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Skew product groups for monolithic groups

Martin Bachratý, Marston Conder & Gabriel Verret

Abstract Skew morphisms, which generalise automorphisms for groups, provide a fundamen-
tal tool for the study of regular Cayley maps and, more generally, for finite groups with a
complementary factorisation G = BY , where Y is cyclic and core-free in G. In this paper, we
classify all examples in which B is monolithic (meaning that it has a unique minimal normal
subgroup, and that subgroup is not abelian) and core-free in G. As a consequence, we obtain a
classification of all proper skew morphisms of finite non-abelian simple groups.

1. Introduction
Let G be a finite group expressible as a product G = BC of subgroups B and C such
that B∩C = {1}, sometimes called a complementary factorisation of G. If C is cyclic,
generated by y, say, then for every b ∈ B there exists a unique b′ ∈ B and a unique
j ∈ {1, 2, . . . , |C|−1} such that yb = b′yj . This induces a bijection ϕ : B → B and a
function π : B → N, defined by ϕ(b) = b′ and π(b) = j, having the properties that
ϕ(1B) = 1B and ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ B. Any bijection ϕ : B → B with
these two properties is called a skew morphism of B, and π is its associated power
function. This is clearly a generalisation of the concept of a group automorphism,
which occurs in the special case where π(b) = 1 for all b.

Conversely, let ϕ be a skew morphism of a group B. Then ϕ ∈ Sym(B) and,
identifying B with its left regular representation in Sym(B), it can be easily verified
that B〈ϕ〉 is a group (see [15]). Moreover, one can show that B〈ϕ〉 is a complementary
factorisation and that 〈ϕ〉 is core-free in B〈ϕ〉 (see [5, Lemma 4.1]). To find all skew
morphisms of a group B, it therefore suffices to find all complementary factorisations
B〈y〉 with 〈y〉 core-free in B〈y〉. A group containing B which has a cyclic core-free
complement for B is called a skew product group for B, and the skew product group
for B described in this paragraph is said to be induced by ϕ.

Skew morphisms were introduced and found to be important in the study of
regular Cayley maps, which are embeddings of Cayley graphs on surfaces with an
arc-transitive group of automorphisms (of the resulting map) that contains a vertex-
regular subgroup; see [10]. In particular, they arose as an essentially algebraic concept
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with applications in topological graph theory. The theory of skew morphisms has been
developed over the last 16 years, following the publication of [10]. For example, it is
now known that the order of a skew morphism ϕ of a non-trivial group B is always
less than |B|; see [5, Theorem 4.2].

It is easy to find all skew morphism of groups of very small order (see [1] for exam-
ple). On the other hand, it has proved challenging to determine the skew morphisms
of infinite classes of finite groups. In particular, this problem remains open for finite
cyclic groups, despite positive progress recently (as in [15, 16] for example) and the
determination of the corresponding regular Cayley maps for cyclic groups (see [6]).
Indeed the skew morphisms of cyclic groups of order 162 are still not known. On the
other hand, Kovács and Kwon recently obtained a full classification of regular Cayley
maps for dihedral groups [14] (building on [13, 22]) and we understand that a full
classification of skew morphisms for dihedral groups is imminent.

We refer to skew morphisms that are not automorphisms as proper skew mor-
phisms. In the cases that have been worked out, there are usually many proper skew
morphisms. In contrast, we show that non-abelian simple groups rarely have any
proper skew morphisms. In fact we take this even further, to monolithic groups. A
group B is monolithic if it has a unique minimal normal subgroup A, and this sub-
group A is non-abelian. In that case, A is called the monolith of B. Also a subgroup H
of a group G is said to be core-free in G if it contains no non-trivial normal subgroup
of G.

Our main theorems are the following:

Theorem 1.1. Let G be a finite group with a complementary factorisation G = BY ,
where B is monolithic, and Y is cyclic and core-free in G. If B is core-free in G, then
one of the following occurs :

(1) G ∼= Sym(n), B ∼= Sym(n− 1) and Y ∼= Cn for some n > 6,
(2) G ∼= Alt(n), B ∼= Alt(n− 1) and Y ∼= Cn for some odd n > 7,
(3) G ∼= PSL(2, 11), B ∼= Alt(5) and Y ∼= C11,
(4) G ∼= M11, B ∼= M10 and Y ∼= C11,
(5) G ∼= M23, B ∼= M22 and Y ∼= C23.

On the other hand, if B is not core-free in G, then the monolith A of B is normal in
G, and either the centraliser Z = CY (A) is trivial, or its order |Z| is less than |B/A|.

Corollary 1.2. Let G be a finite group with a complementary factorisation G = BY ,
where B is non-abelian and simple, and Y is cyclic and core-free in G. Then either B
is normal in G, or one of the cases (2), (3) or (5) from Theorem 1.1 occurs. Hence in
particular, every skew morphism of a non-abelian simple group B is an automorphism,
unless B is Alt(5), M22 or Alt(k) for some even k > 6.

Here we note that the upper bound on the order of the centraliser Z = CY (A)
given in Theorem 1.1 is important, for a reason we can explain as follows. First, since
G = BY and B ∩ Y = {1} we have

|G| = |B||Y | = |B||Y/Z||Z|.
Now for a given non-abelian group A, there are only finitely many possibilities for a
monolithic group B with monolith A, because B must be isomorphic to a subgroup
of Aut(A), and in particular, |B| 6 |Aut(A)|. Moreover, if B is not core-free in G,
then A is normal in G (see Corollary 3.3) and so Y/Z = Y/CY (A) acts faithfully
on A. It follows that |Y/Z| is bounded above by the maximum order of an element in
Aut(A). Thus any upper bound on |Z| gives also an upper bound on |G| in terms of
Aut(A), and hence in terms of A. See for example Section 5.5, where we apply this
to determine all skew morphisms of many monolithic groups.
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Also we note that using Corollary 1.2, we can find all proper skew morphisms of
all simple groups (see Section 5.3). On the other hand, we cannot say much about
the regular Cayley maps for these groups. This contrasts with the situation for cyclic
groups, for which the regular Cayley maps were completely classified in [6], but the
skew morphisms are still not all known.

Very recently, Chen, Du and Li [4] have extended some of our work to obtain the
skew product groups and regular Cayley maps on the nonabelian characteristically
simple groups (equivalently, groups which are direct powers of a nonabelian simple
groups).

There is a superficial resemblance between Theorem 1.1 and theorems which classify
various factorisations of almost simple groups, such as in [18]. The main difference is
that in [18] the overgroup G is assumed to be almost simple, whereas we make no
assumption on the structure of G, but rather on the factors B and Y . In the end,
there turns out to be a deeper connection, as we show that in the most important
case, G is indeed almost simple (see Theorem 3.9), and then this allows us to apply
previous results from the literature.

The proof of Theorem 1.1 is presented in Section 3, after some more background
in Section 2. Then in Section 4 we give a variety of interesting examples regarding
Theorem 1.1, including a family of examples that show that our upper bound on the
order of Z = CY (A) is sharp. Finally, in Section 5 we explain how to determine (and
count) the skew morphisms of non-abelian simple groups and more general monolithic
groups, using Theorem 1.1.

