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Twisted quadrics and α-flocks

Norman L. Johnson

Abstract In this article, we provide a general study of what we call twisted quadrics and
consider flocks of the variant of α-conics and α-hyperbolic quadrics. We extend the notion of
the Klein quadric to what we call an α-Klein quadric. Blended kernel translation planes are
defined and analysed when considering α-conical flocks and α-twisted hyperbolic flocks.

The Thas–Walker constructions of conical flocks and flocks of hyperbolic quadrics are ex-
tended to their α-analogues. Using the idea that any derivable net can be embedded into a
3-dimensional projective space over a skewfield, allows us to formulate what might be called a
projective version of work previously given in an algebraic framework. The theory of deficiency
one flocks is extended to both α-conical flocks and α-twisted hyperbolic flocks. j-planes are
used to construct two infinite classes of finite α-hyperbolic flocks.

1. Introduction
This article is something of a culmination of results of flocks of hyperbolic quadrics,

flocks of quadratic cones and their connections to translation planes admitting so-
called regulus-inducing groups. The study of flocks of finite quadratic cones has gen-
erated the most interest. The theory of Thas and Bader–Lunardon [33, 2] completely
classifies finite flocks of hyperbolic quadrics. Then there are the deficiency one flocks
of quadratic cones and deficiency one flocks of hyperbolic quadrics. These are con-
nected by results of the author to translation planes that admit certain Baer groups,
(see [11]). By ingenious arguments, Thas and Payne [29] and, later by other math-
ematicians, every such deficiency one partial flock of a finite quadratic cone may be
extended uniquely to a flock of a quadratic cone–saying something very interesting
about the associated Baer group planes being derivable. However, the study of de-
ficiency one hyperbolic flocks is still alive, as there are a few–just a few–examples
showing that an extension is not always possible.

Jha and Johnson [10] also analyze deficiency one conical and hyperbolic flocks
over an arbitrary field and show these are equivalent to a translation plane admitting
certain Baer groups.

There are appearances of flocks of quadratic cones, as in hyperbolic fibrations
with constant backhalf, which oddly enough are also connected to translation planes
admitting certain collineation groups (cyclic homology groups of order q + 1 if the
field is GF (q), and analogous groups when the field K is infinite, Johnson et al
([17, 25])). As certain j-planes (translation planes, also) admit such groups, there are
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corresponding flocks of quadratic cones from j-planes, as well. In this way, in the
infinite case, all j-planes over the field of real numbers have been determined by the
author [17].

In the finite case, all of these planes involve the analysis of translation planes
admitting regulus nets. The only other derivable net (in the finite case) is the twisted
regulus net (twisted by an automorphism of GF (q)).

It might be noted that the twisted regulus net is also a regulus net over a different
scalar field, due to the embedding theory of the author [16]. In this general study,
any derivable net may be shown to be a “pseudo-regulus” net in some 3-dimensional
projective space over a skewfield F . As an aside, the author recently completed a
study of all derivable nets over any skewfield (see [21]), where there is quite a variety
of interesting derivable nets other than the twisted regulus net. So, at least in the
infinite case, the theory of flocks of different colors and corresponding translation
planes is far from complete. We shall come back to the classification of derivable nets
later in this article.

Concerning twisted regulus nets, which occur both in the finite and infinite cases,
when the associated field K admits an automorphism α (they all do, if α = 1), we can
consider the twisted versions of conical flocks and hyperbolic quadrics over arbitrary
fields.

The theory of α-flocks of α-cones has been completed by Cherowitzo, Johnson and
Vega [6] and connects translation planes admitting α-regulus inducing elation groups
with flocks of α-cones (here the term is α-flokki, coined by Kantor and Pentilla [27],
who pointed the way to this theory).

Furthermore, the author [14] shows that the theory of hyperbolic flocks and asso-
ciated translation planes may be generalized by considering twisted hyperbolic flocks
and translation planes admitting twisted regulus inducing homology groups.

It is known that there cannot be finite partial flocks of quadratic cones of deficiency
one, and the concept of deficiency one partial flocks of α-cones has been analyzed
in Cherowitzo, Johnson and Vega [6]. In that article, it was shown that all finite
deficiency one α-flocks (α-flokki) may be extended to a flock, using an ingenious
argument of Sziklai [31].

There are, however, deficiency one partial hyperbolic flocks and there is a corre-
sponding equivalent theory of translation planes admitting certain Baer homology
groups. In this article, we discuss the known examples of such deficiency one hyper-
bolic flocks and further consider and complete the analogous deficiency one twisted
hyperbolic flock theory.

It might be mentioned that for all of the previous work, the translation planes
were always of dimension 2; that is, their spreads lie in PG(3,K), for some field K.
For deficiency one twisted hyperbolic flocks, we develop some theory on what we call
blended kernels to completely describe the translation planes associated, as they no
longer are of dimension 2.

In [6], the study of maximal partial α-flokki was considered and connected with
maximal partial spreads that are called “quasifibrations”. These occur only in the
infinite cases and are strange and wonderful objects. The quasifibrations studied pre-
viously admit elation α-regulus inducing groups. Here we consider quasifibrations
that admit homology α-regulus-inducing groups. Then there are the associated Baer
groups but now acting on quasifibrations that are not of dimension 2 and have blended
kernels. So, everything one can say about translation planes and associated flocks and
α-flocks, one can say about quasifibrations and maximal partial flocks called quasi
α-flocks.

We list the main result of the author, for convenience.
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Theorem 1.1 (Johnson [20]). Let Σ be a translation plane with spread in PG(3,K),
for K an arbitrary field. Let α denote an automorphism of K, possibly trivial. Assume
that Σ admits an affine homology group one orbit of which, together with the axis and
coaxis, is a twisted regulus net. Then all orbits are twisted regulus nets and the spread
may be coordinatized in the following form: Let V4 be the associated 4-dimensional
vector space over K. Letting x and y denote 2-vectors, then the spread is:

x = 0, y = 0, y = x

[
uα 0
0 u

]
,

and y = x

[
F (t) G(t)

1 t

] [
vα 0
0 v

]
;

∀u, t, v, uv 6= 0, of K,
and functions F,G on K. Furthermore, F is bijective. The “α-twisted hyperbolic
quadric” has the form:

{(x1, x2, x3, x4); such that x1x
α
4 = xα2x3}.

Then there is a flock of the α-twisted hyperbolic quadric with the flock of planes of
PG(3,K), as follows:

πt : −x1G(t)α + x2F (t)− x3t
α + x4 = 0, and ρ : x2 = x3,

where the intersection with each plane is a non-degenerate α-conic. Conversely, a flock
of a twisted hyperbolic flock corresponds to a translation plane admitting an α-regulus
inducing homology group.

When α = 1, we have a flock of a hyperbolic quadric and an associated translation
plane admitting a regulus-inducing affine homology group. These two geometries,
the hyperbolic flocks and the translation planes are equivalent. There are exactly
the following classes; the flocks are the linear flock, where the associated planes of
PG(3, q) share a line, and the Thas flocks, with a few exceptions. The Thas flocks
correspond to the regular nearfield planes and the exceptional flocks correspond to
the irregular nearfield planes and are due to a number of mathematicians from various
different points of view, Bader [1], Baker–Ebert [3], Bonisoli [6], Johnson [14]. There
are three irregular nearfield planes that correspond to hyperbolic flocks of orders
112, 232, 592 which Bader, Bonisoli and Johnson found, independently for all three
orders, and by Baker and Ebert for orders 112, 232. All of these mathematicians
determined the flocks/translation planes by using essentially different methods. The
main point here is that the associated translation planes are all Bol planes; which
has been of considerable interest, and there is a complete classification due to Thas
and Bader-Lunardon [2, 32]. There are two (at least) possible formulations for this
classification, depending on when it is phrased in the associated translation plane or
in the hyperbolic flock.

Theorem 1.2 (Bader–Lunardon [2], Thas [32]). Classification of finite hyperbolic
flocks/translation planes admitting regulus-inducing homology groups in PG(3, q).

Plane version: The translation planes are nearfield planes; based upon the regular
nearfields of order q2 and the three irregular nearfields of orders 112, 232 and 592.

Flock version: The hyperbolic flocks are exactly the Thas flocks and the flocks of
Bader, Baker–Ebert, Bonisoli, Johnson.

