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Ada Chan, Whitney Drazen, Or Eisenberg, Mark Kempton
& Gabor Lippner

Abstract We initiate the study of pretty good quantum fractional revival in graphs, a gener-
alization of pretty good quantum state transfer in graphs. We give a complete characterization
of pretty good fractional revival in a graph in terms of the eigenvalues and eigenvectors of the
adjacency matrix of a graph. This characterization follows from a lemma due to Kronecker
on Diophantine approximation, and is similar to the spectral characterization of pretty good
state transfer in graphs. Using this, we give complete characterizations of when pretty good
fractional revival can occur in paths and in cycles.

1. Introduction
In recent years, tools and methods from algebraic and spectral graph theory have
found important application in quantum information theory regarding the transfer
of information through a quantum network. Namely, given a graph that represents a
network of interacting qubits, information transfer in this network can be modeled by
a quantum walk on the graph. A quantum walk is a process governed by the transition
matrix

U(t) := eitA

where A is the adjacency matrix of the graph. We say that there is perfect state
transfer at time t between nodes u and v of such a network when the (u, v)-entry of
U(t) has absolute value 1. The study of perfect state transfer in graphs was initiated
by Bose in 2003 [3], and since then, the problem has attracted considerable attention,
both from the quantum information community and from the algebraic graph theory
community (see for instance [8, 15, 16, 19, 20, 24] and references therein).

It has been shown that in simple, unweighted graphs, perfect state transfer is very
difficult to achieve and occurs only rarely [16]. Known constructions that achieve
perfect state transfer involve either highly specialized unweighted graphs or highly
non-uniform edge weights. For instance, in simple unweighted path graphs, perfect
state transfer occurs only in paths of length 2 and 3, and not in paths of any higher
length [15]. As such, various relaxations and generalizations of perfect state transfer
have been studied. Most notably, the notion of pretty good state transfer was intro-
duced by Godsil [15] and Vinet et al. [26]. There is pretty good state transfer from
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node u to node v in a graph if for all ε > 0 there is a t > 0 such that |U(t)(u, v)| > 1−ε.
Pretty good state transfer has been extensively studied [1, 11, 15, 17, 21, 26]. Work
in [17], [10], and [25] gives a complete characterization of when pretty good state
transfer occurs in simple, unweighted paths.

Another generalization of perfect state transfer that has been studied recently is
fractional revival in graphs [6]. For nodes u, v in a graph, there is fractional revival
at time t from u to v, if

|U(t)(u, u)|2 + |U(t)(u, v)|2 = 1.
It was shown in [6] that if there is fractional revival from u to v, then there is fractional
revival from v to u at the same time. Thus, we will simply say there is fractional revival
between u and v at time t. Where perfect state transfer represents the exact transfer
of a quantum state between two nodes, fractional revival represents the transfer of a
quantum state to a superposition over exactly two nodes. Fractional revival is impor-
tant in the study of entanglement generation [6]. Fractional revival in weighted paths
is studied in [2, 6, 7, 9, 13, 14]. In simple, unweighted paths, it has been shown that
fractional revival can occur between two nodes only in paths of length 2, 3, or 4 [6].

It is natural, then, to relax the condition for fractional revival to get an approx-
imation, in the same way that perfect state transfer is relaxed to pretty good state
transfer. That is, we say there is pretty good fractional revival between nodes u and
v in a graph if, for all ε > 0 there is a t > 0 such that U(t) is within ε of exhibiting
fractional revival. We formulate this more precisely in Section 2. In [6], the study of
pretty good fractional revival is listed as a major open area of research in the study
of fractional revival on graphs.

The main results of this paper are complete characterizations of when pretty good
fractional revival can occur in simple, unweighted paths, and in simple, unweighted
cycles. Specifically, we prove the following theorems.

Theorem 1.1. Let Pn denote the path on n vertices, and label the vertices 1, . . . , n.
Then pretty good fractional revival occurs between nodes of Pn if and only if we are
in one of the following cases:

• (symmetric nodes) n = p · 2k − 1 for p a prime. Here fractional revival occurs
between nodes a and p · 2k − a when a is a multiple of 2k−1.
• (asymmetric nodes) n = 5·2k−1. Here fractional revival occurs between nodes

2k and 3 · 2k (or, by symmetry, between 2 · 2k and 4 · 2k).

Theorem 1.2. Let Cn denote the cycle on vertices 1, . . . , n. Pretty good fractional
revival occurs between vertices a and b in Cn if and only if n = 2pk, for some prime
p, for k > 1, and b = a+ n/2.