2. Further background
In this section we give some more background from group theory, and from the theory
of skew morphisms.

All groups in this paper are assumed to be finite. We let Cn denote the cyclic group
of order n, and Alt(n) and Sym(n) the alternating and symmetric groups of degree n,
and Mn the Mathieu group of degree n.

The core of a subgroup H in a group G is the largest normal subgroup of G
contained in H, and so H is core-free in G if and only if the core of H in G is trivial.

Every minimal normal subgroup N of a finite group G is a direct product of
isomorphic simple groups (that is, N ∼= T k = T× k. . .×T for some simple group T and
some positive integer k); see [21, Item 3.3.15]. Note that T is cyclic of some prime order
p whenever N is soluble, and in that case N is an elementary abelian p-group, while
otherwise N is non-abelian. The socle of a finite group G is the subgroup generated
by all of the minimal normal subgroups of G, and denoted by soc(G). In particular,
if G is monolithic with monolith A, then soc(G) = A. A group B is almost simple
if there is a non-abelian simple group A such that B can be embedded between A
and its automorphism group, that is, with A 6 B 6 Aut(A). Equivalently, a group is
almost simple if its socle is non-abelian simple. The soluble radical of G is the largest
soluble normal subgroup of G.

Next, recall that a skew morphism ϕ of a group B is a permutation ϕ : B → B
fixing the identity element of B and having the property that ϕ(ab) = ϕ(a)ϕπ(a)(b)
for all a, b ∈ B, where π : B → N is its associated power function.

The order |ϕ| of ϕ is the smallest positive integer k for which ϕk is the identity
permutation on B. We can therefore view π as a function from B to Z|ϕ|.

The set of all the elements a ∈ B for which π(a) = 1 forms a subgroup of B,
denoted by kerϕ and called the kernel of ϕ. It is easy to see that two elements
a, b ∈ B belong to the same right coset of kerϕ in B if and only if π(a) = π(b), and
that ϕ is an automorphism of B if and only if kerϕ = B. Also the following lemma

Algebraic Combinatorics, Vol. 5 #5 (2022) 787



Martin Bachratý, Marston Conder & Gabriel Verret

provides a helpful method for determining whether an element y ∈ Y from a skew
product G = BY determines an automorphism or a proper skew morphism of B. This
was already observed in [5], but we also prove it here.

Lemma 2.1. Let G = BY be a skew product group for the group B, and let ϕ be the
skew morphism of B given by left multiplication of B by a generator y of Y . Then
kerϕ is the largest subgroup K of B for which yKy−1 ⊆ B. In particular, ϕ is an
automorphism of G if and only if B is normal in G.

Proof. For b ∈ B, clearly b ∈ kerϕ if and only if yb = b′y for some b′ ∈ B, which
happens if and only if yby−1 = b′ ∈ B. This proves the first assertion. The second one
follows easily from the facts that ϕ is an automorphism of B if and only if kerϕ = B,
and that B is normal in G = BY if and only if it is normalised by Y . �

More generally, the subgroup kerϕ is not always normal in B, but it is non-trivial
whenever B is non-trivial (see [5, Theorem 4.3]). Also the restriction of ϕ gives an
isomorphism from kerϕ to ϕ(kerϕ), and hence ϕ restricts to an automorphism of kerϕ
if the latter is preserved by ϕ. In the case where B is abelian, every skew morphism
ϕ of B induces an automorphism of kerϕ (see [5, Lemma 5.1]).

An immediate consequence of non-triviality of the kernel is that every skew mor-
phism of a cyclic group of prime order is an automorphism. Hence to classify skew
morphisms of simple groups, it suffices to consider non-abelian simple groups. More-
over, by our comments in the Introduction (explained in more detail in [5, Lemma
4.1]), it is sufficient for us to consider skew product groups G = BY with Y cyclic
and core-free in G, because every skew morphism of B arises in this way.

3. Proof of Theorem 1.1
3.1. Preliminaries. We begin with a number of preliminary observations that are
straightforward exercises, but we include their proofs for completeness.

Lemma 3.1. Let G be a group with subgroups B and C such that G = BC, and B is
core-free and C is abelian. Then B ∩ C = {1}.

Proof. Consider the natural action of G on the right coset space (G :B), with point-
stabiliser B. Because B is core-free, this action is faithful. But also G = BC, so C
acts transitively on (G :B), and then since C is abelian, it must act regularly (because
the stabiliser of every point is the same), and therefore B ∩ C = {1}. �

Lemma 3.2. If G has trivial soluble radical, and soc(G) 6 H 6 G, then soc(H) =
soc(G), and therefore H has trivial soluble radical.

Proof. We first show that soc(G) 6 soc(H). Let N be a minimal normal subgroup
of G. Since G has trivial soluble radical, N is a direct product of non-abelian simple
groups, and then since soc(G) 6 H we see that N is a normal subgroup of H, which
must then permute the direct factors of N . Thus N is a product of minimal normal
subgroups of H, and so N 6 soc(H), as required.

We now show that soc(H) 6 soc(G). Suppose to the contrary that there is a
minimal normal subgroup N of H not contained in soc(G). Let M be a minimal
normal subgroup of G. Then M 6 soc(G) 6 H and so M is a normal subgroup of H.
Also N is a minimal normal subgroup of H but N � soc(G), and so N∩M = {1}, and
thereforeN centralisesM . SinceM was an arbitrary minimal normal subgroup ofG, it
follows that N centralises soc(G). But in a group with trivial soluble radical, the socle
has trivial centraliser (see [8, Corollary 4.3A] for example), and so N cannot centralise
soc(G), contradiction. Thus soc(H) = soc(G), and the rest follows easily. �
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Corollary 3.3. Let G be a group with a monolithic subgroup B, and let A be the
monolith of B. If B is not core-free in G, then A is normal in G.

Proof. Let K be the core of B in G. Then soc(B) = A 6 K 6 B, and by Lemma 3.2
we find that soc(K) = A, making A characteristic in K and hence normal in G. �

Lemma 3.4. Let G be a group with subgroups B and C such that G = BC and B∩C =
{1}. If N is a normal subgroup of G, then |N | = |BN ∩C||B∩N | = |B∩CN ||C∩N |.

Proof. FirstG = (BN)(CN), and |BN | = |B||N |/|B∩N | and |CN | = |C||N |/|C∩N |,
so

|B||C| = |G| = |(BN)(CN)| = |BN ||CN |
|BN ∩ CN |

= |B||C||N |2

|BN ∩ CN ||B ∩N ||C ∩N |
and it follows that
(1) |N |2 = |BN ∩ CN ||B ∩N ||C ∩N |.
Next by Dedekind’s modular law [21, Item 1.3.14] we have (BN ∩C)N = BN ∩CN ,
and so

|BN ∩ CN | = |(BN ∩ C)N | = |BN ∩ C||N |
|BN ∩ C ∩N |

= |BN ∩ C||N |
|C ∩N |

.