In this article, we consider partial flocks of twisted hyperbolic flocks of deficiency
one and show that these correspond to a certain type of translation plane admitting
a Baer group that we call an α-Baer homology group. We also study partial flocks
of twisted hyperbolic type and of α-flocks of deficiency one, and this time, there is
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an associated translation plane admitting an α-Baer elation group. The translation
planes are equivalent to the partial twisted flocks of deficiency one. However, the
translation planes do not have spreads in PG(3,K), but have what we call “blended
kernels”.

We also are interested in the Baer theory for α-conical flocks, and complete that
theory as well. We list the main theorem for background. The notation is changed to
fit our definition of α-regulus nets.

In this article, we define an α-regulus net as follows:

x = 0, y = x

[
uα 0
0 u

]
;u ∈ K, α an automorphism of K.

Where in Cherowitzo, Johnson, and Vega [6], this would have been called an α−1-
regulus net.

Theorem 1.3 (Cherowitzo–Johnson–Vega [6]). Let K be any field and α an automor-
phism of K. Let (x1, x2, x3, x4) denote homogeneous coordinates of PG(3,K). Define
Cα an α-cone as xα1x2 = xα+1

3 , with vertex (0, 0, 0, 1). A set of planes which parti-
tion the non-vertex points of Cα will be called an α-flokki (also an α-conical flock).
The plane intersections are called α-conics. Assume that π is a translation plane that
admits an elation group Eα, one component of which together with the axis is an
α-regulus net has the following form

x = 0, y = x

[
u+ g(t) f(t)

t uα

]
; t, u ∈ K,f, g functions of K,

when writing the α-regulus in the form

x = 0, y = x

[
u 0
0 uα

]
=
[
vα

−1 0
0 v

]
; t, u, v ∈ K.

Then there is a corresponding α-flokki with planes, corresponding to

ρt : x1t− x2f(t)α + x3g(t)α − x4; t ∈ K.

Conversely, an α-flokki may be written in the form {ρt; t ∈ K}, for some functions
f(t) and g(t), which constructs a translation plane with the previous form. Hence,
translation planes with spreads in PG(3,K) that admit α-regulus inducing elation
groups are equivalent to flocks of an α-quadratic cone.

We also give a Thas–Walker style construction-proof of the Cherowitzo–Johnson–
Vega result, which will allow a more complete way to deal with deficiency one α-conical
flocks.

Concerning deficiency one partial flocks of quadratic cones and deficiency one par-
tial flocks of hyperbolic quadrics, we list for convenience the following theorem of Jha
and the author. The approach by Jha and Johnson using the Klein quadric will be
generalized using what we shall call blended kernel translation planes. The two theo-
rems corresponding to the elation groups and homology groups shall be separated for
clarity.

Theorem 1.4 (Jha-Johnson [10]). Let K be a field and let π be a translation plane
with spread in PG(3,K) that admits a full point-Baer elation group. Then there is
a corresponding partial conical flock of deficiency one in PG(3,K). Conversely, any
partial conical flock of deficiency one constructs a translation plane with spread in
PG(3,K) that admits a full point-Baer elation group. The partial conical flock of
deficiency one may be extended to a flock of a quadratic cone if and only if the net
containing the point-Baer axis is a regulus net sharing the axis.
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Theorem 1.5 (Jha–Johnson [10]). Let K be a field and let Σ be a translation plane
with spread in PG(3,K) that admits a full point-Baer homology group. Then there is a
corresponding partial hyperbolic flock of deficiency one in PG(3,K). Conversely, any
partial hyperbolic flock of deficiency one constructs a translation plane with spread in
PG(3,K) that admits a full point-Baer homology group. The partial hyperbolic flock
may be extended to a hyperbolic flock if and only if the net containing the point-Baer
axis and coaxis is a regulus net.

Remark 1.6.Note that in the above two theorems there is the term “point-Baer” in
the hypotheses. A Baer subplane in an affine plane must have two properties: Every
point of the plane must be on a line of the subplane (“point-Baer”) and every line
of the plane must be on a line of the subplane (“line-Baer”). These conditions are
equivalent in the finite case but, in the infinite case, Barlotti [4] shows that they are
not! The author [15] constructs dual translation planes that admit a derivable net
which are not derivable! So, when dealing with the infinite case, care must be taken
(the interested reader might also look at (25.3) of [16] for more explanation). When
we give our main extension results, we will show that we may remove the point-Baer
hypothesis in the setting under consideration.

We also point out that the j = ps−1
2 −planes of Johnson, Pomareda, Wilke [12]

provide two infinite classes of finite ps-twisted hyperbolic flocks.

2. Blended kernels
In the author’s work [16], it is shown that every derivable net may be embedded

into a 3-dimensional vector space over a skewfieldK, PG(3,K), such that points, lines
of the derivable net correspond to lines and points not incident with a fixed line N of
PG(3,K). The Baer subplanes of the net correspond to planes that do not contain
N , and parallel classes of the derivable net correspond to the planes of PG(3,K) that
contain N . It then follows that the collineation group of the derivable net may be
determined as PΓL(4,K)N .

The main result of this work shows that every derivable net is a classical pseudo-
regulus net, which is then a classical regulus net when K is a field. Using certain
natural subgroups of the derivable net, we may realize an embedding in an associ-
ated 4-dimensional vector space over K, with left kernel mappings (x1, x2, x3, x4)→
(δx1, δx2, δx3, δx4), for δ ∈ K∗. And thus it is possible to obtain the form for the
derivable net, which shall here be called the “classical form” is as follows: Assume
that we are considering V a left K-space.

x = 0, y = δx;∀δ ∈ K; components are right spaces,
P (a, b) = {(ca, cb, da, db);∀c, d ∈ K}; Baer subspaces are left spaces.

The derived net is

x = 0, y = xδ;∀δ ∈ K; components are left spaces;
P (a, b) = {(ac, bc, ad, bd);∀c, d ∈ K}; Baer subspaces are right spaces.

So, the form is “classical” due to the choice of the subgroup of PΓL(4,K))N , that
we use to represent the translation group back into the constructed 4-dimensional
vector space. Suppose that K has an automorphism α, and consider, for the moment,
that K is a field. Then a classical regulus net R has the form:

R : x = 0, y = x

[
u 0
0 u

]
∀u ∈ K; the components and

P (a, b) = {(ac, bc, ad, bd); ∀c, d ∈ K};Baer subspaces.

Algebraic Combinatorics, Vol. 5 #5 (2022) 807



Norman L. Johnson

Now it is known that there are also “twisted regulus nets”, twisted by an automor-
phism α of K, and the classical ones have the form:

Rα : x = 0, y = x

[
uα 0
0 u

]
∀u ∈ K; the components and

P (a, b) = {(acα, bc, adα, bd);∀c, d ∈ K};Baer components.
Now note that the Baer subplanes are no longer subspaces over the original kernel
mappings. Since every derivable net is a classical regulus net, we seem to have a
contradiction. The catch is that using the embedding theory, a different “kernel”
group could be used to turn the derivable net into a classical regulus net. In the
twisted version, we use the new kernel with mappings

(x1, x2, x3, x4)→ (δαx1, δx2, δ
αx3, δx4); for δ ∈ K∗.

Call this group K∗α. If we then define x · u = x

[
uα 0
0 u

]
, where x is a 2-vector over

K, we see that that the components and the Baer subplanes are then both Kα-
subspaces, so we have the classical derivable net but over a different but isomorphic
field Kα. Note that Rα has components that are K and Kα-subspaces, where the
Baer subplanes are only Kα-subspaces, when α 6= 1.

Now to switch ideas again, consider the twisted regulus net over K, and form the
derived net. Now this net is also embeddable and becomes a classical regulus net
under a suitable field L. So, that we can appreciate what the form must be, if we
wish to transform the Baer “components” to standard form components, we make a
transformation of the Baer subspaces as follows:
P (a, b) = {(acα, bc, adα, bd);∀c, d ∈ K};Baer components, and form the basis

change transformation
θ : (x1, x2, x3, x4)→ (x1, x3, x2, x4).

