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Graph toughness from Laplacian eigenvalues

Xiaofeng Gu & Willem H. Haemers

Abstract The toughness t(G) of a graph G = (V, E) is defined as t(G) = min
{ |S|

c(G−S)

}
, in

which the minimum is taken over all S ⊂ V such that G − S is disconnected, where c(G − S)
denotes the number of components of G − S. We present two tight lower bounds for t(G) in
terms of the Laplacian eigenvalues and provide strong support for a conjecture for a better
bound which, if true, implies both bounds, and improves and generalizes known bounds by
Alon, Brouwer, and the first author. As applications, several new results on perfect matchings,
factors and walks from Laplacian eigenvalues are obtained, which leads to a conjecture about
Hamiltonicity and Laplacian eigenvalues.

1. Introduction
Throughout this paper, G = (V,E) is a simple graph of order n with nonempty vertex
set V and nonempty edge set E. The minimum degree of G is denoted by δ. For a
subset S ⊂ V , the subgraph of G induced by V \S is denoted by G−S, and c(G−S)
is the number of components of G− S.

The toughness t(G) of a graph G is defined as t(G) = min{ |S|
c(G−S)}, where the

minimum is taken over all proper subsets S ⊂ V such that c(G − S) > 1. By con-
vention, a complete graph has infinite toughness. For any real number r > 0, G is
r-tough if t(G) > r. The graph toughness was introduced by Chvátal [11] in 1973
and has been shown closely related to many graph properties, including connectivity,
Hamiltonicity, pancyclicity, factors, spanning trees, and others (see [4]).

Toughness of regular graphs from eigenvalues of adjacency matrices has been well
studied by, among others, [1, 6, 15, 16, 24, 25]. We use λi := λi(G) to denote the i-th
largest eigenvalue of the adjacency matrix of G, and let λ = max{|λ2|, |λn|}, that is,
λ is the second largest absolute eigenvalue. It was Alon [1] who first showed that for
any connected d-regular graph G, t(G) > 1

3 ( d2

dλ+λ2 −1), through which, Alon was able
to show that for every t and g there are t-tough graphs of girth strictly greater than g.
This strengthened a result of Bauer, Van den Heuvel and Schmeichel [5] who showed
the same for g = 3, and thus disproved in a strong sense a conjecture of Chvátal [11]
that there exists a constant t0 such that every t0-tough graph is pancyclic. Almost at
the same time, Brouwer [6] independently showed that t(G) > d

λ−2 for any connected
d-regular graph G. He also conjectured that t(G) > d

λ −1 in [6,7]. Recently Brouwer’s
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conjecture has been confirmed by the first author [24]. In this paper, we consider
arbitrary graphs and look for lower bounds on t(G) in terms of the eigenvalues of the
Laplacian matrix.

The Laplacian matrix L (also called combinatorial Laplacian or discrete Laplacian)
of a graph G, is defined by L = D − A, where D is the diagonal degree matrix and
A is the adjacency matrix of G. Let µi := µi(G) denote the i-th smallest eigenvalue
of the Laplacian matrix of G. Then L is positive semi-definite and µ1(G) = 0. The
second smallest Laplacian eigenvalue µ2(G), is known as the algebraic connectivity of
G. We have µ2(G) = 0 if and only if G is disconnected. Moreover, if κ is the vertex
connectivity, then
(1) µ2 6 κ 6 δ.

The complement G of G has eigenvalues µ1(G) = 0 and µi(G) = n − µn+2−i(G) for
i = 2, . . . , n. Therefore µn(G) 6 n and µn(G) = n if and only if G is disconnected. If
G is regular of degree d, then L = dI − A and therefore µi = d− λi for i = 1, . . . , n.
For these and other properties of the Laplacian matrix and its eigenvalues, we refer
to [9].

The paper is organized as follows. Our main results will be in the next section.
The tools and the proofs will be presented in Sections 3 and 4. In Section 5, we will
show applications on perfect matchings, factors and walks. Since toughness is closely
related to cycle structures, we include a conjecture on Hamilton cycles from Laplacian
eigenvalues.

