ) and λ = (a, ρ) with a ⩾ max{σ1, τ1, ρ1}. Then there exists N ∈ N such that
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G(w)/(1−w)d1 (1−w2)d2{
Pe(t) t even
Po(t) t odd

a = 0
1/(1 − w)4(1 − w2)4{

(t+2)(t+4)(t+6)(t+8)(t+10)(t2+12t+21)/80840
(t+1)(t+3)(t+5)(t+6)(t+7)(t+11)/80840

a = 1
(33w10+378w8+823w6+449w4+53w2+1)/(1−w2)9{

(t+2)(t+4)(t+6)(1737t5+2268t4+113836t3+277488t2+339584t+215040)/10321920
0

a = 2
(20w6+59w5+105w4+86w3+43w2+9w+1)/(1−w)5(1−w2)4{

(t+2)(t+4)(t+6)(323t5+3416t4+13886t3+27892t2+29216t+13440)/645120
(t+1)(t+3)(t+5)(323t5+4385t4+22196t3+54868t2+68777t+37611)/645120

a = 3
(161w10+1471w8+2676w6+1208w4+113w2+1)/(1−w2)9{

(t+2)(t+4)(t+6)(2815t5+30932t4+129972t3+260752t2+252032t+107520)/5160960
0

a ⩾ 4
a even

(20w6+61w5+113w4+96w3+50w2+11w+1)/(1−w)5(1−w2)4{
(t+2)2(t+3)(t+4)(t+6)(22t3+132t2+229t+140)/40320
(t+1)(t+2)(t+3)(t+5)(22t4+264t3+1087t2+1910t+1197)/40320

a ⩾ 5
a odd

(161w10+1471w8+2676w6+1208w4+115w2+1)/(1−w2)9{
(t+2)2(t+3)(t+4)(t+6)(22t3+132t2+229t+140)/40320
0

Table 7. Cases µ = (a+3, 3, 2), ν = (a+2, 1, 1) and λ = (a+3, 2, 1)
showing stability for a ⩾ 4.

n
(a,ρ)
(a,σ),(a,τ), and more generally n

t(a,ρ)
t(a,σ),t(a,τ) for all t ∈ N, are independent of a for all

a ⩾ N .

6. Newell–Littlewood cubes
Since the case µ = ν = λ appears to be of particular interest [13], we gather together
here some some results and observations about Newell–Littlewood stretched cubes.

For example, for µ = ν = λ = (a, b) with b = 1, 2, 3 we find the data shown in
Tables 8–10.

In these three tables, apart from the positivity of all coefficients in G(w), Pe(t) and
Po(t), the other notable feature is that as a function of a the results for µ = ν = λ =
(a, b) are stable, that is to say independent of a, for all even and all odd a ⩾ 3b > 0.

This is borne out by further examples and these stable values may be summarised
as follows.

(50)

(a, b) with a ⩾ 3b > 0 N
(a,b)
(a,b),(a,b)(w) n

t(a,b)
t(a,b),t(a,b)

a even b even Gee(w)
(1−w)4 Pe(t) for all t

a even b odd
a odd b even

Geo(w)
(1−w2)4

Pe(t) t even
0 t odd

a odd b odd Goo(w)
(1−w)3(1−w2)

Pe(t) t even
Po(t) t odd
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λ Nλ
λ,λ(w) Pe(t) t even

Po(t) t odd

(1, 1) 1
(1−w)(1−w2)

(t+2)/2 t even
(t+1)/2 t odd

(2, 1) (1+2w2)2

(1−w2)4
(t+2)(3t2+6t+8)/16 t even

0 t odd
(a, 1)
a ⩾ 3
a odd

(1+w+w2)
(1−w)3(1−w2)

(t+2)(2t2+5t+4)/8 t even
(t+1)(2t2+7t+7)/8 t odd

(a, 1)
a ⩾ 4
a even

(1+7w2+4w4)
(1−w2)4

(t+2)(2t2+5t+4)/8 t even
0 t odd

Table 8. Cubes µ = ν = λ = (a, 1) showing stability for all even
and all odd a ⩾ 3.

