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A diagrammatic approach to string
polytopes

Christian Steinert

Abstract We prove that for every complex classical group G the string polytope associated to
a special reduced decomposition and any dominant integral weight λ will be a lattice polytope
if and only if the highest weight representation of the Lie algebra of G with highest weight
λ integrates to a representation of G itself. This affirms an earlier conjecture and shows that
every partial flag variety of a complex classical group admits a flat projective degeneration to
a Gorenstein Fano toric variety.

1. Introduction
Rational convex polytopes play a crucial role in representation theory for different
reasons. First and foremost, there are many polytopes whose lattice points param-
eterize bases of highest weight representations. The first such polytope for SLn+1
was defined by Gel′fand and Tsetlin in [11]. Berenstein and Zelevinsky defined analo-
gous Gel ′fand–Tsetlin polytopes for all classical Lie algebras in [4]. It should be noted
that the corresponding Sp2n-polytopes have been constructed before by Zhelobenko
in [23]. These constructions lead to the definition of string polytopes by Littelmann
in [15]. In contrast to the previous polytopes, these string polytopes give many dif-
ferent parametrizations of bases depending on the choice of a reduced decomposition
of the longest word of the Weyl group. They are the main objects of our studies.

It should be noted that there exists a different string polytope by Nakashima and
Zelevinsky [17] that will not be discussed in this paper. Other famous polytopes have
been defined by Lusztig in [16], by Feigin, Fourier and Littelmann in [8] and [9] as
well by Gornitskii in [12] and [13]. The latter four polytopes are based on a conjecture
by Vinberg.

Although all of these polytopes are united in the fact that their lattice points give
parametrizations of bases of highest weight representations, they exhibit different
combinatorial properties. Even the most basic question whether a certain polytope is
a lattice polytope, yields different answers for the aforementioned polytopes. In fact,
even for string polytopes associated to nice decompositions (see [15, Section 4]), this
question is highly non-trivial.

It has been conjectured before by Alexeev and Brion that for SLn+1 every string
polytope will be a lattice polytope independent of the reduced decomposition and the
weight (see [1, Conjecture 5.8]). Explicit calculations show that this conjecture holds
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for n 6 4. However, in [22, Example 5.5] we were able to provide counterexamples for
SL6 and SL7 that can be extended to arbitrary rank.

Even worse, one of the very few integrality results for string polytopes [1, Theo-
rem 4.5] is faulty (see [22, Remark 5.9]). However, based on calculations we were able
to state a weaker conjecture (see [22, Conjecture 5.10]).

Before stating this conjecture, let us fix some notation. Let G be a complex classical
group with Lie algebra LieG. We write Λ+ for the set of dominant integral weights of
LieG. Let εi denote the projection of a matrix in LieG onto its i-th diagonal entry.
We enumerate the simple roots of Lie G as αi = εi − εi−1 for 1 6 i 6 n− 1 and

αn =


εn − εn+1 if G = SLn+1,

εn if G = SO2n+1,

2εn if G = Sp2n,

εn−1 + εn if G = SO2n.

For simplicity, we will say that the nice decompositions that have been constructed
in [15, Sections 5, 6 and 7] are standard (see also Definition 2.10).

Conjecture 1.1. Let G be a complex classical group, let λ ∈ Λ+ and let w0
std be the

standard reduced decomposition of the longest word of the Weyl group of G as stated
in [15]. Then the standard string polytope Qw0std(λ) is a lattice polytope if and only
if one of the following conditions holds.

(i) G = SLn+1,
(ii) G = SO2n+1 and 〈λ, α∨n〉 ∈ 2Z,
(iii) G = Sp2n or
(iv) G = SO2n and 〈λ, α∨n−1〉+ 〈λ, α∨n〉 ∈ 2Z or n < 4.

This paper is dedicated to proving said conjecture. By standard results from repre-
sentation theory (see for example [19, Chapter 10, Theorem 6.1] and [19, Chapter 11,
Theorem 6.6]) the following formulation is equivalent.

Theorem 1.2. Let G be a complex classical group and λ a dominant integral weight of
its Lie algebra LieG. Then the standard string polytope Qw0std(λ) (in the sense of [15])
is a lattice polytope if and only if the (LieG)-representation on V (λ) integrates to a
representation of G.

It should be noted that this result has been proved before in types An and Cn
since the corresponding string polytopes are unimodularly equivalent to the respec-
tive Gel′fand–Tsetlin polytopes. These polytopes can be realized as marked order
polytopes, defined by Ardila, Bliem and Salazar in [2], which readily yields the claim.
Alternatively, a result on marked order polytopes by Fang and Fourier could also be
used [7].

However, these results do not prove the orthogonal cases (completely). In type
Bn one only gets one implication of Theorem 1.2. In type Dn there exists no affine
bijection from the string polytope to the Gel′fand–Tsetlin polytope. There exists only
a piecewise affine bijection (see [15, Section 7]) which need not preserve vertices.
Additionally the Gel′fand–Tsetlin polytope in type Dn is not realized as a marked
order polytope.

Our proof will give a visual tool to classify vertices of marked order polytopes via
directed graphs that we will call identity diagrams. This classification proves the claim
of Theorem 1.2 in types An, Bn and Cn. The concrete statement is the following.

Theorem 1.3.A point in a marked order polytope is a vertex if and only if each
connected component in its identity diagram contains a marked element.
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This result is not new. Rather, it is a graphical version of a result by Pegel [18,
Proposition 3.2]. But we will reprove it to give an easier understanding of our work
in type Dn.

For type Dn we will construct slight deviations of the usual Gel′fand–Tsetlin poly-
topes. These tweaked Gel ′fand–Tsetlin polytopes are slightly more complicated as they
are realized in a bigger ambient space, creating artificial redundancies in the coordi-
nates. However, we will be able to show that they are better suited for our purpose
than the usual Gel′fand–Tsetlin polytopes.

Theorem 1.4. Let G = SO2n. For every dominant integral weight of the Lie algebra
of G, there exists an affine bijection between Rn(n−1) and an affine subspace of Rn2−2

that sends the string polytope onto the tweaked Gel′fand–Tsetlin polytope.
Furthermore, a point in the tweaked Gel′fand–Tsetlin polytope will correspond to a

lattice point in the string polytope if and only if its coordinates are either completely
contained in Z or completely contained in Z + 1

2 .

These new polytopes will still not be marked order polytopes. But we will con-
struct an analogue of identity diagrams that fulfill the same purpose. These tweaked
Gel ′fand–Tsetlin diagrams give a visual tool to determine whether a given point in the
tweaked Gel′fand–Tsetlin polytope is a vertex, although the criterion is slightly more
complicated. Ultimately, this yields to the proof of the claim of Theorem 1.2 for Dn.

Together with our main result in [22], this will imply the following.

Theorem 1.5. Let G be a complex classical group and λ a dominant integral weight.
The standard string polytope Qw0std(λ) (in the sense of [15]) is a reflexive polytope
after translation by a lattice vector if and only if λ is the weight of the anticanonical
line bundle over some partial flag variety G/P .

This is important because Batyrev proved in [3] that reflexive polytopes are in
one-to-one correspondence with Gorenstein Fano toric varieties. Additionally, Alexeev
and Brion were able to construct toric degenerations of spherical varieties using string
polytopes in [1]. So we will reach the following conclusion.

Theorem 1.6. Let G be a complex classical group. Then every partial flag variety of
G admits a flat projective degeneration to a toric Gorenstein Fano variety.

This observation could lead to a potential application of Batyrev’s mirror symmetry
construction in [3] to partial flag varieties.

The structure of this paper is as follows. Before proving Theorem 1.2, we will
recall the most important definitions regarding string and Gel′fand–Tsetlin polytopes
in Section 2 and marked order polytopes in Section 3. We will then construct our
identity diagrams in Section 4 and prove Theorem 1.3, which yields to the proof
of Theorem 1.2 for types An, Bn and Cn. As another potential application we will
describe an algorithm that delivers all vertices of a given string polytope in Section 6.
In Sections 7 and 8 we will construct our modified Gel′fand–Tsetlin patterns in type
Dn and their corresponding diagrams, which leads to the final proof of Theorem 1.2
in Section 9. We will conclude our paper with proofs of Theorem 1.5 and Theorem 1.6
in Section 10.

2. String polytopes and Gel′fand–Tsetlin polytopes
Let us start by recalling the definition of so-called (generalized) Gel ′fand–Tsetlin pat-
terns introduced by Berenstein and Zelevinsky in [4]. We will widely stick to the
notation in [15] although we will make slight adjustments.
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Notation 2.1. For two numbers a, b ∈ R the inequality a > b will be written graphi-
cally as

a
b

or b
a
.

We will now define Gel′fand–Tsetlin patterns for all classical types.

Definition 2.2 (Gel′fand–Tsetlin patterns in type An). Let G = SLn+1 and λ =∑n
i=1 λiεi ∈ Λ+ (as before, εi denotes the projection of a matrix onto its i-th diagonal

entry). A Gel′fand–Tsetlin pattern of type λ is a tuple (yi,j) ∈ R
n(n+1)

2 , 1 6 i 6 j 6 n,
such that the coordinates fulfill the relations in Fig. 1.

