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Combinatorial Hopf algebras from
representations of families of wreath

products

Tyrone Crisp & Caleb Kennedy Hill

Abstract We construct Hopf algebras whose elements are representations of combinatorial
automorphism groups, by generalising a theorem of Zelevinsky on Hopf algebras of representa-
tions of wreath products. As an application we attach symmetric functions to representations of
graph automorphism groups, generalising and refining Stanley’s chromatic symmetric function.

1. Introduction
In this paper we construct Hopf algebras whose elements are linear representations of
automorphism groups of certain combinatorial structures. We do this by generalising a
theorem of Zelevinsky [24, 7.2] on Hopf algebras of representations of wreath products
Sn nHn to more general wreath products, and then applying Clifford theory to pass
from wreath products to combinatorial automorphism groups. Let us illustrate and
motivate the construction with an example.

The chromatic polynomial of a finite, simple, undirected graph Γ is the poly-
nomial χΓ satisfying χΓ(m) = # ColΓ,m, the number of proper m-colourings of Γ
(i.e. labellings of the vertices of Γ by numbers 1, . . . ,m such that adjacent vertices have
distinct labels). This much-studied graph invariant was first introduced by Birkhoff
in [4]. A variation on χΓ, introduced in [13] and further studied and generalised in [5, 6]
under the name orbital chromatic polynomial, counts #(Aut Γ\ColΓ,m), the number
of orbits in ColΓ,m for the natural action of the automorphism group Aut Γ. (In this
paper the symbol “\” will always denote an orbit space; for set-theoretic differences
we shall write X − Y .) To illustrate, the graphs

Γ : •

•

•

•

•

and Λ : •

•

•

• •

have χΓ = χΛ, but #(Aut Γ\ColΓ,3) = 3 while #(Aut Λ\ColΛ,3) = 6. (This pair of
graphs is taken from [20, Figure 1].)

One can generalise and refine these invariants using finite harmonic analysis. Let-
ting kColΓ,m be the permutation representation of Aut Γ corresponding to the action
of Aut Γ on ColΓ,m (k being some algebraically closed field of characteristic zero), we
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consider for each finite-dimensional k-linear representation γ of Aut Γ the intertwining
number

χΓ,γ(m) := dim HomAut Γ(kColΓ,m , γ) = 1
# Aut Γ

∑
g∈Aut Γ

chγ(g) ·# ColgΓ,m

where chγ is the character of the representation γ, and ColgΓ,m is the set of colourings
fixed by the automorphism g. Hanlon observed in [13, Theorem 2.1] that the cardi-
nalities of these fixed sets are themselves chromatic polynomials, and so each χΓ,γ
is a polynomial. Putting γ = the regular representation gives the chromatic polyno-
mial, while putting γ = the trivial one-dimensional representation gives the orbital
chromatic polynomial.

It is clear from the definition that the map γ 7→ χΓ,γ is additive, and so decomposing
the regular representation into irreducibles gives

χΓ =
∑

γ∈Irr(Aut Γ)

(dim γ)χΓ,γ

where the sum runs over the set of isomorphism classes of irreducible representations.
The polynomials χΓ,γ , and the decomposition of χΓ that they afford, deserve closer
study. In particular, one would like to understand how these polynomials behave with
respect to unions and decompositions of graphs, and it is at this point that Hopf
algebras enter the picture.

The use of Hopf algebras to study assembly/disassembly constructions is well es-
tablished, both in combinatorics (see e.g. [3, 12, 15, 17, 18]) and in representation
theory (see e.g. [1, 11, 19, 22, 24]). Let us recall two examples of particular relevance
to the present discussion.

Our first example is the Hopf algebra of graphs G [17]: this is the free abelian group
with basis the set of isomorphism classes of finite simple graphs; with multiplication
given by disjoint union of graphs; and with comultiplication given by partitions into
pairs of subgraphs. The character G → Z given by Γ 7→ χΓ(1) induces, as shown in [2],
a morphism of Hopf algebras G → SymZ into the Hopf algebra of symmetric functions
with integer coefficients; this map sends Γ to the chromatic symmetric function XΓ
introduced by Stanley in [20], and the chromatic polynomial χΓ can be recovered from
XΓ by specialisation: χΓ(m) = XΓ(1m). For a discussion of how the Hopf-algebra point
of view illuminates certain properties of χΓ and XΓ, see [12, 7.3].

Our second example of a Hopf algebra is the Hopf algebra of representations of
the symmetric groups S [24, §6]: this is the free abelian group with basis the set of
isomorphism classes of irreducible representations of the symmetric groups Sn (for all
n > 0); with multiplication given by induction of representations, and comultiplication
by restriction of representations, along the standard inclusions Sk × Sl ↪→ Sk+l. The
character S → Z sending each trivial representation to 1 and all other irreducible
representations to 0 induces, again via the technology of [2], a morphism of Hopf
algebras S → SymZ that is in fact an isomorphism; this is the well-known Frobenius
characteristic map, sending the irreducible representation of Sn associated with a
partition λ of n to the Schur function sλ; see e.g. [21, 7.18].

In Section 4 of this paper, as an instance of the general results established in
Sections 2 and 3, we construct a Hopf algebra A that simultaneously generalises
both of the above examples. The underlying additive group of our Hopf algebra
A is free abelian with basis

⊔
Γ Irr(Aut Γ), the set of isomorphism classes of irre-

ducible representations of the automorphism groups of finite simple graphs (modulo
graph isomorphisms). The multiplication/comultiplication in A are given by combin-
ing union/decomposition of graphs with induction/restriction of representations. The
map sending γ ∈ Irr(Aut Γ) to χΓ,γ(1) ∈ Z induces a homomorphism of Hopf algebras
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A → SymZ, thus associating a symmetric function XΓ,γ to each finite graph Γ and
each finite-dimensional representation γ of Aut Γ. The polynomial χΓ,γ defined above
is recovered from XΓ,γ by specialisation.

The subalgebra of A corresponding to graphs with no edges is isomorphic to the
Hopf algebra S of representations of the symmetric groups, and the map S → SymZ
obtained by restricting our map A → SymZ is the Frobenius characteristic. On the
other hand, the map sending a graph Γ to the regular representation of Aut Γ gives
an embedding of Hopf algebras G ↪→ A, and the decomposition of the regular repre-
sentation into irreducibles yields an equality of symmetric functions

XΓ =
∑

γ∈Irr(Aut Γ)

(dim γ)XΓ,γ .

We thus obtain a refinement of the polynomial invariants χΓ,γ by symmetric functions,
generalising Stanley’s refinement of χΓ by XΓ; and we obtain identities among the
XΓ,γ (and, by specialisation, among the χΓ,γ) for varying Γ and γ from the fact that
the map γ 7→ XΓ,γ is a homomorphism of Hopf algebras. The further study of the
graph invariants XΓ,γ and χΓ,γ will be taken up in future work.

We now describe the connection with wreath products, still in the example of
graph colourings. For each n > 0 let En denote the set of two-element subsets of
{1, . . . , n}. The symmetric group Sn acts in a natural way on En, and hence on
the group Fun(En, S2) of functions En → S2, and on the set Irr(Fun(En, S2)) of
irreducible representations of this abelian group. The Sn-orbits in Irr(Fun(En, S2))
can be identified with the isomorphism classes of graphs with n vertices, in such a
way that the stabiliser of a point in Irr(Fun(En, S2)) is equal to the automorphism
group of the corresponding graph. Clifford theory (as explained in this context in [14,
Section 4.3]) then yields an identification

(?)
⊔
Γ

Irr(Aut Γ)
∼=−→
⊔
n>0

Irr(Sn n Fun(En, S2))

between the basis for A and the irreducible representations of the wreath product
groups Sn n Fun(En, S2).

The representation theory of wreath products can be quite complicated: indeed,
the bijection (?) shows that classifying the irreducible representations of the groups
SnnFun(En, S2) for all n means classifying all finite simple graphs up to isomorphism
and classifying the irreducible representations of all finite groups (since every finite
group is, as shown by Frucht [10], the automorphism group of a graph).

There is, however, one aspect of the representation theory of the wreath products
Sn n Fun(En, S2) that is rather more easily understood: namely, the way in which
the representations of these groups fit together for different n. Generalising work of
Zelevinsky [24], who considered wreath products of the form Sn nHn, we prove that
for each suitable family of Sn-sets Yn, and for each finite group H, the free abelian
group with basis

⊔
n>0 Irr(Sn n Fun(Yn, H)) can be given a natural Hopf-algebra

structure. In fact we obtain three different (in general) Hopf algebra structures: one
a positive self-adjoint Hopf algebra as in [24], and another dual pair of non-PSH but
connected, commutative, and cocommutative Hopf algebras. (In the situation studied
by Zelevinsky these three Hopf algebras are all identical.) Our Hopf algebras come
equipped moreover with a canonical Z-valued character; as shown by Aguiar, Berg-
eron, and Sottile [2] this is equivalent to admitting a canonical homomorphism into
the Hopf algebra of symmetric functions. Putting Yn = En and H = S2 yields the
Hopf algebra A of representations of graph automorphisms, and the symmetric func-
tions XΓ,γ . More examples of this kind are possible: for example, letting Yn be the
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set of all nonempty subsets of {1, . . . , n} has the effect of replacing graphs by hyper-
graphs; letting Yn be the set of ordered two-element subsets gives directed graphs;
and replacing S2 by another group H has the effect of introducing labellings of the
edges of our (hyper)graphs by the nontrivial irreducible representations of H.

The paper is organised as follows. In Section 2 we first describe the families of sets
Yn that go into our construction. The definition is easily stated: we consider endo-
functors on the category of finite sets and injective maps that preserve the empty set
and preserve intersections; then Yn is the value of such a functor on the set {1, . . . , n}.
We then define induction and restriction functors between the representations of the
wreath products SnnFun(Yn, H) for varying n; we consider both the standard induc-
tion/restriction functors, and a variant of these functors similar to the parabolic in-
duction/restriction functors from the representation theory of reductive groups. These
functors become, in Section 3.1, the multiplication and comultiplication maps in our
Hopf algebras. In Section 3.2 we apply Clifford theory to yield a second description
of our Hopf algebras in terms of representations of automorphisms of certain combi-
natorial structures. In Section 3.3 we show that each of our Hopf algebras contains a
sub-Hopf-algebra of representations of the base group Fun(H,Yn), an example being
the subalgebra G of A; and in Section 3.4 we compute the canonical maps from our
Hopf algebras to SymZ, under the assumption that the coefficient group H is abelian.
Section 4 then presents in more detail the example of A that we outlined above.

Our constructions bear a resemblance to known constructions of Hopf algebras
from species, such as those described in [17] and [3] for example, although as far as
we are aware the main construction that we study here has not previously appeared
in the literature beyond the special cases YN = ∅ and YN = N . There is however one
concrete point of overlap between our construction and [17]: if H is abelian then one
of the sub-Hopf-algebras that we construct in Section 3.3 – namely, the subalgebra
generalising the subalgebra G of A – is isomorphic to the Hopf algebra of a coherent
exponential species as defined in [17]; see Proposition 3.9.