If xα−1 = (xα−1

1 , xα
−1

2 ), where x = (x1, x2), we see that P (a, b) under θ consists of

the following vectors: (acα, adα, bc, bd), for a 6= 0, is incident with y = xα
−1
[
u 0
0 u

]
,

for x = (cα, dα) and u = a−1b. Note that c and d vary over K. When a = 0, we see
we have the form of the derived net as:

x = 0, y = xα
−1
[
u 0
0 u

]
∀u ∈ K;

But, now we are using a different kernel group:
αK∗ : (x1, x2, x3, x4)→ (δαx1, δ

αx2, δx3, δx4); for δ ∈ K∗.

Again, this group may be used in the embedded 3-dimensional projective space
PG(3,K), to create a different 4-dimensional vector space over αK, again creating
a classical regulus net with a different scalar mapping and, hence, a different but
isomorphic kernel.

These ideas come into play when we have a translation plane with spread in
PG(3,K), with the standard kernel group K∗, but we have a twisted regulus net,
whose components are both K and Kα subspaces. When we derive this twisted reg-
ulus net, the derived plane does not have kernel K and it does not have kernel Kα,
the kernel might be said to be “blended”.

Definition 2.1.Given two fields K and R. If a translation plane π is a union of
subspaces P ∪ L, where all subspaces in P are 2-dimensional K-subspaces and all
subspaces of L are 2-dimensional R-subspaces, we shall say that π is a translation
plane with blended kernel (K,R) of dimension 2.
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In the situation under consideration, the kernel would be Fix(α), and the blended
kernel would be (K,Kα).

Definition 2.2. Clearly the idea of blended kernel extends to a set of distinct fields Ki

for i ∈ λ and ∪Pi subspaces making up the spread for π, where Pi are Ki-subspaces.
Furthermore, the dimensions need not always be equal. We use the dimension 2 only
as this is the situation in the current article.

Translation planes with blended kernels have nice properties since the collineation
group must leave all Pi invariant. When a translation plane with blended kernel arises
from net replacement, there are then a set of interesting and mutually non-isomorphic
translation planes obtained.

Consider the following translation planes:

x = 0, y = x

[
uα btα

t u

]
;u, t ∈ K, K a field.

K could be finite or infinite. In fact, the matrix set could also define a quaternion
division ring, a finite Hughes–Kleinfeld semifield plane or a (generalized) Hughes–
Kleinfeld semifield plane over an infinite field. We note that this plane corresponds
to an α-conical flock and to an α-twisted hyperbolic flock, (see Cherowitzo, Johnson,
Vega [6], Johnson [20], [21]). Consider the finite case, where the field K is GF (q).
Then there are q twisted regulus nets corresponding to the α-conical flock sharing
x = 0 and q+ 1 twisted regulus nets sharing x = 0 and y = 0. Similarly, there are the
same/analogous twisted regulus nets when K is an infinite field.

When one of the nets is derived, we obtain a blended translation plane with respect
to (K,Kα) or with respect to (K,αK). Hence, the full collineation group of the trans-
lation plane will leave the derived net invariant. Furthermore, it follows that given any
two of these 2q + 1 possible translation planes or infinitely many possible translation
planes in the infinite field case, any isomorphism Γ must map the derived net of one
plane to the derived net of the other plane, and then must act as a collineation group
of the original translation plane. In these cases, since the translation plane is always a
semifield plane, we have that the q possible blended translation planes obtained from
deriving a twisted regulus net sharing x = 0 are all isomorphic, whereas, in the finite
case, we would obtain a set of q + 1 mutually non-isomorphic blended translation
planes. In the infinite case, the translation planes obtained from deriving a twisted
regulus net sharing x = 0 and y = 0 are isomorphic if and only if the translation
plane is a quaternion division ring plane.

Thus we have:

Theorem 2.3. The translation planes with blended kernel (K,Kα) in the finite case,
where K is GF (q), produce exactly q+2 mutually non-isomorphic blended translation
planes. When K is infinite either there are infinitely many mutually non-isomorphic
blended translation planes or α has order 2 and the associated translation plane is
a quaternion division ring plane, and there are exactly two non-isomorphic blended
translation planes.

2.1. Lifting quasifibrations. In this section, we give a short reminder of the con-
cept of lifting a translation plane of dimension 2. The term “quasifibration” might
not be well known, so we provide a more general definition for any finite dimension
n.

Definition 2.4. Let Q be any partial spread over a field K, where the associated
vector space is a 2k−dimensional vector space over K and there is a matrix repre-
sentation of Q as a set of mutually disjoint k-dimensional K-subspaces, where k is
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a positive integer (the components). If there is a row among the matrix spread set of
the form [e1, e2, ..., ek], for all ei ∈ K, Q shall be called a quasifibration of dimen-
sion k. Therefore, clearly Q is a maximal partial spread. If there is a vector that is
not incident with a component of Q, then Q is said to be a proper quasifibration. If
the context is clear, we shall often just use the term “quasifibration” to mean proper
quasifibration.

For this subsection, the reader is referred to Biliotti, Jha, Johnson [5], and Johnson,
Jha [24] for any additional reference material. The main idea of lifting is that from any
translation plane or quasifibration with spread in PG(3,K), where K is a field that
admits a quadratic extension with non-trivial automorphism σ of order 2 of F = K(θ)
fixing K pointwise, then there is a translation plane admitting a σ-twisted derivable
net in PG(3,K(θ)) as follows:

If the quasifibration (there may not be a complete cover) is represented in the form:

x = 0, y = x

[
f(t, u) g(t, u)
t u

]
; t, u ∈ K

then the “lifted quasifibration has the following form

x = 0, y = x

[
wσ (θf(t, u) + g(t, u))σ

θt+ u w

]
; t, u ∈ K, w ∈ F ,

and is a spread or a quasifibration equivalent to a σ-flock of a σ-cone (or a maximal
partial structure). Notice that we have a σ-twisted derivable net

x = 0, y = x

[
wσ 0
0 w

]
; t, u ∈ K, w ∈ F.

Therefore, the derived plane is a translation plane/quasifibration with blended kernel
(K,Kσ). For a translation plane that corresponds to an α-flock of an α-cone, but is
not a lifted plane, we consider the following:

2.2. The Kantor–Pentilla translation planes. Kantor and Pentilla [27] con-
struct the following translation planes:

x = 0, y = x

[
u2 + t5 t14

t u

]
; t, u ∈ GF (2e),where 3 does not divide e.

We note here that again we have a 2-twisted derivable net. The derived translation
plane has blended kernel (K,K2), for K = GF (2e).

2.3. Blended quasifibrations. There are examples of quasifibrations in PG(3,K)
that may be lifted to quasifibrations or correspond to partial α-conical flocks in
Cherowitzo, Johnson, Vega [6], and Biliotti, Jha, Johnson [5]. All of these quasifi-
brations correspond to quasifibrations that admit an α-twisted regulus net and hence
may be derived. All of these derived quasifibrations or translation planes are with
blended kernel (K,Kα).

2.4. Twisted quadrics.
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• In preparation for the statement of the main results, we mention the concept
of “twisted quadrics” of PG(3,K). Recall the idea of a twisted regulus net:

x = 0, y = x

[
wα 0
0 w

]
; t, u ∈ K, w ∈ K, K a field,

α an automorphism of K.

Pα(a, b) =
{

((a, b)
[
uα 0
0 u

]
, (a, b)

[
vα 0
0 v

]
);∀u, v ∈ K

}
;

Baer components.
We note that although the twisted regulus net is not a regulus over K, it is a
regulus over Kα.

• Consider a hyperbolic quadric Γ over K with homogeneous coordinates
(x1, x2, x3, x4) such that

x1x4 = x2x3.

Now write (x1, x2, x3, x4) over Kα, so that the same vector with the same
vector basis but writing over Kα, becomes (xα−1

1 , x2, x
α−1

3 , x4), that we have
the associated α-twisted regulus as

xα1x4 = x2x
α
3 .

(In the author’s work, (see [20]) on twisted hyperbolic flocks, the form,
x1x

α
4 = xα2x3

is used, as this fits better with the algebraic form).
• Consider a quadratic cone over K, with homogeneous coordinates

(x1, x2, x3, x4) such that

x1x4 = x2
2.

Note that there is a conic in the plane in x2 = x3. Now consider α-twisted
regulus net over Kα as a regulus and then consider the associated α-quadric
over Kα has the form

xα1x4 = xα+1
2 .