λ1 λ2 . . . . . . . . . λn 0
y1,1 y1,2 . . . . . . y1,n−1 y1,n

y2,2 y2,3 . . . y2,n−1 y2,n
. . . . . . ... ...

yn−2,n−2 yn−2,n−1 yn−2,n

yn−1,n−1 yn−1,n

yn,n

Figure 1. Inequalities of Gel′fand–Tsetlin patterns in type An.

Remark 2.3.Notice that in Littelmann’s definition of type An Gel′fand–Tsetlin pat-
terns, the top row would be included in the tuple (yi,j) as the initial row (i.e. y0,0 = λ1,
. . . , y0,n−1 = λn, y0,n = 0). However, for fixed λ this does only change the embedding
of the pattern and not the pattern itself. So we adapted the definition to embed our
patterns in a vector space whose dimension equals the number of positive roots of the
algebraic group G. Additionally, these entries have a different character (we will call
these entries a marking later on), so we would like to treat them separately.

Definition 2.4 (Gel′fand–Tsetlin patterns in types Bn and Cn). Let G = SO2n+1 or
Sp2n and λ =

∑n
i=1 λiεi ∈ Λ+. A Gel′fand–Tsetlin pattern of type λ is a pair (y, z) of

tuples y = (yi,j) ∈ R
n(n−1)

2 , 2 6 i 6 j 6 n, and z = (zi,j) ∈ R
n(n+1)

2 , 1 6 i 6 j 6 n,
such that the coordinates fulfill the relations in Fig. 2.

Remark 2.5.Notice that in a Gel′fand–Tsetlin pattern (y, z) of type Bn or Cn the
first row as well as the zeroes in the last column are not actually part of the tuple
(y, z). In Littelmann’s definition, the first row would be included as y1,1 = λ1, . . . ,
y1,n = λn. The reasons for our change of definition are the same as in type An.
Otherwise we want to stick with his notation, which yields to the awkward fact that
our tuple (y) starts with the index i = 2. However, we will not need these indices
explicitly, so this should not become a problem.

Definition 2.6 (Gel′fand–Tsetlin patterns in type Dn). Let G = SO2n and λ =∑n
i=1 λiεi ∈ Λ+. A Gel′fand–Tsetlin pattern of type λ is a pair (y, z) of tuples y =

(yi,j) ∈ R
n(n−1)

2 , 2 6 i 6 j 6 n, and z = (zi,j) ∈ R
n(n−1)

2 , 1 6 i 6 j 6 n − 1, such
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λ1 λ2 . . . λn−2 λn−1 λn 0
z1,1 z1,2 . . . z1,n−2 z1,n−1 z1,n

y2,2 y2,3 . . . y2,n−1 y2,n 0
z2,2 z2,3 . . . z2,n−1 z2,n

y3,3 y3,4 . . . y3,n 0
z3,3 z3,4 . . . z3,n

. . . . . . . . .

zn−2,n−2 zn−2,n−1 zn−2,n

yn−1,n−1 yn−1,n 0
zn−1,n−1 zn−1,n

yn,n 0
zn,n

0

Figure 2. Inequalities of Gel′fand–Tsetlin patterns in types Bn and Cn.

that the coordinates fulfill the relations in Fig. 3 and
z1,n−1 6 λn + y2,n + min{λn−1, y2,n−1},
zi,n−1 6 yi,n + yi+1,n + min{yi,n−1, yi+1,n−1} for all 2 6 i 6 n− 2,

zn−1,n−1 6 yn−1,n + yn,n + yn−1,n−1.

λ1 λ2 . . . λn−3 λn−2 λn−1 λn

z1,1 z1,2 . . . z1,n−3 z1,n−2 z1,n−1

y2,2 y2,3 . . . y2,n−2 y2,n−1 y2,n

z2,2 z2,3 . . . z2,n−2 z2,n−1

y3,3 y3,4 . . . y3,n−1 y3,n

z3,3 z3,4 . . . z3,n−1
. . . . . . . . .

zn−3,n−3 zn−3,n−2 zn−3,n−1

yn−2,n−2 yn−2,n−1 yn−2,n

zn−2,n−2 zn−2,n−1

yn−1,n−1 yn−1,n

zn−1,n−1

yn,n

Figure 3. Inequalities of Gel′fand–Tsetlin patterns in type Dn.

Algebraic Combinatorics, Vol. 5 #1 (2022) 67



Christian Steinert

Remark 2.7.As before we deviate from Littelmann’s notation by not including the
initial row containing the λj in our notion of a Gel′fand–Tsetlin pattern. For unified
notation of the additional inequalities, we will sometimes write y1,j for λj .

One can see quite easily that the set of all Gel′fand–Tsetlin patterns for a given
weight is a polytope.

Definition 2.8. Let G be a complex classical group of type Xn and let λ ∈ Λ+. Let
N denote the number of positive roots of G. The set of all possible Gel ′fand–Tsetlin
patterns of type λ is called the Gel′fand–Tsetlin polytope GTXn(λ) ⊆ RN of Xn and
λ. We may omit the subscript Xn if this is clear from the context.

Sometimes we might be interested to use the original definitions instead. So we
introduce the following notation.

Notation 2.9.An extended Gel′fand–Tsetlin pattern x̂ is a Gel′fand–Tsetlin pattern
x together with the λi in its top row.

We will now recall the connection between Gel′fand–Tsetlin polytopes and stan-
dard string polytopes. These are the string polytopes associated to the following
reduced decompositions, which are called nice decompositions in [15]. Notice that we
use Bourbaki enumeration of the simple roots – in contrast to [15].

Definition 2.10.
w0

std
SLn+1

= sn(sn−1sn) · · · (s1 · · · sn),

w0
std
SO2n+1

= w0
std
Sp2n

= sn(sn−1snsn−1) · · · (s1 · · · sn · · · s1)
or

w0
std
SO2n

= sn−1sn(sn−2sn−1snsn−2) · · · (s1 · · · sn−2sn−1snsn−2 · · · s1)

respectively. We usually write w0
std instead of w0

std
G

if the group G is fixed.

We will use the following non-standard terminology.

Definition 2.11. Let G be a complex classical group. A Gel ′fand–Tsetlin pattern x is
called standard if one of the following conditions holds.

(i) G = SLn+1 and all coordinates of x̂ are integral.
(ii) G = SO2n+1, the coordinates z1,n, . . . , zn,n are in 1

2Z and the other coordi-
nates of x̂ are either all integral or all are in 1

2 + Z.
(iii) G = Sp2n and all coordinates of x̂ are integral.
(iv) G = SO2n and the coordinates of x̂ are either all integral or all are in 1

2 +Z.

The following is a combination of [15, Corollary 5 and Corollary 7].

Theorem 2.12 (Littelmann). Let G be a complex classical group of type Xn 6= Dn and
let N denote the number of positive roots. For each dominant integral weight λ there
exists an affine bijection φλ : RN → RN such that φλ(Qw0std(λ)) = GTXn(λ).

Furthermore, φλ induces a bijection between the lattice points in Qw0std(λ) and the
standard Xn-Gel ′fand–Tsetlin patterns of type λ.

Remark 2.13. Interestingly, in type An Cho, Kim, Lee and Park gave a combinatorial
classification of all reduced decompositions whose string polytope is unimodularly
equivalent to the Gel′fand–Tsetlin polytope in [6].

In type Dn the situation is more delicate as can be seen in [15, Corollary 9]. In this
case the map φλ will only be piecewise affine.

Algebraic Combinatorics, Vol. 5 #1 (2022) 68



A diagrammatic approach to string polytopes

Theorem 2.14 (Littelmann). Let G = SO2n and let N denote the number of positive
roots. For each dominant integral weight λ there exists a piecewise affine bijection
φλ : RN → RN such that φλ(Qw0std(λ)) = GTDn

(λ).
Furthermore, φλ induces a bijection between the lattice points in Qw0std(λ) and the

standard Dn-Gel ′fand–Tsetlin patterns of type λ.

The non-affineness will lead to difficulties in proving Theorem 1.2, which we will
overcome by defining new Gel′fand–Tsetlin polytopes for type Dn in Section 8.

3. Marked order polytopes
We will now study generalized versions of Stanley’s order polytopes. The definition
of the order polytope associated to a poset is due to Stanley [20]. A marking on the
poset leads to a generalization by Ardila, Bliem and Salazar in [2]. These polytopes
have been studied by Pegel [18], Fang and Fourier [7] and others.

Definition 3.1. Let (P,6) be a finite poset, i.e. P is a finite set with a partial order
6 on P .

(i) The Hasse diagram of P is a directed graph whose set of nodes is P and there
is an arrow p→ q whenever p < q and there exists no r with p < r < q.

(ii) A marking on P is a pair (A, λ) where A is a subset of P containing all
minimal and maximal elements of P and λ = (λa)a∈A ∈ RA is a real vector
such that λa 6 λb whenever a 6 b. The triplet (P,A, λ) is called a marked
poset. We will call the elements of A marked elements.

(iii) Let (A, λ) be a marking on P . The marked order polytope OP,A(λ) associated
to (P,A, λ) is defined as

OP,A(λ) :=

x ∈ RPrA

∣∣∣∣∣∣
xp 6 xq for all p 6 q,
λa 6 xp for all a 6 p,
xp 6 λb for all p 6 b

 .

Remark 3.2. The Gel′fand–Tsetlin polytopes of types An, Bn and Cn are marked
order polytopes where the marking is given by the dominant integral weight and
some zeroes. The Gel′fand–Tsetlin polytopes of type Dn however are not marked
order polytopes because of the additional four-term inequalities in their definition.