2. Young sets and wreath products
2.1. Young sets. In this section we define the combinatorial objects from which we
shall construct families of wreath product groups.

We let Set denote the category of finite sets, while Set× and Setinj denote the sub-
categories of bijective maps and injective maps, respectively. A functor Y : Setinj →
Setinj thus assigns to each finite set N a finite set YN , and to each injective map
of finite sets w : N → M an injective map Yw : YN → YM . When M = N we ob-
tain an action of the symmetric group SN of N on the set YN . We will often write
w : YN → YM , instead of Yw; and in the case where w is the inclusion of N as a subset
of M we shall omit w from the notation entirely and regard YN as a subset of YM .

Definition 2.1. A Young set is a functor Y : Setinj → Setinj satisfying Y∅ = ∅ and
YK ∩ YL = YK∩L for all pairs of subsets K,L of the same finite set N .

The name “Young set” was chosen because these sets, and the families of groups
to which they give rise, play an analogous role in our construction to that played by
the Young subgroups in the representation theory of the symmetric groups.

Examples 2.2. In most of these examples we describe the action of the functor on
objects only, the action on morphisms being the obvious one.

(1) The empty example: YN = ∅ for all sets N . We denote this example by ∅.
(2) The basic example: YN = N , the identity functor. We denote this example by

id.
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(3) Products, coproducts, and composites: if Y and Y ′ are Young sets, then so
are the product (Y ×Y ′)N := YN ×Y ′N ; the coproduct (Y tY ′)N := YN tY ′N ;
and the composite (Y ◦ Y ′)N := YY ′

N
. For instance, for each fixed m > 1 we

obtain a Young set idm : N 7→ Nm (where Nm = N × · · · ×N).
(4) Quotients: let Y be a Young set equipped with an action of a fixed group

G by natural transformations; then the quotient by the G-action yields a
Young set Y/G with (Y/G)N = YN/G. For instance, taking YN = Nm, on
which G = Sm acts by permuting coordinates, we obtain the Young set of
unordered m-tuples of elements of N .

(5) Subsets and multisets: the functor N 7→ {nonempty subsets of N} is a Young
set, as is the functor N 7→ {r-element subsets of N} for each r > 1. More
generally, let m be a positive integer and let ξ : {1, . . . ,m} → P(N) be a
function (P denotes the power set and N = {0, 1, . . .}). To these data we
associate the Young set

YN :=
{
f : N → {0, 1, . . . ,m}

∣∣∣∣∣ ∃n ∈ N with f(n) 6= 0, and
#f−1(i) ∈ ξ(i) for every i > 1

}
.

The map YK → YN associated to an injection of sets K ↪→ N is given by
extending functions by 0. Taking m = 1 and ξ(1) = {1, 2, 3, . . .} gives the
Young set of nonempty subsets of N ; taking m = 1 and ξ(1) = {r} gives the
r-element subsets; while taking m > 2 gives multisets of elements of YN with
up to m repetitions of each element, with the function ξ imposing restrictions
on the number of times each allowed multiplicity occurs.

(6) Permutations: YN = SN − {idN}, the set of nontrivial permutations of N .
(Recall that “−” means the set-theoretic difference.) This is a Young set
with the action on morphisms given by assigning to each injective map of sets
w : K → N and each permutation g ofK the permutation w∗g ofN defined by

w∗g(n) :=
{
wg(k) if n = w(k) ∈ w(K),
n otherwise.

2.2. Families of wreath products from Young sets. We begin with some
generalities on wreath products; see e.g. [14, Chapter 4] for more information.

Let W be a finite group acting on a finite set Y , and let H be another finite group.
The set Fun(Y,H) of functions Y → H is made into a group by setting (f1f2)(y) :=
f1(y)f2(y). The group W acts on Fun(Y,H) by (wf)(y) := f(w−1y), for w ∈ W ,
f ∈ Fun(Y,H), and y ∈ Y . The wreath product of W with H over Y is defined to be
the semidirect productWnFun(Y,H). Thus as a setWnFun(Y,H) = W×Fun(Y,H),
with group operation

(w1, f1)(w2, f2) =
(
w1w2, (w−1

2 f1)f2
)
.

The maps w 7→ (w, 1) and f 7→ (1, f) identify W and Fun(Y,H) with subgroups
of W n Fun(Y,H). The support of a function f ∈ Fun(Y,H) is defined by supp(f) =
{y ∈ Y | f(y) 6= 1H}. For each subset Y ′ of Y we regard Fun(Y ′, H) as a subgroup of
Fun(Y,H), namely the subgroup {f : Y → H | supp(f) ⊆ Y ′}. If W ′ is a subgroup of
W such that Y ′ isW ′-invariant, then the embeddingsW ′ ⊆W ⊆W nFun(Y,H) and
Fun(Y ′, H) ⊆ Fun(Y,H) ⊆ W n Fun(Y,H) give an embedding W ′ n Fun(Y ′, H) ⊆
W n Fun(Y,H). If W1 acts on Y1, and W2 acts on Y2, then there is an obvious
isomorphism

(W1 n Fun(Y1, H))× (W2 n Fun(Y2, H))
∼=−→ (W1 ×W2) n Fun(Y1 t Y2, H).
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So much for generalities. We shall study the representation theory of the family of
wreath product groups

GN (Y,H) := SN n Fun(YN , H)

associated to a Young set Y and an auxiliary finite group H.

Examples 2.3.
(1) G∅(Y,H) = S∅ n Fun(∅, H) is always the trivial group.
(2) GN (∅, H) = SN for every H, and GN (Y, S1) = SN for every Y .
(3) Writing [n] = {1, 2, . . . , n}, we have G[n](id, H) = Sn n Hn, the standard

wreath product studied in [24, §7]. For example, G[n](id, S2) is the hyperoc-
tahedral group, whose representations were first worked out by Young in [23].

(4) G[n](id2, Cp) (where Cp is the cyclic group of prime order p) is isomorphic
to the group of those invertible n × n matrices over the ring Z/p2Z that
are congruent, modulo p, to a permutation matrix. An isomorphism is given
by identifying Sn with the group of permutation matrices in GLn(Z/p2Z);
identifying Cp with the additive group pZ/p2Z; and then identifying the group
Fun([n]2, Cp) with the kernel of the reduction-modulo-p map GLn(Z/p2Z)→
GLn(Z/pZ) by sending a function f to the matrix 1 + [f(i, j)](i,j)∈[n]2 . One
can think of this group G[n](id2, Cp) as a simplified model of GLn(Z/p2Z).
The induction functors that we shall consider below are, in this example, the
analogues of the functors used to study the representations of GLn(Z/pkZ)
in [7], [9], and [8].

2.3. Young subgroups of GN (Y,H). We are going to define analogues, in the
wreath products GN (Y,H) = SN n Fun(YN , H), of the Young subgroups of the sym-
metric groups. We begin with some notation related to set partitions.

A weak partition of a finite set N is a finite multiset λ = (Li | i ∈ I) of subsets
Li ⊆ N , called the blocks of λ, having Li ∩ Lj = ∅ for i 6= j, and N =

⋃
i∈I Li. One

or more of the Li may be empty; a weak partition with no empty blocks is called a
partition. We denote by PartwN the set of weak partitions of N , and by PartN the set
of partitions.

To each λ = (Li) ∈ PartwN we associate the Young subgroup Sλ ⊆ SN consisting
of those permutations that leave invariant each of the blocks Li. There is an obvious
isomorphism

∏
i SLi

∼= Sλ. Inserting or removing ∅s from a weak partition does not
change the Young subgroup.

For λ, µ ∈ PartwN we write λ 6 µ to mean that each block of µ is a union of blocks
of λ. This is not a partial order, but it restricts to a partial order on partitions. We
have λ 6 µ if and only if Sλ ⊆ Sµ.

Given λ, µ ∈ PartwN we let λ ∧ µ ∈ PartwN be the weak partition whose blocks are
the intersections Li ∩Mj of the blocks of λ and µ. We have Sλ∧µ = Sλ ∩ Sµ.

Each bijective map of sets w : N → M induces a bijective map PartwN → PartwM ,
by applying w to each block of each partition. In particular, the group SN acts on
PartwN . The group Sλ fixes the partition λ, but the isotropy group of λ may be larger
than Sλ. For each bijection w : N → M and each λ ∈ PartwN we have wSλ = Swλ,
where wSλ := wSλw

−1 ⊂ SM .
We now return to our groups GN (Y,H). The Young set Y and auxiliary group H

will be fixed throughout this section, so we drop them from the notation and just
write GN .

For each weak partition λ = (Li) of N the subsets YLi of YN are pairwise disjoint,
by our assumption that YK ∩YL = YK∩L. We denote by Yλ :=

⊔
i YLi ⊆ YN the union
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of these subsets. We have Yλ ∩ Yµ = Yλ∧µ for all λ, µ ∈ PartwN , and Yλ ⊆ Yµ for all
λ 6 µ ∈ PartwN .

When Y = id we have Yλ = YN for every λ and every N , but in general Yλ ( YN .
The functoriality of Y ensures that for each bijection w : N →M and each λ ∈ PartwN
we have wYλ = Ywλ as subsets of YM . In particular, Yλ is Sλ-invariant.

We now have subgroups Sλ ⊆ SN and Fun(Yλ, H) ⊆ Fun(YN , H). We take the
semidirect product of these groups to obtain a subgroup Gλ ⊆ GN :

Gλ(Y,H) := Sλ n Fun(Yλ, H).

We have a canonical isomorphism of groups
∏
iGLi

∼= Gλ, coming from the cor-
responding isomorphisms

∏
i SLi

∼= Sλ and
∏
i Fun(YLi , H) ∼= Fun(tiYLi , H) =

Fun(Yλ, H).
Let us list some properties of the groupsGλ; all of these are immediate consequences

of the corresponding facts about the groups Sλ and the sets Yλ.

Lemma 2.4. Let N and M be finite sets.
(1) If λ 6 µ ∈ PartwN then Gλ ⊆ Gµ.
(2) For all λ, µ ∈ PartwN we have Gλ ∩Gµ = Gλ∧µ.
(3) For each bijective map w : N →M and each λ ∈ PartwN we have wGλ = Gwλ.

For each λ 6 µ ∈ PartwN we consider the following subgroups of Gµ:

Pµλ := Sλ n Fun(Yµ, H) and Uµλ := Fun(Yµ − Yλ, H).

Let us list some properties of these groups; all of these follow easily from the defini-
tions.

Lemma 2.5. Let N and M be finite sets.
(1) If λ 6 µ in PartwN then the group Uµλ is normalised by Gλ, and the map

Gλ × Uµλ → Pµλ given by multiplication in the group Gµ is a bijection; thus
Pµλ is the internal semidirect product Gλ n Uµλ .