3. Foundations and examples
As mentioned, there are α-conical flocks associated with translation planes that

admit certain elation groups and there are α-hyperbolic flocks associated with trans-
lation planes that admit certain homology groups. All of these planes may be derived
to produce translation planes with blended kernel (K,Kα). Now the elation and ho-
mology groups become Baer collineation groups under derivation.

It is possible to study Baer collineation groups in translation planes with blended
kernel (K,Kα), without the assumption that the associated net containing the Baer
axis (Baer axis and coaxis) is derivable. It will become apparent that such a translation
plane will be missing exactly one twisted regulus net (regulus net if α = 1) and
then will correspond to a partial flock of a α-conical or α-twisted hyperbolic flock of
deficiency one. In fact, we show that any such deficiency one partial flock corresponds
to such a translation plane with blended kernel.

When K is finite, the deficiency one conical flock may be extended to a flock and
this result has been proved by Payne and Thas [29]. Considering deficiency 1 α-
conical flocks in the finite case also may be extended to α-conical flocks by result of
Cherowitzo, Johnson, and Vega [6]. We also extend the ideas of deficiency one in this
article.
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3.1. An unusual twisted hyperbolic flock. We note that any deficiency q − 1
partial spread in PG(3,K), may be a maximal partial spread but still be embeddable
in an affine plane. By a result of Jungnickel [26], if the maximal partial spread is
embeddable then the affine plane is the unique extension and is a translation plane.
The catch is that the translation plane will not have dimension 2. That is, the spread
will not be in PG(3,K), it will be in a translation plane with blended kernel (K,Kα),
or a similar variant.

Consider the following putative spread with blended kernel (GF (4), GF (4)2)

x = 0, y = (x2
1, x

2
1)
[
u 0
0 u

]
,

y = x

[
v2 b+ 1
1 v

] [
s 0
0 s

]
; v, u, s ∈ GF (4), and b+ 1 and b both 6= 0.

Assume, for the moment, that this is a translation plane. Recall that a classical
K-regulus net has the form

x = 0, y = x

[
u 0
0 u

]
;u ∈ K

where all vectors are over a 4-dimensional vector space V4 with standard scalar mul-

tiplication K∗. Since
[
v2 b+ 1
1 v

]
are non-singular matrices, a transformation by I 0

0
[
v2 b+ 1
1 v

]−1


will transform

x = 0, y = x

[
v2 b+ 1
1 v

] [
s 0
0 s

]
;∀s ∈ GF (4)∗

to the classical form. Hence, we have a set of 4 regulus nets sharing x = 0, y = 0.
Now while the remaining

x = 0, y = (x2
1, x

2
1)
[
u 0
0 u

]
;u ∈ GF (4)

admits the “regulus-inducing” group I2 02

02

[
u 0
0 u

] ;u ∈ GF (4)∗.

of order 4− 1, this set of matrices is no longer invariant under the mappings GF (4)∗;
this is not a spread in PG(3, GF (4)), but is a spread with a blended kernel.

Hence, this set is not a regulus. It is the derived version of a 2-twisted regulus net.
Now note that since we have q = 4 regulus nets sharing x = 0 and y = 0, there is

a corresponding partial hyperbolic flock of deficiency one which cannot be extended
to a hyperbolic flock. That is, if it could be so extended, it would correspond to a
translation plane with spread in PG(3, 16). Then this would be the unique affine plane
extension of the corresponding partial spread in PG(3, 16) of deficiency q − 1 = 3.
Now to see that we indeed have a spread, we derive the structure given. We leave the
details to the reader to see that the derived structure has the following form:

x = 0, y = x

[
u2 bt2

t u

]
; t, u ∈ GF (4).
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The regulus-inducing group now has the following form:
[

1 0
0 v

]
02

02

[
1 0
0 v

]
 ; v ∈ GF (4)∗.

Here the group is what we call a full Baer homology group with axis (x1, 0, x3, 0) and
coaxis (0, x2, 0, x4), where xi vary over K, i = 1, 2, 3, 4. We see that using the images

of y = x

[
s2 b
1 s

]
the group will map these elements to y = x

[
s2 bv
v−1 s

]
,∀s, v 6= 0.

Letting v−1 = t, we see that t2 = v, since t ∈ GF (4).
So, we obtain a semifield translation plane of order 16, and to check that we

have a spread we need only check that the non-zero matrices are non-singular. The
determinant is s3 + bv3, which is either 1 + b, 1 or b. Taking b and b+ 1 nonzero, we
have proved that we have a spread.

• This spread is unusual in that it provides a 2-flock of an 2−cone, a 2-twisted
hyperbolic flock and a partial hyperbolic flock of deficiency one. Most unusual.

3.2. The examples of deficiency one partial hyperbolic flocks. In addition
to the spread of the previous subsection, there are exactly five other examples.

There is a similar derivable translation plane of order 81, due to Johnson and
Pomareda [13], also of order p4, for p a prime, with blended kernel also containing

x = 0, y = (xp1, x
p
1)
[
u 0
0 u

]
;u ∈ GF (p2), p a prime.

There is the associated derived spread has spread

x = 0, y = x

[
up bt−1

t, u

]
;u, t ∈ GF (p2), p = 3, b an appropriate constant.

And the net listed above is the derived net of the twisted regulus net, given when t = 0
(0−1 = 0). Consider the derivates of these two translation planes. This translation
plane and the previous one, when derived are derivable by a p-twisted regulus net
and are also transitive on the components other than x = 0. In Johnson and Cordero
[22], there is a classification of all such translation planes. Note that the previous
homology group of order p2−1 now appears as a Baer group in the plane with spread
in PG(3, p2).

These two planes of orders 16 and 81 of order p2, are extraordinarily exceptions,
as seen in the following result.

Theorem 3.1 (Johnson-Cordero [22]). Let π be a translation plane in PG(3, p2), for
p a prime that is derivable by a p-twisted regulus net and is also transitive on the
components distinct from x = 0. If the plane admits a Baer group of order p2 − 1,
then the plane is the translation plane corresponding to either the Johnson partial
hyperbolic flock of deficiency one or the Johnson-Pomareda partial hyperbolic flock of
deficiency one, of order p4 for p = 2 and 3, respectively.

The four other partial hyperbolic flocks are of orders 25 or 49 and are found by
using a computer by Royle [30].

Since translation planes of order p2, for p a prime, do not admit twisted regulus
nets, the associated translation planes cannot be derivable. Hence, we have:

Theorem 3.2. The four Royle deficiency one partial hyperbolic flocks, two of order 52

and two of order 72, correspond to translation planes in PG(3, GF (p)), for p = 5, 7
that admit Baer groups of order p − 1. There are p orbits (p2 + 1 − (p + 1))/(p − 1)
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such that the Baer axis and coaxis together with the p orbits form a partial hyperbolic
flock of deficiency one.

• All translation planes of orders 25 and 49 are known by computer searches
by Mathon and Royle [28] and Czerwinski and Oakden [7].

• The two translation planes of order 25 in question are identified as A2 and
B5. These identifications might not be correct. This is due to the fact that
A2 is identified further in Czerwinski and Oakden [7] as a Dickson nearfield
plane. But this plane corresponds not to a partial hyperbolic flock but to an
extended one, which would imply that the Baer net is derivable. Hence, the
partial hyperbolic flock is not maximal or the plane was misidentified.

• B5 is identified as a Walker plane by Czerwinski and Oakden [7]. However, if
it is meant that this is the Walker plane that admits a group of order 5(5−1),
this cannot correspond to a translation plane that admits a Baer group (see
the last section). We must have a Baer group of order 4, which does not occur
in the Walker plane. Also, another problem is that if B5 is a Walker plane,
the Walker plane is derivable, by Jha–Johnson [9], and the translation plane
in question does not contain a regulus, according to the computer program.
But, even if it did, the partial hyperbolic flock would be extendable.

• The translation planes order 49 are identified as S771 and S773. Since the
associated translation planes must admit a Baer group of order 7 − 1, there
is probably a Baer net of degree 7 + 1 = 8 that is invariant (this is just a
speculation, at this point). In both of these translation planes there is an
orbit of length 8. This would be very interesting, as it would say that the
components of the Baer net are permuted in one orbit.

4. Quasifibrations as T -copies
Previously, we mentioned quasifibrations of dimension 2. Therefore, we have a

quasifibration of the following form in PG(3,K), for K a field:

x = 0, y = x

[
f(t, u) g(t, u)
t u

]
;∀t, u ∈ K, and f , and g functions on K ×K.