λ Nλ
λ,λ(w)

Pe(t) t even
Po(t) t odd

(2, 2) 1
(1−w)2 (t+1)

(3, 2) (1+11w+14w2+w6)
(1−w2)4

(3t+4)(3t2+4t+4)/16 t even
0 t odd

(4, 2) (1+2w)2

(1−w)4 (t+1)(3t2+3t+2)/2

(5, 2) (1+35w2+53w4+4w6)
(1−w2)4

(31t3+66t2+48t+16)/16 t even
0 t odd

(a, 2)
a ⩾ 6
a even

(1+7w+4w2)
(1−w)4 (t+1)(4t2+5t+2)/2

(a, 2)
a ⩾ 7
a odd

(1+38w2+53w4+4w6)
(1−w2)4

(t+1)(4t2+5t+2)/2 t even
0 t odd

Table 9. Cubes µ = ν = λ = (a, 2) showing stability for all even
and all odd a ⩾ 6.

where

(51)

Pe(t) = 1
8(b t + 2)(2b2 t2 + 5b t + 4) ,

Po(t) = 1
8(b t + 1)(2b2 t2 + 7b t + 7) ,
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λ Nλ
λ,λ(w)

Pe(t) t even
Po(t) t odd

(3, 3) (1+w+w2)
(1−w)(1−w2)

(3t+2)/2 t even
(3t+1)/2 t odd

(4, 3) (1+18w2+24w4+2w6)
(1−w2)4

(15t3+36t2+36t+16)/16 t even
0 t odd

(5, 3) (1+4w+w2)2

(1−w)3(1−w2)
(6t3+9t2+6t+2)/2 t even
(6t3+9t2+6t+1)/2 t odd

(6, 3) (1+72w2+150w4+20w6)
(1−w2)4

(3t+2)(27t2+18t+8)/16 t even
0 t odd

(7, 3) (1+17w+36w2+20w3+w4)
(1−w)3(1−w2)

(50t3+69t2+34t+8)/8 t even
(50t3+69t2+34t+7)/8 t odd

(8, 3) (1+99w2+198w4+23w6)
(1−w2)4

(107t3+156t2+76t+16)/16 t even
0 t odd

(a, 3)
a ⩾ 9
a odd

(1+20w+39w2+20w3+w4)
(1−w)3(1−w2)

(3t+2)(18t2+15t+4)/8 t even
(3t+1)(18t2+21t+7)/8 t odd

(a, 3)
a ⩾ 10
a even

(1+102w2+198w4+23w6)
(1−w2)4

(3t+2)(18t2+15t+4)/8 t even
0 t odd

Table 10. Cubes µ = ν = λ = (a, 3) showing stability for all even
and all odd a ⩾ 9.

and
(52)
Gee(w) = 1+(b3/4+9b2/8+7b/4−3)w+(b3−7b/2+3)w2+(b3/4−9b2/8+7b/4−1)w3

Geo(w) = 1+(2b3+9b2/2+7b/2−3) w2+(8b3−7b+3) w4+(2b3−9b2/2+7b/2−1) w6

Goo(w) = 1+(b3/4+9b2/8+7b/4−17/8) w+(5b3/4+9b2/8−7b/4+3/8) w2

+ (5b3/4−9b2/8−7b/4+13/8) w3+(b3/4−9b2/8+7b/4−7/8) w4 .

These formulae have been verified for all a ⩾ 3b > 0 with b ⩽ 9 and a ⩽ 31. Quite
why the results should be stable for all a ⩾ 3b > 0 is not clear, but it may be checked
for each b > 0 that the stable value is not reached in the case a = 3b − 1.

Moving to length 3 partitions, in the simplest case we have

(53)

(a, a, a) a > 0 N
(a,a,a)
(a,a,a),(a,a,a)(w) n

t(a,a,a)
t(a,a,a),t(a,a,a)

a even ((a/2 − 1)w + 1)
(1−w)2 (at + 2)/2 for all t

a odd ((a − 1)w2 + 1)
(1 − w2)2

(at + 2)/2 t even
0 t odd

.