2. Results
Recently, the second author made the following conjecture [28].

Conjecture 2.1 (Haemers).

(2) t(G) > µ2

µn − δ
.

For d-regular graphs, this conjecture implies that t(G) > d−λ2
−λn

, which is stronger
than Brouwer’s conjecture. The conjecture is supported by the following theorem and
proposition. The proofs will be given in Section 4.

Theorem 2.2.
(3) t(G) > µnµ2

n(µn − δ)
,

and
(4) t(G) > µ2

µn − µ2
.

Proposition 2.3. Let S ⊂ V be such that t(G) = |S|/c(G− S). Then Conjecture 2.1
is true in each of the following cases.

(i) The complement of G is disconnected,
(ii) All connected components of G− S are singletons (i.e. n− |S| = c(G− S)),
(iii) The union of some components of G− S has order 1

2 (n− |S|),
(iv) c(G− S) = 2.

Since µn 6 n and δ > µ2, the conjectured bound (2) implies (3) and (4). Note
that (2) and (3) coincide if µn = n, that is, if the complement of G is disconnected.
Therefore (i) of Proposition 2.3 follows from (3).

The three bounds coincide and are tight in case G is the complete multipartite
graphKn1,...,nm

(1 < m < n). Indeed, assume n1 > · · · > nm then t(G) = (n−n1)/n1,
µn = n and µ2 = δ = n− n1.
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The bounds (3) and (4) are incomparable. For example, when G is the Petersen
graph, then t(G) = 4/3 and µ2 = 2, µ10 = 5 and δ = 3, and so (2), (3), and (4)
give t(G) > 1, 1/2 and 2/3, respectively. The complement G satisfies t(G) = 3 and
µ2(G) = 5, µ10(G) = 8 and δ = 6, and the bounds (2), (3), and (4) give t(G) > 5/2,
2 and 5/3 respectively.

3. Tools
The following separation inequality from [27] provides a bridge between graph param-
eters and Laplacian eigenvalues. It can also be found in [9, Proposition 4.8.1].

Theorem 3.1 ([27]). Suppose that X and Y are two disjoint subsets of V such that
there is no edge between X and Y . Then

(5) |X||Y |
(n− |X|)(n− |Y |) 6

(
µn − µ2

µn + µ2

)2
.

By the above separation inequality, a simple yet useful proposition has been proved
in [26].

Proposition 3.2 ([26]). Let S ⊂ V such that G−S is disconnected. Let X and Y be
disjoint vertex subsets of V \S such that X ∪ Y = V \S with |X| 6 |Y |. Then

(6) |X| 6 µn − µ2

2µn
· n,

and

(7) |S| > 2µ2

µn − µ2
· |X|,

with each equality holding only when |X| = |Y |.

For the purpose of completeness, we include a proof that was originally given in [26].

Proof. By (5), we have

(8) |X||Y | 6
(
µn − µ2

µn + µ2

)2
(n− |X|)(n− |Y |),

Let β = µn−µ2
µn+µ2

. Then 0 < β 6 1, as G contains at least one edge and G − S is
disconnected. It follows that

|X|2 6 |X| · |Y | 6 β2(n− |X|)(n− |Y |) 6 β2(n− |X|)2,

that is
|X| 6 β(n− |X|),

and hence

(9) |X| 6 βn

1 + β
= µn − µ2

2µn
· n,

with the equality holding only when |X| = |Y |.
Also, since |Y | = n− |S| − |X|, by (8), we have
|X|(n− |S| − |X|) = |X| · |Y | 6 β2(n− |X|)(n− |Y |) = β2(n− |X|)(|S|+ |X|),

implying that
(10) |X|n 6

(
β2(n− |X|) + |X|

)
(|S|+ |X|) =

(
β2n+ (1− β2)|X|

)
(|S|+ |X|) .

By (9), we have

(1− β2)|X| 6 (1− β2) · βn

1 + β
= (β − β2)n,
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which, together with (10), implies that
|X|n 6

(
β2n+ (β − β2)n

)
(|S|+ |X|) = βn (|S|+ |X|) ,

and we have
|X| 6 β (|S|+ |X|) .