In paths, we observe that between pairs of symmetric nodes, pretty good fractional
revival occurs exactly when there is pretty good state transfer (see [25]). Surprisingly,
there are instances of pretty good fractional revival between pairs of asymmetric nodes
as well. We also remark that pretty good state transfer occurs in Cn if and only if
n = 2k for some k (see [23]). Thus we extend to a larger infinite family where pretty
good fractional revival occurs. In the case of cycles, pretty good fractional revival only
occurs between antipodal nodes.

It is well-known [15, 17] that a necessary condition for both perfect and pretty
good state transfer between two nodes u and v is that they be strongly cospectral,
namely, that φ(u) = ±φ(v) for any eigenvector φ of the adjacency matrix. In [5],
we have generalized the notion of strong cospectrality to that of strong fractional
cospectrality. That is, two vertices u and v are strongly fractionally cospectral if there
is some constant C 6= 0 such that either φ(u) = Cφ(v) or φ(u) = (−1/C)φ(v) for
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all eigenvectors φ of the adjacency matrix. We showed in [5] that strong fractional
cospectrality is a necessary condition for fractional revival. In this paper, we show that
strong fractional cospectrality is also a necessary condition for pretty good fractional
revival. In addition, work in [5] characterizes fractional cospectrality in terms of a
condition on walk counts at the vertices u and v, analogous to the walk count condition
for cospectrality (see [15, 18]). One of the main steps in our proof of the Theorem 1.1
is to analyze the counts of closed walks in a path to characterize when two nodes of
a path are fractionally cospectral.

In [17, 21] a characterization for pretty good state transfer between two cospec-
tral nodes was given in terms of a number-theoretic condition on the eigenvalues of
the adjacency matrix. This number-theoretic condition arises as a consequence of a
lemma due to Kronecker on Diophantine approximation. Our primary tool in the
proof of Theorems 1.1 and 1.2, and one of the major contributions of this paper, is
a generalization of this spectral characterization for pretty good fractional revival,
again relying on the Kronecker Diophantine approximation lemma (see Theorem 2.4
below).

2. Pretty good fractional revival
We remark that fractional revival at u and v is equivalent to saying that U(t) is block
diagonal at time t:

U(t) =
[
H 0
0 M

]
where H =

[
α β
β γ

]
is some unitary 2 × 2 matrix indexed by u and v. Perfect state

transfer is the special case where α = γ = 0. Pretty good fractional revival can be
formulated in the same terms. We say there is pretty good fractional revival (PGFR)
between u and v if for all ε > 0 there is a tε > 0 where U(tε) has the block form

U(tε) =
[
H(tε) Xε

Xε Mε

]
with each row of Xε having magnitude at most ε, and where H(tε) is 2 × 2 and
corresponds to vertices u and v.

A necessary condition for pretty good state transfer between u and v is that u and
v be strongly cospectral (see [15]). In [5], a generalization of the notion of cospectral-
ity is given in the framework of fractional revival. This concept is called fractional
cospectrality, which we now define.
Definition 2.1. Let H be a non-diagonal 2 × 2 symmetric unitary matrix, and let
u, v be vertices of a graph G with adjacency matrix A. Given a vector x indexed by
vertices of G, let x̃ be the restriction of x to only vertices u and v.

(1) We say that u and v are fractionally cospectral with respect to H if there
is a basis ϕ1, . . . , ϕn of eigenvectors of A such that ϕ̃i is either 0 or an
eigenvector H.

(2) We say that u and v are strongly fractionally cospectral with respect to H, if
for every eigenvector ϕ of A, either ϕ̃ = 0 or ϕ̃ is an eigenvector of H.

The following theorem comes from [5] and gives a characterization of fractional
cospectrality in terms of walk counts at u and v (recall that Ak(x, y) enumerates
walks of length k between x and y in G).
Theorem 2.2 ([5, Theorem 8.3]). Let u and v be vertices of G, and H be a 2×2 non-
diagonal unitary symmetric matrix with eigenvectors ψ1 = [p, q]T and ψ2 = [−q, p]T .
Then the following are equivalent:
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(1) u and v are fractionally cospectral with respect to H.
(2) Ak(u, u)−Ak(v, v) =

(
p
q −

q
p

)
Ak(u, v) for all k.

This characterization allows us to investigate fractional cospectrality via the com-
binatorics of walks in a graph. We will use this tool in Section 3.1

Note that fractional cospectrality only requires the existence of a particular basis
of eigenvectors whose restrictions are eigenvectors of H, while strong cospectrality
requires this of all possible eigenvectors of H. Thus, if all the eigenvalues are simple,
then fractional cospectrality immediately implies strong fractional cospectrality. Ob-
serve that when H is not a multiple of the identity, H has two distinct eigenvalues.
Fractional cospectrality with respect to H naturally groups the eigenvalues of A into
two groups: one group is the eigenvalues for which the eigenvectors from our particu-
lar basis restrict to a certain eigenvector of H, and the other group is the eigenvalues
for which the eigenvectors in the basis restrict to the other eigenvector of H. Thus
if two nodes are fractionally cospectral but not strongly fractionally cospectral, then
it must be the case that A has an eigenvalue with multiplicity at least two, and this
grouping puts this eigenvalue into both groups.