Algebraic Combinatorics, Vol. 5 #6 (2022) 1249



Ronald C. King

As a less trivial example we offer:

(54)

(a, b, b) with a ⩾ 3b > 0 N
(a,b,b)
(a,b,b),(a,b,b)(w) n

t(a,b,b)
t(a,b,b),t(a,b,b)

a even b even Gee(w)
(1−w)7 Pe(t) for all t

a even b odd Geo(w)
(1−w)3(1−w2)4

Pe(t) t even
Po(t) t odd

a odd b even Goe(w)
(1−w2)7

Pe(t) t even
0 t odd

a odd b odd Goo(w)
(1−w2)7

Pe(t) t even
Po(t) t odd

where

(55)

Pe(t) = 1
1920(bt + 2)(bt + 4)(4b4t4 + 36b3t3 + 137b2t2 + 270bt + 240) ,

Po(t) = 1
1920(bt + 1)(bt + 3)(4b4t4 + 44b3t3 + 197b2t2 + 400bt + 315) ,

with

(56)

G(w) Degree of G(w) (d1, d2)
Gee(w) 6 (7, 0)
Geo(w) 10 (3, 4)
Goe(w) 12 (0, 7)
Goo(w) 12 (0, 7)

where Gee(w) and Geo(w) are polynomials in w, while Goe(w) and Goo(w) are poly-
nomials in w2, all with positive coefficients. Again, quite why the results should be
stable for all a ⩾ 3b > 0 is not clear, but it may be verified for each b > 0 that the
stable value is not reached in the case a = 3b − 1.

We can also offer a case for which we have a two-parameter explicit formula:

(57)

(a, a, b) with a ⩾ 3b > 0 N
(a,a,b)
(a,a,b),(a,a,b)(w) n

t(a,a,b)
t(a,a,b),t(a,a,b)

a even b even Gee(w)
(1−w)7 Pe(t) for all t

a even b odd Geo(w)
(1−w2)7

Pe(t) t even
0 t odd

a odd b even Goe(w)
(1−w)3(1−w2)4

Pe(t) t even
Po(t) t odd

a odd b odd Goo(w)
(1−w2)7

Pe(t) t even
0 t odd
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where
(58)
Pe(t) = 1

7680(bt+2)((108a−179)b5t5+(864a/b−1412)b4t4+(2592a/b−3916)b3t3

+ (3456a/b−3808)b2t2 + (1920a/b+960)bt + 3840) ,

Po(t) = 1
7680(bt+2)((108a−179)b5t5+(864a/b−1412)b4t4+(2592a/b−3916)b3t3

+ (3456a/b−3568)b2t2 + (1920a/b)bt + 1920) ,

with Gee(w) a polynomial in w of degree 6, Geo(w) and Goo(w) polynomials in w2

of degree 5, and Goe(w) a polynomial in w of degree 9, all with positive coefficients.
It can be checked that because a ⩾ 3b ⩾ 0, all coefficients in Pe(t) and Po(t) are
positive. These polynomials are of degree 6, as would be predicted by means of the
hive model.

In the most general length 3 cubic case for which µ = ν = λ = (a, b, c) we do
not have any stable limit 3-parameter formula, but we gather together some data
in Appendix A that give a striking demonstration of the positivity of coefficients in
Pe(t), Po(t) and G(w).

7. Conclusion
By noting that the Newell–Littlewood coefficients nλ

µ,ν are nothing other than the
Clebsch–Gordan coefficients mλ

µ,ν(g) for orthogonal and symplectic Lie algebras g of
sufficiently high rank, and leaning on the work of De Loera and McAllister [7] it
has been established in Proposition 2.1 that stretched Newell–Littlewood coefficients
are quasi-polynomial of minimum quasi-period at most 2. Taking into account the
evenness or oddness of |µ| + |ν| + |λ| this has as corollary the validity of two of the
items, E(iii) and O(iii), included in the list of items in Conjecture 1.1. In a somewhat
similar manner, the prior work of Belkale and Kumar [2] and Sam [29] has led to a
proof of the saturation property O(i), but not E(i) for which there is still room for a
counterexample to arise.

