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Iwasawa Theory of Jacobians of Graphs

Sophia R. Gonet

Abstract The Jacobian group (also known as the critical group or sandpile group) is an im-
portant invariant of a finite, connected graph X; it is a finite abelian group whose cardinality
is equal to the number of spanning trees of X (Kirchhoff’s Matrix Tree Theorem). A specific
type of covering graph, called a derived graph, that is constructed from a voltage graph with
voltage group G is the object of interest in this paper.

Towers of derived graphs are studied by using aspects of classical Iwasawa Theory (from
number theory). Formulas for the orders of the Sylow p-subgroups of Jacobians in an infinite
voltage p-tower, for any prime p, are obtained in terms of classical µ and λ invariants by using
the decomposition of a finitely generated module over the Iwasawa Algebra.

1. Introduction
The Jacobian (or critical group, or sandpile group) is an algebraic invariant of a graph
X (in this paper the term graph will mean a simple graph with no loops or multiple
edges, unless otherwise explicitly noted) which, for connected X, is a finite abelian
group whose size is equal to the number of spanning trees of X (this is well-known
as the Matrix Tree Theorem). The study of Jacobians of graphs has a long history,
and many applications, as described in [1, 2, 4, 5, 11, 20, 25]. Overall, there are
relatively few graphs or families of graphs for which the Jacobian is exactly known:
see [3, 6, 8, 12, 13, 19, 22]. In this paper we establish the “asymptotic structure” and
orders of the Sylow p-subgroups of the Jacobians of certain covering graphs of a fixed
base graph X, namely those that belong to a cyclic voltage p-tower cover of X.

More specifically, we adapt to voltage towers of graphs the classical work of Iwasawa
for Zp-extensions—infinite extensions K∞ of a number field K with Galois group
isomorphic to the additive p-adic integers, Zp, for some prime p. By using the general
theory of Zp[[Γ]]-modules, where Γ = Gal(K∞/K), Iwasawa was able to unravel the
structure of the inverse limit of the p-Sylow subgroups of the class groups of the finite
extension fields in his towers. This enabled him to prove the following theorem, which
can be found in [18, 29]: Let K∞/K be a Zp-extension. Let pem be the exact power
of p dividing the order of the class group of Km, where Km is the fixed field of the
subgroup Γpm ; then there exist nonnegative integers λ, µ and an integer ν such that
em = µpm + λm+ ν for all m > m0 for some m0 > 0.

The Main Theorem of this paper is the analog in the graph theory setting:
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Theorem 1.1. Let

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

be a cyclic voltage p-tower (see Definition 3.2), where all Xm are connected. Let
Jp(Xm) be the Sylow p-subgroup of the Jacobian of Xm. Then there are nonnegative
integers µ and λ and an integer ν such that

|Jp(Xm)| = pem where em = µpm + λm+ ν

for all m > m0 for some m0 > 0.

This theorem gives not only “asymptotic” order formulas for the p-Jacobians of
the covering graphs Xm, but also their “asymptotic” invariant factor decompositions,
which, in particular give conditions under which the p-ranks grow without bound
(which is also analogous to the classical number theoretic results of Iwasawa).

The ideas in [17, 23, 28] inspired the research that culminates in Section 3. However,
the work is independent, contemporaneous, and by quite different methods.

The terminology and theory of Jacobians, voltage graphs and their derived cover-
ing graphs — including extending these results to infinite towers—is first summarized
in Section 2. In Section 3, the theory of finitely generated modules over the Iwasawa
algebra, Zp[[Γ]] is summarized. Consequences of the latter results, that form the es-
sential underpinning of the Main Theorem, are also established. The Main Theorem
is then proved using group-theoretic methods, that, in hindsight, illustrate how the
decomposition theorem for Iwasawa modules plays the analogous role to the Smith
Normal Form decomposition that describes ordinary Jacobians. The p-rank result
mentioned above appears as a corollary to the Main Theorem.

This paper comprises the last part of the author’s dissertation [16], which contains
significantly more details, examples, and an array of additional theoretical and com-
putational material on voltage graphs and their associated derived graphs. We refer
to it at points where its material expands on or expedites the development of this
paper.

Added after refereeing: Just as this paper was submitted, Daniel Vallières and
Kevin McGown circulated a manuscript [24] giving the generalization of Theorem
1.1 to multigraphs. Their work—which is completely independent—uses “analytic”
methods (L-series etc.), and so provides a valuable complementary perspective on
our result. It seems that the methods herein should also generalize to multigraphs,
mutatis mutandis, since the main part of the proof, Section 3, essentially only involves
cokernels of Laplacians, and these are well defined for multigraphs.