The following theorem is due to Pegel, expanding results by Ardila, Bliem and
Salazar [2, Lemma 3.5] as well as Fang and Fourier [7, Corollary 2.2]. It can be found
in [18, Proposition 3.2].

Theorem 3.3 (Pegel). Let (P,A, λ) be any marked poset. The coordinates of every
vertex of the marked order polytope OP,A(λ) must lie in the set {λa | a ∈ A}. Espe-
cially, OP,A(λ) is a lattice polytope if λ is integral.

This implies the following.

Corollary 3.4. Let G be a complex classical group of type Xn 6= Dn and λ ∈ Λ+.
Then the Gel ′fand–Tsetlin polytope GTXn

(λ) is a lattice polytope if Xn = An or Cn or
if Xn = Bn and 〈λ, α∨n〉 ∈ 2Z.

Proof. Set λ =
∑n
i=1 λiεi. By Theorem 3.3 it is clear that GTXn(λ) will be a lattice

polytope if all coordinates of the marking vector are integral. The set of non-zero
coordinates is a subset of {λ1, . . . , λn}, so we need to know when the coefficients of a
dominant integral weight written in the εi are integral. By [19, Chapter 10, Section 5.1]
this is always the case in types An and Cn. In type Bn however, we could get half-
integral coefficients. To be more precise, each λi can be written as the sum of some
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integers plus 〈λ,α
∨
n〉

2 . So we see that the λi are integers if and only if 〈λ, α∨n〉 is an even
integer, which concludes the proof. �

This corollary would allow us to prove one implication of the claims of Conjec-
ture 1.1 and hence Theorem 1.2 for types An, Bn and Cn via Littelmann’s affine
bijection from Theorem 2.12. The reason is that the inverse of Littelmann’s map
sends vertices to vertices and lattice points in the Gel′fand–Tsetlin polytope (notice
that these are only a proper subset of the standard Gel′fand–Tsetlin patterns in type
Bn) to lattice points of the standard string polytope.

Sadly, we cannot prove the only-if -part in type Bn directly and we simply cannot
use these methods in the case Dn. Firstly, the Gel′fand–Tsetlin polytope in type Dn is
not a marked order polytope. Secondly, since Littelmann’s bijection of Theorem 2.14
is only piecewise affine, it need not send vertices to vertices. Some vertices could be
sent to non-vertices and vice-versa.

From examples I reached the following conjecture which would at least solve this
problem. But I could not find a proof.

Conjecture 3.5. Let φλ be the map from Theorem 2.14, i.e. the piecewise affine
bijection with φλ(Qw0std(λ)) = GTDn

(λ). Then φλ induces a bijection between
vertQw0std(λ) and vertGTDn

(λ).

So we will develop a tweaked version of Gel′fand–Tsetlin patterns in type Dn that
can be studied more easily. Additionally we will introduce a new method to classify
vertices of these tweaked Gel′fand–Tsetlin polytopes via diagrammatic combinatorics
in Section 8.

We will also apply these methods to the other classical types, thereby reproving
Corollary 3.4 and additionally the missing second implication of Conjecture 1.1 in
type Bn.

4. Identity diagrams
We will state our definitions for arbitrary marked posets. The reductions to the
Gel′fand–Tsetlin cases An, Bn and Cn are obvious.

Definition 4.1. Let (P,A, λ) be a marked poset and let x ∈ OP,A(λ). The identity
diagram DλP,A(x) associated to (P,A, λ, x) is a graph that contains all nodes and
arrows of the Hasse diagram of P . Additionally, we draw an arrow q → p between two
nodes p and q whenever there exists an arrow p → q in the Hasse diagram of P and
xp = xq (if p, q /∈ A) or λp = xq (if p ∈ A) or xp = λq (if q ∈ A).

Whenever we draw these identity diagrams, for simplicity we will represent double
arrows p� q by straight lines and omit single arrows. From this practice we get the
following non-standard terminology.

Definition 4.2. Let (P,A, λ) be a marked poset, let x ∈ OP,A(λ) and let DλP,A(x)
be the associated identity diagram. A subset C of nodes is called connected if it is
connected via double arrows, i.e. for any two nodes p and q in C there exists a (possibly
empty) sequence p1, . . . , pt ∈ C such that

p� p1 � · · ·� pt � q.

The maximal (with respect to inclusion) connected subsets are called connected com-
ponents.

Additionally, when drawing identity diagrams for Gel′fand–Tsetlin patterns we will
represent the nodes corresponding to marked elements as follows. The zeros in the
rightmost column will be drawn as small circles, while the nodes corresponding to
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the λi in the first row will be drawn as small crosses. This change is made for easier
readability as the following example shows.

Example 4.3. Let G = Sp6 and λ = 2ε1 + 2ε2 + ε3. The pattern

2 2 1 0
2 3

2 1
2 1 03

2 1
1 0

0
0

admits the identity diagram and its visually more appealing drawing depicted in
Fig. 4.

Figure 4. Identity diagram and visually more appealing drawing of
the Gel′fand–Tsetlin pattern in Example 4.3.

These diagrams give us an easy way to draw vertices of marked order polytopes as
the following result shows.

Theorem (Theorem 1.3). Let (P,A, λ) be a marked poset. A point x ∈ OP,A(λ) is a
vertex of the marked order polytope if and only if every connected component of the
associated diagram DλP,A(x) contains a marked element, i.e. an element of A.

Although this theorem sounds rather technical, it is actually quite practical, as the
following consequence shows.

Corollary 4.4.A point in a Gel ′fand–Tsetlin polytope of type An, Bn or Cn is a
vertex, if each entry of its Gel ′fand–Tsetlin pattern is equal to its upper left or upper
right neighbor.

To prove this result we use the following standard trick.

Lemma 4.5. Let P ⊆ Rd be a convex polytope. Then x ∈ P is a vertex of P if and
only if there does not exist a vector v ∈ Rd, v 6= 0, such that x+v ∈ P and x−v ∈ P.

We will now prove our theorem on the vertices of marked order polytopes.

Proof of Theorem 1.3. Let x be a point in the marked order polytope OP,A(λ). Sup-
pose there exists a vector v ∈ RPrA such that x+ v and x− v both lie in the marked
order polytope. Let p, q ∈ P rA, p 6 q, be two nodes of the identity diagram DλP,A(x)
such that p� q. Hence we know that xp = xq.

Since x+ v and x− v lie in the marked order polytope, we must have
xp + vp 6 xq + vq and xp − vp 6 xq − vq.

This implies that vp = vq. Continuing this argument yields vp = vq for any two nodes
p and q of the identity diagram lying in the same connected component.
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Now let C be a connected component of DλP,A(x). If C contains an element a ∈ A,
we know that xp = λa for all p ∈ C. Suppose that C is not completely contained in A.
Then there exists a pair p� a with p ∈ C rA and a ∈ A. Without loss of generality
let us assume that p 6 a. Then we know that

xp + vp 6 λa and xp − vp 6 λa,

which implies that vp = 0.
In conclusion we see that vp = 0 for all p ∈ P r A such that the connected

component of p contains an element of A. By Lemma 4.5 this implies that x is a
vertex whenever each connected component of DλP,A(x) contains a marked element.

For the other implication let us assume there exists a connected component C of
DλP,A(x) that does not contain any marked element. By definition of identity diagrams
this means that xp < xq for any p ∈ C and q ∈ Pr(C∪A) such that p 6 q. Additionally
xp < λa for any p ∈ C and a ∈ A such that p 6 a. Analogous statements hold if p > q
or p > a. Since the poset is finite, we can find ε > 0 such that

xp ± ε < xq for all p ∈ C and q ∈ P r (C ∪A) such that p 6 q,
xp ± ε > xq for all p ∈ C and q ∈ P r (C ∪A) such that p > q,
xp ± ε < λa for all p ∈ C and a ∈ A such that p 6 a,
xp ± ε > λa for all p ∈ C and a ∈ A such that p > a.

Consider the vector v ∈ RPrA defined by

vp :=
{
ε if p ∈ C
0 else.

Then it is clear that x+ v and x− v both lie in OP,A(λ). By Lemma 4.5 this implies
that x is not a vertex of OP,A(λ). �

Hence, we recover a proof of Theorem 3.3.

Proof of Theorem 3.3. Let x ∈ RPrA be a vertex of OP,A(λ). From Theorem 1.3 we
know that every connected component C of the identity diagram DλP,A(x) of x contains
an element a ∈ A. By definition this means that xp = λa for all p ∈ C, hence every
coordinate of x must be equal to one of the λa. �

5. Integrality of standard string polytopes in types An, Bn, Cn
At first, we would like to make the connection between Conjecture 1.1 and Theo-
rem 1.2 explicit.

Remark 5.1. If G is simply connected, i.e. G is of type An or Cn, it is known (see
for example [19, Chapter 10, Theorem 6.1]) that the finite-dimensional, irreducible
representations of the Lie algebra of G are in one-to-one correspondence with the
finite-dimensional irreducible representations of G. So there are no further restrictions
on λ in these types.

If G however is not simply connected, i.e. G = SOn, it is known that not every
finite-dimensional irreducible representation of son integrates to a representation of
SOn. Instead, in general it integrates only to a representation of the spin group Spinn
as the universal covering of SOn. However, in some cases V (λ) will still integrate to
a representation of SOn. By [19, Chapter 11, Theorem 6.6] these cases are precisely
the ones listed in Conjecture 1.1.