(2) If w : N → M is a bijection of sets then for all λ 6 µ ∈ PartwN we have
wPµλ = Pwµwλ and wUµλ = Uwµwλ .

(3) For all λ, µ ∈ PartwN we have Gλ ∩ UNµ = Uλλ∧µ.

We next recall some terminology from [24]: for each λ ∈ PartwN we say that a
subgroup G ⊆ GN is decomposable with respect to (Gλ, UNλ ) if the intersection PNλ ∩G
decomposes as the semidirect product (Gλ ∩G) n (UNλ ∩G).

Lemma 2.6. Let λ, µ ∈ PartwN be weak partitions of a finite set N . Each of the sub-
groups PNµ , Gµ, and UNµ of GN is decomposable with respect to (Gλ, UNλ ).

Proof. Compute as follows:

PNλ ∩ PNµ = (Sλ ∩ Sµ) n Fun(YN , H) = (Sλ∧µ n Fun(Yλ, H)) n Fun(YN − Yλ, H)
= (Gλ ∩ PNµ ) n (UNλ ∩ PNµ ),

PNλ ∩Gµ = (Sλ ∩ Sµ) n Fun(Yµ, H) = (Sλ∧µ n Fun(Yλ∧µ, H)) n Fun(Yµ − Yλ∧µ, H)
= (Gλ ∩Gµ) n (UNλ ∩Gµ),

and

PNλ ∩ UNµ = Fun(YN − Yµ, H) = Fun(Yλ − Yλ∧µ, H)× Fun(YN − (Yλ ∪ Yµ), H)
= (Gλ ∩ UNµ ) n (UNλ ∩ UNµ ). �
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2.4. Induction and restriction functors. We continue to fix a Young set Y and
a finite group H, and write GN for the wreath product GN (Y,H) = SNnFun(YN , H).
We also fix an algebraically closed field k of characteristic zero. For each finite group
G we let Rep(G) denote the category whose objects are the finite-dimensional k-linear
representations of G, and whose morphisms are the G-equivariant linear maps.

Definition 2.7. For all ordered pairs of weak partitions λ 6 µ ∈ PartwN we consider
the following functors:

(1) Let iµλ : Rep(Gλ) → Rep(Gµ) be the functor of inflation from Gλ to Pµλ
(i.e. let Uµλ act trivially), followed by induction from Pµλ to Gµ.

(2) Let rµλ : Rep(Gµ)→ Rep(Gλ) be the functor that sends each Gµ-representation
V to the Gλ-invariant subspace V U

µ
λ of Uµλ -fixed vectors.

(3) Let resµλ : Rep(Gµ)→ Rep(Gλ) be the usual restriction functor.

For the Young set YN = N the groups Uµλ are trivial, and so there is no difference
between the functors rµλ and resµλ. In general rµλ is a subfunctor of resµλ, and the
inclusion can be proper.

Lemma 2.8. The functors iµλ and rµλ are two-sided adjoints to one another.

Proof. Since the groups in question are all finite and k has characteristic zero, induc-
tion from Pµλ to Gµ is a two-sided adjoint to restriction from Gµ to Pµλ , while inflation
from Gλ to Pµλ is a two-sided adjoint to the functor of Uµλ -invariants. �

Lemma 2.9. For each ordered triple λ 6 µ 6 ν ∈ PartwN there are natural isomor-
phisms of functors

iνλ ∼= iνµ iµλ and rνλ ∼= rµλ rνµ .

Proof. By the uniqueness of adjoint functors it will suffice to prove the assertion
about rνλ. For each representation V of Gν we have rνλ(V ) = V U

ν
λ , while rµλ rνµ(V ) =(

V U
ν
µ

)Uµ
λ . The decomposition of sets Yν − Yλ = (Yν − Yµ) t (Yµ − Yλ) leads to an

internal direct-product decomposition of groups Uνλ = Uνµ × U
µ
λ , showing that rνλ(V )

and rµλ rνµ(V ) are in fact equal as Gλ-invariant subspaces of V . �

For each bijection of sets w : N →M we have an equivalence

(1) Adw : Rep(GN ) ρ7→ρ(w−1·w)−−−−−−−−→ Rep(GM ),
where ρ(w−1 · w) means the map g 7→ ρ(w−1gw).

Lemma 2.10. For each bijection of sets w : N → M and each ordered pair of weak
partitions λ 6 µ ∈ PartwN we have natural isomorphisms of functors

Adw iµλ ∼= iwµwλ Adw, Adw rµλ ∼= rwµwλ Adw, and Adw resµλ ∼= reswµwλ Adw .

Proof. Once again by the uniqueness of adjoints it suffices to consider the functors r
and res. The statement about res is clearly true, while the assertion about r follows
from the equality wUµλ = Uwµwλ observed in Lemma 2.5. �

We conclude this section by establishing Mackey-type formulas for the compo-
sition of our restriction and induction functors. The formulas are instances of [24,
Theorem A3.1].

Proposition 2.11. For each finite set N and each pair of weak partitions λ, µ ∈ PartwN
we have isomorphisms of functors

rNλ iNµ ∼=
⊕

SλwSµ∈Sλ\SN/Sµ
iλλ∧wµ Adw rµw−1λ∧µ
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and

resNλ iNµ ∼=
⊕

SλwSµ∈Sλ\SN/Sµ
iλλ∧wµ Adw resµw−1λ∧µ .

Proof. We first establish the formula for rNλ iNµ by applying [24, Theorem A3.I] to the
following choices of groups:

G = GN , M = Gµ, U = UNµ , P = PNµ , N = Gλ, V = UNλ , Q = PNλ .

(G, P, etc. designate the objects denoted by those letters in [24, A3], while G, P ,
etc. refer to objects defined in this paper.)

The characters θ and ψ appearing in [24] are here taken to be trivial. The double-
coset space Q\G/P is computed thus:

PNλ \GN/PNµ = (Sλ n Fun(YN , H))\(SN n Fun(YN , H))/(Sµ n Fun(YN , H))
∼= Sλ\SN/Sµ.

For each w ∈ SN the groups wP = PNwµ, wM = Gwµ, and wU = UNwµ are decompos-
able with respect to (N, V) = (Gλ, UNλ ) by Lemma 2.6. Likewise wQ, wN, and wV are
decomposable with respect to (M, U), so the hypothesis (D) of [24, p. 168] is satisfied.

Lemmas 2.4 and 2.5 yield the following identifications of the groups M′, N′,
etc. appearing on [24, p. 168]:

M′ = Gw−1λ∧µ, N′ = Gλ∧wµ, V′ = Uµw−1λ∧µ, U′ = Uλλ∧wµ.

Having made these identifications, an application of [24, Theorem A3.1] gives the
stated formula for rNλ iNµ .

The proof of the formula for resNλ iNµ is very similar: we now take

G = GN , M = Gµ, U = Unµ , P = PNµ , N = Q = Gλ, V = {1}.

We still have Q\G/P ∼= Sλ\SN/Sµ, and the decomposability hypothesis is again satis-
fied by virtue of Lemma 2.6. We now have

M′ = Gw−1λ∧µ, N′ = Gλ∧wµ, V′ = {1}, U′ = Uλλ∧wµ,

and the formula from [24, Theorem A3.1] becomes in this case the proposed formula
for resNλ iNµ . �

3. Hopf algebras associated to Young sets
3.1. Construction of the Hopf algebras. We continue to consider the family
of groups GN = GN (Y,H) = SN n Fun(YN , H) associated to a Young set Y and a
finite group H.

For each finite group G we let R(G) denote the Grothendieck group of Rep(G).
Thus R(G) is a free abelian group with basis Irr(G), the set of isomorphism classes
of irreducible k-linear representations of G.

For all pairs K,L of finite sets we write GK,L to mean the Young subgroup of
GKtL associated to the weak partition with blocks K and L. The isomorphism GK ×
GL

∼=−→ GK,L and the bijection Irr(GK)× Irr(GL) (V,V ′) 7→V⊗kV
′

−−−−−−−−−−→ Irr(GK ×GL) yield
a canonical isomorphism R(GK) ⊗Z R(GL)

∼=−→ R(GK,L) which we shall frequently
invoke without further comment.

We define RY,H , or R for short, to be the free abelian group

R =
( ⊕
N∈Set

R(GN )
)

Set×
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where the subscript indicates that we take coinvariants for the groupoid of set bi-
jections; that is to say, we impose the relation ρ = Adw ρ whenever ρ and w are as
in (1). Thus R is a free abelian group with basis (

⊔
N Irr(GN ))Set× . We grade R so

that R(GN ) sits in degree #N .
We consider the following graded, Z-linear maps:
• multiplication: m : R⊗Z R → R defined as the direct sum of the maps

R(GK)⊗Z R(GL)
∼=−→ R(GK,L)

iKtLK,L−−−→ R(GKtL).

• comultiplication: ∆ : R → R⊗Z R defined on ρ ∈ R(GN ) by

(2) ∆(ρ) =
∑

SN (K)∈SN\P(N)

resNK,Kc ρ.

Here the sum is over a set of representatives for the SN -orbits of subsets of
N , and Kc = N −K. The representation resNK,Kc ρ of GK,Kc is regarded as
an element of R⊗ZR via the canonical isomorphism R(GK,Kc) ∼= R(GK)⊗Z
R(GKc).

• another comultiplication: δ : R → R⊗Z R defined on ρ ∈ R(GN ) by

δ(ρ) =
∑

SN (K)∈SN\P(N)

rNK,Kc ρ.

This is to be understood in the same way as (2).
• unit: e : Z → R defined by setting e(1) := trivG∅ , the unique element of

Irr(G∅).
• counit: ε : R → Z defined by setting ε(trivG∅) = 1, and ε(ρ) = 0 for all other

irreducible representations ρ.
Note that Lemma 2.10 ensures thatm, ∆, and δ are well-defined on Set×-coinvariants.

Theorem 3.1. Fix a Young set Y and a finite group H.
(1) The maps m, ∆, e, and ε make RY,H into a graded, connected, commutative,

and cocommutative Hopf algebra over Z. We denote this Hopf algebra by R∆
Y,H .

(2) The maps m, δ, e, and ε and the basis
(⊔

N Irr(GN )
)

Set× make RY,H into a
PSH algebra: a graded, connected, positive, self-adjoint Hopf algebra over Z
(cf. [24, 1.4]). We denote this PSH algebra by RδY,H .

Example 3.2.Rδ∅,1 and R∆
∅,1 are both the Hopf algebra of representations of the

symmetric groups, which is isomorphic to the Hopf algebra SymZ of symmetric func-
tions with Z coefficients; see [24, §5, §6]. Both Rδid,H and R∆

id,H are the Hopf algebras
constructed in [24, §7]. Unlike in these examples, the Hopf algebras RδY,H and R∆

Y,H

are generally distinct (as Hopf algebras with distinguished bases): see Remark 4.2 for
an example.

Remark 3.3. Taking the dual of the Hopf algebra R∆
Y,H gives a third Hopf-algebra

structure onRY,H , in which the multiplication is given by the usual induction functors
indGKtLGK,L

, while the comultiplication is given by the functors rKtLK,L . Of course, the PSH
algebra RδY,H is its own dual.

