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Combinatorial Hoptf algebras from
representations of families of wreath

products

Tyrone Crisp & Caleb Kennedy Hill

ABSTRACT We construct Hopf algebras whose elements are representations of combinatorial
automorphism groups, by generalising a theorem of Zelevinsky on Hopf algebras of representa-
tions of wreath products. As an application we attach symmetric functions to representations of
graph automorphism groups, generalising and refining Stanley’s chromatic symmetric function.

1. INTRODUCTION

In this paper we construct Hopf algebras whose elements are linear representations of
automorphism groups of certain combinatorial structures. We do this by generalising a
theorem of Zelevinsky [24, 7.2] on Hopf algebras of representations of wreath products
S, X H™ to more general wreath products, and then applying Clifford theory to pass
from wreath products to combinatorial automorphism groups. Let us illustrate and
motivate the construction with an example.

The chromatic polynomial of a finite, simple, undirected graph I' is the poly-
nomial xr satisfying xr(m) = # Colr,,, the number of proper m-colourings of T’
(i.e. labellings of the vertices of I by numbers 1, ..., m such that adjacent vertices have
distinct labels). This much-studied graph invariant was first introduced by Birkhoff
in [4]. A variation on xr, introduced in [13] and further studied and generalised in [5, 6]
under the name orbital chromatic polynomial, counts #(Aut I'\Colr ,,,), the number
of orbits in Colp ,, for the natural action of the automorphism group AutI'. (In this
paper the symbol “\” will always denote an orbit space; for set-theoretic differences
we shall write X —Y".) To illustrate, the graphs

o/.\o
\./

have xr = xa, but #(AutI'\Colr 3) = 3 while #(Aut A\Colp 3) = 6. (This pair of
graphs is taken from [20, Figure 1].)

One can generalise and refine these invariants using finite harmonic analysis. Let-
ting k©°'rm be the permutation representation of AutT' corresponding to the action
of AutT on Colr ,,, (k being some algebraically closed field of characteristic zero), we
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consider for each finite-dimensional k-linear representation « of Aut I" the intertwining

number

. . 1
XT,(m) = dim HomAutp(kC 1”",7) = m E chy(g) - # Col%,m
geAut’

where ch, is the character of the representation +, and Colf. , is the set of colourings

fixed by the automorphism g. Hanlon observed in [13, Theorem 2.1] that the cardi-
nalities of these fixed sets are themselves chromatic polynomials, and so each xr -
is a polynomial. Putting v = the regular representation gives the chromatic polyno-
mial, while putting v = the trivial one-dimensional representation gives the orbital
chromatic polynomial.

It is clear from the definition that the map v — xr,, is additive, and so decomposing
the regular representation into irreducibles gives

xe= > (dim9)xr,
~yEIrr(AutI')

where the sum runs over the set of isomorphism classes of irreducible representations.
The polynomials xr ., and the decomposition of xr that they afford, deserve closer
study. In particular, one would like to understand how these polynomials behave with
respect to unions and decompositions of graphs, and it is at this point that Hopf
algebras enter the picture.

The use of Hopf algebras to study assembly/disassembly constructions is well es-
tablished, both in combinatorics (see e.g. [3, 12, 15, 17, 18]) and in representation
theory (see e.g. [1, 11, 19, 22, 24]). Let us recall two examples of particular relevance
to the present discussion.

Our first example is the Hopf algebra of graphs G [17]: this is the free abelian group
with basis the set of isomorphism classes of finite simple graphs; with multiplication
given by disjoint union of graphs; and with comultiplication given by partitions into
pairs of subgraphs. The character G — Z given by I' — xr(1) induces, as shown in [2],
a morphism of Hopf algebras G — Sym; into the Hopf algebra of symmetric functions
with integer coefficients; this map sends I' to the chromatic symmetric function Xrp
introduced by Stanley in [20], and the chromatic polynomial xr can be recovered from
Xr by specialisation: xyp(m) = Xp(1™). For a discussion of how the Hopf-algebra point
of view illuminates certain properties of xr and Xr, see [12, 7.3].

Our second example of a Hopf algebra is the Hopf algebra of representations of
the symmetric groups S [24, §6]: this is the free abelian group with basis the set of
isomorphism classes of irreducible representations of the symmetric groups S, (for all
n > 0); with multiplication given by induction of representations, and comultiplication
by restriction of representations, along the standard inclusions Sy x S; < Sk4;. The
character S — Z sending each trivial representation to 1 and all other irreducible
representations to 0 induces, again via the technology of [2], a morphism of Hopf
algebras S — Symy that is in fact an isomorphism; this is the well-known Frobenius
characteristic map, sending the irreducible representation of S,, associated with a
partition A of n to the Schur function sy; see e.g. [21, 7.18].

In Section 4 of this paper, as an instance of the general results established in
Sections 2 and 3, we construct a Hopf algebra A that simultaneously generalises
both of the above examples. The underlying additive group of our Hopf algebra
A is free abelian with basis | | Irr(AutT'), the set of isomorphism classes of irre-
ducible representations of the automorphism groups of finite simple graphs (modulo
graph isomorphisms). The multiplication/comultiplication in .4 are given by combin-
ing union/decomposition of graphs with induction/restriction of representations. The
map sending vy € Irr(AutT') to xr (1) € Z induces a homomorphism of Hopf algebras
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A — Symyg, thus associating a symmetric function Xt , to each finite graph I' and
each finite-dimensional representation v of AutI'. The polynomial xr , defined above
is recovered from Xt , by specialisation.

The subalgebra of A corresponding to graphs with no edges is isomorphic to the
Hopf algebra S of representations of the symmetric groups, and the map & — Sym,,
obtained by restricting our map A — Symy is the Frobenius characteristic. On the
other hand, the map sending a graph I' to the regular representation of AutI' gives
an embedding of Hopf algebras G < A, and the decomposition of the regular repre-
sentation into irreducibles yields an equality of symmetric functions

X]_“ = Z (dlm'y)XpA/
~yEIrr(Aut I')

We thus obtain a refinement of the polynomial invariants xr , by symmetric functions,
generalising Stanley’s refinement of xr by Xr; and we obtain identities among the
Xr,, (and, by specialisation, among the xr ) for varying I" and 7 from the fact that
the map v +— Xr, is a homomorphism of Hopf algebras. The further study of the
graph invariants Xr , and xr. will be taken up in future work.

We now describe the connection with wreath products, still in the example of
graph colourings. For each n > 0 let E, denote the set of two-element subsets of
{1,...,n}. The symmetric group S, acts in a natural way on E,, and hence on
the group Fun(FE,,Ss) of functions E, — Ss, and on the set Irr(Fun(E,,S3)) of
irreducible representations of this abelian group. The S,-orbits in Irr(Fun(E,, S2))
can be identified with the isomorphism classes of graphs with n vertices, in such a
way that the stabiliser of a point in Irr(Fun(E,, S2)) is equal to the automorphism
group of the corresponding graph. Clifford theory (as explained in this context in [14,
Section 4.3]) then yields an identification

(*) |_|Irr(Aut I) = |_| Irr (S, x Fun(E,, S2))
T

n>0

between the basis for A and the irreducible representations of the wreath product
groups S, X Fun(E,, S3).

The representation theory of wreath products can be quite complicated: indeed,
the bijection (x) shows that classifying the irreducible representations of the groups
Sp X Fun(E,,, So) for all n means classifying all finite simple graphs up to isomorphism
and classifying the irreducible representations of all finite groups (since every finite
group is, as shown by Frucht [10], the automorphism group of a graph).

There is, however, one aspect of the representation theory of the wreath products
Sp X Fun(E,, S) that is rather more easily understood: namely, the way in which
the representations of these groups fit together for different n. Generalising work of
Zelevinsky [24], who considered wreath products of the form S,, x H™, we prove that
for each suitable family of S,-sets Y,,, and for each finite group H, the free abelian
group with basis | |, Irr(S, x Fun(Y,, H)) can be given a natural Hopf-algebra
structure. In fact we obtain three different (in general) Hopf algebra structures: one
a positive self-adjoint Hopf algebra as in [24], and another dual pair of non-PSH but
connected, commutative, and cocommutative Hopf algebras. (In the situation studied
by Zelevinsky these three Hopf algebras are all identical.) Our Hopf algebras come
equipped moreover with a canonical Z-valued character; as shown by Aguiar, Berg-
eron, and Sottile [2] this is equivalent to admitting a canonical homomorphism into
the Hopf algebra of symmetric functions. Putting Y;,, = F,, and H = S5 yields the
Hopf algebra A of representations of graph automorphisms, and the symmetric func-
tions Xr . More examples of this kind are possible: for example, letting Y;, be the
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set of all nonempty subsets of {1,...,n} has the effect of replacing graphs by hyper-
graphs; letting Y,, be the set of ordered two-element subsets gives directed graphs;
and replacing Sy by another group H has the effect of introducing labellings of the
edges of our (hyper)graphs by the nontrivial irreducible representations of H.

The paper is organised as follows. In Section 2 we first describe the families of sets
Y,, that go into our construction. The definition is easily stated: we consider endo-
functors on the category of finite sets and injective maps that preserve the empty set
and preserve intersections; then Y}, is the value of such a functor on the set {1,...,n}.
We then define induction and restriction functors between the representations of the
wreath products S, X Fun(Y,,, H) for varying n; we consider both the standard induc-
tion/restriction functors, and a variant of these functors similar to the parabolic in-
duction/restriction functors from the representation theory of reductive groups. These
functors become, in Section 3.1, the multiplication and comultiplication maps in our
Hopf algebras. In Section 3.2 we apply Clifford theory to yield a second description
of our Hopf algebras in terms of representations of automorphisms of certain combi-
natorial structures. In Section 3.3 we show that each of our Hopf algebras contains a
sub-Hopf-algebra of representations of the base group Fun(H,Y,,), an example being
the subalgebra G of A; and in Section 3.4 we compute the canonical maps from our
Hopf algebras to Sym,, under the assumption that the coefficient group H is abelian.
Section 4 then presents in more detail the example of A that we outlined above.