Hence,

|S| > 1− β
β
|X| = 2µ2

µn − µ2
· |X|.

Since (9) was utilized, the equality holds in (7) only when |X| = |Y |. �

Generalizing Hoffman’s ratio bound, the following bound for the cardinality of an
independent set of an arbitrary graph has been obtained independently in [21] and
in [38] (see also [29]).

Theorem 3.3 (Godsil and Newman [21], Lu, Liu and Tian [38]). If U is an indepen-
dent set of G, then

|U | 6 µn − δ
µn

· n.

4. Proofs
Throughout this section we take S ⊂ V such that t(G) = |S|/c(G − S), and put
c = c(G− S). Clearly the vertex connectivity κ of G satisfies κ 6 |S|, and so by (1),
we have
(11) |S| > µ2.

First we prove (3) of Theorem 2.2.

Proof. By taking a vertex in each component of G− S we obtain an independent set
of cardinality c. Therefore Theorem 3.3 gives c 6 n(µn − δ)/µn, and so by (11),

t(G) = |S|
c
>

µnµ2

n(µn − δ)
. �

For convenience we continue with the proof of (ii) of Proposition 2.3.

Proof. If n − |S| = c, then V \S is an independent set of G. By use of Theorem 3.3
and (1) we have

t(G) = |S|
c
>
n− c
c

= n

c
− 1 > µn

µn − δ
− 1 = δ

µn − δ
>

µ2

µn − δ
. �

Next we prove (4) of Theorem 2.2.

Proof. Let H1, H2, . . . ,Hc be the vertex sets of the components of G−S. Without loss
of generality, suppose that |H1| 6 |H2| 6 · · · 6 |Hc|. Above we proved that (2) and
therefore (4) holds if H1, . . . ,Hc are singletons. Thus, we may assume that n− |S| >
c + 1. We claim that H1, H2, . . . ,Hc can be partitioned into two sets X and Y such
that |Y | > |X| > c/2. If c is even, we can simply define X =

⋃
16i6bc/2cHi and Y =

(V \S)\X. Now we assume c is odd. If |H(c−1)/2| > 2, then defineX =
⋃

16i6(c−1)/2 Hi

and Y = (V \S)\X as needed. The remaining case is |H1| = · · · = |H(c−1)/2| = 1.
We can define X =

⋃
16i6(c+1)/2 Hi and Y = (V \S)\X, and we need to show that

|Y | > |X| > c/2. If |H(c+1)/2| = 1, then |X| = c+1
2 and |Y | = n − |S| − |X| > c+1

2 ,
since n − |S| > c + 1. If |H(c+1)/2| > 2, then |X| = c−1

2 + |H(c+1)/2| > c−1
2 + 2 > c

2
and |Y | =

∑
i>(c+1)/2 |Hi| > 2 · c−1

2 = c− 1 > c/2. Switch X and Y whenever needed
to get |Y | > |X|.
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It follows that c 6 2|X|. Thus, by (7),

t(G) = |S|
c
>

2µ2

µn − µ2
· |X|
c
>

µ2

µn − µ2
. �

The last two proofs of this section deal with (iii) and (iv) of Proposition 2.3.
Proof. (iii): In this case V \S can be partitioned into two sets X and Y both having
cardinality 1

2 (n− |S|), such that there are no edges between X and Y . We apply (7)
and find |S| > µ2

µn−µ2
(n − |S|), which implies |S| > nµ2/µn. As before, Theorem 3.3

gives c 6 n(µn − δ)/µn and hence

t(G) = |S|
c
> n

µ2

µn
· µn
n(µn − δ)