Combining this with (1) gives the first equality |N | = |BN ∩ C||B ∩ N |, and then
exchanging the roles of B and C gives the second equality. �

Next, the following theorem proved by Lucchini in [19] will be helpful. (It was also
used to prove Theorems 4.2 and 4.3 on orders and kernels of skew morphisms in [5].)

Theorem 3.5 ([19]). If C is a core-free cyclic proper subgroup of a group G, then
|C| < |G : C|.

Finally, our proof of Theorem 1.1 depends heavily on results of a 2012 paper by Li
and Praeger [17], on finite permutation groups containing a regular cyclic subgroup.
In particular, we will frequently refer to the following theorem which we reproduce
for the benefit of readers. Note that the classification for the primitive case (dealt
with in item (a) and Table 1 and included in [17]) was first achieved by G.A. Jones
in [11]. Also we have amended the third row of Table 1 (from [17]) by replacing n > 4
by n > 5, in order to make item (b) correct.

Theorem 3.6 ([17]). Let G be a finite permutation group containing a regular cyclic
subgroup. Then:

(a) G is quasiprimitive if and only if G is primitive and appears in Table 1;
(b) G is almost simple if and only if G appears in rows (3) to (6) of Table 1; and
(c) G is imprimitive but has a transitive minimal normal subgroup N if and only

if G and N appear in Table 2.
Moreover, if N is a non-abelian minimal normal subgroup of G, and ∆ is an orbit of
N , then N∆ is simple, and the permutation group G∆

∆ induced by the setwise stabiliser
G∆ in G of ∆ appears in rows (3) to (6) of Table 1, or in Table 2.

3.2. The non-core-free case. Here we deal with the case when B is not core-free
in G = BY .

Proposition 3.7. Let G be a group with subgroups B and Y such that G = BY ,
where B is monolithic, and Y is cyclic and core-free in G. Also let A be the monolith
of B, and let Z be the centraliser of A in Y . If B is not core-free in G, then A is
normal in G, and either G = AY and Z = {1}, or |Z| < |B/A|.
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Degree Group G Comments
(1) p > 2 Cp 6 G 6 AGL(1, p) p prime
(2) 4 Sym(4)
(3) n > 5 Alt(n) or Sym(n) n odd if G = Alt(n)
(4) (qd − 1)/(q − 1) PGL(d, q) 6 G 6 PΓL(d, q) d > 2, and q a prime-power
(5) 11 PSL(2, 11) or M11
(6) 23 M23

Table 1. Primitive groups with a regular cyclic subgroup [11]

Degree Group G Subgroup N
15 Alt(5)× C3 or (Alt(5)× C3).C2 Alt(5)
22 M11 × C2 M11

r(qd − 1)/(q − 1) (PSL(d, q)× Cr).Ck for certain k PSL(d, q)

Table 2. Imprimitive groups with a regular cyclic subgroup and a
transitive minimal normal subgroup

Proof. First, by Corollary 3.3 we find that A is normal in G. Let X denote XA/A
(∼= X/(X ∩A)) for every X 6 G. If Y = G, then G = AY . It follows that Z is central
in G and, as Y is core-free in G, we have Z = {1}. We therefore assume that Y < G.

Since G = BY , we have G = B Y and thus |G| 6 |B||Y |. Also because the centre
of A must be trivial, we have A ∩ Z = {1} and therefore Z ∼= Z.

We now show that Z is core-free in G. Let X be a subgroup of Z such that X is
normal in G. Then AX is normal in G, and also AX ∼= A×X, where X is cyclic while
A is a direct product of non-abelian simple groups, so X is characteristic in AX and
therefore normal in G. But Y is core-free, and so it follows that X = {1}, and hence
X = {1}.

Next let K be the core of Y in G. Since K is cyclic, all its subgroups are charac-
teristic and hence normal in G. In particular, Z ∩K is normal in G, but then since
Z is core-free in G, we find that Z ∩K = {1}, and therefore |Z||K| 6 |Y |.

Since Y < G, it follows that Y /K is a proper cyclic core-free subgroup of G/K,
and so by Theorem 3.5 we have |Y /K| < |(G/K)/(Y /K)| = |G|/|Y |, and therefore

|Z| = |Z| 6 |Y |/|K| < |G|/|Y | 6 |B| = |B/A|.

�

3.3. The core-free case. Here we deal with the other case, where B is core-free
in G = BY .

Proposition 3.8. Let G be a group with core-free subgroups B and Y such that G =
BY, where B is monolithic with monolith A, and Y is cyclic. Then G has a unique
minimal normal subgroup N , and this normal subgroup N contains A.

Proof. First, by Lemma 3.1 we find that B ∩ Y = {1}. Now let N be any minimal
normal subgroup of G and let X denote XN/N (∼= X/(X∩N)), for every X 6 G. We
will show that N intersects A non-trivially, and thus N contains A and is the unique
minimal normal subgroup of G.
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Suppose that A ∩N = {1}. Since A is the unique minimal normal subgroup of B,
this implies that B∩N = {1} and hence that B ∼= B. Moreover, as B∩N = B∩Y N∩N
this gives

B ∩ Y N ∼= (B ∩ Y N)/(B ∩N) ∼= (B ∩ Y N)N/N 6 Y N/N ∼= Y/(Y ∩N),

and so B ∩ Y N is cyclic. Then by Itô’s Theorem [9] on products of abelian groups,
(B∩Y N)Y is metabelian, and therefore so is its subgroup BY ∩Y NY = BY ∩Y N =
G ∩ Y N = Y N . This implies that the minimal normal subgroup N of G is abelian,
and hence is isomorphic to Cn

p for some prime p. Also CB(N) is a normal subgroup
of B, and because A is the monolith of B, it follows that either CB(N) = {1} or
A 6 CB(N). We eliminate these two cases separately.
Case (a) CB(N) = {1}.

In this case, B acts faithfully on N and so is isomorphic to a subgroup of
Aut(N) ∼= GL(n, p). Also B ∩ Y N and Y ∩N are cyclic, and so using Lemma 3.4
we find that B ∩ Y N has order |B ∩ Y N | = |N |/|Y ∩N | > |N |/p = pn−1. Next, a
Sylow p-subgroup of GL(n, p) has exponent pdlogp ne (as shown in [20, Theorem 1],
for example), and again since B∩Y N is cyclic, it follows that pn−1 6 |B∩Y N | 6
pdlogp ne and so n − 1 6 dlogp ne. This is a strong restriction, which holds only
when n 6 2 or (n, p) = (3, 2).

But if n 6 2 then n = 2 and p is odd since B is insoluble, and then [B,B]
is isomorphic to an insoluble subgroup of SL(2, p), and hence must contain the
unique involution in SL(2, p), namely −I, which contradicts the fact that B has
trivial centre.

Thus (n, p) = (3, 2), so B is isomorphic to an insoluble subgroup of GL(3, 2).
This is actually the second smallest simple group, of order 168, and hence B ∼=
GL(3, 2). Also |N | = pn = 8, and then since B∩N = {1} we find that BN ∼= NoB
is isomorphic to the semi-direct product C 3

2 o GL(3, 2) ∼= AGL(3, 2). Moreover,
by Lemma 3.4 we find that |N | = |BN ∩ Y ||B ∩N | = |BN ∩ Y |, and so BN ∩ Y
is cyclic of order 8. But AGL(3, 2) has no element of order 8, contradiction.

