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Abstract Let A be an alphabet and let F be a set of words with letters in A. We show that the
sum of all words with letters in A with no consecutive subwords in F , as a formal power series
in noncommuting variables, is the reciprocal of a series with all coefficients 0, 1 or −1. We also
explain how this result is related to the work of Dotsenko and Khoroshkin on a closely related
problem and to a theorem of Curtis Greene on lattices with Möbius function 0, 1, or −1.

1. Introduction
Let A be an alphabet, and let A∗ be the free monoid of words made up of letters in
A, with the operation of concatenation. Let R be a commutative ring with identity
(in our application we may take it to be the polynomial ring Z[t]), and let R ⟨⟨A∗⟩⟩
be the ring of formal sums of elements of A∗ with coefficients in R, multiplied in the
obvious way. Then R ⟨⟨A∗⟩⟩ may be viewed as an algebra of formal power series in
the noncommutative variables in A. We write 1 for the empty word, which is also the
identity element of R ⟨⟨A∗⟩⟩, and we write |w| for the length of the word w.

We call a word u a subword of a word v if there exist words p and q such that
v = puq. Let F be a set of nonempty words in A∗, and let AF be the set of words in
A∗ in which no word in F occurs as a subword. Since 1 ∈ AF , the sum

∑
w∈AF

w is
invertible in R ⟨⟨A∗⟩⟩. Our main result describes the coefficients of the reciprocal of
this sum.

Theorem 1.1. For each word v ∈ A∗, let M(v) be the coefficient of v in( ∑
w∈AF

w

)−1
.

Then for all v, M(v) is 0, 1, or −1.

We derive Theorem 1.1 from a noncommutative form of the Goulden–Jackson clus-
ter theorem [8], which gives a formula for counting words according to the number of
subwords in F . Theorem 1.1 is not an immediate consequence of the cluster theorem,
since there is cancellation that must be accounted for.

A similar result was proved by Dotsenko and Khoroshkin [5] using a different
approach. A proof of Theorem 1.1 was given by Iyudu and Vlassopoulos [11, Corol-
lary 4.1]. See also Dotsenko, Vincent Gélinas, and Tamaroff [4, section 1.1].
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We also explain how Theorem 1.1 is closely related to a result of Curtis Greene [10],
that lattices of unions of intervals, ordered by inclusion, have Möbius functions that
are 0, 1, or −1.

2. The Goulden–Jackson Cluster Theorem
Let F be a set of words in A∗ all of length at least 2. We call the elements of F
forbidden words. The cluster theorem allows us to count words in A∗ by the number
of forbidden subwords in terms of certain “marked words” called clusters. Informally,
a cluster is a word which is covered by an overlapping collection of marked forbidden
subwords. For example, if A = {a} and F = {aaa} then the following are both clusters
on the word a6:

(1)
a a a a a a

a a a a a a

but a a a a a a is not a cluster since the marked subwords don’t overlap.
There are several possible formal definitions for marked words and clusters. The

definition that we use is the most convenient for explaining the connection between
our main result and Greene’s theorem on Möbius functions of unions of intervals; it
also allows the simple characterization of clusters given in Lemma 2.1 below.

We use the notation [m, n) for the interval of integers { i ∈ Z : m ⩽ i < n }.
We define a marked word (with respect to the alphabet A and the set of forbidden
words F ) to be an ordered pair (w, I) where w = α1α2 · · · αn is a word in A∗ and I is
a set of intervals [i, j), with i < j ⩽ |w|, for which the subword αiαi+1 · · · αj is in F .
We call w the underlying word and I the set of intervals of the marked word (w, I).
For consistency, we will say that the subword αiαi+1 · · · αj of the word α1α2 · · · αn

occurs at the interval [i, j). Note that for each letter α ∈ A, (α,∅) is a marked word.
The concatenation of two marked words (u, I) and (v, J) is defined by

(u, I)(v, J) =
(
uv, I ∪ (J + |u|)

)
,

where
J + |u| = { [i + |u|, j + |u|) : [i, j) ∈ J }.

Concatenation of marked words is easily seen to be associative and compatible with
projection onto the underlying word.