Our constructions bear a resemblance to known constructions of Hopf algebras
from species, such as those described in [17] and [3] for example, although as far as
we are aware the main construction that we study here has not previously appeared
in the literature beyond the special cases Yy = @ and Yy = N. There is however one
concrete point of overlap between our construction and [17]: if H is abelian then one
of the sub-Hopf-algebras that we construct in Section 3.3 — namely, the subalgebra
generalising the subalgebra G of A — is isomorphic to the Hopf algebra of a coherent
exponential species as defined in [17]; see Proposition 3.9.

2. YOUNG SETS AND WREATH PRODUCTS

2.1. YOUNG SETS. In this section we define the combinatorial objects from which we
shall construct families of wreath product groups.

We let Set denote the category of finite sets, while Set™ and Set™ denote the sub-
categories of bijective maps and injective maps, respectively. A functor ¥ : Set™ —
Set™ thus assigns to each finite set N a finite set Yy, and to each injective map
of finite sets w : N — M an injective map Yy, : Yy — Y. When M = N we ob-
tain an action of the symmetric group Sy of N on the set Yy. We will often write
w: Yy — Y, instead of Y,,; and in the case where w is the inclusion of N as a subset
of M we shall omit w from the notation entirely and regard Yy as a subset of Yj;.

inj

DEFINITION 2.1. A Young set is a functor Y : Set™ — Set™ satisfying Yo = @ and
Y NYy = Yk for all pairs of subsets K, L of the same finite set N.

The name “Young set” was chosen because these sets, and the families of groups
to which they give rise, play an analogous role in our construction to that played by
the Young subgroups in the representation theory of the symmetric groups.

ExAMPLES 2.2. In most of these examples we describe the action of the functor on
objects only, the action on morphisms being the obvious one.

(1) The empty example: Yy = & for all sets N. We denote this example by &.
(2) The basic example: Yy = N, the identity functor. We denote this example by
id.

Algebraic Combinatorics, Vol. 5 #1 (2022) 96



Combinatorial Hopf algebras from wreath products

(3) Products, coproducts, and composites: if Y and Y’ are Young sets, then so
are the product (Y xY’)n = Yn x Y};; the coproduct (YUY )y == Yy UY];
and the composite (Y oY)y = Yy](]. For instance, for each fixed m > 1 we
obtain a Young set id™ : N — N™ (where N™ = N X --- x N).

(4) Quotients: let Y be a Young set equipped with an action of a fixed group
G by natural transformations; then the quotient by the G-action yields a
Young set Y/G with (Y/G)y = Yn/G. For instance, taking Yy = N™, on
which G = §,,, acts by permuting coordinates, we obtain the Young set of
unordered m-tuples of elements of N.

(5) Subsets and multisets: the functor N — {nonempty subsets of N} is a Young
set, as is the functor N — {r-element subsets of N} for each r» > 1. More
generally, let m be a positive integer and let £ : {1,...,m} — P(N) be a
function (P denotes the power set and N = {0,1,...}). To these data we
associate the Young set

In € N with 0, and
YN:{f:N%{O,l,...,m} n & Nwith f(n) #0, an }

#£71() € £(i) for every i > 1

The map Yx — Yn associated to an injection of sets K <— N is given by
extending functions by 0. Taking m = 1 and £(1) = {1,2,3,...} gives the
Young set of nonempty subsets of N; taking m =1 and £(1) = {r} gives the
r-element subsets; while taking m > 2 gives multisets of elements of Yy with
up to m repetitions of each element, with the function £ imposing restrictions
on the number of times each allowed multiplicity occurs.

(6) Permutations: Yy = Sy — {idy}, the set of nontrivial permutations of N.
(Recall that “—” means the set-theoretic difference.) This is a Young set
with the action on morphisms given by assigning to each injective map of sets
w : K — N and each permutation g of K the permutation w,g of N defined by

wag(n) = {wg(k) if n =w(k) € w(K),

n otherwise.

2.2. FAMILIES OF WREATH PRODUCTS FROM YOUNG SETS. We begin with some
generalities on wreath products; see e.g. [14, Chapter 4] for more information.

Let W be a finite group acting on a finite set Y, and let H be another finite group.
The set Fun(Y, H) of functions Y — H is made into a group by setting (f1f2)(y) ==
fi(y) f2(y). The group W acts on Fun(Y, H) by (wf)(y) == f(w™ly), for w € W,
feFun(Y,H), and y € Y. The wreath product of W with H over Y is defined to be
the semidirect product W ixFun(Y, H). Thus as a set W xFun(Y, H) = W xFun(Y, H),
with group operation

(wi, f1) (w2, f2) = (wiws, (w3 " f1) f2).

The maps w — (w, 1) and f — (1, f) identify W and Fun(Y, H) with subgroups
of W x Fun(Y, H). The support of a function f € Fun(Y, H) is defined by supp(f) =
{y €Y | f(y) # 1u}. For each subset Y’ of Y we regard Fun(Y’, H) as a subgroup of
Fun(Y, H), namely the subgroup {f : Y — H | supp(f) C Y'}. If W’ is a subgroup of
W such that Y’ is W’-invariant, then the embeddings W/ C W C W x Fun(Y, H) and
Fun(Y’,H) C Fun(Y,H) C W x Fun(Y, H) give an embedding W’ x Fun(Y’, H) C
W x Fun(Y, H). If Wy acts on Y;, and Ws acts on Y, then there is an obvious
isomorphism

(W1 x Fun(Yy, H)) x (Wy x Fun(Ys, H)) =N (W1 x Wa) x Fun(Y; U Y, H).
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So much for generalities. We shall study the representation theory of the family of
wreath product groups

GN(Y, H) = SN X Fun(YN,H)
associated to a Young set Y and an auxiliary finite group H.

EXAMPLES 2.3.

(1) Gg(Y,H) = Sy x Fun(@, H) is always the trivial group.

(2) Gn(@,H) = Sy for every H, and Gy (Y, S1) = Sy for every Y.

(3) Writing [n] = {1,2,...,n}, we have G, (id, H) = S,, x H", the standard
wreath product studied in [24, §7]. For example, G|y(id, S2) is the hyperoc-
tahedral group, whose representations were first worked out by Young in [23].

(4) Gy (id%, C,) (where C,, is the cyclic group of prime order p) is isomorphic
to the group of those invertible n x n matrices over the ring Z/p?Z that
are congruent, modulo p, to a permutation matrix. An isomorphism is given
by identifying S, with the group of permutation matrices in GL,,(Z/p?Z);
identifying C,, with the additive group pZ/p®Z; and then identifying the group
Fun([n]?, C,) with the kernel of the reduction-modulo-p map GL,,(Z/p*Z) —
GL,(Z/pZ) by sending a function f to the matrix 1+ [f(4,7)]¢, j)en)2- One
can think of this group G|, (id?,C,) as a simplified model of GL,,(Z/p*Z).
The induction functors that we shall consider below are, in this example, the
analogues of the functors used to study the representations of GL,,(Z/p*7Z)
in [7], [9], and [8].

2.3. YOUNG SUBGROUPS OF Gn(Y,H). We are going to define analogues, in the
wreath products Gy (Y, H) = Sy X Fun(Yy, H), of the Young subgroups of the sym-
metric groups. We begin with some notation related to set partitions.

A weak partition of a finite set N is a finite multiset A = (L; | ¢ € I) of subsets
L; € N, called the blocks of A, having L; N L; = @ for i # j, and N = (J,c; L;. One
or more of the L; may be empty; a weak partition with no empty blocks is called a
partition. We denote by Party the set of weak partitions of N, and by Party the set
of partitions.

To each A = (L;) € Partly we associate the Young subgroup Sy C Sy consisting
of those permutations that leave invariant each of the blocks L;. There is an obvious
isomorphism [, S, = Sx. Inserting or removing @s from a weak partition does not
change the Young subgroup.

For A\, u € Partly we write A < p to mean that each block of p is a union of blocks
of A. This is not a partial order, but it restricts to a partial order on partitions. We
have A < p if and only if Sy C §,,.

Given A, € Partly we let A A u € Partly be the weak partition whose blocks are
the intersections L; N M; of the blocks of A and p. We have Sy,, = Sy N .S,.

Each bijective map of sets w : N — M induces a bijective map Party — Part},
by applying w to each block of each partition. In particular, the group Sy acts on
Partly. The group S) fixes the partition A, but the isotropy group of A may be larger
than Sy. For each bijection w : N — M and each A € Party we have *S\ = Sy,
where ¥ Sy == wS w™! C Sy.

We now return to our groups Gy (Y, H). The Young set Y and auxiliary group H
will be fixed throughout this section, so we drop them from the notation and just
write Gy .

For each weak partition A = (L;) of N the subsets Y7, of Yy are pairwise disjoint,
by our assumption that Yx NY7, = Ygnr. We denote by Yy :=| |, Yz, C Yn the union
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of these subsets. We have Yy NY,, = Yy, for all A\, u € Party, and Y\ C Y, for all
A < p € Partly.

When Y = id we have Y, = Yy for every A and every IV, but in general Y\ C Yy.
The functoriality of Y ensures that for each bijection w : N — M and each X\ € Partly
we have wYy = Y, as subsets of Yj,. In particular, Y) is Sy-invariant.

We now have subgroups Sy C Sy and Fun(Yy, H) C Fun(Yy, H). We take the
semidirect product of these groups to obtain a subgroup G, C Gy:

G,\(Y, H) = S)\ X Fun(YA,H).

We have a canonical isomorphism of groups [[, Gr, = G, coming from the cor-
responding isomorphisms [], Sz, = Sy and [[, Fun(Yz,,H) = Fun(U;Y7,, H) =
Fun(Y), H).

Let us list some properties of the groups G ; all of these are immediate consequences
of the corresponding facts about the groups Sy and the sets Y.