2. Preliminaries
In Section 2.1, we define the Picard and Jacobian groups. Then in Section 2.2 we
define the Laplacian and reduced Laplacian. In Section 2.3 we describe a specific type
of covering graph, called a derived graph, that arises from what is called a voltage
graph—where elements from a group (which may be finite or infinite) are assigned
to the edges of a fixed base graph X. In Section 2.4, we give the definition of an
intermediate covering graph. We then state the important result: given a voltage
graph with derived graph Y such that Y is connected, Y/X is a normal (i.e. Galois)
extension, and conversely, if Y/X is a normal extension with Galois group G, then
there exists a voltage assignment such that (X,G,α) is a voltage graph with derived
graph Y .
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2.1. The Divisor, Picard, and Jacobian Groups. For more details on this sec-
tion, refer to [10].

Definition 2.1. A divisor on a graph X (possibly infinite) is an element of the free
abelian group on the vertices V = V (X):

Div(X) =

 ∑
v∈V (X)

avv | av ∈ Z


where each

∑
v∈V (X) avv is a formal linear combination of the vertices of X with

integer coefficients, where only finitely many av are nonzero (in the case when X is
an infinite graph). The degree of a divisor is

deg

 ∑
v∈V (X)

avv

 =
∑

v∈V (X)

av.

When V (X) = {v1, . . . , vn}, we may write the elements of Div(X) as a1v1 +a2v2 +
· · · + anvn, where each ai ∈ Z, and its degree is a1 + a2 + · · · + an. The degree map
deg : Div(X) → Z, is a surjective group homomorphism with kernel equal to the
subgroup of Div(X) of divisors of degree 0, denoted as Div0(X):

Div0(X) = {D ∈ Div(X) | degD = 0}.
Next let X be a graph with vertices {v1, . . . , vn}. For each fixed vi define the principal
divisor, pi, based at vi by

pi = deg(vi)vi −
n∑
j=1

δi,jvj

where δi,j = 1 if vj is adjacent but not equal to vi and 0 otherwise (and here deg(vi)
is the valence of vertex vi in X). Define principal divisors to be elements of the
Z-submodule of Div(X) spanned by the principal divisors based at the vertices:

Pr(X) = SpanZ{pi | 1 6 i 6 n}.

Evidently Pr(X) is a submodule of Div0(X). From this we get the following groups.

Definition 2.2. The Picard group of X is the quotient group
Pic(X) = Div(X)/Pr(X),

and the Jacobian group of X is the subgroup of Pic(X)

J (X) = Div0(X)/Pr(X).

Theorem 2.3. If X is connected, then J (X) is a finite abelian group.

2.2. The Laplacian and Reduced Laplacian.

Definition 2.4. Let X be a graph with vertices {v1, . . . , vn}. The graph Laplacian
L = LX is the n× n matrix given by

Li,j =


deg(vi) if i = j

−1 if vi is adjacent to vj
0 if i 6= j and vi is not adjacent to vj.

The Laplacian is also the matrix representation of the following group homomor-
phism L defined as follows.

L : Div(X)→ Div(X) where L(vi) = pi.
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When extended by Z-linearity to all of Div(X), this is a Z-linear homomorphism from
Div(X) to itself, whose image is Pr(X), the group of principal divisors. From this, we
get the following important fact:

Pic(X) = Div(X)/im(L) = coker(L).
A reduced Laplacian L̃ is the (n−1)× (n−1) integer matrix obtained by removing

the row and column corresponding to any vertex v from the Laplacian matrix L. So
the Jacobian group can be computed as the cokernel of the reduced Laplacian matrix

J (X) ∼= Zn−1/im(L̃) = coker(L̃),
where Zn−1 denotes the free Z-module on the set V (X)− {v} of rank n− 1.

2.3. Voltage Graphs. We first give the definition of a general covering graph.

Definition 2.5. An undirected graph Y is a covering of an undirected graph X if,
after arbitrarily directing the edges of X, there is an assignment of directions to the
edges of Y and an onto graph homomorphism π : Y → X sending neighborhoods of
Y one-to-one onto neighborhoods of X which preserve directions. We call such π a
covering map.

Definition 2.6. A d-sheeted covering means every fiber contains exactly d elements,
i.e.

|π−1(x)| = d ∀x ∈ V (X).