Case (b) A 6 CB(N).
In this case, AN is isomorphic to A × N , and since A is a direct product of

non-abelian simple groups while N is abelian, we see that A is characteristic in
AN . But A is not normal in G (since B is core-free in G), and so AN cannot
be normal in G, and therefore A is not normal in G. Also B is monolithic with
monolith A, hence using Corollary 3.3 we find that B is core-free in G. Now by
Lemma 3.1, it follows that B ∩ Y = {1}, so |G| = |B||Y |, and therefore

|B||Y | = |G| = |G||N | = |B||Y ||N | = |B||Y N/N ||N | = |B||Y N |.

This gives |Y | = |NY |, and so N 6 Y , which contradicts the fact that Y is
core-free in G.

Thus A∩N 6= {1}. But A and N are both normalised by B, so A∩N is normal
in B, and then since A is the unique minimal normal subgroup of B, we find that
A 6 N . Hence every minimal normal subgroup of G contains A.

Finally, any two minimal normal subgroups intersect trivially, and so there
cannot be more than one, and hence G has a unique minimal normal subgroup,
as required. �

Theorem 3.9. Let G be a group with core-free subgroups B and C such that G = BC.
If B is monolithic and C is cyclic, then G is almost simple.

Proof. We use induction on |G|. By Lemma 3.1, once again we have B ∩ C = {1}.
Now let A be the socle of B. Then A is not normal in G because B is core-free in G,
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and by Proposition 3.8 we know that G has a unique minimal normal subgroup N ,
and A 6 N . In particular, N = soc(G), and because A is not soluble, N ∼= Tn for
some non-abelian simple group T and some positive integer n > 1. Also by Lemma 3.2
with H = BN we have soc(BN) = soc(G) = N .

Next, since B is core-free in G, we may view G as a permutation group on the coset
space (G :B) with point-stabiliser B, and a regular cyclic subgroup C. We proceed
by considering three different cases, where BN = G, or BN < G and B is core-free
in BN , or BN < G and B is not core-free in BN .
Case (a) BN = G.

In this case, N is a transitive subgroup of G, and then since N is the only
minimal normal subgroup of G, it follows that every non-trivial normal subgroup
is transitive, and so by definition G is quasiprimitive on (G :B). By Theorem 3.6,
we know that G appears in Table 1, but also G is not soluble, and hence we can
rule out rows (1) and (2) of the table, and conclude that G is almost simple.

Case (b) BN < G and B is core-free in BN .
In this case, first we note that BN has trivial soluble radical, since soc(BN) =

N ∼= Tn where T is non-abelian simple, and hence the cyclic subgroup BN ∩C is
core-free in BN . Next, by Dedekind’s Modular Law, B(BN ∩ C) = BN ∩ BC =
BN ∩G = BN . We may now apply the inductive hypothesis to BN (with BN ∩C
playing the role of C) to conclude that BN is almost simple, and then since
soc(BN) = soc(G) = N, it follows that also G is almost simple.

Case (c) BN < G and B is not core-free in BN .
In this case, let K be the core of B in BN . Then by hypothesis K is a non-

trivial normal subgroup of B, so must contain A, and then by Lemma 3.2 applied
to A = soc(B) 6 K 6 B, we find that soc(K) = soc(B) = A. In particular, A is
characteristic in K and hence normal in BN , so A is also normal in N . Hence A
must be a product of some of the (simple) direct factors of N . It then follows that
every subgroup of N containing A must be of the form A ×H for some H 6 N ,
and in particular, B∩N has this form. But also A is the unique minimal subgroup
of B, so the centraliser of A in B is trivial, and so H is trivial, and B ∩N = A.

Again viewing G as a permutation group on the coset space (G :B) with point-
stabiliser Gv = B, with regular cyclic subgroup C, we now have A = B∩N = Nv.
Since this is normal in N , it follows that N induces a regular subgroup on each of
its orbits.

Let ∆ be an N -orbit on (G :B), and let G∆ denote the set-wise stabiliser of ∆
in G. Then since N is normal in G and preserves ∆, we know that also N is normal
in G∆, and hence N∆ is normal in G∆

∆ . By Theorem 3.6 it now follows that G∆
∆

appears either in rows (3) to (6) of Table 1 or in Table 2, and that N∆ is a simple
subgroup of G∆

∆ acting regularly on ∆. This is not possible, however, because for
each choice of G∆

∆ from those two tables, the degree of the permutation group is
strictly smaller than the order of its smallest non-abelian simple normal subgroup.
Hence this third case is eliminated. �

We can now complete the proof of Theorem 1.1, below.

Proof. Let G be a group with core-free subgroups B and Y such that G = BY ,
where B is monolithic and Y is cyclic. By Lemma 3.1, we know that B ∩ Y = {1},
and Theorem 3.9 implies that G is almost simple. Once again, we may view G as a
permutation group on the coset space (G :B) with point-stabiliser B, and a regular
cyclic subgroup Y . It follows by Theorem 3.6 that G appears in rows (3) to (6)
of Table 1. If G appears in row (4), then PGL(d, q) 6 G 6 PΓL(d, q) and hence
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AGL(d − 1, q) 6 Gv 6 AΓL(d − 1, q), but B ∼= Gv, contradicting the fact that B is
monolithic. We may therefore exclude this case. The other possibilities are genuine
examples, and give the cases listed in the statement of Theorem 1.1. �

4. Examples and remarks concerning Theorem 1.1
Our first example in this section gives an infinite family for which the upper bound
on the order of Z = CY (A) in Theorem 1.1 is sharp.

Example 4.1. Let p be a prime, let G = PΣL(2, 2p) × AGL(1, p) and write
PΣL(2, 2p) = A o C ∼= PSL(2, 2p) o Cp and AGL(1, p) = T o M ∼= Cp o Cp−1.
Let D be the diagonal subgroup of C × T ∼= Cp × Cp, let B = 〈A,D〉 and let
Y = C ×M ∼= Cp × Cp−1. Then B is isomorphic to PΣL(2, 2p), and hence is almost
simple with socle A, which is normal in G. Also Y is cyclic, B ∩ Y = {1} and, by
order considerations, G = BY . Note also that Y is core-free in G. Thus B, Y and G
satisfy the hypotheses of Theorem 1.1. Finally, we see that the centraliser of A in Y
is M ∼= Cp−1, while |B/A| = |C| = p.

Taking p > 3 in Example 4.1 also provides examples for which B is neither core-free
nor normal in G. (Note that B is normal in G when p = 2.)

The next example shows that although the order of Z = CY (A) is always less
than |B/A|, the order of the centraliser of A in G can be arbitrarily large, even when
B = A.