Unfortunately, attempts to provide proofs of the validity of these and the other
remaining items of Conjecture 1.1, are beyond the scope of this particular study.
However, thanks to the use of universal characters, a constant term formula has been
established in Theorem 3.1 for the generating function, Nλ

µ,ν(w), of the stretched
Newell–Littlewood coefficients ntλ

tµ,tν . This has enabled both the generating function
itself and the corresponding quasi-polynomials to be evaluated explicitly without the
need for any fitting of data. Beyond the confirmation of results both established and
conjectured in [7], this has allowed the accumulation of a good deal of evidence in
support of the positivity conjectures forming parts E(iv), O(iv), E(v) and O(v) of
Conjecture 1.1.

The hive model of Section 4 offers an alternative method of calculating Newell–
Littlewood coefficients using Proposition 4.4. This model has led to the proof in
Theorem 4.6 that stretched Newell–Littlewood coefficients are the Ehrhart quasi-
polynomials associated with a convex polytope specified by means of triangular and
rhombus conditions, (36) and (37). This polytope is much simpler to specify than
that used for stretched Clebsch–Gordan coefficients [4,7]. In fact it is much more akin
to the Newell–Littlewood polytope introduced by Gao et al. [11], differing only in
its emphasis on vertex rather than edge labels in the underlying hive. No attempt
has been made to establish the precise conditions on µ, ν and λ under which nλ

µ,ν is
non-vanishing, but this has been pursued by Gao et al. [12].
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Newell–Littlewood polytopes based on composite hives exemplified in (41) are in
general rational, rather than integer. One way to see this is as follows. The hive
conditions (36) and (37) are such that α = (0) implies β = µ and γ = ν, so that
the constituents Hµ and Hν of K as exemplified in (41) are trivial, with the third
constituent Hλ coinciding, when turned upside down, with a triangular Littlewood–
Richardson hive whose boundary edge labels are specified by the parts of λ, µ and
ν. By virtue of (43) it follows that in the case |λ| = |µ| + |ν|, the map from K ∈
K(n)(µ, ν; λ) to H ∈ H(n)(µ, ν; λ) by means of the deletion of Hµ and Hν , and the
inversion of Hλ is an isomorphism. This is of course all in accord with, and indeed
implies the validity of (5), but more important is its implication that the polytopes
Pλ

µ,ν appearing in Theorem 4.6 include polytopes P based on Littlewood–Richardson
hives that are known to be rational but not integer. For example, in the case λ =
(6, 5, 4, 3, 2, 1), µ = (5, 4, 3, 2, 1) and ν = (3, 2, 1) the lowest common multiple p of the
vertex denominators is 6. Unfortunately, this means that the Theorem, attributed to
Stanley [31], but rederived in [1], on the positivity of coefficients in the numerator of
Nλ

µ,ν(w) when expressed in a form with denominator (1−wp)dim(P)+1, cannot be used
to immediately assert the positivity of the coefficients of G(w) in (6) when expressed
in a form with denominator (1 − w)d1(1 − w2)d2 , as would be required to validate
the conjectures E(v) and O(v). Nonetheless, these conjectures are supported by all
explicit calculations made to date.

The accumulated data has also shown the existence of somewhat unexpected stabil-
ity phenomena that form the basis of Conjectures 5.1 and 5.2. The latter is reminiscent
of the stability property Kronecker of coefficients that led to the concept of reduced
Kronecker coefficients [17, 25]. This can be seen by setting |µ| = |ν| = |λ| = m in
Conjecture 5.1. This then yields as a special case

Conjecture 7.1. For any partitions σ, τ and ρ, and positive integer m, there exists
N ∈ N such that both n

(m−|ρ|,ρ)
(m−|σ|,σ),(m−|τ |,τ) and n

t(m−|ρ|,ρ)
t(m−|σ|,σ),t(m−|τ |,τ) are independent of

m for all m > N .

The generating function approach by means of Theorem 3.1 offers the possibil-
ity of firmly establishing the notion of such m-independent reduced coefficients in
the Newell–Littlewood context. The data gathered together on stretched Newell–
Littlewood cubes in Section 6 and Appendix A points to the possibility of being
able to fix the point at which stability is reached, at least in this case of cubes.