A marked word is a cluster if its underlying word has length at least 2 and it cannot
be expressed as a concatenation of two nonempty marked words. We call a word w a
cluster word if it is the underlying word of a cluster. The following characterization
of clusters is clear:

Lemma 2.1. A marked word (u, I) is a cluster if and only if |u| ⩾ 2 and⋃
[i,j)∈I

[i, j) = [1, |u|). □

For example, the two clusters shown in (1) are formally (a6, {[1, 3), [2, 4), [4, 6)})
and (a6, {[1, 3), [2, 4), [3, 5), [4, 6)}). The marked word after (1) is (a6, {[1, 3), [4, 6)}). It
is not a cluster since it is the concatenation of (a3, {[1, 3)}) with itself, or alternatively,
since [1, 3) ∪ [4, 6) = {1, 2, 4, 5} ≠ [1, 6).

If we identify each letter α ∈ A with the marked word (α,∅) then every marked
word can be expressed uniquely as a concatenation of letters and clusters.
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We define the cluster polynomial PF,w(t) of a word w by

PF,w(t) =
∑

I

t|I|

where the sum is over all I for which (w, I) is a cluster. For example, if w = aaab
and F = {aa, aab} then the two clusters with underlying word w are [w, I) with
I = {[1, 2), [2, 4)} and I = {[1, 2), [2, 3), [2, 4)}, so PF,w(t) = t2 + t3. If w is not a
cluster word then PF,w(t) = 0.

We define the cluster generating function for F to be

CF (t) =
∑

w

PF,w(t)w

where the sum is over all words w in A∗.
For a word w ∈ A∗, let sF (w) be the number of subwords of w (counted with

multiplicities) that are in F . For example, if F = {aa} then sF (a4) = 3.
We now state and prove our form of the Goulden–Jackson cluster theorem. (The

original cluster theorem [8] has more general weights, but is commutative; the
proofs are essentially the same.) For some applications of the cluster theorem, see
Bassino, Clément, and Nicodème [2], Noonan and Zeilberger [12], Wang [14], and
Zhuang [15, 16].

Theorem 2.2. Let F ⊆ A∗ be a set of words of length at least two. Then

(2)
∑

w∈A∗

tsF (w)w =
(

1 −
∑
α∈A

α − CF (t − 1)
)−1

.

In particular, for t = 0 we have

(3)
∑

w∈AF

w =
(

1 −
∑
α∈A

α − CF (−1)
)−1

,

where AF is the set of words in A∗ with no subwords in F .

Proof. Replacing t by t + 1 in (2) gives the equivalent formula

(4)
∑

w∈A∗

(1 + t)sF (w)w =
(

1 −
∑
α∈A

α − CF (t)
)−1

,

which is easy to prove directly: The coefficient of a word w on the left side of (4) counts
marked words with underlying word w, where a marked word (w, I) contributes t|I|.
But since every marked word is a unique concatenation of clusters and letters, the
right side of (4) also counts marked words, with the same weights. □

As an example of Theorem 2.2, let A = {a, b, c} and F = {abc, bcc}. There are
three clusters:

a b c b c c a b c c

Thus the cluster generating function CF (t) is tabc + tbcc + t2abcc. So∑
w∈A∗

tsF (w)w =
(
1 − a − b − c − (t − 1)abc − (t − 1)bcc − (t − 1)2abcc

)−1
.

As another example, take A = {a} and F = {a3}. Although it’s not hard to
compute the cluster generating function directly, an indirect approach is even easier:
For n ⩾ 2, there are n − 2 occurrences of a3 in an. So∑

w∈A∗

tsF (w)w = 1 + a + a2 + ta3 + t2a4 + · · · = 1 + a + a2(1 − ta)−1.
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Replacing t with 1 + t, applying (4), and simplifying gives

(5) CF (t) = ta3(
1 − t(a + a2)

)−1
.

Setting t = −1 in (5) gives
CF (−1) = −a3(1 + a + a2)−1 = −a3(1 − a)(1 − a3)−1

= −a3 + a4 − a6 + a7 − · · · ,(6)
a formula that we will derive in another way in section 4.