Definition 2.7. Let X be a graph whose edges have been oriented, and let G be a
group (finite or infinite). For a fixed orientation of the edges of X, let E(X)+ denote
the set of forward-directed edges of X; and let E(X)− denote the same edges but each
with the reverse orientation (so each undirected edge of X becomes two edges in the
disjoint union of E(X)+ and E(X)−). An (ordinary) voltage assignment is a map

α : E(X)+ ∪ E(X)− → G

such that if ei,j ∈ E(X)+ and α(ei,j) = αi,j ∈ G, then ej,i ∈ E(X)− and α(ej,i) = α−1
i,j

(the inverse group element), where ei,j denotes the directed edge from vi to vj .
The triple (X,G,α) is called an (ordinary) voltage graph. The values of α are called

the voltages and G is called the voltage group.
Note that a voltage assignment α is uniquely determined by its values on E(X)+,

so we will henceforth only specify α on the forward-directed edges of X.

The vertices of X are labeled as v1, . . . , vn. This imposes a natural lexicographic
orientation on X, namely whenever there is an edge between vi and vj , orient the
edge vi → vj if i < j (called the standard orientation). Note that results on derived
graphs do not depend on the choice of orientation by [16], so without further mention,
we adopt the standard orientation.

Any such voltage assignment can be codified by its n×n voltage adjacency matrix
Aα =

(
Ai,j

)
with entries Ai,j ∈ Z[G] such that Ai,j = 0 if i = j or there is no edge between vi and
vj , and Ai,j = αi,j otherwise. (Note that the voltage adjacency matrix is also defined
in [7, Definition 2.16].)

The purpose of assigning voltages to the graph X, called the base graph, is to
obtain an object called the derived graph, called Y here. To get the vertices of Y ,
make d = |G| copies of each vertex x ∈ V (X) labeling them as xτ0 , xτ1 , xτ2 , . . . , xτd−1

where G = {τ0, τ1, τ2, . . . , τd−1} has order d (and the same formal construction works
even if |G| is uncountable). So there are |G| · |V (X)| vertices in Y . Now create the
edges of Y by the following rule: whenever there is an edge from vi to vj in the base
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graph X with assigned voltage αi,j , create edges that go from vi,g to vj,gαi,j
in Y , for

every g ∈ G, where gαi,j is the group-product of these two group elements in G. If
|G| = d, then π : Y → X is a d-sheeted covering map (where again, d may be any
infinite cardinal too). Note that the degree (valence) of each vertex vτ of Y is the
same as the degree of v = π(vτ ) in X. Also, since our base graph X has no loops (i.e.
i 6= j here), no two vertices in the same fiber of π are adjacent in Y .

Many examples as well as computational ways of constructing the ordinary adja-
cency matrix of Y from the voltage adjacency matrix of X by tensoring with matrices
for the regular representation of G appear in [16].

2.4. Galois Theory of Covering Graphs and Voltage Graphs. Refer to [27]
for Galois theory of (finite) Galois covers. For proof of the theorems presented below,
see [16].

Definition 2.8. Suppose Y is a covering of X with projection map π. A graph X̃ is
an intermediate covering to Y/X if Y/X̃ is a covering, X̃/X is a covering and the
projection maps π1 : X̃ → X and π2 : Y → X̃ have the property that π = π1 ◦ π2.
If Y/X is a d-sheeted covering with projection map π : Y → X, then it is normal or
Galois if there are exactly d graph automorphisms σ : Y → Y such that π ◦ σ = π.
The Galois group is G = Gal(Y/X) = {σ : Y → Y | π ◦ σ = π}.

Theorem 2.9. Suppose Y/X is a normal covering with Galois group G and X̃ an
intermediate covering corresponding to the subgroup H of G. Then X̃ itself is a normal
covering of X if and only if H is a normal subgroup of G, in which case Gal(X̃/X) ∼=
G/H.

Now we put this in terms of voltage graphs.

Theorem 2.10. Let (X,G,α) be a voltage graph with Y the derived graph. If Y is
connected, then Y/X is a normal cover with Gal(Y/X) ∼= G. Conversely, given a
normal (Galois) cover Y/X, with G = Gal(Y/X), then Y/X is a voltage cover with
the voltage group equal to Gal(Y/X).

For any Galois cover π : Y → X of a connected base graph X, the graph Y is
necessarily connected except in the case where G = Gal(Y/X) is the cyclic group of
order 2 and Y is two disjoint isomorphic copies of X interchanged by G.