Notice that fractional revival includes the case that H is the identity matrix, in
which case the vertices u and v are periodic. However, approximate periodicity, or
pretty good periodicity, by a standard compactness argument, occurs for every vertex
simultaneously (see [12, Section 6]), and thus its study for pairs is uninteresting.
Hence, in our discussion of pretty good fractional revival, we will exclude the case
where two vertices are approximately periodic.

2.1. A spectral characterization. In this section we will give a spectral char-
acterization of pretty good fractional revival, analogous to that for pretty good state
transfer (see [17, 21, 25]). This characterization is based on the number theoretic
lemma due to Kronecker.

Lemma 2.3 (Kronecker). Let θ0, . . . , θd and ζ0, . . . , ζd be arbitrary real numbers. For
an arbitrarily small ε, the system of inequalities

|θry − ζr| < ε (mod 2π), (r = 0, . . . , d),
has a solution y if and only if, for integers `0, . . . , `d,

`0θ0 + · · ·+ `dθd = 0,
implies

`0ζ0 + · · ·+ `dζd ≡ 0 (mod 2π).

Theorem 2.4. There is pretty good fractional revival between u and v if and only if
the following two conditions are satisfied:

(1) u and v are fractionally cospectral;
(2) let Π1,Π2 be the two groups of eigenvalues coming from the grouping on the

eigenvalues given by the fractional cospectrality (see the comment after The-
orem 2.2). For any integers `i,∑

i∈Π1

`iλi +
∑
j∈Π2

`jλj = 0

∑
i

`i = 0

implies ∑
i∈Π1

`i 6= ±1.
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We will first prove the following lemmas before proceeding with the proof of the
theorem.

Lemma 2.5. If there is pretty good fractional revival between u and v, then u and v
are strongly fractionally cospectral.

Proof. Since we have PGFR from u to v, then for every ε > 0, there is a tε > 0 such
that we can write

U(tε) =
[
H(tε) Xε

XT
ε Mε

]
where H(tε) is a 2× 2 matrix corresponding to u and v, and Xε is such that each row
has magnitude at most ε. Let H be a subsequential limit of H(tε) as ε→ 0. Now let φ
be a unit eigenvector of the adjacency matrix A, Aφ = λφ, and hence an eigenvector
of U(t) (namely U(t)φ = eitλ φ). Let φ̃ be the restriction of φ to u and v. Then since
the rows of Xε have magnitude bounded by ε, we see that

‖H(tε)φ̃− eitελ φ̃‖ < 2ε.

Letting ε→ 0 we see that
Hφ̃ = ρφ̃

for some subsequential limit ρ of eitελ. Hence, either φ̃ is an eigenvector of H, or it
is 0. This shows that u and v are strongly fractionally cospectral. �

We will now see that for fractionally cospectral vertices, condition (2) of Theo-
rem 2.4 actually implies strong fractional cospectrality.

Lemma 2.6. If conditions (1) and (2) of Theorem 2.4 are satisfied, then u and v are
strongly fractionally cospectral.

Proof. Suppose that u and v are not strongly fractionally cospectral. Then there is
some eigenvalue of A with multiplicity at least two that belongs to both groups in
the grouping of eigenvalues. That is λk = λr for some k ∈ Π1, r ∈ Π2. Then in
condition (2), let us choose `k = 1, `r = −1 and `i = 0 for i 6= k, r. Then clearly we
have ∑

i∈Π1

`iλi +
∑
j∈Π2

`jλj = 0

∑
i

`i = 0

but ∑
i∈Π1

`i = 1

contradicting condition (2). �

Proof of Theorem 2.4. By Lemmas 2.5 and 2.6, we need to show that for a pair of
fractionally cospectral vertices u and v, we have pretty good fractional revival if and
only if condition (2) is satisfied. From fractional cospectrality, we obtain a grouping
of the eigenvalues and eigenvectors into two groups. Let us denote these groups Π1
and Π2. From the proof of Lemma 2.5, pretty good fractional revival occurs if and
only if there is a 2× 2 symmetric unitary H with eigenvalues ρ1, ρ2 such that for all
ε > 0, there is a tε > 0 such that eitελi is close to ρ1 for i ∈ Π1, and eitελj is close
to ρ2 for j ∈ Π2. To have true pretty good fractional revival (and not approximate
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periodicity) we must have ρ1 6= ρ2. This holds if and only if there is some δ1, δ2 with
δ1 6≡ δ2 (mod 2π) such that the system

|tλi − δ1| < ε (mod 2π) for i ∈ Π1

|tλj − δ2| < ε (mod 2π) for j ∈ Π2

has a solution tε for all ε > 0. We need to show that this condition is equivalent to
condition (2).