Example 4.2. For n > 5, take A = B = Alt(n), let g be an element of odd order m
in A, and let G be the direct product A × Cm. Also let Y be the cyclic subgroup of
G of order m generated by gc, where c is a generator of the direct factor Cm. Then
clearly G = BY with B ∩ Y = {1}, and B is simple and normal in G, while Y is
cyclic and core-free in G, so again B, Y and G satisfy the hypotheses of Theorem 1.1.
Here Z = CY (A) is trivial, while CG(A) has order m, which can be arbitrarily large
(depending on the choice of n and g).

Finally, we give an example where B is neither core-free nor normal in G, and A
is not simple.

Example 4.3. LetH be a permutation group of degree n with a transitive non-normal
subgroup X and a core-free cyclic subgroup Y such that H = XY with X ∩Y = {1}.

Note that there are many possibilities for (H,X, Y ). The smallest example in terms
of |H| is obtained by takingH = Sym(3)×C3 ∼= (C3oC2)×C3 withX ∼= C2×C3 ∼= C6
and Y the diagonal subgroup of C3 × C3, and n = 6. The smallest example in terms
of the degree n is obtained by taking H = Sym(4), with X = D4 and Y ∼= C3, and
n = 4.

Next, let T be a non-abelian simple group, let G be the wreath product T o H
(which is isomorphic to Tn o H), let A = Tn, let B = Tn o X, and consider Y as
a subgroup of {1} o H in G. Since X conjugates transitively the n copies of T in A
among themselves, the subgroup A is minimal normal in B. Furthermore, A is the
only minimal normal subgroup of B, because any other minimal normal subgroup of
B would be contained in the centraliser of A in B, which is trivial. It follows that B
is monolithic, with monolith A. Also G = BY with B ∩ Y = {1}, and B not normal
in G, while Y is cyclic and core-free in G.

We complete this section with a remark that includes an alternative proof of The-
orem 3.9 in the case where B is simple.

Remark 4.4. The proofs of the preliminaries in Section 3.1 and Propositions 3.7
and 3.8 are elementary, in the sense of not relying on the CFSG (the classification
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of finite simple groups). On the other hand, the proof of Theorem 3.9 relies on the
CFSG many times, when we cite Theorem 3.6. This, however, can be avoided in the
case when B is simple. We present a short proof of this fact, as we believe it could be
of some interest.

Proof. Let G be a group with core-free subgroups B and Y such that G = BY , where
B is non-abelian simple, and Y is cyclic. Then soc(B) = B since B is simple, and
by Proposition 3.8 we know that G has a unique minimal normal subgroup, say N ,
and this subgroup contains B. Also N ∼= T k for some simple group T , and since
B 6 N , we have Y N = G, and therefore Y conjugates transitively the k direct
factors of N among themselves. Also because Y is abelian, it is an easy exercise to
show that Y ∩ N is isomorphic to a subgroup of T . Hence by Theorem 3.5, we find
that |Y ∩N | < |T : (Y ∩N)| and therefore |Y ∩N | < |T |1/2. Next, Lemma 3.4 gives
|N | = |B ∩ Y N ||Y ∩N | = |B||Y ∩N |, and since B 6 N ∼= T k and B is simple, it can
be easily verified that B is isomorphic to a subgroup of T , and therefore |B| 6 |T |.
Consequently |T |k = |N | = |B||Y ∩ N | < |B||T |1/2 6 |T |3/2, which gives k < 3

2 . It
follows that k = 1, and therefore N is simple, and G is almost simple. �

Finally, note that the last part of our proof of Theorem 1.1 (after Theorem 3.9)
again relies heavily on the CFSG through the use of Theorem 3.6, even in the case
where B is simple.

5. Skew morphisms of non-abelian simple and other monolithic
groups

In this section, we first describe a method for determining the skew morphisms of a
finite group B using skew product groups. Using Theorem 1.1, we then apply this
method to the case where B is monolithic and core-free in its skew product group.
We complete the paper by giving a summary of information about the case where B
is simple, and making some observations in the case where B is not core-free.

5.1. Determining skew morphisms using skew product groups. We first de-
fine a few notions that will be very useful. If ϕ is a skew morphism of a group B and
ψ is a group automorphism of B, then ψ ◦ϕ ◦ψ−1 is also a skew morphism of B (see
[2] for example) that is said to be equivalent to ϕ. Now let G be a skew product group
for B. By definition, G contains a copy of B and an element y such that G = B〈y〉
is a complementary factorisation and 〈y〉 is core-free in G. We call such a pair (B, y)
a skew generating pair for G, and we say that two skew generating pairs (B, y) and
(B, y′) for groups G and G′ are equivalent if there is an isomorphism α : G→ G′ such
that Bα = B and yα = y′. It is easy to see that equivalent skew generating pairs
induce equivalent skew morphisms.

To enumerate all skew morphisms of B, we first determine all equivalence classes
and then determine the size of each class. To determine the classes, we first determine
(up to isomorphism) all skew product groups G for B. Note that if we want only
proper skew morphisms of B, then by Lemma 2.1 we can restrict ourselves to the
skew products groups in which B is not normal. Then for each such G, we determine
the equivalence classes of generating pairs, choose a representative from each class,
and take the corresponding skew morphisms. By the previous paragraph, we now have
at least one representative of each equivalence class of skew morphisms. It remains to
check if any of these actually represent the same class, which can be done by a direct
check of conjugacy under Aut(B) in Sym(B). Finally, the size of the equivalence class
of a given skew morphism ϕ is given by the index |Aut(B) :CAut(B)(ϕ)|.
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The method above is designed to minimise the amount of calculations that have
to be undertaken in Sym(B), noting that this is often a very large group compared
to Aut(B) or even Aut(G).

Remark 5.1. If (B, y) is a generating pair for a skew product group G, then no two
different elements of 〈y〉 induce the same skew morphism of B. For if y and y′ are
elements of Y that induce the same skew morphism ϕ of B, with power function
π, then for every b ∈ B we have yb = ϕ(b)yπ(b) and y′b = ϕ(b)(y′)π(b), and so
b−1y−1y′b = (yb)−1y′b = (ϕ(b)yπ(b))−1(ϕ(b)(y′)π(b)) = y−π(b)(y′)π(b) = (y−1y′)π(b).
This implies that the cyclic subgroup of 〈y〉 generated by y−1y′ is normalised by b,
for all b ∈ B, and hence is normal in B〈y〉 = G. But 〈y〉 is core-free in G, so y−1y′

must be trivial, and therefore y′ = y. Note also that some elements of 〈y〉 might not
induce a skew morphism of B at all (as in [2] for example).

Next, we note the following, obtainable from the proof of [10, Theorem 2]:

Proposition 5.2. A skew morphism ϕ of a finite group B gives rise to a regular
Cayley map for B if and only if the set of elements in some cycle of ϕ (when regarded
as a permutation of B) is closed under taking inverses and generates B.

Finally we note that every regular Cayley map for the group B that is balanced
(in the sense defined in [10]) comes from an automorphism of B, and so proper skew
morphisms give rise only to non-balanced regular Cayley maps.

5.2. Skew morphisms of monolithic groups: the core-free case. Here we
apply the method from the previous subsection to determine all skew morphisms of
a monolithic group B when B is core-free in the skew product group G = BY . All
such skew morphisms will be proper, since the hypothesis requires that B itself is not
normal in G.