We can now (re-)prove Theorem 1.2 in three types.
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Proof of Theorem 1.2 in types An, Bn and Cn. Let G be of types An, Bn or Cn.
By Theorem 2.12 we know that the vertices of the standard string polytopes are
in one-to-one correspondence with the vertices of the Gel′fand–Tsetlin polytopes.
We have seen that the Gel′fand–Tsetlin polytopes are marked order polytopes. For
λ =

∑n
i=1 λiεi ∈ Λ+ their marking is given by a vector whose coordinates are

precisely the λi and some zeros.
In types An and Cn we know that λi ∈ Z for every 1 6 i 6 n. By Theorem 3.3 we

know that the vertices of the corresponding Gel′fand–Tsetlin polytope have integral
coordinates, so via Littelmann’s map in Theorem 2.12 they correspond to lattice
points in the standard string polytope.

In type Bn the same argument holds if 〈λ, α∨n〉 ∈ 2Z. However, if 〈λ, α∨n〉 is an odd
integer, we know that λi ∈ 1

2 + Z for all 1 6 i 6 n. Now it is enough to notice that
the pattern

λ1 λ2 . . . λn 0
λ2 . . . λn 0

. . . ... ... 0
λn 0

0
...

0
. . . 0

0
0

lies in GTBn(λ) for every λ ∈ Λ+. Its identity diagram is drawn in Fig. 5.

Figure 5. Subgraph of the identity diagram of the Bn-Gel′fand–
Tsetlin pattern described in the proof of Theorem 1.2 with the usual
drawing conventions for readability. If λ1 > · · · > λn, this is precisely
the identity diagram. If some of the λi coincide, there might be ad-
ditional edges.

We see that every connected component of the identity diagram contains a node
corresponding to a marked element of the poset, hence this pattern must be a vertex
of GTBn(λ) by Theorem 1.3.
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By construction and since n > 1, the coordinate y1,n = λn of this pattern lies in
1
2 + Z while the coordinate y2,n = 0 lies in Z. This shows that the pattern is not
standard, hence by Theorem 2.12 its preimage under Littelmann’s affine bijection is
not a lattice point. So we found a non-integral vertex of the standard string polytope
Qw0std(λ) in type Bn for every λ ∈ Λ+ such that 〈λ, α∨n〉 is odd, which concludes our
proof in types An, Bn and Cn. �

6. An algorithmic application
By studying identity diagrams abstractly, we can even give a complete classification of
vertices of marked order polytope as the following construction in the Gel′fand–Tsetlin
case shows.

Construction 6.1.We want to construct vertices of Gel′fand–Tsetlin polytopes dia-
grammatically. Fix a dominant integral weight λ and let us consider the poset (P,A, λ̃)
such that OP,A(λ̃) = GT (λ). Since the marking λ̃ is completely determined by the
weight λ, we will just write λ for both of them.

An important step in the construction will be the following completion procedure.
Let G be a directed graph with node set P that contains every arrow of the Hasse
diagram of P . Assume that for every arrow p→ q in G we have either an arrow p→ q
or an arrow q → p in the Hasse diagram. Additionally assume that G does not contain
double arrows in the same direction. By this we mean that p � q is allowed but
p⇒ q is forbidden. We say that G is complete if the following two conditions hold.

(i) Whenever there exists a set of arrows p� r � q and p→ s→ q, there exists
a set of arrows p← s← q as well.

(ii) Whenever there exists a sequence of arrows a → p1 → · · · → pt → b
with a, b ∈ A such that λa = λb, there exists a reverse sequence of arrows
a← p1 ← · · · ← pt ← b as well.

Notice that we can complete any graph with the mentioned assumptions by
repeatedly adding new arrows, but only those that are strictly necessary, until the
graph is complete. Of course, we might have to check every set of arrows repeatedly
since we are constantly introducing new arrows in this process. However, since we will
never produce a double arrow p ⇒ q and P is finite, this algorithm will eventually
stop. Additionally, the completion will be unique, i.e. it does not depend on the order
in which we check for and, if necessary, add arrows.

Coming back to our Gel′fand–Tsetlin patterns, we can now describe a process to
construct vertices of Gel′fand–Tsetlin polytopes.

We start with the Hasse diagram of the corresponding poset. First of all, the
graph might not be complete. So whenever there exists an arrow a→ p→ b for some
a, b ∈ A and p ∈ P we must check whether λa = λb. Whenever this is the case, we
must add the two arrows b→ p→ a to the Hesse diagram. The resulting graph might
not be complete after this initial step, so finish the completion procedure.

Since we want to create a vertex, we must add more arrows. We can freely introduce
new arrows p → q whenever there exists an arrow q → p and there does not already
exist an arrow p→ q. However, we must not add an arrow between two nodes p and q
if p is connected (via a possibly empty sequence of double arrows) to an element a ∈ A
and q is connected (via a possibly empty sequence of double arrows) to an element
b ∈ A such that λa 6= λb. After adding an arrow, we must always complete the graph.

We must keep adding new arrows until we can no longer legally add new arrows.
At that point, every vertex will be connected (via a sequence of double arrows) to at
least one marked element, i.e. every connected component of the resulting diagram
will contain at least one marked element.
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It is clear that we will always reach this stage. But of course the resulting graph
is not unique. By adding different arrows, we will in general terminate in a different
graph.

By construction, every terminal graph in our algorithm will be the identity graph
of a Gel′fand–Tsetlin pattern. Every coordinate xp of the pattern is given by xp = λa,
where a is a marked element in the connected component of p.

Because of Theorem 1.3 this pattern must be a vertex of the Gel′fand–Tsetlin
polytope GT (λ). Additionally, we are able to reach every vertex of GT (λ) by this
procedure (although admittedly it might take some time).

Let us apply this procedure in an example.

Example 6.2. Let G = SO5 and consider the weight λ = ω2 = 1
2ε1 + 1

2ε2. We will
use our usual convention to not draw the arrows of the Hasse diagram but remember
their existence by careful positioning of the nodes. Then the Hasse diagram is drawn
in the following way.

As an initial step we must search for arrows a → p → b with a, b ∈ A such that
the marking of a and b coincides. Since λ1 = λ2 = 1

2 we have one such path in the
upper left corner. Hence we must add arrows in the opposite direction. With our usual
convention to draw � as straight lines we get the following diagram.

Now we can add new arrows as opposites of already existing arrows. As an example,
let us add an arrow from the middle vertex of the top row to its right bottom neighbor.
Below is the resulting diagram and its completion.

For our next arrow we have three possible choices (all towards the bottom). Two
possibilities give the same diagram after completion. The other possibility gives a
different diagram. The two distinct complete diagrams are shown below.

Both complete diagrams terminate the procedure. They correspond to the vertices
( 1

2 ,
1
2 ,

1
2 ,

1
2 ) and ( 1

2 ,
1
2 ,

1
2 , 0) of GTB2(ω2).
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However, there are other possibilities by choosing a different arrow in the first
addition. They lead to the following three complete diagrams.

Those are the identity diagrams of the vertices ( 1
2 , 0,

1
2 ,

1
2 ), ( 1

2 , 0,
1
2 , 0) and ( 1

2 , 0, 0, 0)
respectively. So we have found a visual way to calculate the 5 vertices of GTB2(ω2).

7. Tweaked Gel′fand–Tsetlin patterns
Let us now consider the even orthogonal case. Before stating our new construction,
let us first underline where the problems arise when trying to copy the previous proof
of Theorem 1.2.

In slight deviation of Littelmann’s notation in [15], we will enumerate the simple
roots of SO2n as

α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn−1 + εn.

Additionally we will consider the reduced decomposition

w0
std = (sn−1sn)(sn−2sn−1snsn−2) · · · (s1s2 · · · sn−2sn−1snsn−2 · · · s2s1)

of the longest word of the Weyl group as the standard one. Notice that this does
not completely correspond to Littelmann’s standard decomposition since we swap the
positions of the (commuting) reflections corresponding to εn−1 − εn and εn−1 + εn.
However, since the two reflections commute, the string polytopes will be the same after
permutation of some coordinates. So we will sloppily say that these two polytopes are
the same.

We know that the polytope Qw0std(λ) will be a subset of Rn(n−1). We will denote
the coordinates of a vector a ∈ Rn(n−1) as

a = (an−1,n−1, an−1,n, an−2,n−2, an−2,n−1, an−2,n, an−2,n+1, . . .

. . . , a1,1, a1,2, . . . , a1,n−2, a1,n−1, a1,n, a1,n+1, . . . , a1,2n−2).

It is understood that ai,j = 0 if any of the indices is outside of its allowed range. For
every tuple (ai,j) with 1 6 i 6 n− 1 and i 6 j 6 2n− 1− i we will use the notation
ai,j := ai,2n−1−j .

We think of these coordinates as entries of the following triangle.

a1,1 a1,2 . . . a1,n−2 a1,n−1 a1,n−1 a1,n−2 . . . a1,2 a1,1

a2,2 . . . a2,n−2 a2,n−1 a2,n−1 a2,n−2 . . . a2,2

. . . ...

an−2,n−2 an−2,n−1 an−2,n−1 an−2,n−2

an−1,n−1 an−1,n−1

Notice that our (n−1)-st column is Littelmann’s n-th column and our n-th column
is Littelmann’s (n− 1)-st column. The reason for this change is that the j-th column
corresponds to the reflection sj for j 6 n− 2. So it is more intuitive if the (n− 1)-st
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column corresponds to the simple reflection sn−1, and not sn. However, these changes
are rather cosmetic.