Theorem 2.11. Let (X,G,α) be a voltage graph with derived graph Y such that Y is
connected. If X̃ is an intermediate cover of Y/X corresponding to the normal subgroup
H of G, then X̃/X is a voltage graph, whose voltage adjacency matrix is the voltage
adjacency matrix of Y/X, but with nonzero entries reduced modulo H (thus has entries
in Z[G/H]).

3. Towers of Voltage Graphs and Iwasawa Theory
We begin Section 3.1 by defining a cyclic p-tower of graphs. We then extend this
definition to a cyclic voltage p-tower of graphs by using Theorems 2.10 and 2.11 from
Section 2.4. From this, we get a “universal cover” of the tower by an infinite derived
graph that we call Xp∞ ; it is the derived graph obtained from the voltage graph
(X,Zp, α), where the voltage group is the additive p-adic integers and the voltage
assignment α is determined by the cyclic voltage p-tower. We call Xp∞ the completion
of the tower. In Section 3.2, we present important definitions and results pertaining to
Λ-modules. Then in Subsection 3.2.1, we specify the Λ-modules be finitely generated.
In Subsection 3.2.2 we construct a finitely generated torsion Λ-module, which we call
PicΛ. Finally in Section 3.3 we prove the main theorem (Theorem 1.1) of this paper.
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3.1. p-Tower Covering Graphs. We begin by defining a cyclic p-tower of graphs.
We assume p is a fixed prime.

Definition 3.1. A cyclic p-tower of graphs above a base graph X is a sequence of
covering graphs

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

such that for m > 0, the cover Xm/X is normal with Gal(Xm/X) ∼= Z/pmZ.

Note that for m > 0, this implies that the cover Xm+1/Xm is normal with
Gal(Xm+1/Xm) ∼= Z/pZ by the Fundamental Theorem of Galois Theory, along with
the Third Isomorphism Theorem [14]. Now we specialize Definition 3.1 to voltage
graphs.

Definition 3.2. A cyclic voltage p-tower of graphs above a base graph X is a sequence
of derived graphs

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

such that for m > 0, Xm/X is a derived graph with Gal(Xm/X) ∼= Z/pmZ.

Theorems 2.10 and 2.11 in Section 2.4 extend to towers, so we may choose notation
that describes the vertices, edges, voltage assignments and Galois actions on the
graphs Xm in compatible ways that are determined by the covering maps. In short,
each Xm is a derived cover of X defined by a voltage adjacency matrix of fixed degree
n whose i, j entries are αmi,j in the group ring Z[Z/pmZ]; and for each fixed i, j the
sequence of such entries has a limit as m→∞ in the p-adic integral group ring. The
n× n matrix whose entries are these limits forms a voltage adjacency matrix for the
“completion graph” that we now describe. This construction is straightforward, and
the precise details are given explicitly in [16, Section 5.1]. This leads to a “universal
cover” of the tower, by an infinite derived graph that we call Xp∞ .

Definition 3.3. Given a cyclic voltage p-tower as in Definition 3.2, with each Xm

the derived graph for the voltage assignment αm : E(X)+ → Z/pmZ, let Xp∞ be the
derived graph obtained from the voltage graph (X,Zp, α), where the voltage group is
the (additive) p-adic integers and voltage assignment α is determined by the tower.
We call Xp∞ the completion of the tower.

Theorem 3.4. Let X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · be a cyclic voltage
p-tower, let Xp∞ be the completion of the tower, and for each m > 0 let Xm be the
associated intermediate graphs. Then for all m > 0 there are graph isomorphisms
Xm → Xm, depicted as the horizontal maps in Figure 1, such that all the maps in
that figure commute, and commute with the action of Zp as automorphisms of each
graph.
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X0

Xm

Xk

∼=

∼=

∼=

Xp∞

...

...

...

X0

Xm

Xk

...

...

...

Figure 1. Cyclic voltage p-tower with completion Xp∞

We will henceforth write the voltage group Zp as the multiplicative profinite group
Γ, where, as a profinite group, it is cyclic: it is the closure of an infinite (multiplicative)
cyclic group 〈 γ 〉 under the p-adic metric topology, for some γ.

3.2. Iwasawa Modules. Fundamental to Iwasawa’s development of p-class groups
in Zp-towers of number fields was his study of certain finitely generated modules
over the Zp-algebra Λ = Zp[[Γ]]. Here Λ is the compactification of Zp[Γ], under the
profinite topology defined by the open subgroups Γpm . In this section we list and
establish some properties of Λ, as well as finitely generated modules over it, that are
the underpinnings of our main theorem. The following two useful theorems about Λ
can be found in [29].