Assume that we have integers `1, . . . , `n with
m∑
i=1

`iλi = 0 and
n∑
i=1

`i = 0.

By the Kronecker approximation theorem (Lemma 2.3), we thus have that∑
i∈Π1

`iδ1 +
∑
j∈Π2

`jδ2 = (δ1 − δ2)
∑
i∈Π1

`i ≡ 0 (mod 2π).

If ∑
i∈Π1

`i = ±1,

then this would imply δ1 ≡ δ2 (mod 2π), which would in turn imply that ρ1 = ρ2. But
we are assuming pretty good fractional revival, and hence not approximate periodicity,
so ρ1 6= ρ2. Thus we conclude that ∑

i∈Π1

`i 6= ±1.

For the converse, we assume that for all `1, . . . , `n ∈ Z,
m∑
i=1

`iλi = 0 and
n∑
i=1

`i = 0

implies that ∑
i∈Π1

`i 6= ±1.

Define λ̃i = λi − λ1 for each i > 2. Our condition is equivalent to saying
n∑
i=2

`iλ̃i = 0

implies ∑
j∈Π2

`j 6= ±1.

Define

S =

∑
j∈Π2

`j ∈ Z :
n∑
i=2

`iλ̃i = 0

 .

Note that S is an additive subgroup of Z and is not all of Z since
∑
j∈Π2

`j cannot
be ±1. Therefore

S = qZ
for some integer q 6= ±1. Define

δ̃1 := 0 and δ̃2 := 2π
q
,

Algebraic Combinatorics, Vol. 4 #6 (2021) 994



Pretty good quantum fractional revival in paths and cycles

then
δ̃1

∑
i∈Π1,i>1

`i + δ̃2
∑
j∈Π2

`j ≡ 0 (mod 2π)

for any integers `2, . . . , `n with
∑n
i=2 `iλ̃i = 0. Then by Lemma 2.3, for all ε > 0, the

system

|tλ̃i − δ̃1| < ε (mod 2π) for i ∈ Π1 r {1}

|tλ̃j − δ̃2| < ε (mod 2π) for j ∈ Π2

has a solution t = tε. Now choose δ1 so that tελ1 → δ1 as ε→ 0, and set δ2 = δ1 + δ̃2.
Then it becomes clear that

|tλi − δ1| < ε (mod 2π) for i ∈ Π1

|tλj − δ2| < ε (mod 2π) for j ∈ Π2

has a solution for t, and δ1 6≡ δ2 (mod 2π) as desired. This completes the proof of
Theorem 2.4. �

Remark 2.7. We note that condition (2) of Theorem 2.4 is a generalization of the
eigenvalue condition necessary for PGST, which requires that

∑
i `i be even. See [21,

Lemma 1] and [25, Lemma 3].

3. Paths
Theorem 3.1. Let Pn denote the path on n vertices labeled 1, . . . , n. Then PGFR
occurs in Pn in the following cases:

(1) between symmetric pairs of vertices if and only if there is PGST between those
points (characterized in [25]);

(2) n = 5 ·2k−1 vertices, between vertices 2k and 3 ·2k (or, by symmetry, between
2 · 2k and 4 · 2k).

For part (1) of this theorem, clearly if there is PGST between two vertices, then
there is PGFR. It remains to see that when there is not PGST between symmetric
pairs of nodes, then there is not PGFR either. It is clear that any symmetric pair of
vertices in a path are strongly cospectral (see [25, Lemma 2]), so we need to see if the
eigenvalues condition of Theorem 2.4 fails when there is not PGST. By the work in [25]
where PGST in paths is characterized, in cases where there is no PGST, this is shown
by construction of an integer linear combination of the eigenvalues of the adjacency
matrix of a path with

∑
i `i odd (see our remark after the proof of Theorem 2.4).

Examining the proof of Theorem 4 of [25], in fact, the linear combination constructed
has

∑
i `i = ±1. So by Theorem 2.4, [25] has actually proven that there is no PGFR

between these vertices.
Thus we only need concern ourselves with part (2) of our theorem. The remainder

of this section is dedicated to the proof. We will first investigate when two non-
symmetric vertices of a path can be fractionally cospectral. For these nodes, we will
then investigate the eigenvalue condition of Theorem 2.4.