The following is a combination of [15, Theorem 7.1 and Corollary 8].

Theorem 7.1 (Littelmann). Let G = SO2n and λ =
∑n
i=1 λiωi ∈ Λ+. A tuple (ai,j) ∈

Rn(n−1) is an element of Qw0std(λ) if and only if the following two sets of conditions
hold.

ai,i > ai,i+1 > · · · > ai,n−2 >

{
ai,n−1
ai,n−1

}
> ai,n−2 > · · · > ai,i+1 > ai,i > 0,

an−1,n−1 > 0, an−1,n−1 > 0,

for every 1 6 i 6 n− 2 and

ai,j 6 λj + ai,j+1 + ai,j+1 − 2ai,j + ai,j−1

+
i−1∑
k=1

(ak,j−1 − 2ak,j + ak,j+1 + ak,j+1 − 2ak,j + ak,j−1),

ai,j 6 λj + ai,j−1 +
i−1∑
k=1

(ak,j−1 − 2ak,j + ak,j+1 + ak,j+1 − 2ak,j + ak,j−1),

ai,n−1 6 λn−1 + ai,n−2 +
i−1∑
k=1

(ak,n−2 − 2ak,n−1 + ak,n−2),

ai,n−1 6 λn + ai,n−2 +
i−1∑
k=1

(ak,n−2 − 2ak,n−1 + ak,n−2)

for every 1 6 i 6 n− 1 and i 6 j 6 n− 2.

Now we can describe an adapted version of Littelmann’s piecewise affine map
directly. Notice that we have to make slight adjustments because of our change of
reduced decomposition. Let λ =

∑n
i=1 λiεi. Notice the base change from ωi to εi in

contrast to Theorem 7.1. Fix a point (ai,j) ∈ Qw0std(λ). This point is sent via the
piecewise affine bijection φλ to a Gel′fand–Tsetlin pattern x = (y, z) in R

n(n−1)
2 ×

R
n(n−1)

2 . By our convention the row index of y = (yi,j) starts with i = 2. For easier
notation we will set y1,j := λj . Again, in our terminology this row is not actually part
of the pattern x. The other rows can be computed reciprocally as

yi,j = yi−1,j + ai−1,j−1 − ai−1,j − ai−1,j + ai−1,j−1

and

yi,n = yi−1,n + ai−1,n−1 − ai−1,n−1

for every 2 6 i 6 n and i 6 j 6 n− 1. For the z-coordinates we have the formulae

zi,j = yi,j + ai,j−1 − ai,j ,
zi,n−1 = yi,n + min{ai,n−2 − ai,n−1, ai,n−1 − ai,n−2}

and

zn−1,n−1 = yi,n + an−1,n−1

for every 1 6 i 6 n− 2 and i 6 j 6 n− 2.
So we see that the non-affine part appears in the coordinates zi,n−1. Since φλ is

a bijection we are not loosing any information when applying φλ but the minimum
function makes it appear that way.
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Our goal now is to embed the Gel′fand–Tsetlin pattern in a subspace of a larger
vector space to keep track of both values ai,n−2 − ai,n−1 and ai,n−1 − ai,n−2. For
that purpose we will introduce new coordinates z↑i,n−1 and z↓i,n−1 to replace the bad
coordinate zi,n−1.

For easier presentation we will use the following notation.

Notation 7.2. Let a, b, c, d, e and f be some real numbers. We will write

a b
c

d

e f

if the numbers fulfill the conditions

a > c >

{
b
f

}
and c 6 a+ b+ f,

e > d >

{
b
f

}
and d 6 e+ b+ f.

Notice and beware of the asymmetry in this notation! We do not for example require
a > d!

We can now define a modified version of Dn-Gel′fand–Tsetlin patterns.

Definition 7.3 (Tweaked Gel′fand–Tsetlin patterns in type Dn). Let G = SO2n and
λ =

∑n
i=1 λiεi ∈ Λ+. A tweaked Gel′fand–Tsetlin pattern of type λ is a pair (y, z) of

tuples y = (yi,j) ∈ R
n(n−1)

2 , 2 6 i 6 j 6 n, and

z = (z1,1, . . . , z1,n−2, z
↑
1,n−1, z

↓
1,n−1, . . . , zn−2,n−2, z

↑
n−2,n−1, z

↓
n−2,n−1, zn−1,n−1)

such that

yi,n−1 − yi+1,n−1 = z↑i,n−1 − z
↓
i,n−1 for all 1 6 i 6 n− 2(1)

and the coordinates fulfill the relations in Fig. 6.
To simplify notation we will sometimes write z↑n−1,n−1 for zn−1,n−1.

As in the usual definition, these patterns will define a polytope.

Definition 7.4. Let G = SO2n and λ ∈ Λ+. The tweaked Gel′fand–Tsetlin polytope
G̃T (λ) is defined as the set of all tweaked Gel ′fand–Tsetlin patterns of type λ.

The relation between usual Gel′fand–Tsetlin patterns and tweaked Gel′fand–Tsetlin
patterns is given by the following observation.

Let Vλ denote the linear subspace of Rn(n−1)+(n−2) = Rn2−2 defined by the rela-
tions in Eq. (1).

Theorem 7.5. For every λ ∈ Λ+ there exists a bijection ψλ : Vλ → Rn(n−1) given by
(z↑i,n−1, z

↓
i,n−1) 7→ min{z↑i,n−1, z

↓
i,n−1} for all 1 6 i 6 n − 2 and identity on the other

coordinates. Its inverse is given by

z↑i,n−1 := zi,n−1 + yi,n−1 −min{yi,n−1, yi+1,n−1}

z↓i,n−1 := zi,n−1 + yi+1,n−1 −min{yi,n−1, yi+1,n−1}

for every 1 6 i 6 n − 2 and identity on the other coordinates. Furthermore, ψλ
induces a bijection between the tweaked Gel ′fand–Tsetlin patterns of type λ and the
usual Gel ′fand–Tsetlin patterns of type λ.
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λ1 λ2 . . . λn−3 λn−2 λn−1 λn

z1,1 z1,2 . . . z1,n−3 z1,n−2
z↑1,n−1
z↓1,n−1

y2,2 y2,3 . . . y2,n−2 y2,n−1 y2,n

z2,2 z2,3 . . . z2,n−2
z↑2,n−1
z↓2,n−1

y3,3 y3,4 . . . y3,n−1 y3,n

z3,3 z3,4 . . .
z↑3,n−1
z↓3,n−1. . . . . . . . .

zn−3,n−3 zn−3,n−2
z↑n−3,n−1
z↓n−3,n−1

yn−2,n−2 yn−2,n−1 yn−2,n

zn−2,n−2
z↑n−2,n−1
z↓n−2,n−1

yn−1,n−1 yn−1,n

zn−1,n−1

yn,n

Figure 6. Inequalities of tweaked Gel′fand–Tsetlin patterns.

The proof is done by explicit calculation. It can be found in [21, Theorem 6.7.5].
We can now state an analogue of Theorem 2.12 for Dn.

Theorem (Theorem 1.4). Let G = SO2n and λ =
∑n
i=1 λiεi ∈ Λ+. The map

φ̃λ := ψ−1
λ ◦ φλ : Rn(n−1) → Vλ is an affine bijection and φ̃λ(Qw0std(λ)) = G̃T (λ).

Furthermore, a ∈ Rn(n−1) is a lattice point if and only if the coordinates of φ̃λ(a),
including the first row y1,j = λj, are either all integral or all are in 1

2 + Z.

Proof. Since φλ and ψ−1
λ are piecewise affine bijections, the same holds true for φ̃λ.

Since φλ(Qw0std) = GTDn
(λ) by Theorem 2.14 and ψλ(G̃T (λ)) = GTDn

(λ) by Theo-
rem 7.5, we have φ̃λ(Qw0std(λ)) = G̃T (λ). The claim on lattice points is clear from
Theorem 2.14 and the definition of ψλ.

It remains to show that φ̃λ and φ̃−1
λ are in fact affine. We only have to check the

coordinates z↑i,n−1 and z↓i,n−1 since the map is affine in all other coordinates. Let
x = (y, z) be the image of (ai,j) under φ̃λ. We calculate

z↑i,n−1 = zi,n−1 + yi,n−1 −min{yi,n−1, yi+1,n−1}
= zi,n−1 −min{0, yi+1,n−1 − yi,n−1}
= yi,n + min{ai,n−2 − ai,n−1, ai,n−1 − ai,n−2}

−min{0, ai,n−2 − ai,n−1 − ai,n−1 + ai,n−2}
= yi,n + ai,n−1 − ai,n−2.

This implies that z↑i,n−1 is actually a linear combination of the coordinates of (ai,j)
plus λn. The same holds true for z↓i,n−1 by analogous computation. Hence the map
φ̃λ is affine, i.e. the concatenation of a linear map and a translation. Since the inverse
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of a linear map is linear and the inverse of a translation is a translation we know that
φ̃−1
λ must be affine too. This concludes the proof. �

Example 7.6. Let G = SO6 and let λ =
∑3
i=1 λiεi. The image of the point

(a, b, c, d, e, f) ∈ Qw0std(λ) under the map φ̃λ is drawn in Fig. 7.