This is a maximal partial spread and when K is finite, it is clearly a spread. When
this maximal partial spread is not a spread, it is a proper quasifibration of dimension
2.

At the time of the writing of this article, all of the known quasifibrations were
of dimension 2 and all but one were constructed by what is called “transcendental
copying”, or T -copying, by which a spread over K is copied in K(z), the rational
function field over K.

The interesting part of T -copying is that the properties of the spread from which
it is copied are preserved. If there is a regulus-inducing group, either an elation or
homology group acting on a translation plane, and if the T -copy exists, there will be
a quasifibration with this same property.
Definition 4.1.A quasifibration of dimension 2 and is not a spread, which admits α-
regulus inducing elation or homology group shall be called a quasi α-flock, either of an
α-cone or of an α-twisted quadric. If a matrix spread of n dimensions over K can be
considered a partial spread over K(z), the rational function field over K, it is called a
T -copy. This also can work over infinite fields K, wherever the exponents in the spread
are meaningful in the rational function field extension. If there are automorphisms in
a group G within the entries of the spread sets, then extend these automorphisms to
K(z), so that the automorphisms leave Fix(G(z)) fixed pointwise. In this setting, if
this is also a T -copy, we use the term “twisted T -copy”.
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The following are examples of T -copies as quasifibrations:

x = 0, y = x

[
uσ btρ

t u

]
;∀t, u ∈ K = GF (q)(θ),

σ 6= 1, ρ automorphisms of GF (q),
K a transcendental field extension of GF (q),
b a non-square in GF (q), q odd.

This is an example of a quasi σ-flock of a σ-cone.
• If σ = ρ then this maximal partial spread, is also a quasi σ-hyperbolic partial
spread;

x = 0, y = x

[
uσ btσ

t u

]
= (y = x

[
sσ b
1 s

] [
vσ 0
0 v

]
).

Also, a twisted T -copy of this form becomes a spread by results of Johnson
and Jha [23].

• If we try the same analysis with the Johnson partial hyperbolic flock of defi-
ciency one, it is possible to show that we have a maximal partial hyperbolic
quasi flock of deficiency one.

x = 0, y = x

[
u2 bt−1

t u

]
;∀t, u ∈ GF (4)(θ), b, b+ 1 not 0,

where GF (4)(θ) is a transcendental field extension of GF (4).

Noting that t−1 = t2, we see now we have a T -copy of the Johnson partial hyperbolic
flock of deficiency one. Note that u → u2 is not bijective, thus we have a proper
quasifibration.

Furthermore, if we take a twisted T -copy, we have a spread, and contains a subplane
that admits a partial hyperbolic flock of deficiency one.

Hence, we have the following two results Biliotti, Jha and Johnson [5], for the first
result, (slightly generalized). More details and the complete proof are in Johnson and
Jha [23].

(1) The T -copy of a Klein flock of a quadratic cone and flock of a hyperbolic
quadric is a proper quasifibration (not a spread).

(2) The T -copy of the Johnson partial flock of deficiency one of a hyperbolic
quadric over GF (4) is a proper quasifibration and a twisted T -copy is a spread
that contains a subplane producing a deficiency one hyperbolic flock.

(3) Consider also

x = 0, y = x

[
u+ nt3 nt9 + n3t

t u

]
;

n non-square in K a field of characteristic 3
(Biliotti–Jha–Johnson [5, 29.3.5]).

These quasifibrations are called the “generalized Ganley” additive quasifibra-
tions. When K is infinite, there are fields that determine proper quasifibra-
tions.

(4) The Cherowitzo–Johnson–Vega [6, (2.6)] quasifibrations:

x = 0, y = x

[
uα −t3α−1

t u

]
; K an ordered field

and α an automorphism of K.
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Then this is a quasifibration providing a proper quasi α-conical flock, but is
not a T -copy.

Recently, the author considers Galois chains of quasifibrations [18], where given
any quasifibration of dimension 2, over a field K and a Galois tower of quadratic
extensions with base K, it is possible to form an associated chain of quasifibrations.
The basic question if the quasifibration is proper, that is, not a spread, is there any
way to determine if there is a quasifibration at link k that becomes a spread? There is
a method developed for this question and it is shown that there can never be a spread
in a Galois chain of arbitrary length, with one of the known proper quasifibrations as
base.

Therefore, although there are just a few proper quasifibrations to serve as bases of
Galois chains of quasifibrations, every link in the chain is a proper quasifibration, as
is each of the derived planes with blended kernel. In this way, we have infinitely many
proper quasifibrations both of dimension 2 and infinitely many proper quasifibrations
of dimension 4.

4.1. Baer theory of twisted flocks; Part I. Our main results in this article
extend the above result for partial α-conical flocks and partial α-twisted hyperbolic
flocks of deficiency one, over any field K that admits an automorphism α.

In Jha and Johnson [10], the analysis focused on understanding the structure of
the hyperbolic flocks and of flocks of quadratic cones. The analysis is that from
a translation plane with spread in PG(3,K) admitting a regulus-inducing elation
group E or a regulus-inducing homology group H actually involves partitioning the
hyperbolic quadric or quadratic cone by the invariant Baer subplanes of the associated
group H or E, respectively.

We shall give the pertinent theory providing the structure of the set of invariant 2-
dimensional K-subspaces in the associated 4-dimensional K-vector spaces. But, also,
we have noted that instead of a partition of V4 over K by regulus-inducing groups, we
may also consider analogous theory by twisted regulus-inducing groups, either elation
or homology groups. We now consider a partition of the twisted quadrics; the twisted
conical flocks and the twisted hyperbolic flocks. After the preliminary material below,
the extension of the theorem of Jha–Johnson [10] above may be directly extended by
using α-reguli instead of reguli. The idea is to work over Ka, when dealing with the
Baer subplanes, then all of the arguments extend directly.

Our main results for the hyperbolic situation are as follows. However, “translation
plane” may be replaced by “quasifibration” in the most general version of the theorem.

Theorem 4.2. Let Σ be a translation plane with blended kernel (K,Kα) that admits
a full Baer α-homology group. Then there is a corresponding twisted hyperbolic flock
of deficiency one in PG(3,K). Conversely, any partial twisted hyperbolic flock of
deficiency one constructs a translation plane of blended kernel (K,Kα) that admits
a full Baer α-homology group. The partial α-hyperbolic flock may be extended to an
α-hyperbolic flock if and only if the Baer net is a derived α-regulus net.

The theorem for Baer α-elation groups is then as follows:

Theorem 4.3. Let Σ be a translation plane with blended kernel (K,Kα) that admits a
full Baer α-elation group. Then there is a corresponding partial α-flock of an α-cone
of deficiency one in PG(3,K). Conversely, any partial flock of deficiency one of an
α-cone constructs a translation plane of blended kernel (K,Kα) that admits a full
Baer α-elation group. The partial α-flock may be extended to an α-flock if and only
if the Baer net is a derived α-regulus net.
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The proofs will follow after some results on group orbits. We shall state the elation
and homology Baer theorems separately, but will tend to combine the proofs, as there
are definite similarities. First the Baer elation group situation:

Theorem 4.4. Let K be a field and let α be an automorphism of K. Let V4 be a vector
space over K and let x = 0 and y = 0 be disjoint 2-dimensional K and Kα subspaces,
where x and y are 2−vectors. We note that V4 may also be considered a 4-dimensional
vector space over Kα. Consider the following group in GL(4,K):

Eα =


 I2

[
uα 0
0 u

]
02 I2

 ;u ∈ K

 .

We note that Ea fixes x = 0 pointwise. (1)(a) Then the elements of the set of Eα
invariant 2-dimensional subspaces not equal to x = 0 are each generated from a 1-
dimensional Kα subspace of x = 0 and another 1-dimensional space Kα. Two of
these 2-dimensional subspaces over Kα are disjoint if and only if they are disjoint on
x = 0. (1)(b) Let {xi; i ∈ λ} denote the set of 1-dimensional Kα subspaces of x = 0
and for each xi, choose any other 1-dimensional subspace wi not incident with x = 0
such that the generated 2-dimensional subspace is Eα-invariant. Then the set of all
2-dimensional Kα-subspaces of

{〈xi, wi〉 , i ∈ λ}

is a partial spread net covering x = 0. If we can form these subspaces into a derivable
net, then the derived net is an α-regulus net over K.