Proof of Theorem 3.1. The proof that R∆ and Rδ satisfy the Hopf axioms – that is,
the axioms listed in [24, 1.3] – is similar for the two cases, and both are similar to the
case of Y = ∅ andH = {1} established in [24, 6.2]. Most of the axioms follow in a very
straightforward way from the basic properties of the functors i, r, and res observed
in the previous section; for example, the associativity of multiplication follows from
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Lemma 2.9. The compatibility between multiplication and comultiplication – that is,
the commutativity of the diagram

R⊗Z R
m //

∆⊗∆
��

R ∆ // R⊗Z R

R⊗Z R⊗Z R⊗Z R
w⊗x⊗y⊗z 7−→w⊗y⊗x⊗z // R⊗Z R⊗Z R⊗Z R

m⊗m

OO

and of the corresponding diagram for δ – follows from Proposition 2.11 just as in [24,
A3.2].

Thus R∆ and Rδ are connected, graded Hopf algebras. The proofs of parts (1)
and (2) diverge at this point; let us handle (2) first.

We must verify that Rδ satisfies the additional axioms from [24, 1.4]; again, the
argument closely follows that of [24, 6.2]. The fact that m and δ are adjoints to one
another with respect to the inner products induced by our choice of basis follows from
the fact that iKtLK,L and rKtLK,L are adjoint functors (Lemma 2.8). The positivity of all
of the structure maps relative to our chosen basis follows immediately from the fact
that all of these maps are defined via functors between representation categories. This
completes our proof of part (2).

To complete the proof of part (1) we must show that the Hopf algebra R∆ is com-
mutative and cocommutative. We have R∆ = Rδ as algebras, and the PSH algebra
Rδ is automatically commutative (see [24, Proposition 1.6]). So we are left to prove
that R∆ is cocommutative, which amounts to the assertion that for all subsets K ⊆ N
the diagram

(3) R(GK,Kc)
∼= // R(GK)⊗Z R(GKc)

flip
��

R(GN )

resNK,Kc 44

resNKc,K
**
R(GKc,K)

∼= // R(GKc)⊗Z R(GK)

commutes. But this is obvious because GK,Kc and GKc,K are the same subgroup
of GN . �

3.2. Application of Clifford theory. Let Y be a Young set, let H be a finite
group, and let GN = GN (Y,H) = SN n Fun(YN , H) as before. An application of
Clifford theory gives a description of the set Irr(GN ) in terms of orbits and isotropy
groups for the action of SN on the set Irr(Fun(YN , H)). In this section we shall briefly
recall how this correspondence works (referring to [14, Section 4.3], for instance, for
the details); and we then use this correspondence to give another description of the
Hopf algebras R∆

Y,H and RδY,H .
Fix a set Ĥ of representatives for the isomorphism classes of irreducible repre-

sentations of H. For each finite set N and each function F ∈ Fun(YN , Ĥ) we let
πF ∈ Irr(Fun(YN , H)) be the representation defined by

πF (f) :=
⊗
y∈YN

F (y) (f(y)) ∈ GL
( ⊗
y∈YN

VF (y)

)
(f ∈ Fun(YN , H)).

Here VF (y) is the vector space underlying the representation F (y) ∈ Ĥ, and
F (y) (f(y)) is the linear map VF (y) → VF (y) by which f(y) ∈ H acts under the
representation F (y). The map F 7→ πF is a bijection Fun(YN , Ĥ)→ Irr(Fun(YN , H)).

For each bijection of sets w : N → M and each F ∈ Fun(YN , Ĥ) we define wF ∈
Fun(YM , Ĥ) by wF (y) := F (w−1y). Setting M = N gives an action of the group SN
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on the function space Fun(YN , Ĥ). For each F ∈ Fun(YN , Ĥ) we define

AutF := {w ∈ SN | wF = F} and GF := (AutF ) n Fun(YN , H) ⊆ GN .

For each representation γ of AutF we let γ n πF be the representation of GF =
AutF n Fun(YN , H) on the tensor product vector space Vγ ⊗k

⊗
y∈YN VF (y), where

Fun(YN , H) acts trivially on Vγ and by πF on
⊗

y VF (y), and where AutF acts on Vγ
by γ and on

⊗
y Fy by permuting the factors:

w
⊗
y∈YN

vy :=
⊗
y∈YN

vw−1y (vy ∈ VF (y)).

This is well defined because VF (y) and VF (w−1y) are the same vector space.
For each bijection of sets w : N →M and each F ∈ Fun(YN , Ĥ) we have w AutF =

AutwF , giving an equivalence

(4) Adw : Rep(GN ) γ 7→γ(w−1·w)−−−−−−−−→ Rep(GM ).

Clifford theory, in this case, says that the maps

ΦF : Irr(AutF )→ Irr(GN ), ΦF (γ) := indGNGF (γ n πF ),

defined for each F ∈ Fun(YN , Ĥ), assemble into a bijective map

(5)
( ⊔

N∈Set,
F∈Fun(YN ,Ĥ)

Irr(AutF )
)

Set×

⊔
ΦF

−−−−−−−→
( ⊔
N∈Set

Irr(GN )
)

Set×
.

As before, the subscript Set× indicates the quotient space for the actions (1) and (4)
of the groupoid Set×.

Now consider

(6) MY,H :=
( ⊕

N∈Set
F∈Fun(YN ,Ĥ)

R(AutF )
)

Set×

which is a free abelian group with graded basis

(7)
( ⊔

N∈Set,
F∈Fun(YN ,Ĥ)

Irr(AutF )
)

Set×
.

The bijection of bases from (5) gives an isomorphism of groups Φ : MY,H

∼=−→
RY,H , and hence Theorem 3.1 furnishesMY,H with two Hopf-algebra structures. Our
purpose in this section is to describe these structures explicitly. Since Y and H will
be fixed we shall henceforth drop them from the notation when convenient, writing
M forMY,H and R for RY,H .

For each pair of finite sets K,L we have an SK,L-equivariant embedding

(8) Fun(YK , Ĥ)×Fun(YL, Ĥ)
∼=−→Fun(YK t YL, Ĥ) = Fun(YK,L, Ĥ) ↪→Fun(YKtL, Ĥ)

where the last arrow is defined by extending each function F : YK,L → Ĥ to a function
YKtL → Ĥ by defining F (y) = trivH for all y ∈ YKtL−(YKtYL). Here trivH denotes
the one-dimensional trivial representation of H. We shall denote the embedding (8)
by (FK , FL) 7→ FK t FL.

The standard embedding SK × SL ↪→ SKtL restricts to an embedding AutFK ×
AutFL ↪→ Aut(FK t FL), and so we have an induction functor

indAut(FKtFL)
AutFK×AutFL : Rep(AutFK ×AutFL)→ Rep(Aut(FK t FL)).
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On the free abelian group M we define a graded multiplication M⊗ZM → M as
the direct sum of the maps

(9) R(AutFK)⊗Z R(AutFL)
∼=−→ R(AutFK ×AutFL) ind−−→ R(Aut(FK t FL)).

The transitivity of induction ensures thatM becomes an associative graded algebra
with this multiplication; the unit is the trivial representation of the trivial automor-
phism group AutF∅, where F∅ ∈ Fun(Y∅, Ĥ) is the empty function.

Proposition 3.4. The map Φ :M→R is an isomorphism of graded algebras.

Proof. We already know that Φ is a graded isomorphism of abelian groups. The map
Φ∅ : R(AutF∅) → R(G∅) sends the trivial representation to the trivial representa-
tion, which is to say, Φ sends the unit ofM to the unit of R.

The proposition thus amounts to the assertion that for all finite sets K,L, and all
FK ∈ Fun(YK , Ĥ) and FL ∈ Fun(YL, Ĥ), the diagram

(10) Rep(GK,L)
iKtLK,L // Rep(GKtL)

Rep(AutFK ×AutFL)

Φ⊗Φ

OO

ind // Rep(Aut(FK t FL))

Φ

OO

commutes. This commutativity is a special case of [7, Theorems 3.6 & 3.14]. To
be specific, set G = GKtL, L = GK,L, U = U0 = UKtLK,L , V = V0 = {1}, G0 =
Fun(YKtL, H), L0 = Fun(YK,L, H), and ψ = πFK ⊗k πFL ∈ Irr(Fun(YK,L, H)). (We
are writing G (etc. ) to designate the object called G (etc. ) in [7, Section 3].) We
then have, still in the notation of [7], ϕ = πFKtFL , L(ψ) = (AutFK × AutFL) n
Fun(YK,L, H), G(ϕ) = Aut(FK t FL) n Fun(YKtL, H), U(ϕ) = U, V(ϕ) = V, L(ψ) =
AutFK × AutFL, G(ϕ) = Aut(FK t FL), and U(ϕ) = V(ϕ) = {1}. The cocycles
appearing in [7, Theorem 3.14] are trivial in this instance. All of these identifications
being made, the functor i appearing in [7, Theorem 3.6] is the functor iKtLK,L , while
the functor iϕ

′

U(ϕ),V(ϕ) appearing in [7, Theorem 3.14] is the usual induction functor
Rep(AutFK ×AutFL)→ Rep(Aut(FK t FL)). Pasting together the two commuting
diagrams from [7, Theorems 3.6 & 3.14] then yields the commuting diagram (10). �

To describe the comultiplication maps on M we need some more notation. For
each F ∈ Fun(YN , Ĥ) and each subset K ⊆ N we let F |YK be the restriction of the
function F to the subset YK ⊆ YN , and we let

(AutF )K = AutF ∩SK,Kc = {w ∈ AutF | wK = K}
be the stabiliser of K for the action of AutF ⊆ SN on the power set P(N). The group
(AutF )K leaves the subsets YK , YKc ⊆ YN invariant, and we obtain an embedding of
groups

(AutF )K
w 7→(w|YK ,w|YKc )
−−−−−−−−−−−−→ Aut(F |YK )×Aut(F |YKc ) ⊆ SK × SL.

Now given F ∈ Fun(YN , Ĥ) and a representation γ of AutF we define
(11)
∆Mγ :=

∑
AutF (K)∈AutF\P(N)

indAut(F |YK )×Aut(F |YKc )
(AutF )K

(
(resAutF

(AutF )K γ)⊗kπF |YN−YK,Kc
)
.

We are summing over a set of representatives for the set AutF\P(N) of AutF -
orbits in P(N); the group (AutF )K acts on the representation πF |YN−YK,Kc =⊗

y∈YN−YK,Kc F (y) by permuting the tensor factors; and each summand on the
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right-hand side of the formula is regarded as an element ofM⊗ZM via the canonical
isomorphisms R(G×G′) ∼= R(G)⊗ZR(G′). Note that when H is abelian, so that each
of its irreducible representations is one-dimensional, the representation πF |YN−YK,Kc
is the trivial one-dimensional representation of (AutF )K , so the above formula
simplifies to

(12) ∆Mγ :=
∑

AutF (K)∈AutF\P(N)

indAut(F |YK )×Aut(F |YKc )
(AutF )K resAutF

(AutF )K γ (H abelian).