λ1 λ2 λ3

λ1 − e+ f
λ3 + d− f
λ3 + c− e

λ2 + c− d− e+ f λ3 + d− e

λ3 + a+ d− e

λ3 + a− b+ d− e

Figure 7. The point φ̃λ(a, b, c, d, e, f) from Example 7.6.

8. Tweaked Gel′fand–Tsetlin diagrams
We will now define an analogue of identity diagrams of elements of marked order
polytopes for tweaked Gel′fand–Tsetlin patterns. For that purpose we want to define
a poset that describes as much of the tweaked Gel′fand–Tsetlin polytope as possible.

Construction 8.1 (Tweaked Gel′fand–Tsetlin poset). Let G = SO2n. Let GT n be
the set of symbols

(i) ξi,j for 1 6 i 6 j 6 n,
(ii) ζi,j for 1 6 i 6 j 6 n− 2,
(iii) ζ↑i,n−1 and ζ↓i,n−1 for 1 6 i 6 n− 2, and
(iv) ζn−1,n−1.

For easier notation we sometimes write ζ↑n−1,n−1 for ζn−1,n−1. The ordering is given
precisely by the inequalities in the definition of tweaked Gel′fand–Tsetlin patterns
that do not require addition or subtraction by substituting ξ for y and ζ for z.

Notice that this describes almost all relations defining tweaked Gel′fand–Tsetlin
patterns. The ones missing are the four-term relations of type

z↑i,n−1 − z
↓
i,n−1 = yi,n−1 − yi+1,n−1,

z↑i,n−1 6 yi,n−1 + yi,n + yi+1,n and

z↓i,n−1 6 yi+1,n−1 + yi,n + yi+1,n.

We will return to them later.

Example 8.2. The Hasse diagram of the tweaked Gel′fand–Tsetlin poset GT 4 is de-
picted in Fig. 8.

We would like to define an analogue of the marked order polytope. For this we will
use the following non-standard definition.

Definition 8.3.A pseudo-marking on a poset P is a pair (A, λ) where A is a subset
of P and λ = (λa)a∈A ∈ RA is a real vector such that λa 6 λb whenever a 6 b.
The triplet (P,A, λ) is called a pseudo-marked poset. We will call the elements of A
marked elements.
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Figure 8. Hasse diagram of the tweaked Gel′fand–Tsetlin poset GT 4.

Notice that in contrast to Definition 3.1 we do not require that all minimal and all
maximal elements of the poset are marked. As a consequence, the following definition
might not give a polytope.

Definition 8.4. Let (P,A, λ) be a pseudo-marked poset. The marked order polyhe-
dron OP,A(λ) associated to (P,A, λ) is defined as

OP,A(λ) :=

x ∈ RPrA

∣∣∣∣∣∣
xp 6 xq for all p 6 q,
λa 6 xp for all a 6 p,
xp 6 λb for all p 6 b

 .

The following observation is clear by construction.

Proposition 8.5. Let G = SO2n. Set A := {ξ1,1, . . . , ξ1,n} ⊆ GT n. Let λ ∈ RA
and denote by λ̃ :=

∑n
i=1 λξ1,i

εi the associated weight (not necessarily dominant nor
integral). Then

G̃T (λ̃) = OGT n,A(λ) ∩ Vλ̃ ∩
{

z↑i,n−1 6 yi,n−1 + yi,n + yi+1,n

z↓i,n−1 6 yi+1,n−1 + yi,n + yi+1,n

∣∣∣∣∣ 1 6 i 6 n− 2
}

∩ {zn−1,n−1 6 yn−1,n−1 + yn−1,n + yn,n}.

Notice that we were a bit sloppy with our notation here since G̃T (λ̃), OGT n,A(λ)
and Vλ̃ are defined as subsets of RGT nrA. So we want to understand the fourth
polyhedron as a subset of RGT nrA too. Additionally, from now on we simplify notation
by using λ for the weight and for the marking simultaneously.

Remark 8.6. Because of the defining relations of Vλ it is clear that the two inequalities
z↑i,n−1 6 yi,n−1+yi,n+yi+1,n and z↓i,n−1 6 yi+1,n−1+yi,n+yi+1,n are in fact equivalent.
So when checking whether a given point in Vλ is a tweaked Gel′fand–Tsetlin pattern,
it is sufficient to just verify one of those inequalities for every i. Furthermore, if one
of these inequalities happens to be an equality, the other one will be too.

We will now define an analogue of identity diagrams for these special posets.

Construction 8.7. Let (A, λ) be the pseudo-marking on the tweaked Gel′fand–
Tsetlin poset GT n from Proposition 8.5 and let x ∈ G̃T (λ). Let Hn denote the Hasse
diagram of GT n. The tweaked Gel ′fand–Tsetlin pre-diagram preDλDn

(x) associated to
x is the colored directed graph whose nodes are labeled by the elements of the tweaked
Gel′fand–Tsetlin poset and whose arrows are given by the following construction.

(i) Add a black arrow p → q if there exists an arrow p → q in Hn between the
corresponding nodes.

(ii) Add a black arrow p → q if there exists an opposite arrow q → p in Hn
between the corresponding nodes and xp = xq.
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(iii) For every 1 6 i 6 n− 1 add six (only three if i = n− 1) red arrows

ξi,n−1

ξi+1,n−1

ζ↑i,n−1

ζ↓i,n−1

ξi,n

ξi+1,n

if z↑i,n−1 = yi,n−1 + yi,n + yi+1,n (or equivalently z↓i,n−1 = yi+1,n−1 + yi,n +
yi+1,n).

For printing reasons we will always draw red arrows as black but dashed arrows.
This diagram can be further simplified for our purposes. The reason is the following
observation.

Remark 8.8. Let x be a tweaked Gel′fand–Tsetlin pattern. Let 1 6 i 6 n − 1 be an
index such that z↑i,n−1 = yi,n−1 + yi,n + yi+1,n. Then the following implications hold.

(i) yi,n−1 = yi,n = yi+1,n ⇒ yi,n−1 = yi,n = yi+1,n = z↑i,n−1 = 0.
(This is due to the fact that yi,n−1 > z

↑
i,n−1 > yi,n; hence yi,n−1 = yi,n already

implies z↑i,n−1 = yi,n−1 = yi,n = yi+1,n.)
(ii) z↑i,n−1 = yi,n−1 ⇒ yi,n = −yi+1,n.
(iii) z↑i,n−1 = yi,n ⇒ yi,n−1 = −yi+1,n.
(iv) z↑i,n−1 = yi+1,n ⇒ yi,n−1 = −yi,n.

The analogue statements hold true for z↓i,n−1 and yi+1,n−1.

We will use these observations to adapt our pre-diagrams. The goal is to indicate
whether two entries must be additive inverses of each other because of an equation of
the form z↑i,n−1 = yi,n−1 + yi,n + yi+1,n or z↓i,n−1 = yi+1,n−1 + yi,n + yi+1,n.

Construction 8.9. Let x be a tweaked Gel′fand–Tsetlin pattern and let preDλDn
(x)

be its tweaked Gel′fand–Tsetlin pre-diagram. We will replace red arrows as follows.
For all triplets of red arrows

p q

r

s

do the following replacements. (We do not specify whether r = ξi,n and s = ξi+1,n or
r = ξi+1,n and s = ξi,n. Both possibilities are allowed!)

If there exist black arrows p→ q, q → r and q → s, delete all three red arrows but
color the four nodes differently. By default we will call every node black. But in this
case we chose to color these nodes white instead. We will draw them as empty circles,
while our normal black nodes are filled circles.

For all remaining triplets of red arrows do the following two replacements if possible.
If both are applicable to a certain triplet, do only one (it does not matter which one,
though the first one is usually preferred due to readability).

p q

r

s

p q

r

s
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and

p q

r

s

p q

r

s

Our replacement procedure could have produced red triangles. We will replace
those as follows.

p q

r

s

p q

r

s

and

p q

r

s

p q

r

s

Finally, for every 1 6 i 6 n−1 we will add a pair of black arrows ξi,n−1 � ξi+1,n−1
if one of the following two conditions hold.

(i) There exist two black arrows ζ↑i,n−1 → ξi,n and ζ↓i,n−1 → ξi,n.
(ii) There exist two black arrows ζ↓i,n−1 → ξi+1,n and ζ↓i,n−1 → ξi+1,n.
The resulting graph is called the tweaked Gel ′fand–Tsetlin diagram DλDn

(x) of x.

Remark 8.10. It is clear by construction that xp = xq whenever there exists a pair
of black arrows p→ q and q → p. Analogously, xp = −xq whenever there exists a pair
of red arrows p red→ q and q red→ p. Additionally for every subgraph

p q

r

s

we have xq = xp +xr +xs. So our construction really visualizes which of the defining
inequalities of G̃T (λ) are actually equalities for the pattern x.

Furthermore, xp = 0 for every white node p. The reason is the following. Every
white node is part of a quadruplet {p, q, r, s} such that xp = xq = xr = xs and
xq = xp + xr + xs (after proper renaming). But this implies that xq = 3xq and hence
0 = xq = xp = xq = xr = xs.