LEMMA 2.4. Let N and M be finite sets.

(1) If X< p € Partly then Gy C G,,.
(2) For all A\, € Partyy we have Gy NG, = Gapy.
(3) For each bijective map w : N — M and each \ € Party we have *Gy = Gy».

For each A < p € Partly, we consider the following subgroups of G,
Pl =Sy x Fun(Y,, H) and Ul :=Fun(Y, — Yy, H).
Let us list some properties of these groups; all of these follow easily from the defini-
tions.
LEMMA 2.5. Let N and M be finite sets.

(1) If A < p in Party then the group U is normalised by Gy, and the map
Gy x U{ — P{' given by multiplication in the group G, is a bijection; thus
P{' is the internal semidirect product Gy x UY'.
(2) If w: N — M s a bijection of sets then for all A < p € Party we have
wpPl =P and YUY = UK.
(3) For all X, i € Party, we have Gy NUY = Ui‘/w.
We next recall some terminology from [24]: for each A € Party we say that a
subgroup G C G is decomposable with respect to (G, UL if the intersection P NG
decomposes as the semidirect product (G, NG) x (UY NG).

LEMMA 2.6. Let A\, u € Partyy be weak partitions of a finite set N. Each of the sub-
groups Pliv, G, and Uﬁv of Gn s decomposable with respect to (G, Uiv)

Proof. Compute as follows:

PYNPY = (SN S,) x Fun(Yy, H) = (Sxau x Fun(Yx, H)) x Fun(Yy — Yx, H)

= (GANPY) x (U N PY),
PY NG, =(S\NS,) x Fun(Y,, H) = (Sxa, X Fun(Yan,, H)) x Fun(Y, — Y, H)
= (GANGy) ¥ (U/J\V NGu),

and

PYNUY =Fun(Yy —Y,, H) = Fun(Yx — Yan,, H) x Fun(Yy — (YA UY),), H)

= (GANUY)x (UY NUY). O
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2.4. INDUCTION AND RESTRICTION FUNCTORS. We continue to fix a Young set Y and
a finite group H, and write G for the wreath product Gn (Y, H) = Sy x Fun(Yy, H).
We also fix an algebraically closed field k of characteristic zero. For each finite group
G we let Rep(G) denote the category whose objects are the finite-dimensional k-linear
representations of GG, and whose morphisms are the G-equivariant linear maps.

DEFINITION 2.7. For all ordered pairs of weak partitions A < p € Partly we consider
the following functors:
(1) Let i§ : Rep(Gx) — Rep(G,) be the functor of inflation from Gy to P
(i.e. let UY act trivially), followed by induction from P to G,,.
(2) Letrk : Rep(G,) — Rep(G) be the functor that sends each G, -representation
V' to the Gx-invariant subspace VUX of UX-fized vectors.
(3) Let resh : Rep(G,) — Rep(G)\) be the usual restriction functor.

For the Young set Yy = N the groups U} are trivial, and so there is no difference
between the functors ry\ and resy. In general ry is a subfunctor of res, and the
inclusion can be proper.

LEMMA 2.8. The functors iy and r§ are two-sided adjoints to one another.

Proof. Since the groups in question are all finite and k has characteristic zero, induc-
tion from P{' to G, is a two-sided adjoint to restriction from G, to P{’, while inflation
from G, to P{ is a two-sided adjoint to the functor of U}-invariants. O

LEMMA 2.9. For each ordered triple A < p < v € Party there are natural isomor-
phisms of functors

iy =i iy and ry =iy
Proof. By the uniqueness of adjoint functors it will suffice to prove the assertion
about 1¥. For each representation V' of G, we have 1% (V) = VUX, while (V) =

A\ Uk
(VUH) *. The decomposition of sets Y, — Yy = (Y, — Y,) U (Y, —Y)) leads to an
internal direct-product decomposition of groups Uy = U, x U, {', showing that r§(V)
and i 7, (V) are in fact equal as G -invariant subspaces of V. O

For each bijection of sets w : N — M we have an equivalence

(1) Ady : Rep(Gr) 222 Rep(Gag),

-1

where p(w™! - w) means the map g — p(w=gw).

LEMMA 2.10. For each bijection of sets w : N — M and each ordered pair of weak
partitions A < p € Party, we have natural isomorphisms of functors

Ad,, if =i 8 Ady, Adyrh 1o Ady,, and  Ad,resy =res)k Ad,

Proof. Once again by the uniqueness of adjoints it suffices to consider the functors r
and res. The statement about res is clearly true, while the assertion about r follows
from the equality “U{ = U, {’ observed in Lemma 2.5. O

We conclude this section by establishing Mackey-type formulas for the compo-
sition of our restriction and induction functors. The formulas are instances of [24,
Theorem A3.1].

PROPOSITION 2.11. For each finite set N and each pair of weak partitions A, 1 € Party
we have isomorphisms of functors
N :N ~ A
ry i, = D Awp Ad
S)\U)SMES)\\SN/S“

”w
w rw*1>\/\u
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and

N ~ A w
u = 1>\Aqudw res,

SAwS“ES)\\SN/SM

resf\v i A
Proof. We first establish the formula for ¥ ify by applying [24, Theorem A3.1] to the
following choices of groups:

G=Gn, M=G,, U=UY, P=P), N=G,, V=UY, Q@=Pr.

(G, P, etc. designate the objects denoted by those letters in [24, A3], while G, P,
etc. refer to objects defined in this paper.)

The characters 6 and ¢ appearing in [24] are here taken to be trivial. The double-
coset space Q\G/P is computed thus:

PY\Gn/PY = (Sx x Fun(Yn, H))\(Sy x Fun(Yy, H))/(S, x Fun(Yy, H))
=~ S\\Sn/S,.

For each w € Sy the groups P = PIJUVH, “M = Gyupu, and “U = Ugu are decompos-
able with respect to (N,V) = (G,U) by Lemma 2.6. Likewise “Q, “N, and “V are
decomposable with respect to (M,U), so the hypothesis (D) of [24, p. 168] is satisfied.

Lemmas 2.4 and 2.5 yield the following identifications of the groups M, N,
etc. appearing on [24, p. 168]:

M = Gw_l)\/\;m N = G)\/\w,u,a vV =Ut

! _ 7T
wIAAp? U = U/\/\wp,‘

Having made these identifications, an application of [24, Theorem A3.1] gives the
stated formula for r}’ i

The proof of the formula for resf\v iy

, 1s very similar: we now take

G=Gn, M=G,, U=U}, P=P)

J7

N=Q=G, V={1}.

We still have Q\G/P = S3\Sn/S,, and the decomposability hypothesis is again satis-
fied by virtue of Lemma 2.6. We now have

M= wal)\/\,“ N = G)\/\w,ua V= {1}7 U= Ui\/\w/u

and the formula from [24, Theorem A3.1] becomes in this case the proposed formula

NN
for resy I, . O

3. HOPF ALGEBRAS ASSOCIATED TO YOUNG SETS

3.1. CONSTRUCTION OF THE HOPF ALGEBRAS. We continue to consider the family
of groups Gy = Gn(Y,H) = Sy % Fun(Yy, H) associated to a Young set Y and a
finite group H.

For each finite group G we let R(G) denote the Grothendieck group of Rep(G).
Thus R(G) is a free abelian group with basis Irr(G), the set of isomorphism classes
of irreducible k-linear representations of G.

For all pairs K, L of finite sets we write Gk, to mean the Young subgroup of

G kg associated to the weak partition with blocks K and L. The isomorphism G X
G, = Grk,r. and the bijection Irr(Gk) x Irr(Gr) M Irr(Gk x Gp) yield

a canonical isomorphism R(Gg) ®z R(GL) =N R(Gk,,) which we shall frequently
invoke without further comment.
We define Ry, g, or R for short, to be the free abelian group

- (gm0),

N€Set

Algebraic Combinatorics, Vol. 5 #1 (2022) 101



TYRONE CRIsP & CALEB KENNEDY HILL

where the subscript indicates that we take coinvariants for the groupoid of set bi-
jections; that is to say, we impose the relation p = Ad,, p whenever p and w are as
in (1). Thus R is a free abelian group with basis (| |y Irr(Gn))g.x- We grade R so
that R(G ) sits in degree #N.
We consider the following graded, Z-linear maps:
e multiplication: m : R ®z R — R defined as the direct sum of the maps

SKUL

R(Gx) ®2 R(GL) = R(Gx.L) — R(Grur)-
o comultiplication: A : R — R ®z R defined on p € R(Gy) by

(2) Alp) = Yo resK ke p

Sn(K)eSN\P(N)

Here the sum is over a set of representatives for the Sy-orbits of subsets of
N, and K¢ = N — K. The representation res%’Kc p of Gk ke is regarded as

~

an element of R ®z R via the canonical isomorphism R(Gg k<) = R(Gk) ®z
e another comultiplication: § : R = R ®z R defined on p € R(Gy) by

3(p) = > tRkep

Sn(K)ESN\P(N)

This is to be understood in the same way as (2).

e unit: e : Z — R defined by setting e(l) = trivg,, the unique element of
Irr(Gp).

e counit: € : R — Z defined by setting e(trivg, ) = 1, and e(p) = 0 for all other
irreducible representations p.

Note that Lemma 2.10 ensures that m, A, and § are well-defined on Set*-coinvariants.

THEOREM 3.1. Fiz a Young set Y and a finite group H.

(1) The maps m, A, e, and ¢ make Ry,u into a graded, connected, commutative,
and cocommutative Hopf algebra over Z. We denote this Hopf algebra by R%H.

(2) The maps m, &, e, and € and the basis (|_|N Irr(GN))SetX make Ry, u into a
PSH algebra: a graded, connected, positive, self-adjoint Hopf algebra over Z
(cf. [24, 1.4]). We denote this PSH algebra by T\’,‘g,,H.