By Theorem 1.1, the only possibilities for B are Alt(5), M10, M22, Alt(n) for
even n > 6, and Sym(n) for n > 5. We enumerate both the number of (proper)
skew morphisms, and the number of equivalence classes of these. This enumeration
splits into seven cases, coming from the five cases in Theorem 1.1, with the two
additional cases Alt(6) and Sym(6) treated separately because of their exceptional
outer automorphisms. In particular, we have five sporadic cases (including some for
which we relied on Magma [3] to verify), and two infinite families.
Case (1) B = Alt(5).

Here the skew product group G is PSL(2, 11), with B = Alt(5) core-free in G,
and Y cyclic of order 11. There is just one conjugacy classes of possibilities for Y
(since Y is a Sylow 11-subgroup), and there are two conjugacy classes of subgroups
isomorphic to B in G, but the latter form a single class within Aut(G), so we may
take B as any representative of just one of them. Then the subgroup H of Aut(G)
preserving B has two orbits on elements of order 11 in G, with y and y−1 always
lying in different orbits, for every such y. Hence we have two equivalence classes
of skew generating pairs for G.

Next, take y of order 11 in G, and let ϕ be the skew morphism of B induced
by y. Then every skew morphism of B associated with the skew product group G
is equivalent to ϕ or ϕ−1. Moreover, the centraliser in Aut(B) ∼= Sym(5) of ϕ is
trivial, and ϕ−1 is not a conjugate of ϕ under an element of Aut(B), so these two
skew morphisms are inequivalent. Hence there are two equivalence classes of skew
morphisms of Alt(5) associated with PSL(2, 11), each of size 120.

Moreover, it is easy to check that ϕ induces at least one 11-cycle on Alt(5) that
contains three involutions, four 3-cycles and four 5-cycles, forming a set that is
closed under inverses and clearly generates Alt(5). It follows that the same holds
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for ϕ−1, and hence for all skew morphisms arising in this case (each of which is
equivalent to ϕ or ϕ−1). By Proposition 5.2, it follows that each of these skew
morphisms gives rise to a (non-balanced) regular Cayley map for Alt(5).

In conclusion, Alt(5) has 240 proper skew morphisms associated with
PSL(2, 11), which split into two equivalence classes of size 120, with one of
the classes consisting of the inverses of the members of the other one, and also
every skew morphism associated with PSL(2, 11) gives rise to a (non-balanced)
regular Cayley map for Alt(5).

Case (2) B = M10.
In this case the skew product group G is M11, with B = M10 and Y cyclic of

order 11. Again here we have two classes of skew generating pairs, and the skew
morphisms associated with their representatives are not equivalent. We find there
are two equivalence classes of proper skew morphisms, each of size |Aut(M10)| =
1440, giving us a total of 2880 proper skew morphisms. Also one of the classes
consists of the inverses of members of the other one. Finally, each of the two class
representatives (and hence every skew morphism arising in this case) induces at
least one 11-cycle on M10, consisting of three involutions, six elements of order
4 and two of order 8, and forming a generating set that is closed under inverses,
and hence every skew morphism of M10 associated with M11 gives rise to a (non-
balanced) regular Cayley map for M10.

Case (3) B = M22.
The skew product group G in this case is M23, with B = M22 and Y cyclic

of order 23. Again there are two classes of skew generating pairs, and the skew
morphisms associated with representatives of different classes are not equivalent.
Hence we have two equivalence classes of proper skew morphisms, each of size
|Aut(M12)| = 887040, giving us a total of 1774080. Again in this case, each class
consists of the inverses of members of the other one. Finally, each of the two
class representatives (and hence every skew morphism arising in this case) induces
at least one 23-cycle on M22, consisting of seven involutions, eight elements of
order 7 and eight of order 11, and forming a generating set that is closed under
inverses. Thus every skew morphism of M22 associated with M23 gives rise to a
(non-balanced) regular Cayley map for M22.

Case (4) B = Alt(6).
Here the skew product group G is Alt(7), with B = Alt(6) and Y cyclic of order

7. This time there is only one equivalence class of skew generating pairs, giving us
a single class of proper skew morphisms, of size |Aut(Alt(6))| = 1440. (Each one
comes from taking Y as the cyclic subgroup generated by a single 7-cycle, and B
as the stabiliser in Alt(7) of any point.) Moreover, every skew morphism (arising
in this case) induces at least one 7-cycle on Alt(6), consisting of three involutions
and four elements of order 5, and forming a generating set that is closed under
inverses. Thus every skew morphism of Alt(6) associated with Alt(7) gives rise to
a (non-balanced) regular Cayley map for Alt(6).

Case (5) B = Sym(6).
The skew product group G in this case is Sym(7), with B = Sym(6) and Y

cyclic of order 7. Just as in the previous case, there is only one equivalence class
of skew generating pairs, giving a single class of proper skew morphisms, of size
|Aut(Sym(6))| = 1440. (This time B can be taken as the stabiliser in Sym(7) of
any point.) Moreover, a representative of that class induces at least one 7-cycle
on Sym(6) that consists of five involutions and two elements of order 6, forming a
generating set that is closed under inverses. Thus every skew morphism of Sym(6)
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associated with Sym(7) gives rise to a (non-balanced) regular Cayley map for
Sym(6).

Case (6) B = Alt(n) for even n > 8.
Here the skew product group G is Alt(n+ 1), with B = Alt(n) and Y cyclic of

order n+ 1. Up to equivalence, there is only one skew generating pair, and hence
a single equivalence class of proper skew morphisms of Alt(n), of size at most
|Aut(Alt(n))| = n!.

Now take B = Alt(n) as the stabiliser of the point n + 1 in G, let y =
(1, 2, 3, . . . , n + 1), and let ϕ be the skew morphism of Alt(n) induced by y. If
π is the power function of ϕ, then by considering the effect of yb = ϕ(b)yπ(b) ∈
G = Alt(n + 1) on the point n + 1, we find that 1b = ((n + 1)y)b = (n + 1)yb =
(n+ 1)ϕ(b)yπ(b) = (n+ 1)yπ(b) for all b ∈ B, because ϕ(b) ∈ B fixes the point n+ 1.
Hence if π(b) = k then 1b = (n+ 1)y k = k, and therefore π(b) = 1b for all b ∈ B.

Next, suppose z is another (n + 1)-cycle in G = Alt(n + 1) that gives exactly
the same skew morphism ϕ of Alt(n), say z = (p1, p2, p3, . . . , pn, n+ 1). Then the
same argument applies also to zb = ϕ(b)zπ(b), giving ((n+ 1)z)b = (n+ 1)zπ(b) for
all b ∈ B, so p b1 = ((n+ 1)z)b = (n+ 1)z k = pk whenever π(b) = k.