3.1. Fractional cospectrality. The goal of this section is to see when a pair of
vertices in a path can be fractionally cospectral. We will primarily be using the walk
count characterization of fractional cospectrality from Theorem 2.2. Thus, it will be
helpful to have some understanding of the combinatorics of walk counts of a path.
With this in mind, we give the following lemma.
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Lemma 3.2. Let Pn be the path with n vertices labeled 1, . . . , n. Let x < y be two
vertices of Pn and without loss of generality, let us assume that x is closer to 1 than
to n. Then we have the following.

(1) Ak(x, y) = 0 if k 6≡ y − x mod 2.
(2) Ak(x, y) =

( k
k−(y−x)

2

)
−
( k
k−(y+x)

2

)
if k ≡ y − x mod 2 and k 6 2n− (x+ y).

Proof. The first item is clear since a path is bipartite.
For the second, we wish to count walks starting at x and ending at y. Let us

consider walks on a path extended to the left out to length x− k. We will first count
the walks in this path starting at x and ending at y in this extended path, and then
we will subtract off the walks that used the vertex 0 at some point (so the steps to the
left exceed the endpoint of the original path). First, to go from x to y, the number of
steps to the right must exceed the number of steps to the left by exactly y−x. There
are k steps total, so the number of steps to the left is (k − (y − x))/2. Among the k
steps, once we have determined which steps are to the left, the walk is determined.
Thus there are

(
k

(k−(y−x))/2
)
ways of choosing this.

Now we enumerate the number of these walks that use the vertex 0. We will use a
standard reflection technique coming from the combinatorics of Catalan numbers. By
switching the left/right moves of the walk after the first time the walk reaches 0, the
walks we wish to count are in bijective correspondence with walks starting at x and
ending at −y. By reasoning similar to the above, we find that the number of steps
to the right in such a walk must be (k − (x+ y))/2, so as above, we obtain that the
total number of such walks is

(
k

(k−(y+x))/2
)
. The restriction on k implies that there is

no obstruction coming from the right endpoint n. This gives the lemma. �

We remark that if k < y − x, there is no walk of length k from x to y, and the
binomial coefficients above have negative denominator, and we interpret

(
k
j

)
= 0 for

j < 0, so the formula is still correct. Likewise, if k < y + x, then no walk of length k
has any chance of exceeding the endpoint, so the walk count is given by just the first
term, and the amount subtracted off is 0 for the same reason.

We will record as a corollary the special case of this when y = x, so that we are
counting closed walks.

Corollary 3.3. Let x be any vertex of a path Pn as above.
(1) A2r+1(x, x) = 0 for all r.
(2) A2r(x, x) =

(2r
r

)
−
( 2r
r−x
)
for r 6 n− x.

Again, remark that for r < x, there is no obstruction from the endpoint, and the
second binomial coefficient is 0.

Theorem 3.4. Non-symmetric vertices u and v in a path Pn are strongly fractionally
cospectral if and only if n = 5d − 1 for some positive integer d, and {u, v} = {d, 3d}
or (by symmetry) {u, v} = {2d, 4d}.

Proof. First, let us suppose that u and v are vertices of Pn that are fractionally
cospectral, but not cospectral (i.e. not symmetric in the path). We will repeatedly
make use of the walk count characterization of Theorem 2.2,

(1) Ak(u, u) = Ak(v, v) + cAk(u, v)

for some constant c. Since u and v are not cospectral, then c 6= 0.

Claim 3.5. The distance from u to v is even.
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Proof. For k odd, Ak(u, u) = Ak(v, v) = 0. It follows from (1) that Ak(u, v) = 0 for
all odd k. But when k is the distance from u to v, then Ak(u, v) is non-zero. Thus the
distance is even. �

Recall that we are labeling the vertices of Pn with 1, . . . , n. Without loss of gen-
erality, assume that u < v and that u is closer to the endpoint 1 than v is to the
endpoint n. From the claim above, assume that the distance from u to v is 2d.

Claim 3.6. Under these assumptions, it must be that u = d and v = 3d.

Proof. By (1) we have Ak(u, u) = Ak(v, v) for all k < 2d, and we must have Ak(u, u) 6=
Ak(v, v) for k = 2d. Since u is closer to an endpoint of the path than v, then clearly,
the first place Ak(u, u) and Ak(v, v) differ is at k = 2d(u, 1) + 2 (since the endpoint
closest to u is 1). Thus, this value of k must be 2d, so u must be distance d− 1 from
1, so u = d. Since the distance from u to v is 2d, it follows that v = 3d. �

Claim 3.7. In (1), we must have c = −1.

Proof. Since the distance from u to 1 is d− 1, there is one more closed walk of length
2d at v than at u, and there is exactly 1 walk of length 2d from u to v since that
is the distance between them. Thus A2d(u, u) = A2d(v, v)− A2d(u, v), and the claim
follows. �

Claim 3.8. n > 5d− 1.