3. A recurrence for the cluster polynomial
The cluster polynomial PF,w(t) can be computed by a simple recurrence that will be
needed in the proof of the main theorem. In Lemma 3.1 below we require that F be
reduced; that is, no word in F is a subword of another word in F . This condition
makes the recurrence simpler, and the case of reduced F is sufficient for the proof of
Theorem 1.1. We also require that w be a cluster word; if w is not a cluster word then
PF,w(t) = 0.

Lemma 3.1. Suppose that F ⊆ A∗ is a reduced set of forbidden words, and that w =
α1α2 · · · αn is a cluster word with respect to F . Then there exists a positive integer
m, polynomials p1, p2, . . . , pm in t, and positive integers r2, r3, . . . , rm, with 1 ⩽ rk ⩽
k − 1, such that p1 = t,
(7) pk = t(prk

+ prk+1 + · · · + pk−1) for 2 ⩽ k ⩽ m,

and pm = PF,w(t).

Proof. Let the intervals of the forbidden subwords of w be [i1, j1), . . . , [im, jm), where
i1 < · · · < im and thus (since F is reduced) j1 < · · · < jm. Since w is a cluster word,
we have i1 = 1 and jm = n. Let wk be the word α1α2 · · · αjk

for 1 ⩽ k ⩽ m and let
pk = PF,wk

(t). Then each wk is a cluster word and wm = w. Since w1 ∈ F , we have
p1 = t. Now suppose that k > 1. Then jk−1 ⩾ ik since w is a cluster word. So we
may define rk to be the least integer such that jrk

⩾ ik, and we have 1 ⩽ rk ⩽ k − 1.
In any cluster on wk, the last interval must be [ik, jk) and the next-to-last interval
[il, jl) must satisfy jl ⩾ ik and thus rk ⩽ l ⩽ k − 1, and the contribution to pk from
this value of l is tpl. Thus

pk = t(prk
+ prk+1 + · · · + pk−1). □

For example, suppose that F = {a3} and w = a6. Then the intervals of the for-
bidden words in w are [1, 3), [2, 4), [3, 5), and [4, 6), so m = 4 and we have r2 = 1,
r3 = 1, and r4 = 2. Then p1 = t and the recurrence gives

p2 = tp1

p3 = t(p1 + p2)
p4 = t(p2 + p3)

so p2 = t2, p3 = t2 + t2, and p4 = PF,w(t) = 2t3 + t4.

4. Counting words without forbidden subwords
The sum of all words in A∗ with no forbidden subwords is given by (3). Thus we can
prove Theorem 1.1 by showing that PF,w(−1) is always 0, 1 or −1.

Let us first look at an important special case: Suppose that every forbidden word
has length 2. Then the clusters are of the form (α1α2 · · · αn, I), where αiαi+1 ∈ F for
1 ⩽ i < n and I = { [i, i + 1) : 1 ⩽ i < n }, and the cluster polynomial for the word
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α1α2 · · · αn, when nonzero, is tn−1. In this case (3) may be written in the following
symmetrical form:
Corollary 4.1. Let F be a set of words of length 2 in A∗. Let F̄ be the complement
of F in A2. Let AF be the set of words in which no word in F occurs as a subword,
and similarly for AF̄ . (So AF and AF̄ both contain the empty word and all words of
length 1.) Then ∑

w∈AF

w =
( ∑

w∈AF̄

(−1)|w|w

)−1
.

Corollary 4.1 was first proved by Fröberg [6] (in a somewhat weaker form) and by
Carlitz, Scoville, and Vaughan [3], and was applied to various problems of permutation
enumeration in Gessel [7]. Many related results can be found in Goulden and Jackson’s
book [9, Chapter 4].