In particular, if we let a be the (n− 1)-cycle (1, 2, 3, . . . , n− 1) in B = Alt(n),
then taking b = aj we find that π(aj) = 1aj = j + 1 and so p a

j

1 = pj+1 for
1 6 j 6 n− 1. It follows that a takes pi to pi+1 for 1 6 i 6 n− 1, and so has the
same effect as z on {p1, p2, . . . , pn−1}, and therefore z = (1, 2, 3, . . . , n, n+ 1) = y.

Hence for a given copy of B = Alt(n) in G = Alt(n + 1), every two different
(n+1)-cycles give two different skew morphisms of B. Since the number of (n+1)-
cycles is n!, it follows that the number of skew morphisms of Alt(n) associated
with Alt(n+ 1) is exactly n!. In particular, the centraliser in Aut(B) ∼= Sym(n) of
ϕ is trivial.

Also the set S of elements of the cycle of ϕ on Alt(n) containing the double
transposition x = (1, 2)(3, 4) consists of the following:

x = (1, 2)(3, 4),
yxy−2 = (1, n, n− 1, n− 2, . . . , 5, 4, 3),
y2xy−1 = (1, 3, 4, 5, . . . , n− 2, n− 1, n),
y3xy−4 = (1, n, n− 2, n− 3, . . . , 4, 3, 2),
y4xy−3 = (1, 2, 3, 4, . . . , n− 3, n− 2, n),
y5xy−5 = (n− 3, n− 2)(n− 1, n),
y6xy−6 = (n− 4, n− 3)(n− 2, n− 1),

...
yn−1xy−(n−1) = (3, 4)(5, 6),

ynxy−n = (2, 3)(4, 5).

It is easy to see that this set S generates a transitive subgroup of Alt(n), and
contains the (n−1)-cycle y2xy−1 = (1, 3, 4, 5, . . . , n−2, n−1, n). It follows that 〈S〉
is 2-transitive, and hence primitive. Then by Jordan’s Theorem [8, Theorem 3.3E],
the presence of the 5-cycle xynxy−n = (1, 3, 5, 4, 2) implies that 〈S〉 = Alt(n).

As also S is closed under inverses, it follows that ϕ, and hence every skew
morphism of Alt(n) associated with Alt(n + 1), gives rise to a (non-balanced)
regular Cayley map for Alt(n).

Case (7) B = Sym(n) for n = 5 and n > 7.

Algebraic Combinatorics, Vol. 5 #5 (2022) 797



Martin Bachratý, Marston Conder & Gabriel Verret

This case, where the skew product group G is Sym(n + 1), and B = Sym(n)
and Y cyclic of order n+ 1, is similar to the previous case, with only one equiva-
lence class of skew generating pairs and a single equivalence class of proper skew
morphisms. Again Y can be taken as the cyclic subgroup generated by a single
(n+ 1)-cycle, and B as the stabiliser in Sym(n+ 1) of any point, and the size of
the equivalence class is |Aut(B)| = n!.

Moreover, if we take y as the (n + 1)-cycle (1, 2, 3, . . . , n, n + 1), and ϕ as
the skew morphism of Sym(n) induced by y, then the set T of elements of the
cycle of ϕ on Sym(n) containing the single transposition (1, 2) consists of the n-
cycle (1, 2, 3, 4, . . . , n − 2, n − 2, n) and its inverse, plus the n − 1 transpositions
(1, 2), (2, 3), . . . , (n− 2, n− 1), (n− 1, n). The first n-cycle and any one of these
transpositions generate Sym(n), and clearly T is closed under inverses, so again
it follows that ϕ, and hence every skew morphism of Sym(n) associated with
Sym(n+ 1), gives rise to a (non-balanced) regular Cayley map for Sym(n).

Remark 5.3. Note that all skew morphisms considered in Case (1) through Case
(7) induce a cycle which forms a generating set and is closed under inverses. Hence by
Proposition 5.2 they all give rise to a regular Cayley map. Moreover, every such regular
Cayley map is non-balanced, because the skew morphism is a proper skew morphism.
Conversely, by what we have proved here, every non-balanced regular Cayley map for
a finite monolithic group B arises in this way. We can summarise the situation even
more strongly, in the following, which shows that almost every regular Cayley map
for a monolithic group is balanced.

Corollary 5.4. Every non-balanced regular Cayley map for a monolithic group B
arising from a proper skew morphism of B for which B is core-free in the correspond-
ing skew product group is one with:

(a) B = Alt(5) and valency 11,
(b) B = M10 and valency 11,
(c) B = M22 and valency 23,
(d) B = Alt(n) and valency n+ 1, where n is even and n > 6, or
(e) B = Sym(n) and valency n+ 1, where n > 5.

To complete this subsection, we note that in all of the cases above, the centraliser
in Aut(B) of ϕ is trivial. Consequently, this is true for all proper skew morphisms of
simple groups. On the other hand, there are many examples of groups which admit
a skew morphism with non-trivial centraliser. The latter is true even for some almost
simple groups (see Example 5.9).

5.3. Summary of skew morphisms of simple groups. Let G = BY be the skew
product group induced by some skew morphism of a simple group B. If B is not
core-free in G, then it is normal in G and, by Lemma 2.1, the skew morphism is an
automorphisms of B. If B is core-free in G, then by Theorem 1.1, B is one of Alt(5),
M22 or Alt(n) for even n > 6. In particular, this proves Corollary 1.2.

Moreover, as we have shown in Section 5.2, Alt(5), Alt(6) and M22 admit 240,
1440 and 1774080 proper skew morphisms, respectively while, for even n > 8, Alt(n)
admits n! proper skew morphisms. Skew morphisms of Alt(5) and M22 fall into two
equivalence classes of equal size, while those of Alt(n) form a single equivalence class,
for even n > 6.

By Remark 5.3 and Corollary 5.4 we also have the following.

Theorem 5.5. Every proper skew morphism of a non-abelian finite simple group B
gives rise to a non-balanced regular Cayley map for B. Moreover, every non-balanced
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regular Cayley map for a non-abelian finite simple group is one for either Alt(5) with
valency 11, or M22 with valency 23, or Alt(n) with valency n+1 for some even n > 6.

Unfortunately we cannot say much about the (balanced) regular Cayley maps that
arise from automorphisms of non-abelian finite simple groups, or of monolithic groups
in general, because that requires much greater knowledge about generating sets for
such groups.

5.4. Skew morphisms of monolithic groups: the non-core-free case. We
now consider the case where the monolithic group B is not core-free in the skew
product group G = BY . If B is simple, then it is normal in G, and hence all skew
morphisms will be automorphisms of B. In contrast, if B is monolithic but not simple,
it might not be normal in G (see Example 4.1) and hence the corresponding skew-
morphism might be proper. Moreover, if B is almost simple, the corresponding skew
morphism always restricts to an automorphism of soc(B); see Corollary 5.7.

Lemma 5.6. If B is an almost simple group with socle A, then A is the only subgroup
of B isomorphic to A.