= µ2

µn − δ
. �

Proof. (iv): It is known (see [9, Section 3.9]) that µn > dmax + 1, when dmax is the
maximum degree of G. If G is not regular, then dmax − δ > 1, and hence µn − δ > 2.
If G is regular of degree d = δ, then the adjacency matrix has smallest eigenvalue
λn = d − µn. If G is regular with λn > −2 then G is the complete graph Kn or an
odd cycle Cn; see [17, Theorem 2.5]. We have t(Kn) = ∞ and t(Cn) = 2 if n > 4.
If n is odd, µ2(Cn) = 2 − 2 cos(π/n) and µn(Cn) = 2 + 2 cos(2π/n), so (2) gives
2 > (1 − cos(π/n))/ cos(2π/n) which is clearly true for all odd n > 5. Thus we can
assume that λn 6 −2 and hence µn − d = µn − δ > 2. By (11), it implies that

t(G) = |S|
c

= |S|2 >
µ2

2 >
µ2

µn − δ
. �

5. Applications
It was shown in [34] that if µ2

µn
> 2

3 , then G is 2-tough. Now we can generalize it by
rewriting (4) of Theorem 2.2 as below.

Theorem 5.1. If µ2

µn
>

r

r + 1 , then G is r-tough.

Since many graph parameters and properties are related to toughness, we have
various applications, including but not limited to the results in this section. We refer
readers to the survey paper [4] for more toughness related results.

Spectral conditions for matchings and k-factors of regular graphs have been at-
tracting many researchers [8, 12–14, 23, 33, 36, 37, 39], among others. However, not as
much has been discovered for general graphs that are not necessarily regular. Brouwer
and the second author [8] showed that if n is even and 2µ2 > µn, then G has a perfect
matching. This result has been recently generalized to matching numbers in [26]. We
will have other generalizations by using graph toughness.

A graph G is called elementary if it contains a perfect matching and if the edges
which occur in at least one perfect matching in G induce a connected subgraph. A
substantial study of elementary graphs has been given in [35]. It is proved in [3] that
every 1-tough graph with an even number of vertices is elementary. Thus Theorem 5.1
implies the following result.

Theorem 5.2. If n is even and 2µ2 > µn, then G is elementary.

Let G be an n-vertex graph with a perfect matching, and m be a positive integer
with m < n/2− 1. Then G is called m-extendable if every matching of size m extends
to a perfect matching. Plummer [40] proved that if t(G) > m, then G ism-extendable.

Theorem 5.3. Suppose n is even, and let m be a positive integer such that m <
n/2− 1. If

µ2

µn
>

m

m+ 1 ,
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then G is m-extendable.

In [19], it is proved that every k-tough graph has a k-factor if k|V (G)| is even and
|V (G)| > k + 1, confirming a conjecture of Chvátal [11]. The result was extended to
non-regular factors by Katerinis [31]. Let a 6 b be positive integers. An [a, b]-factor
of a graph G is a spanning subgraph H such that a 6 dH(v) 6 b for each vertex.
Katerinis [31] showed that for a graph G on n vertices such that a < b or bn is even,
if t(G) > a + a

b − 1, then G has an [a, b]-factor. By using Theorem 5.1, we have the
following Laplacian eigenvalue condition for the existence of factors.

Theorem 5.4. Let a 6 b be positive integers such that a < b or bn is even. If
µ2

µn
> 1− b

a(b+ 1) ,

then G has a [a, b]-factor.

The following corollary on k-factors is a generalization of the result on perfect
matching by Brouwer and the second author [8].

Corollary 5.5. Let k be a positive integer such that n > k + 1 and kn is even. If
µ2

µn
>

k

k + 1 ,

then G has a k-factor.

A graph G is (k, s)-factor-critical if G −X has a k-factor for all X ⊆ V (G) with
|X| = s. A (1, 1)-factor-critical graph is usually referred to as a factor-critical graph.
It is proved in [3] that every 1-tough graph with an odd number of vertices is factor-
critical. By Theorem 5.1, we have the following result on factor-critical graphs from
Laplacian eigenvalues, which was originally obtained in [26].

Theorem 5.6 ([26]). If n is odd and 2µ2 > µn, then G is (1, 1)-factor-critical.

For 2 6 s < n, it was shown by Favaron [20] that for a graph G on n vertices with
n+s even, if t(G) > s/2, then G is (1, s)-factor-critical. By Theorem 5.1, we have the
following result.