EXAMPLE 3.2. R‘;J and Rél are both the Hopf algebra of representations of the
symmetric groups, which is isomorphic to the Hopf algebra Sym, of symmetric func-
tions with Z coefficients; see [24, §5, §6]. Both Rfd7 o and Rﬁ o are the Hopf algebras
constructed in [24, §7]. Unlike in these examples, the Hopf algebras R‘; y and ’R@, I
are generally distinct (as Hopf algebras with distinguished bases): see Remark 4.2 for
an example.

REMARK 3.3. Taking the dual of the Hopf algebra Rﬁ o gives a third Hopf-algebra
structure on Ry, g, in which the multiplication is given by the usual induction functors
indZ<"*, while the comultiplication is given by the functors rig7". Of course, the PSH

algebra R5Y7 g 1s its own dual.

Proof of Theorem 3.1. The proof that R® and R? satisfy the Hopf axioms — that is,
the axioms listed in [24, 1.3] — is similar for the two cases, and both are similar to the
case of Y = @ and H = {1} established in [24, 6.2]. Most of the axioms follow in a very
straightforward way from the basic properties of the functors i, r, and res observed
in the previous section; for example, the associativity of multiplication follows from
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Lemma 2.9. The compatibility between multiplication and comultiplication — that is,
the commutativity of the diagram

R &z R m R A R®zR
A@A\L Tm@m
R @z R @z R @ R ——or VO WOVETDE | R @z R @z R @z R

and of the corresponding diagram for ¢ — follows from Proposition 2.11 just as in [24,
A3.2).

Thus R® and R° are connected, graded Hopf algebras. The proofs of parts (1)
and (2) diverge at this point; let us handle (2) first.

We must verify that R’ satisfies the additional axioms from [24, 1.4]; again, the
argument closely follows that of [24, 6.2]. The fact that m and ¢ are adjoints to one
another with respect to the inner products induced by our choice of basis follows from
the fact that iflg,uf and rllg-’LL are adjoint functors (Lemma 2.8). The positivity of all
of the structure maps relative to our chosen basis follows immediately from the fact
that all of these maps are defined via functors between representation categories. This
completes our proof of part (2).

To complete the proof of part (1) we must show that the Hopf algebra R* is com-
mutative and cocommutative. We have R® = R? as algebras, and the PSH algebra
R? is automatically commutative (see [24, Proposition 1.6]). So we are left to prove
that R® is cocommutative, which amounts to the assertion that for all subsets K C N
the diagram

(3) st o R(Grxce) —=> R(Gk) ®z R(Gx)
R(Gn) lﬂip
N\ o
reSgkec K R(GKC,K) AR(GKC) 7 R(GK)

commutes. But this is obvious because Gk xe and Gge g are the same subgroup
of GN. O

3.2. APPLICATION OF CLIFFORD THEORY. Let Y be a Young set, let H be a finite
group, and let Gy = Gn(Y,H) = Sy x Fun(Yy, H) as before. An application of
Clifford theory gives a description of the set Irr(Gy) in terms of orbits and isotropy
groups for the action of Sy on the set Irr(Fun(Yy, H)). In this section we shall briefly
recall how this correspondence works (referring to [14, Section 4.3], for instance, for
the details); and we then use this correspondence to give another description of the
Hopf algebras Rﬁ y and ’R‘sY, H-

Fix a set H of representatives for the isomorphism classes of irreducible repre-

sentations of H. For each finite set N and each function F' € Fun(Yy, H) we let
g € Irr(Fun(Yy, H)) be the representation defined by

mr(f) = & F(y)(f(y)) € GL < & VF(y)) (f € Fun(Yy, H)).

YEYN yeYN

Here Vp(,) is the vector space underlying the representation F(y) € H , and
F(y) (f(y)) is the linear map Vg, — Vr(y by which f(y) € H acts under the
representation F(y). The map F — 7 is a bijection Fun(Yy, H) — Irr(Fun(Yy, H)).

For each bijection of sets w : N — M and each F € Fun(Yy, H) we define wF €

Fun (Y, H) by wF(y) == F(w~'y). Setting M = N gives an action of the group Sy
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-~ ~

on the function space Fun(Yx, H). For each F' € Fun(Yy, H) we define
At F ={we Sy |wF=F} and Gp:=(AwF)x Fun(Yn,H)C Gx.
For each representation v of Aut F' we let v X mp be the representation of Gp =
Aut F' x Fun(Yy, H) on the tensor product vector space V, ®erN Vr(y), Where
Fun(Y, H) acts trivially on V, and by 7 on @, Vr(y), and where Aut F" acts on V,
by v and on ®y F, by permuting the factors:
w @ vy= @ vy-1y (vy € Vi(y))-

yeYN YyEYN
This is well defined because Vp(,) and Vp(,-1,) are the same vector space.
For each bijection of sets w : N — M and each F' € Fun(Yx, ﬁ) we have “ Aut F' =

Aut wF, giving an equivalence

Yoy (w™tw)

(4) Ad,, : Rep(Gy) ————= Rep(G ).
Clifford theory, in this case, says that the maps
Op : Irr(Aut F) — Irr(Gy), Dp(y) = indgg’ (v X 7R),

~

defined for each F' € Fun(Yy, H), assemble into a bijective map

(5) ( |_| Irr(AutF)> &( |_| Irr(GN))SEtX.

N¢ESet, Set X NeSet
FeFun(Yyn,H)

As before, the subscript Set™ indicates the quotient space for the actions (1) and (4)
of the groupoid Set ™.

Now consider
(6) My m = ( &>, R(Aut F))

N€Set =R
FeFun(Yn,H)

Set >

which is a free abelian group with graded basis

(7) ( Nle_S|et r(Aut F))
FEFun(Yz\;,ﬁ)

Set >

The bijection of bases from (5) gives an isomorphism of groups ® : My g =N
Ry,m, and hence Theorem 3.1 furnishes My g with two Hopf-algebra structures. Our
purpose in this section is to describe these structures explicitly. Since Y and H will
be fixed we shall henceforth drop them from the notation when convenient, writing
M for My g and R for Ry, .

For each pair of finite sets K, L we have an Sk r-equivariant embedding

(8) Fun(Yy, H)xFun(Yy,, H) = Fun(Yx U Yy, H) = Fun(Yx. 1, H) < Fun(Ygz, H)

where the last arrow is defined by extending each function F': Y j — H to a function
Yiurn — H by defining F(y) = trivy for ally € Yk, — (YxUY7). Here trivy denotes
the one-dimensional trivial representation of H. We shall denote the embedding (8)
by (FK,FL) — Fg U Fp.

The standard embedding Sk x S; — Sk restricts to an embedding Aut Fx X
Aut F, = Aut(Fg U Fp), and so we have an induction functor

ind/y "< NE) L Rep(Aut Fie x Aut Fr,) — Rep(Aut(F U Fp)).
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On the free abelian group M we define a graded multiplication M ®z M — M as
the direct sum of the maps

(9)  R(Aut Fx) @z R(Aut F) = R(Aut Fx x Aut Fr,) 2% R(Aut(Fx U Fp)).

The transitivity of induction ensures that M becomes an associative graded algebra
with this multiplication; the unit is the trivial representation of the trivial automor-

phism group Aut Fiz, where F € Fun(Yy, H) is the empty function.
PRrROPOSITION 3.4. The map ® : M — R is an isomorphism of graded algebras.

Proof. We already know that @ is a graded isomorphism of abelian groups. The map
Oy : R(Aut Fy) — R(Gg) sends the trivial representation to the trivial representa-
tion, which is to say, ® sends the unit of M to the unit of R.

The proposition thus amounts to the assertion that for all finite sets K, L, and all

~ ~

Fx € Fun(Yg, H) and Fy, € Fun(Yy, H), the diagram

SKUL
Ik, L

(10) Rep(Gk,r) Rep(Gkur)

vos| T‘I’

Rep(Aut Fie x Aut Fr) — 2%~ Rep(Aut(Fx U F1))

commutes. This commutativity is a special case of [7, Theorems 3.6 & 3.14]. To
be specific, set G = Ggur, L = Gk, U = Uy = U{{(’ULL, V="V, = {1}, G =
Fun(Yrur, H), Lo = Fun(Yx 1, H), and ¢ = 7p, Qk mp, € Irr(Fun(Yx 1, H)). (We
are writing G (etc. ) to designate the object called G (etc. ) in [7, Section 3].) We
then have, still in the notation of [7], ¢ = 7r.uF,, L(¥) = (Aut Fx x Aut F) x
Fun(Yk, r, H), G(p) = Aut(Fx U Fr,) x Fun(Yxur, H), U(e) = U, V() =V, L(¢) =
Aut Fx x Auwt Fr, G(¢) = Aut(Fx U Fr), and U(p) = V(p) = {1}. The cocycles
appearing in [7, Theorem 3.14] are trivial in this instance. All of these identifications

being made, the functor i appearing in [7, Theorem 3.6] is the functor if'7", while

the functor ig(/w) (o) appearing in [7, Theorem 3.14] is the usual induction functor

Rep(Aut Fx x Aut F') — Rep(Aut(Fx U Fr)). Pasting together the two commuting
diagrams from [7, Theorems 3.6 & 3.14] then yields the commuting diagram (10). O

To describe the comultiplication maps on M we need some more notation. For
each F' € Fun(Yy, H) and each subset K C N we let F|y, be the restriction of the
function F' to the subset Yx C Yy, and we let

(Aut F) g = Autp NSk ke = {w € Awt F | wK = K}

be the stabiliser of K for the action of Aut ' C Sy on the power set P(N). The group
(Aut F) g leaves the subsets Y, Yo C Y invariant, and we obtain an embedding of
groups

w=(w]yg wlyge)
%

(AutF)K Aut(F|yK) X Aut(F|ch) C Sk xSt

Now given F € Fun(Yy, H ) and a representation v of Aut F' we define

(11)
. JAut(Fly, ) XAut(Fly,.) u
Apmy = > indp e ) T (oS (Rul ) e M ERTE Ly v o)
Aut F(K)€Aut F\P(N)

We are summing over a set of representatives for the set Aut F\P(N) of Aut F-
orbits in P(N); the group (Aut F)x acts on the representation TFlyvy vy e =
Qyevy—vic xe F'(y) by permuting the tensor factors; and each summand on the
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right-hand side of the formula is regarded as an element of M ®7 M via the canonical
isomorphisms R(G x G') 2 R(G) ®z R(G’). Note that when H is abelian, so that each
of its irreducible representations is one-dimensional, the representation TPlyy —vic e
is the trivial one-dimensional representation of (Aut F)g, so the above formula
simplifies to

(12) Apy = Z ind?:]jiil)‘z()XAut(F‘YKC) res?&tFF)K v (H abelian).
Aut F(K)eAut F\P(N)

To define the second comultiplication d ¢ we need one more piece of terminology:
the support of a function F € Fun(Yy, H) is defined by supp F = {yeYn | Fy) #
trivg }. This is an Aut F-invariant subset of Yy .