Proof. We will look at walks of length k = 2d+ 2j. We can apply Lemma 3.2 to any
k 6 2n− 4d, or in other words, to any j with j 6 n− 3d. Note that since u is closer
to 1 than v is to n, then n > 4d, thus Lemma 3.2 applies to any j < d. So for any
j < d, from Corollary 3.3 and Lemma 3.2, we have

A2d+2j(u, u) =
(

2d+ 2j
d+ j

)
−
(

2d+ 2j
j

)
A2d+2j(u, v) =

(
2d+ 2j

j

)
.

Then from (1), since c = −1, we deduce that

A2d+2j(v, v) =
(

2d+ 2j
d+ j

)
.

This implies that the distance from v to the endpoint is at least 2d− 1, which implies
n > 5d− 1, since v = 3d. �

Claim 3.9. n = 5d− 1.

Proof. Again using Corollary 3.3 and Lemma 3.2, we have

A4d(u, u) =
(

4d
2d

)
−
(

4d
d

)
A4d(u, v) =

(
4d
2d

)
−
(

4d
0

)
=
(

4d
2d

)
− 1.

Then (1) implies

A4d(v, v) =
(

4d
d

)
− 1.

This implies, in particular, there is no path of length 2d from v to its closest endpoint.
We already know that v is at distance 3d − 1 from 1, so the distance from v to n is
at most 2d− 1. Thus we conclude n = 5d− 1. �
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With these claims, we have shown that if u and v exhibit fractional cospectrality
and are not cospectral, then this must be the situation we have claimed.

It remains to prove the converse, namely that when n = 5d−1, u = d, and v = 3d,
then u and v are fractionally cospectral. We do this by verifying (1) for all k. It
suffices to verify it for k 6 n. Note that we have already verified this for k 6 4d, and
that c = −1. The verification for 4d < k 6 5d− 1 is a straightforward application of
Lemma 3.2 and Corollary 3.3. Indeed, for j < d,

A4d+2j(u, u) =
(

4d+ 2j
2d+ j

)
−
(

4d+ 2j
d+ j

)
A4d+2j(v, v) =

(
4d+ 2j
2d+ j

)
−
(

4d+ 2j
j

)
A4d+2j(u, v) =

(
4d+ 2j
d+ j

)
−
(

4d+ 2j
j

)
and (1) is verified, completing the proof. �

3.2. Eigenvalue condition. In this section, we wish to determine when a path on
5d − 1 vertices satisfies the second condition of Theorem 2.4. As the eigenvalues of
paths involve cosines, the following lemma from [25] will be helpful.

Lemma 3.10 ([25, Lemma 5]). Let m be an odd integer, 0 6 a < k integers. Then
m−1∑
i=0

(−1)i cos
(

(a+ ik)π
km

)
= 0.

Theorem 3.11. A path on 5d− 1 vertices satisfies the eigenvalue condition of Theo-
rem 2.4 if and only if d = 2k.

Proof. Let P5d−1 be the path with vertex set 1, . . . , 5d−1. We know from the previous
section that vertices d and 3d are strongly fractionally cospectral.

We will first determine the grouping on the eigenvalues defined by the fractional
cospectrality. Let x1, . . . , x5d−1 be the eigenvectors for P5d−1. Since we already know
fractional cospectrality, then we have that each xk satisfies either xk(d) = xk(3d) = 0,
xk(d)/xk(3d) = c, or xk(d)/xk(3d) = −1/c for some c. We will call these three groups
the “zero group” Z, and groups I and II respectively.

It is well-known (see for instance [4]) that the eigenvalues of P5d−1 are

λj = 2 cos πj5d , j = 1, . . . , 5d− 1

and the eigenvector xj for λj can be given by

xj(k) = sin πkj5d , k = 1, . . . , 5d− 1

for all j. We are interested in the vertices k = d and k = 3d, so we have xj(d) =
sin(πj/5) and xj(3d) = sin(3πj/5). Both of these are 0 if j is divisible by 5. Observe
that if j ≡ 1 mod 5 or j ≡ 4 mod 5, then both sin(πj/5) and sin(3πj/5) are positive.
If j ≡ 2 mod 5 or j ≡ 3 mod 5, then sin(πj/5) is positive and sin(3πj/5) is negative.
Thus the three groups must be as follows:

Z = {λj : j ≡ 0 mod 5}
I = {λj : j ≡ 1, 4 mod 5}
II = {λj : j ≡ 2, 3 mod 5}.
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The Z group are not in the support of d and 3d so these eigenvalues may be ignored.
Thus, the eigenvalue condition becomes that pretty good fractional revival occurs
between d and 3d if and only if ∑

j
j 6≡0 mod 5

`jλj = 0

∑
j

j 6≡0 mod 5

`j = 0

implies ∑
j

j≡1,4 mod 5

`j 6= ±1.