For the Baer homology situation, we have:

Theorem 4.5. Let K be a field and let α be an automorphism of K. Let V4 be a vector
space over K and let x = 0 and y = 0 be disjoint 2-dimensional K and Kα subspaces,
where x and y are 2−vectors. We note that V4 may also be considered a 4-dimensional
vector space over Kα. Consider the following group in GL(4,K),

Hα =


 I2 02

02

[
uα 0
0 u

] ;u ∈ K∗

 .

Let x = 0 and y = 0 be as assumed. (2)(a) Then all Hα-invariant 2-dimensional sub-
spaces are generated by a 1-dimensional Kα−space from x = 0 and a 1-dimensional
Kα−space of y = 0. (2) (b) Let {xi; i ∈ λ} denote the set of 1-dimensional Kα sub-
spaces of x = 0 and let {yi; i ∈ λ} be the set of all 1-dimensional Kα-subspaces of
y = 0. Let Γ be any bijective mapping from {xi; i ∈ λ} onto {yi; i ∈ λ}. Then the set
of 2-dimensional Kα-subspaces

{(xi,Γ(xi)); i ∈ λ}

defines a partial spread net. If these subspaces can be formed into a derivable net
then the derived net is an α-regulus net whose components are K-subspaces and Kα-
subspaces, and whose 1-dimensional Kα-subspaces on x = 0 and y = 0 are completely
covered.

Proof. (1)(a). Eα =


 I2

[
uα 0
0 u

]
02 I2

 ;u ∈ K

. Consider any vector (x1, x2, x3, x4)

and consider the Eα orbit of this vector. This is

〈(x1, x2, x1u
α + x3, x2u+ x4);u ∈ K〉 .

Algebraic Combinatorics, Vol. 5 #5 (2022) 817



Norman L. Johnson

This subtracting (x1, x2, x3, x4) from a general term, we see that we have the vectors
(0, 0, x1u

α, x2u). Recall that V4 is a Kα-vector space as well, and we have the scalar
multiplication · given by (x1, x2, x3, x4) · u = (x1u

α, x2u, x3u
α, x4u), we see that we

must have (0, 0, x1, x2) and the 1-dimensional Kα space within this subspace, in any
two dimensional subspace that is invariant Eα. This subspace is 2-dimensional over
K if and only if x1 = x2 = 0, for α 6= 1. We consider Ωα as the set of “points” that are
either Eα or Hα 2-dimensional Kα orbits: The set of points has the following form

{(xα1x4, x1x
α
3 , x

α
2x4, x2x

α
3 );xi ∈ L.}

Abstractly, this forms the basis for the 3-dimensional projective intersection with
the Kα-Klein quadric, which will be discussed in the subsequent material. We
note the following: The Eα and Hα-orbits define “points” and furthermore, if
a vector (x1, x2, x3, x4) → (xα1x4, x1x

α
3 , x

α
2x4, x2x

α
3 ) then every K-space gener-

ated by this vector (x1β, x2β, x3β, x4β) maps to the same “point”/modulo K
→ (xa1x4β

α+1, x1x
α
3 β

α+1, xα2x4β
α+1, x2x

α
3 β

α+1) ≡ (xα1x4, x1x
α
3 , x

α
2x4, x2x

α
3 ). So,

in the associated flocks, the plane intersections could be visualized as K-vectors
whose corresponding mapped Kα-Klein quadric objects that arise from either Eα
or Hα-2-dimensional or Kα-subspace/orbits. In this manner, we may consider plane
intersections as either covering Ωα in the Hα-case or by covering an associated α-flock
of an α-quadratic cone. Now assume that two of the Eα-subspaces are not disjoint

〈(x1, x2, x3, x4)Eα〉 ∩ 〈(y1, y2, y3, y4)Eα〉 .

Assume that

(x1, x2, x1u
α + x3, x2u+ x4) · δ = (y1, y2, y1v

α + y3, y2v + y4),

for u, v, δ ∈ K. Then 〈(x1, x2)〉 = 〈(y1, y2)〉, and hence these subspaces share a 1-
dimensional subspace on x = 0. It now follows directly that the two subspaces are
equal. This proves (1)(a). Now it is clear that {〈xi, wi〉 , i ∈ λ} is a set of Eα-invariant
Kα-subspaces that are mutually disjoint and completely cover x = 0. Let wi =
(x1,i, x2,i, x3,i, x4,i), where the 2-vector over Kα on x = 0 is xi = (x1,i, x2,i). The
rest of the theorem will now follow directly once we have worked out the form of the
derived nets. (2)(a) Now consider the group

Hα =


 I2 02

02

[
uα 0
0 u

] ;u ∈ K∗

 .

Consider any vector (x1, x2, x3, x4) not in either x = 0 or y = 0 and consider the Hα-
orbit, 〈(x1, x2, x3u

α, x4u);u ∈ K∗〉. By subtracting the generating vector, and then
realizing that we have a Kα-subspace, it follows that (0, 0, x3, x4) is a non-zero vector
in the generatedKα-subspace. Now subtracting the original vector from this preceding
vector, we also have (x1, x2, 0, 0) a non-zero vector in the generated Kα-space. This
says that the only Hα-invariant 2-dimensional subspaces are generated from two non-
zero vectors on each of the two invariant K-subspaces x = 0 and y = 0. Moreover, it
now follows that the only way that two of these invariant 2-dimensional Kα-subspaces
can non-trivially intersect is if they intersect on either x = 0 or y = 0. Therefore,
{(xi,Γ(xi); i ∈ λ} defines a partial spread net ofKα-invariant 2-dimensional subspaces
that cover x = 0 and y = 0. This completes the proofs of both (2)(a) and (b). �

5. The Kα-Klein quadric
The reader will notice that we are essentially using ideas of Thas and Walker, Thas

[32], coupled with insights about derivable nets, for these extension notions.
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Consider a 6-dimensional vector space V6 over K in the standard manner and over
Kα with special scalar multiplication · as follows:

(x1, x2, x3, x4, x5, x6) · δ = (x1δ
α, x2δ, x3δ

α, x4δ, x5δ
α, x6δ),

and written over the associated standard basis, we obtain vectors as

(xα
−1

1 , x2, x
α−1

3 , x4, x
α−1

5 , x6),

then the standard hyperbolic form Ω5 becomes

xα1x6 + x2x
α
5 + xα3x4 = 0.

Now embed PG(2,K) as x3 = x4 = 0. We note that the group Eα now acts on
PG(3,K).

We consider the associated α-hyperbolic form, which can be given by xα1x6 = x2x
α
5 ,

without loss of generality. Now consider the set of points within x2 = x5, to obtain
xα1x6 = xα+1

2 , an α-conic. We realize that Eα leaves the associated homogeneous
points on the α-regulus of Baer subspaces pointwise fixed (as “points”). Identifying
the α-regulus projectively as the α-twisted hyperbolic quadric, we see that we may
consider the α-conical flock as a set of points within the α-twisted quadric in PG(3,K)
as follows: Consider a point of PG(3,K) say v0 = (0, 0, 0, 0, 0, 1) as the vertex of the
cone, then a set of planes of PG(3,K) that partition the points of the lines from v0
to the α-conic xα1x6 = xα+1

2 , then the planes correspond to the K-components of a
translation plane with spread in PG(3,K) that admit an α-regulus-inducing elation
group Eα. The converse that from a translation plane with spread in PG(3,K) with
group Eα produces an α-flock of the α-quadratic cone is now immediate.

Hence, this provides an alternative construction of the main theorem of
Cherowitzo–Johnson–Vega [6]. We shall use this approach when considering the
Baer groups and the deficiency one α-conical flocks.

• This shows that α-flocks and the set of Baer components of the translation
plane have a bijective correspondence.

• The results of Johnson [20] show that we may identity the Kα-subspaces of
the invariant Hα-2-dimensional subspaces with the elements Ωα3 , the twisted
hyperbolic quadric in PG(3,K) and the Baer components of the associated
α-regulus nets associated with the translation plane admitting Hα.

• This also shows that twisted hyperbolic flocks and the set of Baer components
of the translation plane have a bijective correspondence.