To prove our main result, Theorem 4.3 below (a restatement of Theorem 1.1), we
use Lemma 3.1 together with a lemma due to Curtis Greene [10, Lemma 2.2]:
Lemma 4.2. Let u1, u2, . . . , um be integers satisfying u1 = −1 and for 1 < k ⩽ m,
(8) uk = −(urk

+ urk+1 · · · + uk−1),
for some integers rk, where 1 ⩽ rk ⩽ k − 1. Then the nonzero entries of the sequence
u1, u2, u3, . . . , um are −1, 1, −1, 1, −1, . . . .
Proof. We are given that u1 = −1. Now suppose that k > 1 and that the nonzero
entries of u1, u2, . . . , uk−1 are −1, 1, −1, 1, . . . . Then urk

+urk+1 · · ·+uk−1 must be 0,
1, or −1, and if the sum is nonzero then it must be equal to the last nonzero summand.
Thus the nonzero entries of u1, u2, . . . , uk are −1, 1, −1, 1, . . . and the result follows
by induction. □

We can now prove our main result.
Theorem 4.3. The sum of all words in A∗ with no subwords in F may be written( ∑

w∈A∗

M(w)w
)−1

where for every word w, M(w) is 0, 1, or −1.
Proof. By equation (3) in Theorem 2.2, M(w) = −PF,w(−1), so it is sufficient to show
that for every word w, PF,w(−1) is 0, 1, or −1. We will derive this from Lemma 3.1.

We may assume without loss of generality that F is reduced. To see this, note that
if a word u in F is a subword of another word v in F , then forbidding u as a subword
automatically forbids v, so we may remove v from F without changing AF . Changing
F in this way may change CF (t) but it will not change CF (−1).

Then setting t = −1 in Lemma 3.1 and applying Lemma 4.2 yields the theorem. □

Dotsenko and Khoroshkin [5, Corollary 22] proved a result closely related to The-
orem 4.3. Their interest was in finding exponential generating functions for permu-
tations avoiding consecutive patterns, so they did not consider words with repeated
entries. However, their approach, based on earlier work of Anick [1], can be used to
prove Theorem 4.3, and gives an explicit, though recursive, description of the values of
M(w) in Theorem 4.3. A proof of Theorem 4.3, using algebraic techniques, was given
by Iyudu and Vlassopoulos [11, Corollary 4.1]. See also Dotsenko, Vincent Gélinas,
and Tamaroff [4, section 1.1], which discusses “Anick chains” and their connection
with Tor groups of monomial algebras.

We can obtain a similar (though not obviously equivalent) description of M(w)
through a refinement of Lemma 4.2 that takes into account that F is reduced:
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Lemma 4.4. With the assumptions of Lemma 4.2, suppose that in addition we have
rk−1 ⩽ rk for 2 < k ⩽ m. Then in the sum on the right side of (8) at most two terms
are nonzero. Thus uk is nonzero if and only if exactly one of urk

, . . . , uk−1 is nonzero.

Proof. We proceed by induction on k. The assertion is clearly true for k = 2,
since there is only one term in the sum. Now suppose that k > 2 and that
among urk−1 , . . . , uk−2, at most two are nonzero. Since rk ⩾ rk−1, at most two
of urk

, . . . , uk−2 are nonzero. If fewer than two are nonzero, then at most two of
urk

, . . . , uk−1 are nonzero, and if exactly two of urk
, . . . , uk−2 are nonzero, then by (8)

(with k − 1 for k), uk−1 = 0, and the conclusion follows. □

Let us call a word w in A∗ of length greater than 1 salient (with respect to F ) if
M(w) ̸= 0. Applying Lemma 4.4 gives an explicit, though recursive, characterization
of salient words. First we note that by Theorem 2.2, every salient word must be a
cluster word.

Theorem 4.5. Let F be a reduced set of forbidden words, and let w = α1α2 · · · αn be
a cluster word. If w ∈ F then w is salient with M(w) = 1. Otherwise, suppose that
the last forbidden subword in w has interval [j, n). Then w is salient if and only if
there is exactly one salient initial subword w′ = α1α2 · · · αm of w with j ⩽ m < n,
and in this case M(w) = −M(w′).