We wish to determine the values of d for which this holds. Suppose d is divisible by
some odd number. Write d = rm where m is odd. Then

λj = 2 cos πj

5rm.

By Lemma 3.10, we have (for instance) that
m−1∑
i=0

(−1)i cos
(

(1 + 5ri)π
5rm

)
= 0

and
m−1∑
i=0

(−1)i cos
(

(2 + 5ri)π
5rm

)
= 0

and each term in these sums is a λj with j ≡ 1 mod 5 in the first case, and j ≡ 2
mod 5 in the second case. Then choose the `1+5ri = (−1)i, `2+5ri = −(−1)i, and
`j = 0 otherwise. Then since m is odd, we have∑

j

`jλj =
m−1∑
i=0

(−1)i cos
(

(1 + 5ri)π
5rm

)
−
m−1∑
i=0

(−1)i cos
(

(2 + 5ri)π
5rm

)
= 0

∑
j

`j =
m−1∑
i=0

(−1)i −
m−1∑
i=0

(−1)i = 0

∑
j

j≡1,4 mod 5

`j =
m−1∑
i=0

(−1)i = 1.

Thus when d is divisible by an odd number, we do not get pretty good fractional
revival.

It remains to show that when d is a power of 2, then we do get pretty good fractional
revival between vertices u = d and v = 3d. Let us write d = 2k, so n = 5 · 2k − 1.
Using Theorem 2.4 again, let us suppose that

5d−1∑
j=1

`j2 cos πj5d = 0

with `j ∈ Z. As we saw above, those j divisible by 5 correspond to eigenvectors not
supported on u and v, so we may assume that `5i = 0 for all i. We can rewrite this as

5d−1∑
j=1

`j(ζj + ζ10d−j) = 0
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where ζ = e2πi/10d is a primitive 10d-th root of unity. Let us alternatively write this as
10d−1∑
j=1

`jζ
j

with the condition

(2) `j = `10d−j

for j = 1, . . . , 5d−1. Since we are still assuming `j = 0 for j divisible by 5, we have that∑
j≡0 mod 5

`jζ
j = 0.

Thus by Theorem 2.3 of [22] we have that∑
j≡r mod 5

`jζ
j = 0

for all r. In particular, we have ∑
j≡1 mod 5

`jζ
j = 0.

Let us define the polynomial

P (x) =
∑

j≡1 mod 5
16j<10d

`jx
(j−1)/5.

Then P has x = ζ5 as a root. Note that ζ5 is a 2k+1-th root of unity, and thus P (x)
is divisible by the 2k+1-th cyclotomic polynomial

Φ2k+1(x) = x2k + 1.

This, in particular, implies that P (1) is even. But

P (1) =
∑

j≡1 mod 5
16j<10d

`j

=
∑

j≡1 mod 5
16j<5d

`j +
∑

j≡1 mod 5
5d+16j<10d

`j

=
∑

j≡1 mod 5
16j<5d

`j +
∑

j≡4 mod 5
16j<5d

`10d−j

=
∑

j≡1,4 mod 5
16j<5d

`j

where the last line follows from (2). Since this sum is even, it is not ±1, and thus we
get pretty good fractional revival by Theorem 2.4. �

4. Cycles
In this section, we extend Pal and Bhattacharjya’s characterization of PGST in cy-
cles, [23], to PGFR. They showed that such cycles must have 2k vertices, for some
k > 2, and PGST must occur between antipodal vertices. Since PGST is a special case
of PGFR, these cycles have PGFR between their antipodal vertices. We determine
all the cycles admitting PGFR.
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Let Cn be a cycle on vertex set Zn with vertex a adjacent to a− 1 and a+ 1, for
a ∈ Zn. Let ω be a primitive n-th root of unity. Then the adjacency matrix, A, of Cn
has eigenvectors

φj =
[
wj w2j · · · w(n−1)j]T

with corresponding eigenvalue λj = 2 cos 2πj
n , for j = 0, 1 . . . , n− 1. For each j,

φj(b) = ω(b−a)jφj(a).

Hence there exists non-zero constant c such that ω(a−b)j is equal to c or −1/c, for all
j, if and only if n is even, b = a+ n/2, and c = 1. In this case, we have

(3) φj

(
a+ n

2

)
=
{
φj(a) if j is even,
−φj(a) if j is odd.

In other words, antipodal vertices in even cycles are the only strongly (fractionally)
cospectral vertices in cycles.

We first show that there is PGFR in cycles on 2pk vertices, for any odd prime p
and k > 1.

Lemma 4.1. Let p be an odd prime and n = 2pk for some k > 1. Then Cn has PGFR
between antipodal vertices.