5.1. Baer theory; Part II. We now complete the proof of our Baer theorems. We
begin with the translation plane admitting a Baer elation group. The reader should
note that the group

Eα =


 I2

[
uα 0
0 u

]
02 I2

 ;u ∈ K

 ,

has this form when considering the axis as x = 0. It might be expected that any
associated translation plane admitting Eα has x = 0 as a component. However, this
may not be the case, and will not be the case when Eα is considered a Baer group
and, in this case, x = 0 becomes a Baer subplane.

If the translation plane admits Eα as a Baer group then the components that lie on
the Baer axis (i.e. x = 0) are Eα subspaces, so we have the situation of a translation
plane with blended kernel (K,Kα). Now, we still have the orbits of K-components
as before, we just have one less α-regulus derivable net than in the case when Eα is
an elation group. For clarity, we now speak of a Baer elation group. Since the other
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α-regulus nets still correspond to sets of Eα orbits of Kα-subspaces, we clearly have
a deficiency one α-conical flock.

Now suppose that we have a deficiency one α-conical flock. Then on each line
of the α-cone, we are missing exactly one point. This point corresponds to an Eα-
orbit and since no two of these are on the same line of the α-cone, then the points are
mutually disjoint. Let Λ denote the set of corresponding 2-dimensional Kα-subspaces.
Let Ω denote the partial spread consisting of the α-regulus nets corresponding to the
deficiency one α-conical flock. Since now Λ∪{Ω− (x = 0)}, covers all of the Eα-orbits
in the associated vector space over Kα, we have a spread, but now with blended kernel
(K,Kα), admitting Eα as a Baer elation group.

Now the question of when the deficiency one α-conical flock situation occurs de-
pends on whether the set Λ is a derivable net or not. This is valid, as this is the
only method that can produce a set of K-components to return to a translation plane
with kernel K admitting Eα as an elation group. Note that it is possible that the net
in question is derivable without the associated Baer subplanes being K-subspaces,
but it is only when this occurs that the deficiency one partial α-conical flock may be
extended to a flock.

This completes the proof of the deficiency one α-conical flock theorem. Now assume
that we have a translation plane with blended kernel (K,Kα) admitting

Hα =


 I2 02

02

[
uα 0
0 u

] ;u ∈ K∗


as a Baer homology group, where now x = 0 and y = 0 are K-Baer subplanes. In this
setting, we are missing one α-regulus net of Hα-invariant subplanes and hence the
Baer subplanes of the other α-regulus nets produce a deficiency one twisted hyperbolic
flock.

Now assume that we have a deficiency one twisted hyperbolic flock. From the
analysis of the author in [20], it is clear that we may construct a partial spread Π
which consists of a set of K-2-dimensional subspaces that admit Hα and is a set of
α-regulus nets sharing x = 0 and y = 0. Recall that our α-hyperbolic quadric is a
hyperbolic quadric with respect to Kα (since the α-regulus components and Baer
components are all Kα-subspaces). Hence, there are two sets of ruling lines with
respect to Kα. It follows that on each Kα-ruling line of each of the two sets of ruling
lines, there is exactly one missing point. These points correspond to a set of mutually
disjoint Kα-subspaces that are disjoint Hα-orbits and thus completely cover x = 0
and y = 0. LetW denote the set of these Kα-subspaces in the associated vector space.
ConsiderW ∪Π. This partial spread is a spread, since it covers all of the Hα-invariant
2-dimensional Kα-subspaces. This translation plane has blended kernel (K,Kα) and
admits Hα as a Baer homology group.

For the question of when the deficiency one partial twisted hyperbolic flock may
be extended, it depends on whetherW is a derivable net with Baer components being
K-subspaces, similar to the argument for the Baer elation situation. This completes
the proofs of the Baer theory for α-twisted flocks–except for that question about
“point Baer” that is in the hypotheses of the corresponding Baer theory for flocks of
quadratic cones and for hyperbolic quadrics. So, we have shown that with an α-flock of
an α-quadratic cone, there is an associated translation plane admitting an α-regulus-
inducing elation group Eα and, conversely, such a translation plane constructs the
α-conical flock. And, we have shown that flocks of an α-twisted hyperbolic quadric
and translation planes admitting α-regulus-inducing groups are equivalent. The real
problem seems to come in the deficiency one theory.
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Suppose that we have a translation plane of either type. Choose any of the α-regulus
nets and suppose that the sublanes involved are “point Baer” but not “line Baer”. Now
derive the net, what is obtained? This cannot be a translation plane any longer, just
a Sperner space with blended kernel (K,Kα) (which could be K, if α = 1). But, this
structure still admits a full “point Baer” elation or full “point Baer” homology group.
Therefore, we obtain a deficiency one α-flock, quadratic or hyperbolic, now with a
point missing on each of the relative lines of the cone or of the α-rulings. Our proof
still shows that we can recover a spread-a “translation plane” –not a Sperner space.
So, all of the point Baer subplanes must be Baer subplanes, since all of the α-regulus
nets can be derived to affine planes. This completes the proofs of the theorems on
Baer theory.

6. Quasi-flocks
Quasifibrations have been mentioned previously. Much of the work on flocks and

associated translation planes has been done algebraically. We have a certain form
of a translation plane and using this form, we create an associated flock, using that
algebraic representation. More generally, we may use the forms defining partial spreads
to create what appear to be flocks but are actually quasifibration/maximal partial
flocks. If we define a “quasi-flock” as a partial flock that has the basic form of a flock
but does not satisfy the covering criterion, we have necessarily a maximal partial
flock. Proper quasi-flocks like proper quasifibrations are infinite.

In any case, all our results may be phrased more generally in terms of quasifibra-
tions. Without listing all of various theorems, here is an omnibus theorem:

Theorem 6.1.Quasifibrations with α-regulus inducing groups are equivalent to quasi
α-flocks.

7. The Baer forms
Here we indicate what the translation planes with blended kernel (K,Kα) look like

that admit Baer groups.
• Baer elation translation planes would have the following form:

x = 0, y = (xα
−1

1 , xα
−1

2 )
[
v z(v)
0 v

]
;∀v ∈ K,

y = x

[
1 −uα
0 1

] [
F (t) G(t)
t 0

] [
1 u
0 1

]
for all u, t 6= 0 ∈ K. z a function on K so that z(0) = 0, z(1) = 1, and
functions F and G on K.

• A partial α-conical flock may be extended if and only if z(v) = 0 for all v ∈ K.
• Baer Homology translation planes would have the following form:

x = 0, y = (xα
−1

1 , xα
−1

2 )
[
n(v) 0

0 v

]
;∀v ∈ K,

n a function on K so that n(0) = 0, n(1) = 1 and

y = x

[
1 0
0 u−α

] [
g(t) f(t)

1 t

] [
1 0
0 u

]
;∀u 6= 0, t 6= 0 in K,

for functions g and f on K.
• The deficiency one partial twisted hyperbolic flock may be extended if and
only if n(v) = v ∀v ∈ K.
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Proof. The elation group changes form when considering x = 0 as (0, x2, 0, x4) in
the formulation of the axis of the elation group. The components incident with the
Baer axis are Kα-subspaces that are left fixed by the Baer elation group. We leave,
as an exercise, to check out the remaining parts of the form. Similarly, the homology
group changes form when considering x = 0 as (0, x2, 0, x4) and y = 0 as (x1, 0, x3, 0).
Again the components incident with the Baer axis and coaxis are Kα-subspaces that
are left fixed by the Baer homology group. Here is another exercise to check out the
remaining parts of the form. Note that there are two distinct uses of the notation of
x = 0 and y = 0; one use is when considering the group axis/coaxis and the other
use is when considering the form of the translation plane, when x = 0 and y = 0 are
Baer subplanes. �

8. The algebraic and α-Klein methods; α and α−1-flocks
When the ideas of flocks of quadratic cone and flocks of hyperbolic quadrics were

introduced, there were a variety of new studies, in the infinite case, and also later with
what we are calling α-flocks of α-quadratic cones and α-twisted hyperbolic flocks.
Many of these were algebraic in nature. When this was done, there was essentially
no connection between α-regulus-inducing groups, elation and homology, that really
becomes the essence of understanding the α-Klein methods. Moreover, there is no
uniformity with the notation of the α-cones of α-twisted quadrics.