To define the second comultiplication δM we need one more piece of terminology:
the support of a function F ∈ Fun(YN , Ĥ) is defined by suppF = {y ∈ YN | F (y) 6=
trivH}. This is an AutF -invariant subset of YN .

Now for F ∈ Fun(YN , Ĥ) and γ ∈ Rep(AutF ) we define

(13) δMγ :=
∑

AutF (K)∈AutF\P(N)
suppF⊆YK,Kc

indAut(F |YK )×Aut(F |YKc )
(AutF )K resAutF

(AutF )K γ.

Finally, we define εM : M → Z by declaring that for the empty function F∅ ∈
Fun(Y∅, Ĥ) the map εM : R(AutF∅)→ Z sends the trivial representation to 1, while
for all N 6= ∅ and all F ∈ Fun(YN , Ĥ) the map εM : R(AutF ) → Z is identically
zero.

Corollary 3.5. The graded algebra isomorphism Φ : M → R of Proposition 3.4
relates the maps ∆M, δM, and εM defined above to the structure maps ∆, δ, and ε
on R as follows:

∆Φ = (Φ⊗ Φ)∆M, δΦ = (Φ⊗ Φ)δM, and εΦ = εM.

Consequently the graded algebraM equipped with the comultiplication ∆M and counit
εM becomes a connected, graded, commutative, and cocommutative Hopf algebra; while
the graded algebra M equipped with the comultiplication δM, the counit εM, and the
basis (7) becomes a PSH algebra.

Proof. The identity εΦ = εM is easily verified: Φ is an isomorphism of unital graded
algebras, and ε and εM are the inverses of the respective unit maps.

To verify the formula for ∆M we fix a function F ∈ Fun(YN , Ĥ), a representation
γ of AutF , and a subset K ⊆ N . We will prove that the term
(14) (∆Φγ)K := resNK,Kc indGNGF (γ n πF )
corresponding to the orbit SN (K) in the definition of ∆ is equal to the sum

(15) (Φ⊗ Φ)(∆Mγ)K

=
∑

AutF (L)∈
AutF\SN (K)

(Φ⊗ Φ) indAut(F |YL )×Aut(F |YLc )
(AutF )L

(
(resAutF

(AutF )L γ)⊗k πF |YN−YL,Lc

)

of the images, under Φ⊗Φ of the terms in the sum (11) associated to the AutF -orbits
in SN (K).

Choose a set W of representatives for the double-coset space AutF\SN/SK,Kc .
Observing that

GF \GN/GK,Kc

= (AutF n Fun(YN , H))\(SN n Fun(YN , H))/(SK,Kc n Fun(YK,Kc , H))
∼= AutF\SN/SK,Kc

shows that W is also a set of representatives for GF \GN/GK,Kc .

Algebraic Combinatorics, Vol. 5 #1 (2022) 106



Combinatorial Hopf algebras from wreath products

Now SK,Kc is precisely the isotropy group of K for the action of SN on P(N),
and so the map w 7→ AutF (wK) gives a bijection W ∼= AutF\SN (K). Applying
the standard Mackey formula [16, Theorem 1] to (14), using the set of double-coset
representatives W and recalling that the relation Adw ρ = ρ holds in R, we find

(16)

(
∆Φγ

)
K

=
∑
w∈W

Adw−1 ind
wGK,Kc
wGK,Kc∩GF resGFwGK,Kc∩GF (γ n πF )

=
∑

AutF (L)∈AutF\SN (K)

indGL,LcGL,Lc∩GF resGFGL,Lc∩GF (γ n πF ).

For each L ∈ SN (K) we have GL,Lc ∩ GF = (AutF )L n Fun(YL,Lc , H). The
restriction of the representation γ n πF to this group is equal to

(resAutF
(AutF )L γ) n (πF |YL ⊗k πF |YLc ⊗k πF |YN−YL,Lc ).

The group Fun(YL,Lc , H) acts trivially in the representation πF |YN−YL,Lc , so we may
rewrite this last displayed representation as(

(resAutF
(AutF )L γ)⊗k πF |YN−YL,Lc

)
n (πF |YL ⊗k πF |YLc ).

Temporarily writing AL := Aut(F |YL)×Aut(F |YLc ), BL := Fun(YL,Lc , H), and ZL :=
YN − YL,Lc to compactify the notation, we continue the computation from (16) to
find(

∆Φγ
)
K

=
∑

AutF (L)

indGL,Lc(AutF )LnBL

((
(resAutF

(AutF )L γ)⊗k πF |ZL

)
n (πF |L ⊗k πF |Lc )

)
=

∑
AutF (L)

indGL,LcALnBL indALnBL(AutF )LnBL

((
(resAutF

(AutF )L γ)⊗k πF |ZL

)
n (πF |L ⊗k πF |Lc )

)
=

∑
AutF (L)

indGL,LcALnBL

((
indAL(AutF )L

(
(resAutF

(AutF )L γ)⊗k πF |ZL

))
n (πF |L ⊗k πF |Lc )

)
=

∑
AutF (L)

(Φ⊗ Φ) indAL(AutF )L

(
(resAutF

(AutF )L γ)⊗k πF |ZL

)
= (Φ⊗ Φ)(∆Mγ)K

as required.
We turn now to the relation δΦ = (Φ⊗Φ)δM, keeping all of the notation established

so far. To obtain (δΦγ)K from (∆Φγ)K we must project the latter onto the space
of UNK,Kc-fixed vectors. Equivalently, we must project each of the representations
ρL := indGL,LcGL,Lc∩GF resGFGL,Lc∩GF (γ n πF ) occuring in the last line of (16) onto its
subspace of UNL,Lc-invariants. The group UNL,Lc acts on ρL by a sum of SL,Lc-conjugates
of the irreducible representation πF |YN−YL,Lc , and so the space of UNL,Lc -fixed vectors
will be zero if one of the factors F (y) (for y ∈ YN − YL,Lc) is nontrivial; while on the
other hand this space of invariants will be all of ρL if all of the F (y) are trivial. Let
us once again write ZL := YN − YL,Lc . Since F (y) = trivH for all y ∈ ZL precisely
when suppF ⊂ YL,Lc , we obtain from (3.2)(

δΦγ
)
K

=
∑

AutF (L)∈
AutF\SN (K);
suppF⊆YL,Lc

(Φ⊗ Φ) indAut(F |YL )×Aut(F |YLc )
(AutF )L

(
(resAutF

(AutF )L γ)⊗k πF |ZL

)

=
∑

AutF (L)∈
AutF\SN (K);
suppF⊆YL,Lc

(Φ⊗ Φ) indAut(F |YL )×Aut(F |YLc )
(AutF )L resAutF

(AutF )L γ

= (Φ⊗ Φ)(δMγ)K
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as required. �

Remark 3.6 (Structure of the PSH algebra Mδ
Y,H). Zelevinsky’s structure theorem

for PSH algebras [24, Theorems 2.2 & 3.1] identifies the PSH algebra Mδ
Y,H with a

tensor product of copies of the Hopf algebra SymZ of symmetric functions, indexed by
the set of primitive irreducible elements ofMδ

Y,H . (Here irreducible elements are, by
definition, elements of the distinguished basis (7).) The set of primitive irreducibles
can readily be identified from the formula (13) for the comultiplication δM. For each
finite set N 6= ∅ let us call a function F ∈ Fun(YN , Ĥ) primitive if suppF 6⊆ YK,Kc

for any K ( N . We denote by Fun(YN , Ĥ)prim the set of all such functions. The
empty function F∅ ∈ Fun(Y∅, Ĥ) is, by definition, not primitive.

For example:
(1) If #N = 1 then every function in Fun(YN , Ĥ) is primitive. If Y = id then

these are the only primitive functions.
(2) For YN = N2, if we identify Fun(YN , Ĥ) with the set of N ×N matrices with

entries in Ĥ, then the non-primitive functions are those whose corresponding
matrix can be put into block-diagonal form

[ ∗ trivH
trivH ∗

]
by conjugating by a

permutation matrix.
(3) For YN = SN − {idN} a function F ∈ Fun(YN , Ĥ) is primitive if and only if

its support generates a transitive subgroup of SN .
The set of irreducible primitive elements of Mδ

Y,H is now the following subset of
the canonical basis:

Prim(Y,H) :=
( ⊔

N 6=∅
F∈Fun(YN ,Ĥ)prim

Irr(AutF )
)

Set×
.

As noted in [24, 4.19, 7.4], the structure theory of PSH algebras gives a parametrisa-
tion of the irreducible representations of the groups GN (Y,H) in terms of partition-
valued functions on the set Prim(Y,H). In contrast to the cases YN = ∅ and YN = N
considered in [24], this parametrisation for a general Young set does not necessar-
ily reduce the classification of the irreducible representations of the GN (Y,H)s to a
manageable problem. In the example considered in Section 4, for instance, the set of
primitive irreducibles contains all irreducible representations of all finite groups; see
Remark 4.2.

3.3. The basic subalgebra. We continue to fix a Young set Y and auxiliary group
H, and often omit them from the notation. We are going to construct Hopf subalgebras
B∆/δ of our Hopf algebrasM∆/δ ∼= R∆/δ from the representations of the base group
Fun(YN , H) ⊆ GN . When H is abelian the algebra B∆ is the Hopf algebra associated
by Schmitt in [17, Section 3.3] to the coherent exponential species N 7→ Fun(YN , Ĥ);
see Proposition 3.9.

As an additive group we define
B = BY,H :=

( ⊕
N∈Set

R(Fun(YN , H))
)

Set×

where the subscript Set× again indicates coinvariants by set isomorphisms: that is,
we impose the relation π = Adw π in B for all representations π of Fun(YN , H) and
all bijective maps w : N →M . Thus B is a free abelian group with basis(⊔

N

{πF | F ∈ Fun(YN , Ĥ)}
)

Set× .

We grade B by putting R(Fun(YN , H)) in degree #N .
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The operation

Fun(YK , Ĥ)× Fun(YL, Ĥ) (FK ,FL)7→FKtFL−−−−−−−−−−−−→ Fun(YKtL, Ĥ)

of (8) induces a multiplication

R(Fun(YK , H))⊗Z R(Fun(YL, H))→ R(Fun(YKtL, H)),

turning B into an associative graded algebra, with unit πF∅ (the one-dimensional
trivial representation of the trivial group Fun(Y∅, H)). We define the counit εB by
εBπF∅ = 1 and εBπF = 0 for all other F .

Given F ∈ Fun(YN , Ĥ) we define

(17)

∆BπF :=
∑
K⊆N

(
dim πF |YN−YK,Kc

)
πF |YK ⊗ πF |YKc and

δBπF :=
∑
K⊆N

suppF⊆YK,Kc

πF |YK ⊗ πF |YKc .