For readability of our drawings, sometimes we do not draw single arrows (we will
remember their existence from the positions of the nodes), replace black double arrows
p→ q and q → p by a straight line and represent red double arrows p red→ q and q red→ p
by a double straight line. We also usually omit red double arrows between white nodes,
since they do not contain any new information. Single red arrows will be drawn as a
dashed line.

Definition 8.11. Let x be a tweaked Gel ′fand–Tsetlin pattern and DλDn
(x) its tweaked

Gel ′fand–Tsetlin diagram. A subset C of nodes of this diagram is called connected if
it is connected via double-black and double-red arrows, i.e. for any two nodes p and
q in C there exists a sequence p1, . . . , pt ∈ C such that p = p1, q = pt and for every
i there either exist two black arrows pi → pi+1 and pi+1 → pi or there exist two red
arrows pi

red→ pi+1 and pi+1
red→ pi. The sequence (p1, . . . , pt) is called a connecting
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sequence between p and q. The maximal (with respect to inclusion) connected subsets
are called connected components.

One might be inclined to think that a tweaked Gel′fand–Tsetlin pattern is a vertex
of the tweaked Gel′fand–Tsetlin polytope if and only if each of the connected compo-
nents in its tweaked Gel′fand–Tsetlin diagram contains a marked element. However,
this is not true in contrast to types An, Bn and Cn. There are more possibilities as
the following examples show.

Example 8.12. Let G = SO6 and λ = ρ = 2ε1 + ε2 ∈ Λ+. Then the pattern in Fig. 9
is a vertex of G̃T (λ). However, its tweaked Gel′fand–Tsetlin diagram contains the
isolated node ζ↓1,2.

2 1 0
2 0

1
2 0

2
2

Figure 9. Vertex of the tweaked Gel′fand–Tsetlin polytope
G̃T (2ε1 + ε2) and its tweaked Gel′fand–Tsetlin diagram in type D3.

Example 8.13. Let G = SO8 and λ = ω1 + ω2 + ω3 + 3ω4 = 4ε1 + 3ε2 + 2ε3 − ε4.
Then the pattern in Fig. 10 is a vertex of G̃T (λ). We see two things happening in
this example. First of all, we see a triangular pattern of white nodes. Secondly we see
two nodes (ζ↑1,3 and ζ↓1,3) that are not connected to any other node, although they are
connected via single red arrows. But these single arrows do not count as connections
in our sense.

4 3 2 −1
4 3 1

24 3 0
4 3

00 0
0

0

Figure 10. Vertex of the tweaked Gel′fand–Tsetlin polytope
G̃T (4ε1 + 3ε2 + 2ε3 − ε4) and its tweaked Gel′fand–Tsetlin diagram
in type D4.

We will systematize these deviations from the An, Bn and Cn cases as follows.

Definition 8.14. Let x ∈ G̃T (λ) be a tweaked Gel ′fand–Tsetlin pattern and let DλDn
(x)

be its tweaked Gel ′fand–Tsetlin diagram.
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(i) An anomaly is a triangle of white nodes of the following form.

(ii) A single impurity is a node ζ↑i,n−1 or ζ↓i,n−1 with i < n−1 that is not connected
to any other node but the other node ζ↓i,n−1 (resp. ζ↑i,n−1) is connected to
another node.

(iii) A double impurity is a pair of nodes (ζ↑i,n−1, ζ
↓
i,n−1) with i < n− 1 such that

both nodes are not connected to any other node but they are incident to red
arrows.

(iv) A triviality is a pair of nodes (ζ↑i,n−1, ζ
↓
i,n−1) with i < n − 1 such that both

nodes are not connected to any other node and they are not incident to red
arrows.

Notice that we do not allow single impurities to happen at ζn−1,n−1.
We can now state the complete classification of vertices of tweaked Gel′fand–Tsetlin

polytopes, as proved in [21, Theorem 6.8.16].

Theorem 8.15.A tweaked Gel ′fand–Tsetlin pattern is a vertex of the tweaked
Gel ′fand–Tsetlin polytope if and only if each of the connected components of its
tweaked Gel ′fand–Tsetlin diagram contains a marked element, contains an anomaly,
is a single impurity or is part of a double impurity.

We will not state a proof of this result as it is quite lengthy and technical. The idea
is to use Lemma 4.5 and explicitly show that for each x ∈ G̃T (λ) there exists a vector
v 6= 0 such that x ± v ∈ G̃T (λ) if and only if DλDn

(x) violates the conditions. The
construction of v is very similar to the marked order case, one just has to introduce
signs for red arrows and carefully treat the double nodes. We invite the reader to
verify the explicit calculations in [21, Chapter 6, Section 8].

Let us start our return towards string polytopes. For that purpose we introduce
the following notation.

Notation 8.16. For λ = (λ1, . . . , λn) ∈ Rn let Γ(λ) ⊆ R denote the free abelian
group generated by the coefficients λ1, . . . , λn, i.e.

Γ(λ) := Zλ1 + · · ·+ Zλn.

This will allow us to state the following crucial result.

Theorem 8.17. Let λ ∈ Rn and let x ∈ G̃T (
∑n
i=1 λiεi) be a vertex of the tweaked

Gel ′fand–Tsetlin polytope. Then every coordinate of x lies in Γ(λ).

Proof. Let p ∈ GT n. We want to calculate xp via the tweaked Gel′fand–Tsetlin dia-
gram DλDn

(x). By Theorem 8.15 we know that p is connected to a marked element, is
connected to an anomaly, is a single impurity or is part of a double impurity.

By construction of DλDn
(x) we know that xp = ±λj if p is connected to ξ1,j . If

p is connected to an anomaly, we know that xp = 0. So in both cases xp lies in
{±λ1, . . . ,±λn} ∪ {0} ⊆ Γ(λ).

We will only prove the impurity case for p = ζ↑i,n−1 because the proof for ζ↓i,n−1 is
completely analogous. If p = ζ↑i,n−1 is incident to red arrows, we know that xp = z↑i,n−1
can be calculated as z↑i,n−1 = yi,n−1 + yi,n + yi+1,n. Since the latter three coordinates
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lie in Γ(λ), the same holds true for z↑i,n−1 = xp. If p = ζ↑i,n−1 is not incident to red
arrows, we know that ζ↓i,n−1 cannot be an impurity too. So the value xp = z↑i,n−1
is uniquely determined by the equation z↑i,n−1 = z↓i,n−1 + yi,n−1 − yi+1,n−1. Since
the latter three coordinates lie in Γ(λ), the same holds true for z↑i,n−1 = xp. This
concludes our proof. �

During this proof we have actually shown the following special case.

Corollary 8.18. Let λ ∈ ( 1
2 + Z)n and let x ∈ G̃T (

∑n
i=1 λiεi) be a vertex of the

tweaked Gel ′fand–Tsetlin polytope. Then
(i) xp = 0 if p is connected to an anomaly,
(ii) xp ∈ 1

2Z if p is a single impurity or part of a double impurity, and
(iii) xp ∈ 1

2 + Z for any other p.

9. Integrality of standard string polytopes in type Dn

We can now prove the following useful translation.

Corollary 9.1. Let G = SO2n and λ =
∑n
i=1 λiεi ∈ Λ+. Let x be a vertex of the

standard string polytope Qw0std(λ). Then x is a lattice point if and only if
(i) λi ∈ Z for all i or
(ii) λi ∈ 1

2 + Z for all i and DλDn
(φ̃λ(x)) does not contain any anomaly.

Proof. By Theorem 1.4 we know that x is a vertex of Qw0std(λ) if and only if φ̃λ(x) is
a vertex of G̃T (λ). Additionally, x will be a lattice point if and only if the coordinates
of φ̃λ(x) are either all integers or all in 1

2 + Z. The claim now follows directly from
Theorem 8.17 if λi ∈ Z for all i.

Let us consider the other case λi ∈ 1
2 +Z for all i. Notice that most of the coordinates

will be in 1
2 + Z by Corollary 8.18. If DλDn

(x) contains an anomaly, there will be
coordinates equal to zero. Hence x cannot be a lattice point in this case. If there
does not exist an anomaly in DλDn

(x), the only nodes whose corresponding coordinate
could potentially be not in 1

2 +Z would be single or double impurities. But the proof
of Theorem 8.17 shows that these coordinates can be calculated as a sum of three
coordinates in 1

2 + Z. Hence they must be in 1
2 + Z as well. �

With this result, we can tackle the last remaining case of Theorem 1.2.

Proof of Theorem 1.2 in type Dn. Let G = SO2n and fix a dominant intergral weight
λ =

∑n
i=1 λiεi ∈ Λ+. If 〈λ, α∨n−1〉 + 〈λ, α∨n〉 is an even integer, we know that λi ∈ Z

for all 1 6 i 6 n. So Qw0std(λ) will be a lattice polytope by Corollary 9.1.
If 〈λ, α∨n−1〉+ 〈λ, α∨n〉 is an odd integer, we know that λi ∈ 1

2 +Z for all 1 6 i 6 n.
Since Theorem 1.4 yields a bijection between the vertices of Qw0std(λ) and the vertices
of G̃T (λ), it is necessary and sufficient to find a vertex x of G̃T (λ) that contains an
anomaly in its tweaked Gel′fand–Tsetlin diagram DλDn

(x). Then Corollary 9.1 implies
that the vertex φ̃−1

λ (x) of Qw0std(λ) will not be a lattice point. Notice that for n < 3
any tweaked Gel′fand–Tsetlin diagram cannot contain an anomaly. For n = 3 an
anomaly can only occur if λ3 = 0, which implies that 〈λ, α∨2 〉+ 〈λ, α∨3 〉 is even. So for
n < 4, all standard string polytopes must be lattice polytopes.