• In Cherowitzo, Johnson, and Vega [6], it was pointed out that whenever an
α-conical flock is constructed, there is also an α−1-conical flock which may
be constructed and is isomorphic to the original. How these two examples
may be understood using the α-Klein method is by a translation of vectors
(x1, x2, x3, x4) → (x4, x3, x2, x1), which changes the α-conic that is used to
the associated α−1-conic. To see this, just note that{
x = 0, y = x

[
uα 0
0 u

]
;u ∈ K

}
→
{
x = 0, y = x

[
u 0
0 uα−1

]
;u ∈ K

}
.

This mapping works for the α-twisted hyperbolic flocks. There is also a corre-
sponding change of functions defining the α or α−1-flocks. This is the mapping
(x1, x2, x3, x4)→ (x2, x1, x4, x3), which does the same thing, changing the α-
twisted regulus net to the α−1-twisted regulus net.

• In the author’s work on α-twisted hyperbolic quadrics (see [20]), the process
of translating components of α-regulus-inducing group Hα to the associated
α-twisted hyperbolic quadrics does not use the understanding of the “points”
being the invariant 2-dimensional subspaces over Kα (not equal to the two
components x = 0 and y = 0, the axis and coaxis of Hα). In fact, in the alge-
braic method, it may be seen that the projective connection is accomplished
with the invariant 2-dimensional subspaces over Kα−1 . This does not cause
any difficulty as, similar to the elation case, given an α-twisted hyperbolic
flock, there is always an isomorphic α−1-twisted hyperbolic flock.

9. Quaternion division ring planes are flock planes
To appreciate how the subject of division rings comes into the discussion, we recall

the main theorem of the classification of subplane covered nets, Johnson [16], which
we have previously discussed. Here we take a more in-depth view, in order to bring
in quaternion division rings.

We mention only the classification of derivable nets:
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Theorem 9.1 (Johnson [16]). Let D be a derivable net. Then there is an embedding
of D into a 3-dimensional projective space Σ over a skewfield K, as follows: Let N be
a fixed line of Σ, then the embedding maps the points, lines, Baer subplanes, parallel
classes of D into PG(3,K) as lines, points, planes that do not contain N and planes
that do contains N of Σ, respectively. The full collineation group of D is PΓL(4,K)N .
Using the collineation group, then there is a contraction method that shows that D
may be represented in a 4-dimensional vector space over K as a pseudo-regulus net.
If K is a field then the derivable net is a regulus-net.

The author’s article on the classification of derivable nets, [21], tries to understand
the nature of other possible derivable nets that can sit in the same vector space as
the embedded and contracted pseudo-regulus net.

This is where quaternion division rings come in. There are four classes of such
derivable nets that can sit in the same 4-dimensional vector space as does the con-
tracted pseudo-regulus; we look at the classification of a derivable net as a compar-
ison to an existing derivable net. There is exactly one type of derivable net that is
a pseudo-regulus net but sits in a embedded/contracted 4-dimensional vector space
over a field; the comparison derivable net is a regulus net. This type is the set of
quaternion division rings realized as derivable nets.

It is not really necessary to have the non-commutative algebra definition of a
quaternion division ring for this discussion, but we will require the matrix definition
of a quaternion division ring spread, Johnson [21]:

Definition 9.2. The matrix construction of a quaternion division ring plane in any
dimension 2 matrix spread set is as follows:

x = 0, y = x

[
uσ btσ

t u

]
; t, u ∈ F (θ), a Galois quadratic extension of a field F ,

b ∈ F , σ the induced automorphism.
This example, in the finite case, has been seen earlier in the article. But in the
previous finite version, or quasifibration version, required b to be a non-square in
F (θ), where the skewfield version requires b to be a non-square in F .

But, the interesting fact about the quaternion division ring planes is that they are
equivalent to σ-flocks of a σ-cone, and equivalent to also σ-hyperbolic flocks. The
flocks, in both cases, are linear, although not the same linear structure, as they are
two completely different linear flocks, [20].

10. Lifting skewfield planes
The quaternion division ring planes almost always have what are called “central ex-

tensions” of skewfields S, which are quadratic in this case. Considering the associated
translation planes, the central extensions are (analogous) to dimension 2 translation
planes, as they can be represented over the 3-dimensional projective space with re-
spect to the original skewfield S. Whenever a skewfield S, quaternion or not, has a
quadratic central extension (meaning that the generating quadratic polynomial is irre-
ducible over the center of S), the corresponding translation plane can be lifted, just as
in the commutative dimension 2 situation, Hiramine, Matsumoto, Oyama [8]. Lifted
spreads of dimension two provide a wealth of examples of σ-flocks of σ-quadratic
cones.

By lifting non-commutative skewfield planes that admit central quadratic exten-
sions, the constructed spreads are semifield spreads in non-commutative 3-dimensional
projective spaces, Johnson, Jha [24]. This is interesting also as the quaternion division
ring spreads, as dimension 2 spreads over fields, can also be lifted by the standard
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procedure. Thus, we have two mutually non-isomorphic spreads, one in PG(3,K), for
K a field, and another in PG(3, L), for L a non-commutative skewfield, constructed
from the same spread, by essentially the same method.

11. Examples of twisted hyperbolic flocks
In [19], the author shows how to use the Kantor–Knuth flocks of the quadratic cone

in PG(3, pr), p odd, to construct the j = (ps−1)/2-planes of Johnson, Pomareda, and
Wilke [12], which provide several infinite classes of ps -twisted hyperbolic quadrics. In
a j-plane, from Johnson, Pomareda and Wilke [12], there is always a cyclic homology
group of the following form:

Hα =


[u2j+1 0

0 u

]
02

02 I2

 ;u ∈ GF (pr = q)∗

 ,

so when j = (ps − 1)/2, 2j + 1 = ps, which provides the necessary α = ps−twisted
hyperbolic flocks. To obtain the form of the group used in this article, and to see
the form that the twisted hyperbolic flocks take, a basis change is required, basically
by taking the inverses of all of the matrices, which would make this into a “right”
α-twisted regulus-inducing group instead of a “left” α-twisted regulus-inducing group
(we need to invert x = 0 and y = 0).

• There is also a related j = (ps − 1)/2 + (q − 1)/2−plane that also provides
an infinite class of ps−twisted hyperbolic flocks, obtained by a derivation
replacement of the set of regulus nets of “odd” determinant type.

11.1. x = 0, y = x

[
uα + gt ftα

−1

t u

]
;u, t ∈ K, K a field. In this subsection, we look

at translation planes that provide both α-flocks of α-conics and α-twisted hyperbolic
flocks. That this form above exactly describes the translation planes that accomplish
this is shown in Johnson [20], and are the Hughes–Kleinfeld semifield planes and their
infinite generalizations.

• However, in that work the Hughes–Kleinfield planes and their α−1-flocks and
α-twisted hyperbolic flocks were all labeled linear. However, this would only
be valid in the α−1 -flock case, when α2 = 1 and g = 0, so that correction
should be noted.

• We have noticed this form previously when α2 = 1, and α 6= 1 and g = 0. In
this setting, we have both an α-flock of an α-conic and an α-twisted hyperbolic
flock. These flocks are linear and occur also for the quaternion division rings.

• In this more general setting, by noting that

x = 0, y = x

[
uα + gt ftα

−1

t u

]
=
[
v + gt ftα

−1

t vα−1

]
then put in the expression for α−1-flokki (α−1-flock of an α−1-cone, as there
is a notation change here) to obtain:

ρt : x1t− x2f(t)α
−1

+ x3g(t)α
−1
− x4; t ∈ K.

and for f(t) = ftα
−1
, and g(t) = gt, we have:

ρt : x1t− x2f
α−1

tα
−2

+ x3g
α−1

tα
−1
− x4; t ∈ K.

Algebraic Combinatorics, Vol. 5 #5 (2022) 824



Twisted quadrics and α-flocks

Then, we note that this same spread is

=


x = 0, y = x

[
uα 0
0 u

]
;

y = x

[
tα + g = F (t) f = G(t)

1 t

] [
vα 0
0 v

]
;u, t, v 6= 0 in GF (q)

 ,

we see that we obtain a α-twisted linear hyperbolic flock,
πt : −x1G(t)α + x2F (t)− x3t

α + x4 = 0, and ρ : x2 = x3,

which is given by:
πt : −x1f

α + x2(tα + g)− x3t
α + x4 = 0, and ρ : x2 = x3.
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