Proof. Let T be a subgroup of B isomorphic to A. Then A∩T is normal in T since A
is normal in B, but T is simple, so either A∩T = T or A∩T = {1}. In the latter case,
T is isomorphic to a subgroup of B/A, which in turn is a subgroup of Out(A) since A
is the socle of the almost simple group B, but that is impossible since T is insoluble
while Out(A) is soluble, by the proof of Schreier’s Conjecture (see [8, Section 4.7]).
Thus A ∩ T = T , and so T = A. �

Corollary 5.7. Let B be an almost simple group with socle A, and let ϕ be a skew
morphism of B associated with the skew product group G = BY . If B is not core-free
in G, then ϕ restricts to an automorphism of A.

Proof. By Proposition 3.7, A is normal in G, and so kerϕ contains A by Lemma 2.1.
It follows that ϕ restricts to an isomorphism from A to the subgroup T = ϕ(A) of
B, but then A = T by Lemma 5.6, and therefore ϕ restricts to an automorphism
of A. �

Note here that if B is almost simple with socle A, then A must be a relatively large
subgroup of B, because |B : A| 6 |Out(A)| < log2 |A|; see [12] for example.

It would be interesting to obtain a generalisation of Lemma 5.6 to the monolithic
case, with a corresponding generalisation of Corollary 5.7.

Note also that the remarks before Lemma 5.6 help to explain the fact that if G is
the automorphism group of a balanced regular Cayley map for a non-abelian simple
group A, then the customary factorisation G = AY cannot be re-written to produce
a non-balanced regular Cayley map for A (or more specifically, for a subgroup of G
that is isomorphic to A). This contrasts strongly with the situation for cyclic groups,
where the latter is often possible; see [6, Section 2].

5.5. Skew morphisms of monolithic groups with socle of index two. We
now show how Proposition 3.7 can be used to find all skew product groups G = BY
for a monolithic group B with monolith A in the case when B ∼= Aut(A) and is not
core-free in G, and |B : A| = 2.

Proposition 5.8. Let B be a monolithic group with monolith A, and let G = BY be
a skew product group for B with B not core-free in G. If B is isomorphic to Aut(A)
and |B : A| = 2, then G = CG(A) o B. Moreover, |CG(A)| = |Y | and is bounded
above by the maximum order of an element in B, and CG(A) has a cyclic subgroup
of index at most two.
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Proof. By Proposition 3.7, A is normal in G and CY (A) = {1}. Since B ∼= Aut(A),
we have G/CG(A) ∼= Aut(A), and then since B is monolithic, CB(A) = {1} and so
G = CG(A)o B. In particular, by order considerations, we find that |CG(A)| = |Y |.
But also Y acts faithfully by conjugation on A since CY (A) = {1}, and thus Y embeds
in Aut(A) ∼= B. As Y is cyclic, it follows that |CG(A)| = |Y | is bounded above by the
maximum order of an element in B.

Next, write X for XA/A when X is a subgroup of G. Since A ∩ Y = {1} and
|B : A| = 2, we see that Y ∼= Y and |B| = 2. It follows that |G| = 2|Y |, and hence
Y is a cyclic subgroup of index two in G. This implies that CG(A) ∩ Y is a cyclic
subgroup of CG(A) of index at most 2. Finally, since A is the monolith of B, we find
that A ∩ CG(A) = {1}, and thus CG(A) ∼= CG(A). �

There are many interesting examples of a monolithic group B with monolith A
such that B ∼= Aut(A) and |B : A| = 2, such as the following:

• Sym(n) for n = 5 and n > 7,
• PGL(2, p) for an odd prime p,
• PGL(n, p) for n > 3 and a prime p such that gcd(n, p− 1) = 1,
• T o C2, where T is a non-abelian simple group such that T ∼= Aut(T ).

We now explain how to find all skew product groups G for such a monolithic group
B. By the results of Section 5.2, it suffices to consider the case where B is not core-
free in G, and apply Proposition 5.8. This gives us a good upper bound on the order
of CG(A). Also the groups having a cyclic subgroup of index at most two are very
well-understood (see [7] for example), and hence we can easily identify all possible
candidates for CG(A). For each candidate for CG(A), we find all semi-direct products
of the form CG(A)oB. As A acts trivially on CG(A) by conjugation and |B : A| = 2,
conjugation by B induces a group of automorphisms of CG(A) of order at most two.
This gives us a complete list of candidates for G. As a final step, we reject a candidate
G if it does not admit a cyclic core-free complement of B.

Once we have all possible skew product groups for B, we can attempt to find all
skew morphisms using the method outlined in Section 5.1. We now illustrate this
method in the smallest relevant case, namely B = Sym(5).

Example 5.9. Let B = Sym(5), and A = soc(B) = Alt(5), and let G = BY be a
skew product group induced by some skew morphism of B. If B is normal in G, then
by Lemma 2.1, the skew morphism is an automorphism of B. Also the case when B
is core-free in G was dealt with in Section 5.2, and hence we may assume that the
core of B in G is A.

By Proposition 5.8, we find that G = CG(A) o B, and that |CG(A)| is bounded
above by the maximum order of an element in B, namely 6. Then sinceG = CG(A)oB
where B is not normal in G, it follows that |CG(A)| > 3. In particular, CG(A) is
isomorphic to C3, C4, C 2

2 , C5, C6 or Sym(3).
It remains to determine the conjugation action of B on CG(A). Since B is not

normal in G, this action is non-trivial, but its index 2 subgroup A acts trivially by
definition, and so B induces an automorphism of CG(A) of order 2. In each case, there
is a unique conjugacy class of element of order 2 in Aut(CG(A)), and hence a unique
possibility for G.

Now that we know G, it remains to find Y , which must be a cyclic core-free com-
plement for B in G. It turns out that G has no such subgroup when CG(A) ∼= C4 or
CG(A) ∼= C6, and a unique class of such subgroups in all other cases, up to conjugacy
under NG(B). (This is a slightly tedious computation to do by hand, but it is easy to
do by computer.)
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Using similar methods as in Section 5.2, we enumerate all skew morphisms for these
skew product groups. When CG(A) is isomorphic to C3, C 2

2 , C5 or Sym(3), we get a
single equivalence class of skew morphisms in each case, containing 20, 30, 24 and 20
proper skew morphisms, respectively. Indeed in all of these cases, the centraliser in
Aut(B) of the skew morphism is non-trivial.

Thus Sym(5) admits 20 + 30 + 24 + 20 = 94 proper skew morphisms (in four
equivalence classes) when Alt(5) is the core of Sym(5) in its skew product group, plus
another 120 proper skew morphisms in a single equivalence class when the core is
trivial, and 120 automorphisms when the core is Sym(5).

Using a computer to automate the approach used in Example 5.9, we are able to
find all skew morphisms for all monolithic groups B with monolith A such that B ∼=
Aut(A), |B : A| = 2, and |B| < 200000. This includes the cases where B = Sym(8),
Aut(M12) or PGL(2, 53), for example. By comparison, the best method we know for
determining all skew morphisms of an arbitrary finite group A is computationally
feasible only for |A| up to 47 (by considering all transitive permutation groups of
degree |A| with cyclic point-stabiliser).

Finally, we note that the methods of this section, based on Proposition 3.7, can
be generalised to other monolithic groups, but the difficulty increases quickly with
respect to |Aut(A) : A|.
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