While no direct attack has been made on the analogs of the Fulton conjecture [20] as
offered in parts E(ii) and O(ii) of Conjecture 1.1, the data in support of the various
positivity conjectures also supports these. In fact, along with E(i) and O(i), they
should be rather easy corollaries to the positivity conjectures. It is intended, and
indeed hoped that both the methods described here and the accumulated data will
serve as an impetus to further work on these problems.

Appendix A. Cubes for partitions of length three
The following data on ntλ

tµ,tν in the case µ = ν = λ = (a, b, c) with a > b > c >
0 supports the validity of parts E(iv) and O(iv) of Conjecture 1.1 concerning the
positivity of the quasi-polynomial coefficients, as well as the stability Conjecture 5.2
arising for all a ⩾ 3b. This data has been gathered by evaluating Nλ

µ,ν(w) in the
form G(w)/(1 − w)d1(1 − w2)d2 through the use of Theorem 3.1, and in so doing
checking that in every instance G(w) is a polynomial with positive integer coefficients
in accordance with E(v) and O(v) of Conjecture 1.1.

In the simplest case, that is (a, 2, 1) with a > 2, the results are given in Table 11.
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(a, b, c)
Pe(t) t even

Po(t) t odd

(3, 2, 1)

(t+2)(448t8+5401t7+28972t6+91870t5+191110t4+272728t3+272760t2

+ 183456t+80640)/161280

(t+3)(t+1)(448t7+4505t6+20410t5+54659t4+94984t3+111035t2

+ 83454t+33705)/161280

(4, 2, 1)
(t+2)(55987t8+703627t7+3826570t6+11870644t5+23340040t4

+ 30448384t3+26725248t2+15344640t+5160960)/10321920

0

(5, 2, 1)

(t+2)(5441t8+69758t7+389318t6+1243412t5+2507732t4+3313136t3

+ 2898864t2+1635264t+483840)/967680

(t+3)(t+1)(5441t7+58876t6+277007t5+737392t4+1213967t3

+ 1260556t2+793761t+249480)/967680

(a, 2, 1)

a ⩾ 6 even

(t+2)(10883t8+139559t7+779384t6+2493518t5+5047520t4+6700760t3

+ 5845248t2+3212928t+967680)/1935360

0

(a, 2, 1)

a ⩾ 7 odd

(t+2)(10883t8+139559t7+779384t6+2493518t5+5047520t4+6700760t3

+ 5845248t2+3212928t+967680)/1935360

(t+3)(t+1)(10883t7+117793t6+554681t5+1480183t4+2449781t3

+ 2556127t2+1576527t+446985)/1935360

Table 11. Quasi-polynomialsntλ
tµ,tν in the case µ = ν = λ = (a, 2, 1)

For µ = ν = λ = (a, b, c) with a > b > c > 0, the results in the stable cases a ⩾ 3b
take the general form:

(59)

(a, b, c) with a ⩾ 3b N
(a,b,c)
(a,b,c),(a,b,c)(w) n

t(a,b,c)
t(a,b,c),t(a,b,c)

a + b + c even

b, c both even
Gee(w)

(1−w)10 Pe(t) for all t

a + b + c even

b, c not both even
Geo(w)

(1−w)6(1−w2)4
Pe(t) t even

Po(t) t odd

a + b + c odd Goo(w)
(1−w2)10

Pe(t) t even

0 t odd

with explicit expressions for Pe(t) and Po(t) for all b ⩽ 6 given in Table 12.
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(a, b, c) Either Pe(t)
Po(t) or Pe(t) if Pe(t) = Po(t)

(a, 2, 1)

(t+2)(10883t8+139559t7+779384t6+2493518t5+5047520t4+6700760t3+5845248t2

+3212928t+967680)/1935360
(t+3)(t+1)(10883t7+117793t6+554681t5+1480183t4+2449781t3+2556127t2

+1576527t+446985)/1935360

(a, 3, 1)