Now for F € Fun(Yy, H) and v € Rep(Aut F) we define

(13) 5/\/1’)/ — Z indAut(F‘YK)XAut(Fh/Kc) reS(AXStFF)K 5.

(Aut F) g
Aut F(K)eAut F\P(N)
supp FCYxk ke

Finally, we define exq : M — Z by declaring that for the empty function Fy €
Fun(Yy, H) the map ey : R(Aut Fiy) — Z sends the trivial representation to 1, while
for all N # @ and all F € Fun(Yn, H) the map ex : R(Aut F') — Z is identically
zero.

COROLLARY 3.5. The graded algebra isomorphism ® : M — R of Proposition 3.4
relates the maps A, Ipm, and epq defined above to the structure maps A, §, and €
on R as follows:

AD = (PR DP)Ap\, 0P = (P ® D), and ed =cpq.
Consequently the graded algebra M equipped with the comultiplication A g and counit
em becomes a connected, graded, commutative, and cocommutative Hopf algebra; while

the graded algebra M equipped with the comultiplication daq, the counit epq, and the
basis (7) becomes a PSH algebra.

Proof. The identity e® = €4 is easily verified: ® is an isomorphism of unital graded
algebras, and € and e, are the inverses of the respective unit maps.

~

To verify the formula for A we fix a function F' € Fun(Yy, H), a representation
~ of Aut F', and a subset K C N. We will prove that the term

(14) (ADY) g = resy ke indgg (vx7R)
corresponding to the orbit Sy (K) in the definition of A is equal to the sum

(15) (2@ ®)(Am)K

. JAut(Fly, )xAut(Fly,.) Au
= E (P®®) ind F)‘;L " ((reS(AitFF)L 7) Bk 7TF'"I\I*VL,L“)
Aut F(L)e
Aut F\Sn (K)

of the images, under ® ® ® of the terms in the sum (11) associated to the Aut F-orbits
in SN (K) .
Choose a set W of representatives for the double-coset space Aut F\Sy/Sk ke.
Observing that
GF\GN/GK,KC
= (Aut Fx FU.II(YVN7 H))\(SN X FU‘II(YVN7 H))/(SK,K(‘ X FU.II(YK’KC, H))
=~ Aut F\SN/SKJ(C

shows that W is also a set of representatives for Gp\Gn/Gk K-.
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Now Sk ke is precisely the isotropy group of K for the action of Sy on P(N),
and so the map w — Aut F(wK) gives a bijection W = Aut F\Sn(K). Applying
the standard Mackey formula [16, Theorem 1] to (14), using the set of double-coset
representatives W and recalling that the relation Ad, p = p holds in R, we find

Gr
(ADy) Z Ad,— 1nde KoﬁGp T€SU G eenGp (Y X TF)
weWw
(16) . 1Gr e Gr
= Z deL LenGr TS NG (v X ).
Aut F(L)eAut F\Sn (K)

For each L € Sy(K) we have Gp e N Grp = (AwtF) x Fun(Yy e, H). The
restriction of the representation v X mp to this group is equal to
Au
(resrue p), V) X (TRly, Ok TRy, Ok TRy, v, . )-

The group Fun(Yy, re, H) acts trivially in the representation TFlyy vy g0 SO We may
rewrite this last displayed representation as
Aut
((res(Auut )y, ) ®x 71-FlnyyLch) X (TFF‘YL Y TFly, e ).

Temporarily writing Ay, = Aut(F|y, ) x Aut(Fly,.), By =Fun(Yz, rc, H), and Zy, =
YN — YL 1o to compactify the notation, we continue the computation from (16) to
find

(ADy), = Z lnd(cjfui;)LKBL (((reS(AXStFF)L 7¥) ®x 7TF|ZL) X (Tp|, ®k WF\LC))

Aut F(L)
= Z mdA KBL d?;fuT?)LLKBL (((TGS?X&FF)L ¥) ®x 7TF|ZL) X (Tp|, Ok WF\LC))
Aut F(L)
. .Gr.re
= Z I ((md(AutF) ((resfrnlr), ) S 7TF\ZL>) X (Tp), Ok 7TF|LC))
Aut F(L)
= Z (®® ) 1nd‘(4Aut )L ((res(animy, V) @k TR, ) = (2 © @) (Amy)k
Aut F(L)

as required.

We turn now to the relation & = (PRP)Jrq, keeping all of the notation established
so far. To obtain (097)k from (Ady)x we must project the latter onto the space
of U % Kc—ﬁxed vectors. Equivalently, we must project each of the representations

pL = deL G rebgL Lengp (Y X Tp) occuring in the last line of (16) onto its
subspace of ULvLc-lnvarlants. The group UL,Lc acts on pr, by a sum of S, .c-conjugates

of the irreducible representation 7p), .,

will be zero if one of the factors F(y) (for y € Yy — Yz 1) is nontrivial; while on the
other hand this space of invariants will be all of py, if all of the F(y) are trivial. Let
us once again write Zy, = Yy — Y, re. Since F(y) = trivy for all y € Z;, precisely
when supp F' C Y1, 1, we obtain from (3.2)

, and so the space of U iv e-fixed vectors

Aut(Fly, )xAut(Fly, . ) .
(5@7)1{ = Z (PR D) 1nd(Aut F)YLL YL ((res?Alﬁt )Y v) Rk 7TF|ZL)
Aut F(L)e
Aut F\S(NEK);

supp FCYL re

. JAut(Fly, )XAut(Fly,c)  Au
Y. (@@ ®)ind " e res(Ruipy,
Aut F(L)e

Aut F\Sn (K);
supp F'CYL e

= (2@ )M K

Algebraic Combinatorics, Vol. 5 #1 (2022) 107



TYRONE CRIsP & CALEB KENNEDY HILL

as required. O

REMARK 3.6 (Structure of the PSH algebra M@H) Zelevinsky’s structure theorem
for PSH algebras [24, Theorems 2.2 & 3.1] identifies the PSH algebra M‘; ;i with a
tensor product of copies of the Hopf algebra Symj, of symmetric functions, indexed by
the set of primitive irreducible elements of M[SY, - (Here drreducible elements are, by
definition, elements of the distinguished basis (7).) The set of primitive irreducibles
can readily be identified from the formula (13) for the comultiplication d,,. For each

~

finite set N # @ let us call a function F' € Fun(Yn, H) primitive if supp F' € Yi ke

~

for any K C N. We denote by Fun(Yy, H)prim the set of all such functions. The
empty function Fy € Fun(Yy, H ) is, by definition, not primitive.
For example:
(1) If #N = 1 then every function in Fun(YN,ﬁ) is primitive. If Y = id then
these are the only primitive functions.
(2) For Yy = N2, if we identify Fun(Yy, H) with the set of N x N matrices with

entries in H, then the non-primitive functions are those whose corresponding

matrix can be put into block-diagonal form [ tritH tri;:H } by conjugating by a
permutation matrix.
(3) For Yy = Sy — {idy} a function F € Fun(Yy, H) is primitive if and only if
its support generates a transitive subgroup of Sy.
The set of irreducible primitive elements of M‘; g is now the following subset of

the canonical basis:

Prim(Y, H) = ( I_l Irr(Aut F))
N#o
FeFun(Yn,H)prim

Set X

As noted in [24, 4.19, 7.4], the structure theory of PSH algebras gives a parametrisa-
tion of the irreducible representations of the groups G (Y, H) in terms of partition-
valued functions on the set Prim(Y, H). In contrast to the cases Yy = @ and Yy = N
considered in [24], this parametrisation for a general Young set does not necessar-
ily reduce the classification of the irreducible representations of the G (Y, H)s to a
manageable problem. In the example considered in Section 4, for instance, the set of
primitive irreducibles contains all irreducible representations of all finite groups; see
Remark 4.2.

3.3. THE BASIC SUBALGEBRA. We continue to fix a Young set Y and auxiliary group
H, and often omit them from the notation. We are going to construct Hopf subalgebras
B2/% of our Hopf algebras M*/% =2 RA/% from the representations of the base group
Fun(Yx, H) € Gn. When H is abelian the algebra B is the Hopf algebra associated
by Schmitt in [17, Section 3.3] to the coherent exponential species N — Fun(Yy, f[),
see Proposition 3.9.
As an additive group we define
B= By7H = ( @ R(FUH(YN,H)))

Set X
NeSet ¢

where the subscript Set™ again indicates coinvariants by set isomorphisms: that is,
we impose the relation m = Ad,, 7 in B for all representations = of Fun(Yy, H) and
all bijective maps w : N — M. Thus B is a free abelian group with basis

(| {rr | F € Fun(Yn, H)}) g, .-
N

We grade B by putting R(Fun(Yy, H)) in degree #N.
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The operation

= e (FK,FL)D—)FKHFL
_—%

Fun(Yx, H) x Fun(Yz, H) Fun (Y, H)

of (8) induces a multiplication
R(Fun(Yx, H)) ®z R(Fun(Yy, H)) = R(Fun(Yx 1, H)),

turning B into an associative graded algebra, with unit 7p, (the one-dimensional
trivial representation of the trivial group Fun(Yy, H)). We define the counit ez by
epmr, = 1 and egmp = 0 for all other F.