Here we have
dim πF |YN−YK,Kc =

∏
y∈YN−YK,Kc

dimF (y)

where dim denotes the dimension of the underlying k-vector space. When H is abelian
all of these dimensions are 1 and so the formula for ∆B simplifies to

(18) ∆BπF =
∑
K⊆N

πF |YK ⊗ πF |YKc (H abelian).

Example 3.7. Taking H = 1 the trivial group, and Y an arbitrary Young set, there
is a unique FN ∈ Fun(YN , Ĥ) for each finite set N , and the map πFN 7→ x#N induces
an isomorphism BδY,1 = B∆

Y,1
∼=−→ Z[x] to the binomial Hopf algebra over Z, i.e. Z[x]

with its usual multiplication and with comultiplication ∆(xn) =
∑n
k=0

(
n
k

)
xk ⊗ xn−k.

For each finite group G we let regG be the regular representation: i.e. the repre-
sentation on kG by permuting coordinates.

Proposition 3.8. The map

reg : B →M, πF 7→ regAutF

is an embedding of unital graded algebras, and it satisfies

∆M reg = (reg⊗ reg)∆B, δM reg = (reg⊗ reg)δB, and εM reg = reg εB.

Thus the comultiplication maps ∆B and δB each equip B with the structure of a con-
nected, commutative and cocommutative graded Hopf algebra.

Note that the map reg : B → M does not send irreducibles to irreducibles. In
particular, Bδ is not a PSH algebra, as is already evident in Example 3.7.

Proof. The map reg is clearly injective, graded, and intertwines the units and counits.
It is also easy to see that reg is a morphism of algebras: given FK ∈ Fun(YK , Ĥ) and
FL ∈ Fun(YL, Ĥ), the tensor product regFK ⊗k regFL is the regular representation
of AutFK × AutFL, and performing the multiplication in M – i.e. inducing this
representation up to Aut(FKtFK) – gives the regular representation of Aut(FKtFK).

It remains to prove that ∆M reg = (reg⊗ reg)∆B and δM reg = (reg⊗ reg)δB. To
do this we first note that for each w ∈ AutF and each K ⊆ N we have πF |YwK =
πF |wYK = Adw π(w−1F )|YK = πF |YK in B. So the summands in the definition (17) are
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constant on the AutF -orbits in P(N). The number of sets wK in the orbit AutF (K) is
equal to the index [AutF : (AutF )K ], and so we may rewrite the definitions as follows:

∆BπF :=
∑

AutF (K)∈AutF\P(N)

(
dim πF |YN−YK,Kc

)
[AutF : (AutF )K ]πF |YK ⊗ πF |YKc

δBπF :=
∑

AutF (K)∈AutF\P(N)
suppF⊆YK,Kc

[AutF : (AutF )K ]πF |YK ⊗ πF |YKc .

Comparing the above formulas with the definitions (11) and (13) of ∆M and δM,
we see that we must prove that for all K ⊆ N and all F ∈ Fun(YN , Ĥ) that

indAut(F |YK )×Aut(F |YKc )
(AutF )K

(
(resAutF

(AutF )K regAutF )⊗k πF |YN−YK,Kc

)
= (dim πF |YN−YK,Kc )[AutF : (AutF )K ] regAut(F |YK )×Aut(F |YKc ) .

Since ind sends regular representations to regular representations it will suffice to
prove that

(19)
(

resAutF
(AutF )K regAutF

)
⊗k πF |YN−YK,Kc

= (dim πF |YN−YK,Kc )[AutF : (AutF )K ] reg(AutF )K .

For every group G, subgroup G′, and representation ρ ∈ Rep(G′) we have

resGG′ regG = [G : G′] regG′ and regG′ ⊗kρ = (dim ρ) regG′

so the equality (19) does hold. �

When H is abelian the Hopf algebra B∆ is the same as one constructed in [17], as
we shall now explain.

Proposition 3.9. Let Y be a Young set and let H be a finite abelian group.
(1) The contravariant functor E : Setinj → Set defined on objects by N 7→

Fun(YN , Ĥ) and on morphisms by w 7→ (F 7→ F ◦Yw) is a coherent exponen-
tial R-species as defined in [17, 3.3]: it is the exponential of the contravariant
functor Set× → Set× given by N 7→ Fun(YN , Ĥ)prim.

(2) The Hopf algebra B∆
Y,H is isomorphic to the Hopf algebra BE associated to the

coherent exponential species E in [17, 3.3].

Proof. Fix a finite set N and a function F ∈ Fun(YN , Ĥ). There is a unique partition
λ = (Li | i ∈ I) ∈ PartN and primitive functions Fi ∈ Fun(YLi , Ĥ)prim such that
F =

⊔
i∈I Fi: namely, take λ :=

∧
suppF⊆Yλ′

λ′ and, writing λ = (Li | i ∈ I), take
Fi := F |Li . The map sending F to the assembly {Fi | i ∈ I} then identifies E with the
exponential species exp Fun(Y, Ĥ)prim. The coherence of this species amounts to the
property that for each subset K ⊆ N we have F |K =

⊔
i Fi|K∩Li , where the Li and

Fi are as above; this is clear, since supp(F |K) = K∩suppF ⊆ K∩Yλ, and Fi = F |Li .
Now the identification between Schmitt’s BE and our B∆

Y,H follows immediately from
a comparison of the definitions of multiplication and comultiplication in these two
Hopf algebras. �

3.4. The canonical character and symmetric functions. We conclude our
general study of the Hopf algebras R∆/δ

Y,H ,M∆/δ
Y,H , and B∆/δ

Y,H by observing that they all
carry a canonical Z-valued character, and hence a canonical Hopf-algebra homomor-
phism into the Hopf algebra of symmetric functions.
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Definition 3.10. Let Y be a Young set and let H be a finite group, and consider
the algebras R = RY,H , M = MY,H , and B = BY,H . We define Z-linear maps
ζR : R → Z, ζM :M→ Z and ζB : B → Z as follows:

• For each finite set N and each ρ ∈ Irr(GN (Y,H)),

ζR(ρ) =
{

1 if ρ = trivGN ,
0 otherwise.

• For each F ∈ Fun(YN , Ĥ) and each γ ∈ Irr(AutF ),

ζM(γ) =
{

1 if suppF = ∅ and γ = trivAutF ,

0 otherwise.

• For each F ∈ Fun(YN , Ĥ),

ζB(πF ) =
{

1 if suppF = ∅,
0 otherwise.

Lemma 3.11. Each of the maps ζ defined above is an algebra homomorphism, and the
diagram

B
reg //

ζB

&&

M

ζM

��

Φ
∼=

// R

ζR
xxZ

commutes. Here Φ is the isomorphism of Proposition 3.4.

Proof. We will prove that the diagram commutes and that ζR is an algebra homo-
morphism. Since the maps B →M→R are algebra homomorphisms, this will imply
that ζM and ζB are also algebra homomorphisms.

For each F ∈ Fun(YN , Ĥ) the regular representation of AutF decomposes as one
copy of the trivial representation plus some nontrivial representations. We thus have

ζM reg(πF ) = ζM(trivAutF ) +
∑

ζM

(
nontrivial

representations

)
=
{

1 if suppF = ∅,
0 otherwise,

which is equal to ζB(πF ). So the left-hand triangle in the diagram commutes.
Next, given F ∈ Fun(YN , Ĥ) and γ ∈ Irr(AutF ), recall that the isomorphism Φ :

M→R of Proposition 3.4 sends γ ∈ Irr(AutF ) to the representation indGNGF (γnπF )
of GN . This representation is trivial precisely when πF is the trivial representation
of Fun(YN , H) – i.e. when suppF = ∅ – and when γ is the trivial representation of
AutF = SN . Thus ζRΦ(γ) = ζM(γ), and so the diagram in the lemma commutes.

Finally, to show that ζR is an algebra homomorphism, fix finite sets K and L and
irreducible representations ρK ∈ Irr(GK) and ρL ∈ Irr(GL). The product ρKρL of
these representations in R is the representation iKtLK,L (ρK ⊗k ρL) of GKtL. Since iNK,L
is adjoint to rNK,L (Lemma 2.8), and since rNK,L(trivGN ) = trivGK,L (obviously), we
have

ζR(ρKρL) = dim HomGN

(
trivGN , iNK,L(ρK ⊗k ρL)

)
= dim HomGK,L

(
trivGK,L , ρL ⊗k ρL

)
.

The last intertwining space is one-dimensional if both ρK and ρL are trivial, and it is
zero otherwise. Thus ζR(ρKρL) = ζR(ρK)ζR(ρL) as required. �
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Let SymZ denote the Hopf algebra of symmetric functions, in variables x1, x2, . . .,
with Z coefficients. It follows from [2, Theorem 4.3] and Lemma 3.11 that there is a
commuting diagram of morphisms of Hopf algebras

(20) B∆ reg //

ΨB
''

M∆

ΨM

��

Φ
∼=

// R∆

ΨR
ww

SymZ

determined uniquely by the requirement that
ΨR(ρ)(1, 0, 0, . . .) = ζR(ρ) for all ρ ∈ R.

(There is also a corresponding diagram for Bδ,Mδ, and Rδ, but here we shall focus
on the ∆ Hopf algebras.) We are going to compute the maps Ψ explicitly in terms of
monomial symmetric functions, assuming the auxiliary group H to be abelian. First
we shall need some more notation.

Consider the set CompN of compositions of N : these are ordered lists κ =
(K1, . . . ,K`) of mutually disjoint, nonempty blocks Ki ⊆ N satisfying

⋃
iKi = N .

Each composition κ determines a partition κ ∈ PartN by forgetting the order of
the blocks, and we shall accordingly extend the notation previously established for
partitions to compositions: thus Gκ means Gκ, and so on.

As with partitions, the group SN acts on CompN . The isotropy group of κ ∈
CompN is precisely the Young subgroup Sκ ⊆ SN . The SN -orbits in CompN are
parametrised by the set of integer compositions Comp#N – i.e. the set of ordered
lists of positive integers summing to #N – via the map sending a set composition
κ = (K1, . . . ,K`) to the integer composition #κ = (#K1, . . . ,#K`). For each integer
composition α ∈ Comp#N we let CompN,α denote the corresponding orbit:

CompN,α := {κ ∈ CompN | #κ = α}.

Now for each function F ∈ Fun(YN , Ĥ), and each integer composition α ∈ Comp#N ,
we define

CompF,α := {κ ∈ CompN,α | suppF ∩ Yκ = ∅}.
The action of SN on CompN restricts to an action of AutF on CompF,α, and we let

ρF,α : AutF → GL(kCompF,α)
be the corresponding permutation representation.

For each integer composition α ∈ Compn we let Mα denote the associated mono-
mial quasisymmetric function [21, 7.19]. Although we will ultimately be writing down
formulas for symmetric functions, the formulas are more natural when written in
terms of the quasisymmetric functions Mα, and so we shall present our functions in
that form.