Theorem 5.7. Suppose 2 6 s < n and n+ s is even. If
µ2

µn
>

s

s+ 2 ,

then G is (1, s)-factor-critical.

For k = 2, 3 or even a general k, similar results on (k, s)-factor-critical graphs
from toughness can be found in the survey [4]. Thus Theorem 5.1 implies Laplacian
eigenvalue conditions for (k, s)-factor-critical graphs with various values of k and s,
which will be omitted here.

Spectral conditions for the existence of a spanning tree with degree bounded above
by a fixed number k in a regular graph have been obtained in [15, 16]. When k = 2,
such a spanning tree is exactly a Hamilton path, and a sufficient condition has been
given by, among others, Butler and Chung [10], who borrowed the idea from [32]
(both [10,32] studied a stronger structure, i.e. Hamilton cycle). The case of k > 3 for
general graphs was asked in [15] and has been solved in [26]. A theorem of Win [41]
implies that if t(G) > 1

k−2 for k > 3, then G has a spanning tree with maximum
degree at most k. Thus, Theorem 5.1 implies the following result of [26].
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Theorem 5.8 ([26]). Let k > 3 be an integer. If
µ2

µn
>

1
k − 1 ,

then G has a spanning tree with maximum degree at most k.

Generalizing the idea of a Hamilton cycle, a k-walk in a graphG is a closed spanning
walk of G that visits every vertex of G at most k times. In particular, a Hamilton
cycle is a 1-walk. Jackson and Wormald [30] observed that the existence of a spanning
tree with maximum degree at most k actually implies the existence of a k-walk. Thus
Theorem 5.8 implies the existence of a k-walk for k > 3. For k = 2, Ellingham and
Zha [18] showed that every 4-tough graph has a 2-walk. By Theorem 5.1, we have the
following Laplacian eigenvalue condition for the existence of a 2-walk.

Theorem 5.9. If µ2
µn
> 4

5 , then G has a 2-walk.

Remark 5.10. In this section we presented applications of (4) on perfect matchings,
factors and walks. The bound (3) has similar applications and if Conjecture 2.1 is
true, then all results in this section can be improved in a similar manner.

Similar to Theorems 5.8 and 5.9, the first author made the following conjecture for
Hamilton cycles, but never published elsewhere before.

Conjecture 5.11 (Gu). There exists a positive constant C < 1 such that if µ2/µn >
C and n > 3, then G contains a Hamilton cycle.

Remark 5.12. Notice that Ks,s+1 contains no Hamilton cycle, but µ2 = s and µn =
2s + 1, which implies that µ2/µn can be arbitrarily close to 1/2 if s is sufficiently
large. Thus the smallest possible C is at least 1/2.

Chvátal [11] conjectured that there exists a constant t0 such that every t0-tough
graph contains a Hamilton cycle. By (4) of Theorem 2.2, clearly Chvátal’s conjecture
implies Conjecture 5.11. Krivelevich and Sudakov [32] conjectured that for a d-regular
graph G, there exists a constant K such that d/λ > K and n is large enough, then
G contains a Hamilton cycle. It is not hard to see that Conjecture 5.11 implies the
conjecture of Krivelevich and Sudakov. All three conjectures remain open.

The results in this section as well as [8,26,27,42] indicate that many graph proper-
ties are related to the Laplacian eigenratio µ2/µn. This eigenratio also has application
aspects, and is highly related to the synchronization in small-world systems [2]. It plays
a similar role as spectral gap, but may give a bit more information about the structure
of the graph. It is clear that µ2/µn = 1 if and only if the graph is complete. For a
non-complete graph we have that µn > 1 + dmax (see Section 4), and since µ2 6 κ
the Laplacian eigenratio of a non-complete graph is bounded above by κ/(1 + dmax)
(see [22] for more about this inequality). But for many d-regular graphs with vertex
connectivity d (i.e. dmax = κ) the ratio is close to 1. For example the Paley graph
of order n satisfies µ2/µn = (

√
n− 1)/(

√
n+ 1) (see [9]). We feel that the Laplacian

eigenratio is interesting for future research.
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