~

Given F € Fun(Yy, H) we define

Apmp = E (dlmﬂF‘YnyK,KJ TFly, ® TPy, and
KCN

0BTF = E TPy, @ TPy, .-
KCN
supp FCYk ke

(17)

Here we have
dim TFlyy-vie e = H dim F'(y)
YEYN—YK ke
where dim denotes the dimension of the underlying k-vector space. When H is abelian
all of these dimensions are 1 and so the formula for Ag simplifies to

(18) Agmp = Z TFly,e © TF|y,. (H abelian).

KCN
ExXAMPLE 3.7. Taking H = 1 the trivial group, and Y an arbitrary Young set, there
is a unique Fly € Fun(Yy, ﬁ) for each finite set N, and the map 7, + 7 induces
an isomorphism By, = B¢, =, Z[z] to the binomial Hopf algebra over Z, i.e. Z[z]
with its usual multiplication and with comultiplication A(z™) = Y} (})2z" @ a"~*.

For each finite group G we let reg, be the regular representation: i.e. the repre-
sentation on k& by permuting coordinates.

PROPOSITION 3.8. The map
reg: B —+ M, TE > Te8ant F
is an embedding of unital graded algebras, and it satisfies
Apreg = (reg®@reg)Ap, dpmreg = (reg@reg)dp, and epqreg =regep.

Thus the comultiplication maps Ag and dp each equip B with the structure of a con-
nected, commutative and cocommutative graded Hopf algebra.

Note that the map reg : B — M does not send irreducibles to irreducibles. In
particular, B’ is not a PSH algebra, as is already evident in Example 3.7.

Proof. The map reg is clearly injective, graded, and intertwines the units and counits.

~

It is also easy to see that reg is a morphism of algebras: given Fx € Fun(Yx, H) and
Fp, € Fun(YL,}AI ), the tensor product regp, ®yregr, is the regular representation
of Aut Fix x Aut Fy, and performing the multiplication in M - i.e. inducing this
representation up to Aut(Fx UFk) — gives the regular representation of Aut(FxUF).

It remains to prove that A reg = (reg @ reg)Ag and Ja reg = (reg @ reg)dg. To
do this we first note that for each w € Aut F' and each X C N we have Thly, . =

TFluy, = Adw T(w-1F))y, = TF|y, in B. So the summands in the definition (17) are
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constant on the Aut F-orbits in P(N). The number of sets wK in the orbit Aut F'(K) is
equal to the index [Aut F' : (Aut F') |, and so we may rewrite the definitions as follows:

ABTFF = Z (dimﬂ-F\YN—YK KC) [AutF : (AU-tF)K]TrF|yK ®7TF|YKC
Aut F(K)eAut F\P(N) ’

OopTp = Z [Aut F' : (Aut F)g]mpy,, QTE|y,., -
Aut F(K)eAut F\P(N)

supp FCYx ke

Comparing the above formulas with the definitions (11) and (13) of Axq and daq,

~

we see that we must prove that for all K C N and all F' € Fun(Yy, H) that

. Aut(F\yK)XAut(Fh/Kc) Aut F
0dp e ) (TeS(Aut F) e 168 Aut ) Pk TFlyy Vi xce

= (dim7pyy s AU E : (Aut F) ] reg aug(rly, ) x Aut(Fly,e.) -

Since ind sends regular representations to regular representations it will suffice to
prove that

Aut F
(19)  (restRTy 78w £ ) Gk THlyy v .

= (dimﬂ'FlnyyK JAut F @ (Aut F) k] reg aut ) -

JK¢©

For every group G, subgroup G’, and representation p € Rep(G’) we have
resé rege = [G: G'lrege, and  reg ®pp = (dim p) regq
so the equality (19) does hold. O

When H is abelian the Hopf algebra B2 is the same as one constructed in [17], as
we shall now explain.

PROPOSITION 3.9. Let Y be a Young set and let H be a finite abelian group.

(1) The contravariant functor E : Set™ — Set defined on objects by N —
Fun(Yy, H) and on morphisms by w — (F — FoY,) is a coherent exponen-
tial R-species as defined in [17, 3.3): it is the exponential of the contravariant
functor Set™ — Set™ given by N — Fun(Yy, ﬁ)prim.

(2) The Hopf algebra B}%H is isomorphic to the Hopf algebra Bg associated to the
coherent exponential species E in [17, 3.3].

-~

Proof. Fix a finite set N and a function F' € Fun(Yy, H). There is a unique partition
A= (L; | i€ I) € Party and primitive functions F; € Fun(YLi,ﬁ)prim such that
F = |;e; Fir namely, take A == A, pey,, A and, writing A = (L; | i € I), take
F; .= F|p,. The map sending F to the assembly {F; | ¢ € I} then identifies F with the
exponential species exp Fun(Y, H )prim- The coherence of this species amounts to the
property that for each subset K C N we have F|x = ||, Fi|knr,, where the L; and
F; are as above; this is clear, since supp(F|x) = KNsupp F C KNY), and F; = F|z,.
Now the identification between Schmitt’s Br and our B}A,’ 5 follows immediately from
a comparison of the definitions of multiplication and comultiplication in these two
Hopf algebras. O

3.4. THE CANONICAL CHARACTER AND SYMMETRIC FUNCTIONS. We conclude our
general study of the Hopf algebras Rf‘/li Mﬁg, and Bég by observing that they all
carry a canonical Z-valued character, and hence a canonical Hopf-algebra homomor-

phism into the Hopf algebra of symmetric functions.

Algebraic Combinatorics, Vol. 5 #1 (2022) 110



Combinatorial Hopf algebras from wreath products

DEFINITION 3.10. Let Y be a Young set and let H be a finite group, and consider
the algebras R = Ry,g, M = My, and B = By g. We define Z-linear maps
(R R—=>Z,(p - M—=Z and (p: B — Z as follows:

o For each finite set N and each p € Ir(Gn(Y, H)),

calp) = {1 if p = trive,,

0 otherwise.

e For each F' € Fun(Yy, ﬁ) and each v € Irr(Aut F),

1 ifsuppF = and vy = trivau F,
0 otherwise.

m(y) = {

~

e For each F € Fun(Yy, H),

Co(mr) 1 if supp F = @,
e =
BATE 0 otherwise.

LEMMA 3.11. Each of the maps ¢ defined above is an algebra homomorphism, and the
diagram

reg

M
lCM
(s
Z

commutes. Here ® is the isomorphism of Proposition 3.4.

IR | %

R

Al

R

Proof. We will prove that the diagram commutes and that (z is an algebra homo-
morphism. Since the maps B — M — R are algebra homomorphisms, this will imply
that {nq and (g are also algebra homomorphisms.

For each F' € Fun(Yy, H) the regular representation of Aut F' decomposes as one
copy of the trivial representation plus some nontrivial representations. We thus have

C_/\/[ reg(wF) = CM(trlvAutF) + ZCM( nontrivia ) _ { 1f supp

representations 0 otherwise,

which is equal to (p(7r). So the left-hand triangle in the diagram commutes.

Next, given F € Fun(Yy, H) and v € Irr(Aut F), recall that the isomorphism @ :
M — R of Proposition 3.4 sends v € Irr(Aut F') to the representation indgg (yxmp)
of G . This representation is trivial precisely when 7p is the trivial representation
of Fun(Yy, H) — i.e. when supp F = @ — and when + is the trivial representation of
Aut F = Sy. Thus (r®(v) = Cm(7), and so the diagram in the lemma commutes.

Finally, to show that (% is an algebra homomorphism, fix finite sets K and L and
irreducible representations px € Irr(Gg) and pr € Irr(Gr). The product pxpr of
these representations in R is the representation ig“LL(pK ®k pr) of Ggp. Since i%’L
is adjoint to 1% ; (Lemma 2.8), and since r¥ ; (trivg, ) = trivg, , (obviously), we
have ’ 7

(r(pxrpr) = dim Home, (triVGNv i%,L(pK QK PL))
= dim Homg,, , (triVGKyL,pL Rk pL) .

The last intertwining space is one-dimensional if both px and py, are trivial, and it is
zero otherwise. Thus (r(pxpr) = (r(pk){r(pL) as required. O
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Let Sym; denote the Hopf algebra of symmetric functions, in variables x4, z2,. . .,
with Z coefficients. It follows from [2, Theorem 4.3] and Lemma 3.11 that there is a
commuting diagram of morphisms of Hopf algebras

MA

reg

(20) BA RA

R |

L3
)
-
L3
<
e |
A

Symy,
determined uniquely by the requirement that
Ur(p)(1,0,0,...) = (r(p) forall peR.

(There is also a corresponding diagram for B°, M°, and R’, but here we shall focus
on the A Hopf algebras.) We are going to compute the maps ¥ explicitly in terms of
monomial symmetric functions, assuming the auxiliary group H to be abelian. First
we shall need some more notation.

Consider the set Comp, of compositions of N: these are ordered lists k =
(Ky,...,Ky) of mutually disjoint, nonempty blocks K; C N satisfying |J, K; = N.
Each composition k determines a partition & € Party by forgetting the order of
the blocks, and we shall accordingly extend the notation previously established for
partitions to compositions: thus G, means Gz, and so on.

As with partitions, the group Sy acts on Compy. The isotropy group of x €
Comp,; is precisely the Young subgroup S, C Sy. The Sy-orbits in Comp, are
parametrised by the set of integer compositions Compyy — i.e. the set of ordered
lists of positive integers summing to #N — via the map sending a set composition
k= (Ki,...,K) to the integer composition #x = (#K1,...,#Ky). For each integer
composition o € Comp, ; we let Compy ,, denote the corresponding orbit:

Compy , = {r € Compy | #~K = a}.