Proof. Let `0, `1, . . . , `n−1 be integers satisfying

(4)
n∑
r=0

`rλr = 0

and

(5)
n∑
r=0

`r =
∑
r even

`r +
∑
s odd

`s = 0.

Since
λr = λ2pk−r = −λpk−r = −λpk+r, for r = 1, . . . , (pk − 1)/2,

we can rewrite Equation (4) as

2
(
`0 − `pk

)
+

(pk−1)/2∑
r=1

(
`r + `2pk−r − `pk−r − `pk+r

)
λr = 0.

Define

hr =
{

(−1)r
(
`r + `2pk−r − `pk−r − `pk+r

)
if r = 1, . . . , p

k−1
2 ,

`0 − `pk if r = 0.
Then

(pk−1)/2∑
r=0

hr =
∑
r even

`r −
∑
s odd

`s,

and Equation (4) yields

2h0 +
(pk−1)/2∑
r=1

hr
(
(−ω)r + (−ω)−r

)
= 0.

As a result, −ω is a root of the polynomial

h(x) =
(pk−1)/2∑
r=1

hrx
pk−1

2 +r + 2h0x
pk−1

2 +
(pk−1)/2∑
r=1

hrx
pk−1

2 −r.
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The 2pk-th cyclotomic polynomial satisfies Φ2pk(x) = Φpk(−x). Hence −ω is a root of

Φpk(x) =
p−1∑
s=0

xp
k−1s.

As a result, there exists a unique polynomial g(x) of degree pk−1 − 1 such that

h(x) = g(x)Φpk(x).

When x = 1, we get

h(1) = 2
(pk−1)/2∑
r=0

hr = 2
∑
r even

`r − 2
∑
s odd

`s = g(1)p.

Together with Equation (5), we get

4
∑
r even

`r = g(1)p.

We conclude that
∑
r even `r 6= ±1 and there is PGFR between antipodal vertices

in C2pk . �

We need to use the following equation from [23, Equation (7)] to rule out PGFR in
Cn when n is divisible by two distinct odd primes. Let n = mp for some odd prime p.
Then

(6) (λ2 − λ1) +

p−1
2∑

r=1
(λmr+2 − λmr+1)−

p−1
2∑

r=1
(λmr−1 − λmr−2) = 0.

Lemma 4.2. If n is divisible by 2pq for some distinct odd primes p and q, then there
is no PGFR in Cn.

Proof. Suppose Cn has PGFR between antipodal vertices. There exists a 2× 2 non-
diagonal symmetric unitary matrix

H =
[
α β
β γ

]
such that, for each ε > 0, there exists tε with

U(tε) ≈
[
H 0
0 H ′

]
.

By Equation (3), we have

φ̃j =


[
1 1
]T

if j is even,[
1 −1

]T
if j is odd,

and φ̃j being an eigenvector of H implies γ = α. In this case, we have

Hφ̃j = (α+ (−1)jβ)φ̃j for j = 0, . . . , n− 1.

Since H is a non-diagonal unitary matrix, we have β 6= 0 and α 6= ±β.
Let µ be the non-zero real number satisfying eiµ = (α+β)/(α−β). It follows from

U(tε)φj = eitελj φj that

tε(λj − λj−1) ≈
{
µ (mod 2π) if j is even,
−µ (mod 2π) if j is odd.
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Applying Lemma 2.3 to Equation (6) yields

pµ ≡ 0 (mod 2π).

Similarly, we have qµ ≡ 0 (mod 2π).
As p and q are coprime, there exist integers h and k such that hp+ kq = 1. Then

µ = hpµ + kqµ ≡ 0 (mod 2π), which implies β = 0, a contradiction to H being
non-diagonal. �

Lemma 4.3. Let n = 2hps for some odd prime p, s > 1 and h > 2. There is no PGFR
in Cn.

Proof. Applying Lemma 3.10 with m = ps and k = 2h−1, we get
ps−1∑
j=0

(−1)jλ2h−1j+a = 0, for 0 6 a < 2h−1.

When a = 0 and a = 1, we get
ps−1∑
j=0

(−1)jλ2h−1j = 0 and
ps−1∑
j=0

(−1)jλ2h−1j+1 = 0.

Define

`r =


(−1)j , if r = 2h−1j,
(−1)j+1, if r = 2h−1j + 1,
0 otherwise.

Then we have
∑n−1
r=0 `rλr = 0,

∑n−1
r=0 `r = 0 but∑

r even
`r = 1.

Hence there is no PGFR in Cn. �

Theorem 4.4. Pretty good fractional revival occurs between a and b in Cn if and only
if n = 2pk, for some prime p, for k > 1, and b = a+ n/2.
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