Proof. Since F is reduced, the integers rk of Lemma 3.1 satisfy rk−1 ⩽ rk for 2 < k ⩽
m. The theorem then follows by setting t = −1 in (7) and applying Lemma 4.4. □

As an example of Theorem 4.5, take A = {a} and F = {a3}. With the notation
of Theorem 4.5, let us call the initial subwords α1α2 · · · αm of w with j ⩽ m < n the
candidates for w. In this example, the cluster words are of the form an with n ⩾ 3,
and the candidates for an, with n ⩾ 3, are an−1 and an−2.

The word a3 is salient, since it is in F , and M(a3) = 1. The candidates for a4 are
a3 and a2. Only a3 is salient, so a4 is salient with M(a4) = −1. The candidates for
a5 are a4 and a3. Since both are salient, a5 is not. The candidates for a6 are a5 and
a4. Of these only a4 is salient, so a6 is salient with M(a6) = 1. In general, we can
easily show by induction that for n > 3, if n ≡ 0 (mod 3) then only candidate an−2

is salient, so an is salient. If n ≡ 1 (mod 3) then only candidate an−1 is salient so an

is salient. However, if n ≡ 2 (mod 3) then an−1 and an−2 are both salient, so an is
not salient. A similar analysis holds for F = {ak} for any k ⩾ 2.

5. Greene’s theorem on Möbius functions of lattices
Theorem 4.3 is closely related to a result of Curtis Greene [10], which we will derive
from it. We note that Greene’s proof of this result used Lemma 4.2.

Greene’s Theorem. Let I1, I2, . . . , Im be nonempty intervals in Z. Let L be the
lattice of unions of the Ij (including the empty set) ordered by inclusion. Then for all
X ⊆ Y in L we have µ(X, Y ) ∈ {−1, 0, 1}, where µ is the Möbius function of L .

To prove Greene’s theorem, we first recall a well-known formula for the Möbius
function of a lattice, a special case of Rota’s cross-cut theorem [13]. We include a
short proof for completeness.

Recall that an atom of a lattice is an element that covers the minimal element 0̂.

Lemma 5.1. Let L be a finite lattice, and let A be the set of atoms of L. Then for
any x ∈ L, the Möbius function µ(0̂, x) is given by

(9) µL(0̂, x) =
∑
B

(−1)|B|,
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where the sum is over all subsets B ⊆ A with join x.

Proof. Let f(x) be the sum on the right side of (9). Then
∑

y⩽x f(y) =
∑

B⊆Ax
(−1)|B|,

where Ax is the set of atoms of L less than or equal to x. Thus
∑

y⩽0̂ f(y) = f(0̂) = 1
and if x > 0̂ then

∑
y⩽x f(y) = 0. Thus f(x) satisfies the same recurrence that defines

µ(0̂, x), so f(x) = µ(0̂, x). □

Proof of Greene’s Theorem. We prove the case in which X = 0̂ = ∅ and Y = 1̂ =
I1 ∪ I2 ∪ · · · ∪ Im; the general case follows easily from this case.

Let I = {I1, I2, . . . , Im} be a set of nonempty intervals in Z. Without loss of
generality we may assume that I1 ∪ I2 ∪ · · · ∪ Im = [1, n), where n ⩾ 2. Let L be the
lattice of unions of the intervals in I . Let I ′ be the set of intervals in I that do
not contain smaller intervals in I , so I ′ is the set of atoms of L . By Lemma 5.1, if
∪I∈I ′I ̸= [1, n) then µ(0̂, 1̂) = 0. So we may assume that ∪I∈I ′I = [1, n). Again by
Lemma 5.1, µ(0̂, 1̂) depends only on I ′, so we may now assume that I ′ = I . Then
there is an alphabet A, a reduced set of forbidden words F ⊆ A∗, and a word w such
that I1, I2, . . . , Im are the intervals of the forbidden subwords of w. (For example, we
may take w to be a word of length n with distinct letters and take F to be the set of
subwords corresponding to the intervals I1, . . . , Im.)

By Lemma 5.1, µ(0̂, 1̂) =
∑

I(−1)I , where the sum is over all subsets I of I with
union [1, n). Thus by the definition of the cluster polynomial and Lemma 2.1, we have
µ(0̂, 1̂) = PF,w(−1), which by Theorem 4.3 is 0, 1, or −1. □
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