For n > 4 consider the pattern in Fig. 11. We can verify quite easily that this
pattern is indeed a tweaked Gel′fand–Tsetlin pattern for λ. The only nontrivial
(in)equality to verify is λn−1 + λn > 0. But this is true for any dominant integral
weight in type Dn. The tweaked Gel′fand–Tsetlin diagram of this pattern is drawn
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in Fig. 12. We see that every connected component contains a marked element or
an anomaly. Hence this pattern is indeed a vertex of the tweaked Gel′fand–Tsetlin
polytope containing an anomaly in its tweaked Gel′fand–Tsetlin diagram. This
concludes the proof. �

λ1 λ2 . . . . . . λn−2 λn−1 λn

λ2 λn−1
max{λn, 0}
max{λn, 0}. . . λn−1 λn−1 0

. . . ... λn−1
λn−1

0
λn−2 λn−1

... 0 0
λn−1 λn−1

...

λn−1 0
...

0
0

...
. . .

. . . 0
0

0

Figure 11. A special tweaked Gel′fand–Tsetlin pattern in type Dn
for an arbitrary weight λ.

10. Gorenstein Fano toric degenerations
We will conclude our paper with some remarks and consequences.

Figure 12. Tweaked Gel′fand–Tsetlin diagrams of the tweaked
Gel′fand–Tsetlin pattern from Fig. 11. Left hand side for λn > 0,
right hand side for λn < 0. We decided to only draw the case where
λ1 > λ2 > · · · > λn−1 > λn 6= 0 since any equality between the
coefficients of λ would only result in more pairs of black arrows con-
necting formerly disjoint connected components, thus not changing
any of our arguments.
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Remark 10.1. It should be noted that morally it is absolutely not clear why the
string polytope should know anything about the representations of the underlying
algebraic group. Firstly, its definition and many of its explicit descriptions are done
purely from the perspective of the Lie algebra (see [15] and [5]). Secondly, we have
already seen in [22, Example 5.5] that Theorem 1.2 does not hold for arbitrary reduced
decompositions. So the connection between the standard reduced decomposition and
representations of the algebraic group remains mysterious.

We would now like to impose some geometric meaning to our result. Batyrev proved
in [3, Proposition 2.2.23] that reflexive polytopes are in one-to-one correspondence to
Gorenstein Fano toric varieties. So we want to understand whether a given string
polytope is not only integral but reflexive. In [22] we proved the following fact.

Theorem 10.2. If the valuation semigroup Γ(λ) associated to a partial flag variety
G/P (G being a semisimple algebraic group and P ⊆ G a parabolic) via the P -
regular dominant integral weight λ and full-rank valuation v is finitely generated and
saturated, the following properties of the Newton–Okounkov body ∆(λ) are equivalent.

(i) Lλ is the anticanonical line bundle over G/P .
(ii) ∆(λ) contains exactly one lattice point pλ in its interior.

Furthermore, in this case the polar dual (1) of the translated Newton–Okounkov body
∆(λ)− pλ is a lattice polytope.

Using this observation we can give a very precise criterion on the reflexivity of
string polytopes.

Theorem (Theorem 1.5). Let G be a complex classical group and λ a dominant inte-
gral weight. The standard string polytope Qw0std(λ) (in the sense of [15]) is a reflexive
polytope after translation by a lattice vector if and only if λ is the weight of the anti-
canonical line bundle over some partial flag variety G/P .

Proof. Let us denote the weight of the anticanonical line bundle over G/P by λG/P .
Notice that this anticanonical bundle can be realized as the highest wedge power

of the cotangent bundle over G/P , i.e.

LλG/P
=

dimG/P∧
(g/p)∗.

From this it is clear that V (λG/P )∗ ' H0(G/P,LλG/P
) carries the structure of a

G-representation. So by Theorem 1.2 we know that Qw0std(λG/P ) must be a lattice
polytope.

The claim now follows directly from Theorem 10.2 since Kaveh showed in [14,
Theorem 1] that every string polytope can be realized as a Newton–Okounkov body
for a valuation with sufficient properties. �

These results yield the following geometric interpretation.

Theorem (Theorem 1.6). Let G be a complex classical group. Then every partial flag
variety admits a flat projective degeneration to a toric Gorenstein Fano variety.

Proof. By a result of Alexeev and Brion (see [1, Theorem 3.2]) we know that each
flag variety G/P admits a flat projective degeneration to the toric variety associated
to the string polytope Qw0(λ) for any reduced decomposition w0 and any P -regular
dominant integral weight λ. Choosing w0 as the standard reduced decomposition and
choosing λ as the weight of the anticanonical line bundle over G/P , we see that the

(1)We always refer to the polar dual defined as S∗ :=
{
y ∈ RN

∣∣ 〈x, y〉 6 1 for all x ∈ S
}

for an
arbitrary set S ⊆ RN . If S is a polytope with the origin in its interior, then S∗ is a polytope.
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resulting string polytope will be reflexive by Theorem 1.5. Hence the limit toric variety
will be Gorenstein Fano by Batyrev’s result [3, Proposition 2.2.23]. �

We will finally remark that using our diagrammatic approach, it is possible to find
the unique interior lattice point from Theorem 10.2. Basically, we just have to find
the Gel′fand–Tsetlin pattern with the least amount of black double arrows possible in
its identity diagram. We will show this idea in the following examples.

Example 10.3. Let us first consider the case G = SL3 and the full flag variety G/B.
Then the anticanonical weight is given by λG/B = 2ρ, where ρ = ω1 + ω2. From
Theorem 1.5 we know that the standard string polytope Qw0std(2ρ) can be translated
to a reflexive polytope. Hence it contains a unique lattice point in its interior. We
can find this lattice point by finding the unique Gel′fand–Tsetlin pattern of type 2ρ
such that every entry is neither equal to its left upper neighbor nor its right upper
neighbor. This pattern is

4 2 0
3 1

2

and its preimage under Littelmann’s bijection φ2ρ is the point (1, 2, 1).

Example 10.4. Let G = SO5 and let P (α1) ⊆ SO5 be the parabolic subgroup cor-
responding to the first simple root, i.e. P (α1) = Bs̃α1B, where s̃α1 ∈ G is a repre-
sentative of the Weyl group element sα1 . For the partial flag variety G/P (α1), the
anticanonical weight is given by λG/P (α1) = 4ω2 = 2ε1 +2ε2. Since the standard string
polytope Qw0std(4ω2) is not full-dimensional, we will only find points in its relative
interior. We can also see this diagrammatically. Every identity diagram in this setting
will have three connected nodes in the upper left corner since 2 = λ1 > z1,1 > λ2 = 2.
But if we re-embed the string polytope such that it is indeed full-dimensional, it will
contain a unique interior lattice point. This point is associated to the pattern

2 2 0
2 1

2
1 0

1
2

0

whose preimage under Littelmann’s bijection φ4ω2 is the point (1, 2, 3, 0).

Remark 10.5. For the full flag variety, let pXn
denote the unique interior lattice point

of the anticanonical standard string polytope Qw0std(λG/B). Fujita and Higashitani
have calculated pAn and pDn , as well as pE6 , pE7 and pE8 in [10, Example 4.6]. This
list can be completed as follows.
pAn = (1, 2, 1, 3, 2, 1, . . . , n, n− 1, . . . , 2, 1)
pBn

= (1, 2, 3, 1, 4, 3, 5, 2, 1, . . . , 2n− 2, 2n− 3, . . . , n, 2n− 1, n− 1, . . . , 2, 1)
pCn

= (1, 3, 2, 1, 5, 4, 3, 2, 1, . . . , 2n− 1, 2n− 2, . . . , n+ 1, n, n− 1, . . . , 2, 1)
pDn

= (1, 1, 3, 2, 2, 1, 5, 4, 3, 3, 2, 1, . . . ,
2n− 3, 2n− 4, . . . , n, n− 1, n− 1, n− 2, . . . , 2, 1)

pE6 = (pD5 , 11, 10, 9, 8, 8, 7, 7, 6, 6, 5, 4, 5, 4, 3, 2, 1)
pE7 = (pE6 , 17, 16, 15, 14, 13, 13, 12, 12, 11, 11,

10, 9, 10, 9, 8, 7, 6, 9, 8, 7, 6, 5, 5, 4, 3, 2, 1)
pE8 = (pE7 , 28, 27, 26, 25, 24, 23, 23, 22, 22, 21, 21, 20, 19, 20, 19,
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18, 17, 16, 19, 18, 17, 16, 15, 15, 14, 13, 12, 11, 29, 18, 17, 16,
15, 14, 14, 13, 13, 12, 12, 11, 10, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 2, 1),

pF4 = (1, 2, 3, 1, 4, 3, 5, 2, 1, 10, 9, 8, 7, 7, 6, 5, 11, 6, 5, 4, 4, 3, 2, 1)
pG2 = (1, 2, 5, 3, 4, 1) and p′G2

:= (1, 4, 3, 5, 2, 1).

Here pG2 corresponds to w0 = s1s2s1s2s1s2 (α1 being the short root), whereas p′G2
corresponds to the other reduced decomposition.
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