We now return to the diagram (20). An explicit formula, involving iterated comul-
tiplication, is given in [2, (4.2)] for the Hopf-algebra morphism to SymZ induced by a
character. In the case of the Hopf algebra R∆, where the comultiplication ∆ is given
by the simple formula (2), the iterates of the comultiplication are easily computed,
and the formula [2, (4.2)] for the map ΨR : R → SymZ takes a correspondingly simple
form: for each representation ρ of GN we have

(21) ΨR(ρ) =
∑

α∈Comp#N

(
dim ρGκα

)
Mα

where κα is any element of the orbit CompN,α, and dim ρGκα is the k-dimension of
the space of Gκα-fixed vectors in the representation ρ. The formula (21) is valid for all
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auxiliary groups H. We shall now use this formula and the diagram (20) to compute
the maps ΨM and ΨB, under the assumption that H is abelian.

Proposition 3.12. Let Y be a Young set, let H be a finite abelian group, and consider
the Hopf algebras M = M∆

Y,H and B = B∆
Y,H . The Hopf-algebra morphism ΨM :

M→ SymZ induced by the character ζM is given, for each finite set N , each function
F ∈ Fun(YN , Ĥ), and each representation γ of AutF , by

ΨM(γ) =
∑

α∈Comp#N

(dim HomAutF (ρF,α, γ))Mα.

The Hopf-algebra morphism ΨB : B → SymZ is given, for each F ∈ Fun(YN , Ĥ), by

ΨB(πF ) =
∑

α∈Comp#N

(
# CompF,α

)
Mα.

Proof. Fix N , F , and γ, let α ∈ Comp#N be an integer composition, and let κα
be any element of CompN,α. Since ΨM = ΨR ◦ Φ the formula (21) shows that the
coefficient of Mα in ΨM(γ) is the dimension of (indGNGF (γ n πF ))Gκα . The Mackey
formula for ind and res implies that this dimension is equal to

(22)
∑

GFwGκα∈GF \GN/Gκα

dim HomwGκα∩GF (triv, γ n πF ).

Considering the double-coset space indexing this last sum, we find
GF \GN/Gκα = (AutF n Fun(YN , H))\(SN n Fun(YN , H))/(Sκα n Fun(Yκα , H))

∼= AutF\SN/Sκα .
Now recall that Sκα is the isotropy group and CompN,α is the orbit of κα for the
action of SN on CompN ; thus the map w 7→ wκα induces a bijection

AutF\SN/Sκα
∼=−→ AutF\CompN,α .

For each w ∈ SN , setting κ = wκα, we have
wGκα ∩GF = (Sκ ∩AutF ) n Fun(Yκ, H) = (AutF )κ n Fun(Yκ, H)

where (AutF )κ indicates the isotropy group of κ in AutF . Making these identifica-
tions, (22) becomes

(23)
∑

AutF (κ)∈AutF−CompN,α

dim Hom(AutF )κnFun(Yκ,H)(triv, γ n πF ).

For each κ ∈ CompN,α the abelian group Fun(Yκ, H) acts on the representation γn
πF by the character πF |Yκ . So the representation γnπF is either trivial on Fun(Yκ, H),
or else it contains no nonzero Fun(Yκ, H)-fixed vectors. The former possibility occurs
precisely when suppF ∩Yκ = ∅; recall that this is, by definition, the condition that κ
belong to CompF,α. Now the character πF is trivial on AutF , and so (23) is equal to∑

AutF (κ)∈AutF\CompF,α

dim Hom(AutF )κ(triv, γ)

=
∑

AutF (κ)∈AutF\CompF,α

dim HomAutF

(
indAutF

(AutF )κ triv(AutF )κ , γ
)

where the equality is Frobenius reciprocity. The representation indAutF
(AutF )κ triv(AutF )κ

of AutF is the permutation representation associated to the orbit AutF (κ) ⊆
CompF,α, and so summing over these orbits gives the permutation representation
ρF,α as claimed.

Algebraic Combinatorics, Vol. 5 #1 (2022) 113



Tyrone Crisp & Caleb Kennedy Hill

Turning to ΨB, using the formula for ΨM just established and the equality
ΨB = ΨM ◦ reg, we find that for F ∈ Fun(YN , Ĥ) and α ∈ CompN the coefficient of
Mα in ΨB(πF ) is

dim HomAutF (ρF,α, regF ) = dim ρF,λ = # CompF,α . �

4. Graph automorphisms and colourings
For certain choices of Young set Y and auxiliary group H the Hopf algebras Mδ,∆

Y,H

and Bδ,∆Y,H , and the associated symmetric functions, admit descriptions in terms of
isomorphism classes, automorphism groups, and colourings of familiar combinatorial
objects. In this section we shall examine one such example.

4.1. The Hopf algebra of graphs and chromatic symmetric functions.
Our graphs are finite, simple, and undirected: so a graph Γ is a finite set V (Γ) of ver-
tices, and a finite set E(Γ) ⊆ {2-element subsets of V (Γ)} of edges. An isomorphism
of graphs Γ→ Λ is a bijection of vertex-sets V (Γ)→ V (Λ) whose induced map on the
power sets P(V (Γ)) → P(V (Λ)) restricts to a bijection E(Γ) → E(Λ). The disjoint
union of graphs is defined by taking disjoint unions of vertex- and edge-sets. For each
graph Γ and each subset U ⊆ V (Γ) the induced graph Γ|U is defined by V (Γ|U ) = U
and E(Γ|U ) = E(Γ) ∩ P(U).

Given a graph Γ and an integer composition α = (α1, . . . , α`) ∈ Comp#V (Γ), a
(proper) α-colouring of Γ is a function κ : V (Γ)→ {1, . . . , `} satisfying #κ−1(i) = αi
for all i, and κ(v) 6= κ(w) for all {v, w} ∈ E(Γ). The set of all such colourings is
denoted by ColΓ,α.

The Hopf algebra of graphs ([18, Section 12]) is

G =
⊕
[Γ]

Z[Γ]

where the sum is over the set of isomorphism classes [Γ] of finite graphs. We grade G
so that [Γ] sits in degree #V (Γ). The multiplication in G is [Γ]⊗Z [Λ] 7→ [Γ tΛ], and
the comultiplication is

∆G [Γ] =
∑

U∈P(V (Γ))

[Γ|U ]⊗Z [Γ|Uc ]

where U c = V (Γ)− U . The unit of G is the empty graph, and the counit is the map
G → Z sending the empty graph to 1 and all other graphs to zero. These operations
make G a connected, commutative and cocommutative Hopf algebra.

The algebra G has a canonical character ζG : G → Z, given by

ζG [Γ] =
{

1 if E(Γ) = ∅,
0 otherwise.

The associated Hopf morphism ΨG : G → SymZ sends [Γ] to the chromatic symmetric
function

XΓ :=
∑

α∈Comp#V (Γ)

(# ColΓ,α)Mα.

This symmetric function was first defined by Stanley in [20]. The connection to the
Hopf algebra G and the character ζG was pointed out in [2, Example 4.5].
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4.2. A Hopf algebra and symmetric functions associated to representa-
tions of graph automorphisms. We are going to study an enlargement of G. For
each graph Γ we let Aut Γ denote the group of graph-automorphisms of Γ. For each
isomorphism of graphs w : Γ→ Λ we have an isomorphism of Grothendieck groups

(24) Adw : R(Aut Γ) γ 7→γ(w−1·w)−−−−−−−−−−→ R(Aut Λ).
Consider the free abelian group

A :=
(⊕

Γ
R(Aut Γ)

)
Graph×

where the sum is over finite simple graphs Γ, and the subscript indicates that we
impose the relation γ = Adw γ for all γ and w as in (24) (that is, we take the
coinvariants of the groupoid of graph isomorphisms). We grade A so that R(Aut Γ)
sits in degree #V (Γ).

Given graphs Γ and Λ there is an obvious inclusion of groups
Aut Γ×Aut Λ ↪→ Aut(Γ t Λ)

whence an induction functor
indAut(ΓtΛ)

Aut Γ×Aut Λ : Rep(Aut Γ×Aut Λ)→ Rep(Aut(Γ t Λ)).
On the free abelian group A we define a graded multiplication A ⊗Z A → A as the
direct sum of the maps

(25) R(Aut Γ)⊗Z R(Aut Λ)
∼=−→ R(Aut Γ×Aut Λ) ind−−→ R(Aut(Γ t Λ)).

This product makes A into an associative graded algebra; the unit is the trivial
representation of the automorphism group of the empty graph.

Next, for each graph Γ and each subset U ⊆ V (Γ) we define
(Aut Γ)U := {w ∈ Aut Γ | w(U) = U}

to be the isotropy group of U for the action of Aut Γ on the power set P(V (Γ)). This
is by definition a subgroup of Aut Γ; it is also in a natural way a subgroup of the
product Aut(Γ|U )×Aut(Γ|Uc), via the map w 7→ (w|U , w|Uc).

Let ∆A : A → A⊗Z A be the graded Z-linear map defined, for each graph Γ and
each representation γ of Aut Γ, by

(26) ∆Aγ =
∑

Aut Γ(U)∈Aut Γ\P(V (Γ))

indAut(Γ|U )×Aut(Γ|Uc )
(Aut Γ)U resAut Γ

(Aut Γ)U γ.

Here the sum is over the Aut Γ-orbits of subsets of V (Γ), and we are using the canonical
isomorphisms R(G)⊗Z R(G′)

∼=−→ R(G×G′) to view each summand as an element of
R(Aut(Γ|U ))⊗Z R(Aut(Γ|Uc)) ⊂ A⊗Z A.

We also let εA : A → Z be the map sending the trivial representation of Aut∅ to
1, and all other irreducible representations to 0.

Let ζA : A → Z be the Z-linear map defined, for each graph Γ and each represen-
tation γ of Aut Γ, by

ζA(γ) =
{

1 if E(Γ) = ∅ and γ = trivAut Γ,

0 otherwise.
Finally, for each graph Γ and each integer composition α ∈ Comp#V (Γ) recall that

ColΓ,α is the set of proper α-colourings of Γ. The group Aut Γ acts on this set by
wκ(v) := κ(w−1v), and we let

ρΓ,α : Aut Γ→ GL(kColΓ,α)
be the corresponding permutation representation.
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Theorem 4.1.
(1) The comultiplication ∆A and counit εA make A into a connected, commuta-

tive, and cocommutative graded Hopf algebra.
(2) The map reg : G → A sending [Γ] to the regular representation of Aut Γ is an

embedding of Hopf algebras.
(3) The map ζA : A → Z is an algebra homomorphism, and the induced Hopf-

algebra homomorphism A → SymZ sends each representation γ of Aut Γ to
the symmetric function

XΓ,γ :=
∑

α∈Comp#V (Γ)

(
dim HomAut Γ(ρΓ,α, γ)

)
Mα.

(4) For each graph Γ we have XΓ,regAut Γ = XΓ, Stanley’s chromatic symmetric
function; and

XΓ =
∑

γ∈Irr(Aut Γ)

(dim γ)XΓ,γ

where dim γ is the dimension of the k-vector space underlying the representa-
tion γ.