Now for each function F' € Fun(Yy, H), and each integer composition o € Compy, y,
we define

Compy. , == {x € Compy , | supp FNY,, = @}.
The action of Sy on Compy restricts to an action of Aut F' on Compp. ,, and we let

PFa : Aut F — GL(KSomPra)

be the corresponding permutation representation.

For each integer composition a € Comp,, we let M, denote the associated mono-
mial quasisymmetric function [21, 7.19]. Although we will ultimately be writing down
formulas for symmetric functions, the formulas are more natural when written in
terms of the quasisymmetric functions M,, and so we shall present our functions in
that form.

We now return to the diagram (20). An explicit formula, involving iterated comul-
tiplication, is given in [2, (4.2)] for the Hopf-algebra morphism to Sym, induced by a
character. In the case of the Hopf algebra R®, where the comultiplication A is given
by the simple formula (2), the iterates of the comultiplication are easily computed,
and the formula [2, (4.2)] for the map ¥ : R — Sym, takes a correspondingly simple
form: for each representation p of G we have

(21) Ur(p)= > (dimp%) M,

ac€Compy

where £, is any element of the orbit Compy ,, and dim pCra is the k-dimension of
the space of G,;_-fixed vectors in the representation p. The formula (21) is valid for all
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auxiliary groups H. We shall now use this formula and the diagram (20) to compute
the maps ¥, and ¥, under the assumption that H is abelian.

PROPOSITION 3.12. Let Y be a Young set, let H be a finite abelian group, and consider
the Hopf algebras M = MQH and B = BQH. The Hopf-algebra morphism Wpq :
M — Symy, induced by the character (aq is given, for each finite set N, each function
Fe Fun(YNJ;T), and each representation v of Aut F', by

Ua(y) = Z (dim Homaus 7 (PF,as 7)) Ma-
QGCOmP#N

~

The Hopf-algebra morphism ¥ : B — Sym,, is given, for each F € Fun(Yy, H), by
Up(rp) = Z (# Comppya) M,.

a€Compy N
Proof. Fix N, F, and 1, let o € Comp,, be an integer composition, and let rq
be any element of Compy ,. Since ¥y = ¥ o @ the formula (21) shows that the

coefficient of M, in Wa(y) is the dimension of (indgg (v x mp))%=a. The Mackey
formula for ind and res implies that this dimension is equal to

(22) Z dim Homwg, g, (triv,y x 7p).

GrwG, €Gr\GN /G,
Considering the double-coset space indexing this last sum, we find

Gr\GN/Gx, = (AWt F x Fun(Yy, H))\(Sy x Fun(Yn, H))/(Sk, X Fun(Y,,, H))

= Aut F\Sn/Sk,, -
Now recall that Sy, is the isotropy group and Compy , is the orbit of x, for the
action of Sy on Comp; thus the map w — wk, induces a bijection

Aut F\SN /S, =5 Aut F\ Compy -
For each w € Sy, setting kK = wk,, we have
YGr, NG = (S NAwt F) x Fun(Y,,, H) = (Auwt F),; x Fun(Y, H)

where (Aut F'),, indicates the isotropy group of x in Aut F. Making these identifica-
tions, (22) becomes

(23) Z dim Homau 7y, x Fun(y,,, #) (E11v, v X 7F).
Aut F(k)€Aut F—Compy

For each k € Compy, ,, the abelian group Fun(Yy, H) acts on the representation ~ x
7r by the character 7, . So the representation yx wp is either trivial on Fun(Y,, H),
or else it contains no nonzero Fun(Yj, H)-fixed vectors. The former possibility occurs
precisely when supp F'NY,, = &; recall that this is, by definition, the condition that s
belong to Compy. . Now the character 7 is trivial on Aut F', and so (23) is equal to

Z dim Hom syt py, (triv, )
Aut F(k)€Aut F\Compp. ,

= Z dim Homp yt (indé{ﬁtFF)m TV (Aut ). 5 ’y)
Aut F(k)€Aut F\Compp

where the equality is Frobenius reciprocity. The representation ind?‘XltltF 7, V(A F)
of Aut F is the permutation representation associated to the orbit Aut F'(k) C
Compp ,, and so summing over these orbits gives the permutation representation
PF.o as claimed.
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Turning to Vg, using the formula for Wy, just established and the equality
U = W oreg, we find that for F € Fun(Yy, H) and « € Comp the coefficient of
M, in Up(np) is

dim Homaut 7 (pF 0, regr) = dim pr x = # Compp , - O

4. GRAPH AUTOMORPHISMS AND COLOURINGS

. . - 5,A
For certain choices of Young set Y and auxiliary group H the Hopf algebras MY’ o

and Bf/’%, and the associated symmetric functions, admit descriptions in terms of
isomorphism classes, automorphism groups, and colourings of familiar combinatorial
objects. In this section we shall examine one such example.

4.1. THE HOPF ALGEBRA OF GRAPHS AND CHROMATIC SYMMETRIC FUNCTIONS.
Our graphs are finite, simple, and undirected: so a graph I' is a finite set V(T") of ver-
tices, and a finite set E(I") C {2-element subsets of V(I')} of edges. An isomorphism
of graphs I' — A is a bijection of vertex-sets V(I') — V(A) whose induced map on the
power sets P(V(I')) — P(V(A)) restricts to a bijection E(I') — E(A). The disjoint
union of graphs is defined by taking disjoint unions of vertex- and edge-sets. For each
graph I" and each subset U C V(T') the induced graph I'|y is defined by V(T'|y) = U
and E(T|y) = E(T) N P(U).

Given a graph T'" and an integer composition o« = (aq,...,ap) € Compy (ry, a
(proper) a-colouring of T' is a function x : V(I') — {1,..., ¢} satisfying #x (i) = a;
for all i, and k(v) # k(w) for all {v,w} € E(T'). The set of all such colourings is
denoted by Colr .

The Hopf algebra of graphs ([18, Section 12]) is

G= [EI?Z[F}

where the sum is over the set of isomorphism classes [I'] of finite graphs. We grade G
so that [I'] sits in degree #V (I"). The multiplication in G is [['] ®z [A] — [T’ U A], and
the comultiplication is

Aglll= Y [Tly] @z [Tfue]
UeP(V(I))

where U¢ = V(T') — U. The unit of G is the empty graph, and the counit is the map
G — Z sending the empty graph to 1 and all other graphs to zero. These operations
make G a connected, commutative and cocommutative Hopf algebra.

The algebra G has a canonical character (g : G — Z, given by

Cgm{l if E(T') = @,

0 otherwise.

The associated Hopf morphism ¥g : G — Symy, sends [I'] to the chromatic symmetric
function

Xp = Z (# Colr o) M,.

a€Compy ()

This symmetric function was first defined by Stanley in [20]. The connection to the
Hopf algebra G and the character (g was pointed out in [2, Example 4.5].
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4.2. A HOPF ALGEBRA AND SYMMETRIC FUNCTIONS ASSOCIATED TO REPRESENTA-
TIONS OF GRAPH AUTOMORPHISMS. We are going to study an enlargement of G. For
each graph I we let AutT' denote the group of graph-automorphisms of I". For each
isomorphism of graphs w : I' — A we have an isomorphism of Grothendieck groups

(24) Ady @ R(AutT) 2270 R(Aut A).

Consider the free abelian group
A= ( P R(Aut F))
r

where the sum is over finite simple graphs I', and the subscript indicates that we
impose the relation v = Ad, v for all v and w as in (24) (that is, we take the
coinvariants of the groupoid of graph isomorphisms). We grade A so that R(AutT)
sits in degree #V (T).

Given graphs I and A there is an obvious inclusion of groups

AutT x Aut A — Aut(T'UA)
whence an induction functor
indi‘ﬁt(gxugim :Rep(AutT' x Aut A) — Rep(Aut(T' U A)).

On the free abelian group 4 we define a graded multiplication A ®z A — A as the
direct sum of the maps

Graph*

(25) R(AutT) ®z R(Aut A) = R(AutT x Aut A) 2% R(Aut(I' U A)).
This product makes A into an associative graded algebra; the unit is the trivial
representation of the automorphism group of the empty graph.

Next, for each graph I' and each subset U C V(TI") we define

(AutD)y = {w € AutT' | w(U) =U}

to be the isotropy group of U for the action of AutT" on the power set P(V(T')). This
is by definition a subgroup of AutT’; it is also in a natural way a subgroup of the
product Aut(T'|y) x Aut(T'|ye), via the map w — (w|y, w|ye).

Let Ay : A — ARz A be the graded Z-linear map defined, for each graph I' and
each representation vy of AutT’, by

. qAut(T Aut(T|ye
(26) Aay = Z d(AuEI“)(;)X e )reS?XStPr)U -
AutT(U)eAut T\P(V(T))

Here the sum is over the Aut I'-orbits of subsets of V(I"), and we are using the canonical
isomorphisms R(G) ®z R(G’) EN R(G x G') to view each summand as an element of
R(Auwt(I|y)) @z R(Aut(T'|ye)) C ARz A.

We also let €4 : A — Z be the map sending the trivial representation of Aut & to
1, and all other irreducible representations to 0.

Let (4 : A — Z be the Z-linear map defined, for each graph I' and each represen-
tation v of AutT’, by

1 if E(T") = @ and v = trivaur,
Caly) = .
0 otherwise.

Finally, for each graph I' and each integer composition v € Comp_y (1 recall that
Colr o is the set of proper a-colourings of I'. The group AutI' acts on this set by
wk(v) == k(w™1v), and we let

pro : AutT — GL(K°re)

be the corresponding permutation representation.
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THEOREM 4.1.

(1) The comultiplication A4 and counit € 4 make A into a connected, commuta-
tive, and cocommutative graded Hopf algebra.

(2) The map reg : G — A sending [I'] to the reqular representation of AutT' is an
embedding of Hopf algebras.