(t+2)(7699t8+88300t7+421804t6+1101286t5+1742992t4+1741588t3+1095000t2+410976t

+80640)/161280
(t+3)(t+1)(7699t7+72902t6+283699t5+591392t4+728899t3+537800t2+220119t

+37170)/161280

(a, 3, 2)

(t+1)(190727t8+1525816t7+5461022t6+11404708t5+15266888t4+13518064t3+7967808t2

+3036672t+645120)/645120
(t + 1)3(190727t6+1144362t5+2981571t4+4297204t3+3690909t2

+1839042t+452025)/645120

(a, 4, 1)

(t+2)(26011t8+286576t7+1288150t6+3076144t5+4302184t4+3661564t3+1884120t2

+552096t+80640)/161280
(t+3)(t+1)(26011t7+234554t6+845053t5+1568570t4+1645033t3+980090t2

+308319t+37170)/161280

(a, 4, 2) (t+1)(43532t8+279118t7+779384t6+1246759t5+1261880t4+837595t3+365328t2

+100404t+15120)/15120

(a, 4, 3)

(1860257t9+13261743t8+42512874t7+80444826t6+99261036t5+83191752t4+48076336t3

+19027584t2+4891392t+645120)/645120
(t+1)2(1860257t7+9541229t6+21570159t5+27763279t4+22164319t3

+11099835t2+3289617t+446985)/645120

(a, 5, 1)

(t+2)(61387t8+661900t7+2876944t6+6523006t5+8442784t4+6438628t3+2854680t2

+693216t+80640)/161280
(t+3)(t+1)(61387t7+539126t6+1860079t5+3219200t4+3031759t3+1539560t2

+396519t+37170)/161280

(a, 5, 2)

(19719167t9+137161701t8+413898366t7+714090510t6+781934748t5+568830024t4

+278307184t3+90083520t2+18224640t+1935360)/1935360
(t+1)(19719167t8+117442534t7+296455832t6+417634678t5+364300070t4

+204529954t3+73658160t2+16079490t+1696275)/1935360

(a, 5, 3)

(14374271t9+78323328t8+192117936t7+278601120t6+264107886t5+170634492t4

+76100344t3+23213520t2+4609728t+483840)/483840
(t+1)(14374271t8+63949057t7+128168879t6+150432241t5+113675645t4

+56958847t3+18294777t2+3308463t+238140))/483840

(a, 5, 4)

(9374843t9+57962079t8+159266238t7+255773490t6+265478220t5+185644536t4

+88964272t3+29037120t2+6100992t+645120)/645120
(t+1)2(9374843t7+39212393t6+71466609t5+73627879t4+46755853t3+18504951t2

+4298247t+452025)/645120

(a, 6, 1)

(t+2)(119371t8+1269712t7+5401126t6+11832472t5+14509528t4+10193740t3+4006680t2

+834336t+80640)/161280
(t+3)(t+1)(119371t7+1030970t6+3458557t5+5707586t4+4968457t3+2216210t2

+484719t+37170))/161280

(a, 6, 2) (t+1)(61592t8+353200t7+843608t6+1101286t5+871496t4+435397t3+136875t2

+25686t+2520)/2520

(a, 6, 3)

(3t+2)(2644569t8+11304279t7+21043368t6+22441662t5+15142560t4+6700760t3

+1948416t2+356992t+35840)/71680
(3t+1)(t+1)(2644569t7+9541233t6+14976387t5+13321647t4+7349343t3

+2556127t2+525509t+49665)/71680

(a, 6, 4) (2t+1)(381454t8+1525816t7+2730511t6+2851177t5+1908361t4+844879t3+248994t2

+47448t+5040)/5040

(a, 6, 5)

(33064469t9+185217615t8+455264850t7+646494282t6+587226444t5+356073480t4

+146931760t3+41033088t2+7310592t+645120)/645120
(t+1)2(33064469t7+119088677t6+184023027t5+159359551t4+84484315t3+27745299t2

+5296797t+446985)/645120

Table 12. Stable quasi-polynomials ntλ
tµ,tν in the case µ = ν = λ =

(a, b, c) for all a ⩾ 3b and 6 ⩾ b > c > 0
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