Proof. Let E be the Young set with EN = {two-element subsets of N} (cf. Exam-
ples 2.2 and 3.2). We are going to prove the theorem by identifying A and G with the
Hopf algebrasM∆

E,S2
and B∆

E,S2
of Section 3.

We have Ŝ2 = {triv, sign}, so a function F ∈ Fun(EN , Ŝ2) is completely determined
by its support, suppF = F−1(sign). The map sending a function F ∈ Fun(EN , Ŝ2) to
the graph ΓF with V (ΓF ) = N and E(ΓF ) = suppF is a natural isomorphism between
Fun(EN , Ŝ2) and the set of graphs with vertex-set N , where “natural” means with
respect to set bijections N →M . In particular we have the equality AutF = Aut ΓF
of subgroups of SN .

These identifications yield grading-preserving bijections between the canonical
bases of ME,S2 and of A, and between the canonical bases of BE,S2 and of G. We
thus have isomorphisms of graded abelian groups

(27) ME,S2

R(AutF )3γ 7→γ∈R(Aut ΓF )−−−−−−−−−−−−−−−−−−−→∼=
A and BE,S2

πF 7→[ΓF ]−−−−−−→∼=
G

making the diagram

BE,S2

reg //

∼=
��

ME,S2

∼=
��

G
reg // A

commute. It is now an easy matter to match up the definitions of the Hopf-algebra
structures and conclude that the isomorphisms (27) intertwine the units, the counits,
the multiplications, the comultiplications, and the characters ζ on either side.

To prove the formula for XΓ,γ in part (3) it suffices to note that for each finite
set N , each function F ∈ Fun(EN , Ŝ2), and each integer composition α ∈ Comp#N ,
the map CompF,α → ColΓF ,α sending the composition (K1, . . . ,K`) to the proper α-
colouring Ki → {i} is a bijection that is equivariant for the action of AutF = Aut ΓF .
Thus the given formula for XΓ,γ is an instance of Proposition 3.12.

Finally, for part (4), recall that the chromatic symmetric function XΓ is the image
of [Γ] under the Hopf-algebra morphism G → SymZ induced by the character ζG , while
XΓ,regAut Γ is the image of [Γ] under the morphism induced by the character ζA ◦ reg.
Since ζG = ζA ◦ reg these two symmetric functions coincide. Now the map γ 7→ XΓ,γ
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is additive, and so the asserted decomposition of XΓ follows from the decomposition
of the regular representation of Aut Γ into irreducibles. �

Remark 4.2. We are concentrating in this section on the ∆ Hopf algebras, but much
of the above applies equally well to the δ Hopf algebras. The coproducts δG and
δA are defined by restricting the sums in the definitions of ∆G and ∆A to subsets
U ⊆ V (Γ) that are unions of connected components of Γ. The resulting PSH algebra
Aδ has for its set of primitive irreducible elements the union of the sets Irr(Aut Γ)
over the set of isomorphism classes of connected graphs Γ. Note that every finite
group arises as the automorphism group of a connected graph ([10] again), so the
set of primitive irreducibles is still extremely complicated. Note too that the only
primitive irreducible element of the Hopf algebra A∆ is the trivial representation of
the automorphism group of the graph with one vertex.

We conclude this paper some preliminary investigations of the symmetric functions
XΓ,γ ; these functions will be treated in greater detail elsewhere. We first record the
formal definition of the polynomials χΓ,γ discussed in the introduction:

Definition 4.3. For each graph Γ and each finite-dimensional representation γ of
Aut Γ, we denote by χΓ,γ ∈ Z[x] the polynomial obtained by specialisation from the
symmetric function XΓ,γ :

χΓ,γ(m) = XΓ,γ(1m) = dim HomAut Γ(kColΓ,m , γ)
where we recall that ColΓ,m is the set of proper colourings κ : V (Γ)→ [m].

Example 4.4. An application of Frobenius reciprocity yields the following alternative
formula for the symmetric function XΓ,γ :

XΓ,γ =
∑

α∈Comp#V (Γ)
Aut Γ(κ)∈Aut Γ\ColΓ,α

dim(γ(Aut Γ)κ)Mα,

where (Aut Γ)κ is the isotropy group and Aut Γ(κ) is the orbit of the colouring κ for
the action of Aut Γ on ColΓ,α; and γ(Aut Γ)κ is the space of (Aut Γ)κ-fixed vectors in
the representation γ. Putting γ = triv, the trivial representation of Aut Γ, we obtain

XΓ,triv =
∑

α∈Comp#V (Γ)

#(Aut Γ\ColΓ,α)Mα.

Specialising gives
χΓ,triv(m) = XΓ,triv(1m) = #(Aut Γ\ColΓ,m),

the orbital chromatic polynomial of Γ [5, 6, 13].

Example 4.5. For each n > 0 let Kn be the complete graph on n vertices: that is,
the graph in which each pair of vertices is joined by an edge. The only composition
α of n with ColΓ,α 6= ∅ is the composition (1, . . . , 1), and so we have

XKn = n!M(1,...,1).

The group AutKn = Sn acts simply transitively on the set ColKn,(1,...,1), and so the
permutation representation ρKn,(1,...,1) is isomorphic to the regular representation.
We thus have for each γ ∈ Irr(Sn) the equality

XKn,γ = (dim γ)M(1,...,1).

The decomposition of XKn given in part (4) of Theorem 4.1 thus boils down to the
standard fact that the order of the group AutKn equals the sum of squares of the
degrees of its irreducible representations.
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This last example is typical of graphs without symmetric colourings, as the follow-
ing proposition shows.

Proposition 4.6. For each graph Γ, the following are equivalent.
(1) The action of Aut Γ on the set ColΓ of all proper colourings of Γ is free. (That

is, no colouring is fixed by any nontrivial automorphism.)
(2) XΓ = (# Aut Γ)XΓ,triv.
(3) χΓ = (# Aut Γ)χΓ,triv.
(4) XΓ,γ = (dim γ)XΓ,triv for every γ ∈ Irr(Aut Γ).
(5) χΓ,γ = (dim γ)χΓ,triv for every γ ∈ Irr(Aut Γ).

Proof. Recall that for each α ∈ Comp#V (Γ) the coefficient of Mα in XΓ is # ColΓ,α,
while in XΓ,triv this coefficient is #(Aut Γ\ColΓ,α). Since an action of a finite group
G on a set S is free if and only if #S = #G ·#(G\S), we conclude that (1) and (2)
are equivalent. Applying the same considerations to the action of Aut Γ on the set
ColΓ,m for each positive integer m shows that (1) and (3) are equivalent.

For (4) and (5), note that if a finite group G acts on a finite set S, then the
permutation representation kS of G is isomorphic to a subrepresentation of kG ⊗
k#(G\S), and is isomorphic to that whole representation if and only G acts freely on
S. We thus have, for every γ ∈ Irr(G),

dim HomG(kS , γ) 6 dim HomG(kG ⊗ k#(G\S), γ) = (dim γ)#(G\S),

with equality holding for every γ if and only if G acts freely on S.
Applying this observation to the action of Aut Γ on ColΓ,α for each α ∈ Comp#V (Γ)

shows that the statements (1) and (4) are equivalent, and the same argument applied
to the action of Aut Γ on each ColΓ,m shows that (1) and (5) are equivalent. �

Example 4.7. The situation is more interesting for the graphs with many symmetric
colourings. To take an extreme example, consider for each n > 0 the graph Kn with
n vertices and no edges. We have

XKn
= Mn

(1) =
(∑

i
xi

)n
.

The additive subgroup S of A spanned by
⊔
n>0 Irr(AutKn) is a Hopf subalgebra:

it is the Hopf algebra of representations of the symmetric groups studied by Zelevin-
sky [24, §6]. For each n and each integer partition λ of n, let γλ be the irreducible
representation of Sn associated to λ, as explained for instance in [14, Chapter 2].
Then we have

XKn,γλ
= sλ

with sλ being the Schur function (see e.g. [21, Chapter 7]) associated to λ. Indeed,
the maps Ψ : γλ 7→ XKn,γλ

and Φ : γλ 7→ sλ are both Hopf algebra homomorphisms
from S to SymZ, and both maps yield the same character S → Z upon specialisation
at (1, 0, 0, . . .), and so the uniqueness in [2, Theorem 4.3] ensures that Ψ = Φ. The
decomposition of XKn

given by part (4) of Theorem 4.1 is thus the expansion of
(
∑
xi)n in Schur functions.

Example 4.8. For our final example we compute the symmetric functions XΓ,γ for
the butterfly graph Γ:

e

c

d

a

b

.
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Stanley computed the chromatic symmetric function XΓ in [20]. Let mα ∈ SymZ be
the monomial symmetric function associated to the integer composition α (that is,
the sum of the quasisymmetric functions Mβ over all integer compositions β obtained
from α by permuting the parts). In this notation, we have

XΓ = 4m(2,2,1) + 24m(2,1,1,1) + 120m(1,1,1,1,1).

Considering the complement Γ shows that the automorphism group of Γ is isomor-
phic to the dihedral group D4, generated by the 4-cycle r = (a d b c) and the involution
f = (a c)(b d). This group acts freely on ColΓ,(2,1,1,1) and ColΓ,(1,1,1,1,1), and so the
arguments from Proposition 4.6 show that for each γ ∈ Irr(Aut Γ) we have

XΓ,γ = cΓ,γm(2,1,1) + 3(dim γ)m(2,1,1,1) + 15(dim γ)m(1,1,1,1,1)

for some non-negative integer cΓ,γ .
To compute the coefficients cΓ,γ we must examine the permutation representation

coming from the action of Aut Γ on ColΓ,(2,2,1). This action is transitive, but not free:
for instance, the colouring

3

1

2

1

2
has isotropy {1, f}. We thus have cΓ,γ = dim γf , the dimension of the space of f -
fixed vectors in γ. These dimensions are easily computed from the character table of
Aut Γ ∼= D4, which we shall now recall.

The group Aut Γ has five conjugacy classes, represented by 1, r, r2, f , and rf . It
has four 1-dimensional representations – which we shall denote by triv, χ1, χ2, and
χ3 – and a single irreducible 2-dimensional representation ρ. The character table is
as follows:

D4 1 r r2 f rf
triv 1 1 1 1 1
χ1 1 −1 1 −1 1
χ2 1 −1 1 1 −1
χ3 1 1 1 −1 −1
ρ 2 0 −2 0 0

.

Computing the coefficients cΓ,γ = dim γf from this table, we find:
XΓ,triv = XΓ,χ2 = m(2,2,1) + 3m(2,1,1,1) + 15m(1,1,1,1,1)

XΓ,χ1 = XΓ,χ3 = 3m(2,1,1,1) + 15m(1,1,1,1,1)

XΓ,ρ = m(2,2,1) + 6m(2,1,1,1) + 30m(1,1,1,1,1).
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