(3) The map Ca : A — Z is an algebra homomorphism, and the induced Hopf-
algebra homomorphism A — Sym, sends each representation v of AutT' to
the symmetric function

XF,’\/ = Z (dlm HomAutF<PF,a77))Ma'

a€Compy (1

(4) For each graph T' we have XD rega, = X1, Stanley’s chromatic symmetric
function; and
Xp= > (dimv)Xr,
yEIrr(Aut T')
where dim 7y is the dimension of the k-vector space underlying the representa-
tion -y.

Proof. Let E be the Young set with Exy = {two-element subsets of N} (cf. Exam-
ples 2.2 and 3.2). We are going to prove the theorem by identifying A and G with the
Hopf algebras M%ﬁ s, and Bg’ s, of Section 3.

We have :S’; = {triv, sign}, so a function F' € Fun(Ey, 3;) is completely determined
by its support, supp F' = F~!(sign). The map sending a function F' € Fun(Ey, 3;) to
the graph I'p with V(I'p) = N and E(T'r) = supp F is a natural isomorphism between
Fun(EN,S';) and the set of graphs with vertex-set N, where “natural” means with
respect to set bijections N — M. In particular we have the equality Aut F' = AutT'p
of subgroups of Sy .

These identifications yield grading-preserving bijections between the canonical
bases of Mg g, and of A, and between the canonical bases of Bg g, and of G. We
thus have isomorphisms of graded abelian groups

R(Aut F)>y—~vER(AutT'r) mr—[TF]

(27) Mg.s, A and Bgs, G

~

making the diagram

reg
Bg,s, —> Mg.s,

gl ig

g A

commute. It is now an easy matter to match up the definitions of the Hopf-algebra
structures and conclude that the isomorphisms (27) intertwine the units, the counits,
the multiplications, the comultiplications, and the characters ( on either side.

To prove the formula for Xt , in part (3) it suffices to note that for each finite

reg

set N, each function F' € Fun(Ey, 3;), and each integer composition o € Compy v,
the map Compy,, — Colr. o sending the composition (K7, ..., Ky) to the proper a-
colouring K; — {i} is a bijection that is equivariant for the action of Aut F' = AutI'p.
Thus the given formula for Xt , is an instance of Proposition 3.12.

Finally, for part (4), recall that the chromatic symmetric function Xt is the image
of [I'] under the Hopf-algebra morphism G — Sym,, induced by the character (g, while
XT regy,, o 18 the image of [I'] under the morphism induced by the character (4 o reg.
Since (g = (4 o reg these two symmetric functions coincide. Now the map v — Xr
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is additive, and so the asserted decomposition of X follows from the decomposition
of the regular representation of AutI' into irreducibles. O

REMARK 4.2. We are concentrating in this section on the A Hopf algebras, but much
of the above applies equally well to the § Hopf algebras. The coproducts dg and
04 are defined by restricting the sums in the definitions of Ag and A4 to subsets
U C V(TI') that are unions of connected components of I'. The resulting PSH algebra
A% has for its set of primitive irreducible elements the union of the sets Irr(AutT)
over the set of isomorphism classes of connected graphs I". Note that every finite
group arises as the automorphism group of a connected graph ([10] again), so the
set of primitive irreducibles is still extremely complicated. Note too that the only
primitive irreducible element of the Hopf algebra A% is the trivial representation of
the automorphism group of the graph with one vertex.

We conclude this paper some preliminary investigations of the symmetric functions
Xr,y; these functions will be treated in greater detail elsewhere. We first record the
formal definition of the polynomials xr , discussed in the introduction:

DEFINITION 4.3. For each graph T' and each finite-dimensional representation v of
AutT', we denote by xr, € Z[z] the polynomial obtained by specialisation from the
symmetric function X - :

Xr(m) = X, (1) = dim Homauer (KT, )
where we recall that Colr , is the set of proper colourings k : V(I') — [m)].

EXAMPLE 4.4. An application of Frobenius reciprocity yields the following alternative
formula for the symmetric function Xt :

Xry = Z dim(’Y(AUt F)N)Mav

a€Compy (1)
AutT'(k)€Aut I'\Colr o

where (AutT), is the isotropy group and AutI'(k) is the orbit of the colouring x for
the action of AutI’ on Colr ,; and (At Dy js the space of (AutT).-fixed vectors in
the representation . Putting v = triv, the trivial representation of AutI', we obtain

Xroiv= »,  #AutT\Colr q)M,.
a€Comp v (r)
Specialising gives
X triv (M) = X1 triv (1) = #(Aut I\ Colr ),
the orbital chromatic polynomial of I" [5, 6, 13].
ExXAMPLE 4.5. For each n > 0 let K, be the complete graph on n vertices: that is,

the graph in which each pair of vertices is joined by an edge. The only composition
a of n with Colr o # @ is the composition (1,...,1), and so we have

Xk, = n!M(l,...,1)~

The group Aut K,, = S, acts simply transitively on the set Colg, (1,...1), and so the
permutation representation pg, (1,..,1) is isomorphic to the regular representation.
We thus have for each v € Irr(S,,) the equality

XKn,‘Y = (dlm ’}/)M(17_”71).

The decomposition of X, given in part (4) of Theorem 4.1 thus boils down to the
standard fact that the order of the group Aut K,, equals the sum of squares of the
degrees of its irreducible representations.
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This last example is typical of graphs without symmetric colourings, as the follow-
ing proposition shows.

PROPOSITION 4.6. For each graph T", the following are equivalent.

(1) The action of AutT" on the set Colr of all proper colourings of T is free. (That
is, no colouring is fized by any nontrivial automorphism.)

) XF = (# Aut F)XI‘,triv'

) xr = (# Aut D)xr triv-

) X1,y = (dim~)Xp qiv for every v € Irr(AutT').

) Xr,y = (dim ) xr triv for every v € Irr(AutT').

Proof. Recall that for each o € Compy (ry the coefficient of M, in Xr is # Colr q,
while in Xt 4y this coefficient is #(Aut I'\Colr ). Since an action of a finite group
G on a set S is free if and only if #5 = #G - #(G\S), we conclude that (1) and (2)
are equivalent. Applying the same considerations to the action of AutT' on the set
Colp,, for each positive integer m shows that (1) and (3) are equivalent.

For (4) and (5), note that if a finite group G acts on a finite set S, then the
permutation representation k¥ of G is isomorphic to a subrepresentation of k& ®
k#(G\9) " and is isomorphic to that whole representation if and only G acts freely on
S. We thus have, for every v € Irr(G),

dim Homg (K%, ) < dim Homg (k% ® k#(G\S),V) = (dimv)#(G\S),

with equality holding for every -y if and only if G acts freely on S.

Applying this observation to the action of AutI' on Colr , for each o € Comp#V(F)
shows that the statements (1) and (4) are equivalent, and the same argument applied
to the action of AutT' on each Colr ,,, shows that (1) and (5) are equivalent. O

EXAMPLE 4.7. The situation is more interesting for the graphs with many symmetric
colourings. To take an extreme example, consider for each n > 0 the graph K,, with
n vertices and no edges. We have

X, =My = (3 )"

The additive subgroup S of A spanned by |_|n>0 Irr(Aut K ,,) is a Hopf subalgebra:
it is the Hopf algebra of representations of the symmetric groups studied by Zelevin-
sky [24, §6]. For each n and each integer partition A of n, let v5 be the irreducible
representation of S, associated to A, as explained for instance in [14, Chapter 2].
Then we have

X?na'YA =Sx
with sy being the Schur function (see e.g. [21, Chapter 7]) associated to A. Indeed,
the maps W : v\ — X% . and @ : v, — sy are both Hopf algebra homomorphisms

from S to Symy, and both maps yield the same character S — Z upon specialisation
at (1,0,0,...), and so the uniqueness in [2, Theorem 4.3] ensures that ¥ = ®. The
decomposition of X7, given by part (4) of Theorem 4.1 is thus the expansion of
(3" 2;)" in Schur functions.

EXAMPLE 4.8. For our final example we compute the symmetric functions Xr . for

the butterfly graph I':

a / c
> ’ \ -

b d
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Stanley computed the chromatic symmetric function Xt in [20]. Let m, € Sym, be
the monomial symmetric function associated to the integer composition « (that is,
the sum of the quasisymmetric functions Mg over all integer compositions 5 obtained
from « by permuting the parts). In this notation, we have

Xr =4mg2,1) + 24m2,1,1,1) + 120m1,1,1,1)-

Considering the complement I' shows that the automorphism group of I is isomor-
phic to the dihedral group Dy, generated by the 4-cycle r = (a db¢) and the involution
f = (ac)(bd). This group acts freely on Colr (21,1,1) and Colp (1,1,1,1,1), and so the
arguments from Proposition 4.6 show that for each v € Irr(AutT') we have

Xry = crymea1) + 3(dimy)mz1,1,1) + 15(dimy)mi1,1.1,1)

for some non-negative integer cr .

To compute the coefficients cr , we must examine the permutation representation
coming from the action of AutT" on Colr (25,1). This action is transitive, but not free:
for instance, the colouring

1 \ / 1
/ ’ \
2 2
has isotropy {1, f}. We thus have ¢, = dim +7f, the dimension of the space of f-
fixed vectors in . These dimensions are easily computed from the character table of
AutI' =2 Dy, which we shall now recall.

The group AutT has five conjugacy classes, represented by 1, r, 72, f, and rf. It
has four 1-dimensional representations — which we shall denote by triv, x1, x2, and
x3 — and a single irreducible 2-dimensional representation p. The character table is
as follows:

Dy |1 r 2 f rf
triv | 1 1 1 1 1
x1|1 -1 1 -1 1
x2 |1 -1 1 1 -1
x3 |1 1 1 -1 -1
pl2 0 -2 0 0

Computing the coefficients cr , = dim~/ from this table, we find:
Xroriv = Xrxo = m2,2,1) T 3m(2,1,1,1) + 15m(1,1,1,1,1)
Xrxi = Xrxs =3mz1,1,1) + 15m111,1)

Xrp=m21) +6me11,1) +30ma 11,1,
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