Theorem 3.5. For the indeterminate T , Zp[[Γ]] ∼= Zp[[T ]] with the isomorphism being
induced by γ 7→ T + 1.

Theorem 3.6. Λ = Zp[[Γ]] is a Noetherian local ring.

Definition 3.7. Two Λ-modulesM andM ′ are said to be pseudo-isomorphic, written
M ∼M ′

if there is a homomorphism M →M ′ with finite kernel and co-kernel.

Definition 3.8. A nonconstant polynomial P (T ) ∈ Λ
P (T ) = Tn + an−1T

n−1 + · · ·+ a0
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is called distinguished if p | ai for all 0 6 i 6 n− 1.

The following proposition can be obtained immediately from [29, Proposition 7.2
and Lemma 7.5].

Proposition 3.9. Let F (T ) be a distinguished polynomial in Zp[T ]. Then
Zp[T ]/F (T )Zp[T ] ∼= Zp[[T ]]/F (T )Zp[[T ]],

where the isomorphism is as Zp[T ]-modules. The isomorphism is the natural one,
namely for r ∈ Zp[T ], the coset r + F (T )Zp[T ] maps to r + F (T )Zp[[T ]].

Let Λ = Zp[[Γ]] and fix a topological generator γ for Γ; by Theorem 3.5 the map
γ 7→ T +1 extends to an isomorphism from Λ to Zp[[T ]]. For m > 0 let ωm = γp

m−1.

Lemma 3.10. For m > 0 ωm maps to a distinguished polynomial in Zp[T ].

Proof. By definition, ωm maps to (T + 1)pm − 1. Thus

(T + 1)p
m

− 1 ≡ (T p
m

+ 1p
m

)− 1 ≡ T p
m

(mod pZp[T ]),
which establishes claim. �

Let R = Zp[Γ]. Fix m > 0.

Definition 3.11. Let D be any Λ-module and let B be any subset of D. For every
m > 0, define

ΩDm(B) = B ∩ ωmD.
Define Rm = R/ΩΛ

m(R) = R/R ∩ ωmΛ.

In the special case when B is an R-submodule of D (where D is considered as an
R-module), we have that ΩDm(B) is an R-submodule of B containing ωmB.

The sets ΩDm(B) define relatively open subsets of B in the “ω-adic topology” on
D. They obey the appropriate transitive property: If B and C are subset of D with
C ⊆ B, then

ΩDm(B) ∩ C = ΩDm(C).
It is not true in general that ωmB ∩ C = ωmC however.

Proposition 3.12. Let D be a Λ-module, let A be any Λ-submodule of D and let B
be any R-submodule of A, where A is considered as an R-module. Then the map

φ : B/ΩDm(B) −→ A/ΩDm(A) by φ(x+ ΩDm(B)) = x+ ΩDm(A)
is a well-defined and injective R-module homomorphism. If B contains a set of Λ-
module generators for A, then φ is an isomorphism and A = B + ΩDm(A); and if
additionally ωmD ⊆ A then A = B + ωmD.

Proof. We first simplify notation by denoting ΩDm(C) by just Ωm(C) for every subset
C of D throughout the proof. The map B → A/Ωm(A) by x 7→ x + Ωm(A) is
a well-defined R-module homomorphisms, and since Ωm(B) ⊆ Ωm(A), its kernel
clearly contains Ωm(B). This map therefore factors through B/Ωm(B), giving the
homomorphism φ. We also have

kerφ = {x+ Ωm(B) | x ∈ B and x+ Ωm(A) = 0 + Ωm(A)}
= {x+ Ωm(B) | x ∈ B and x ∈ Ωm(A)}
= (B ∩ Ωm(A))/Ωm(B)
= (B ∩ (A ∩ ωmD))/Ωm(B)
= (B ∩ ωmD)/Ωm(B) = Ωm(B)/Ωm(B) = 1,
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so φ is injective. It remains to show if B contains a set of Λ-module generators for A,
then φ is surjective. Assuming this hypothesis, every y ∈ A can be written as

y = α1b1 + · · ·+ αnbn, for some α1, . . . , αn ∈ Λ and b1, . . . , bn ∈ B.
By Proposition 3.9 and Lemma 3.10, for each αi there is some ri ∈ Zp[γ] ⊆ R such
that αi − ri ∈ ωmΛ. Let y′ = r1b1 + · · ·+ rnbn ∈ B. By construction,

y − y′ = (α1 − r1)b1 + · · ·+ (αn − rn)bn ∈ A ∩ ωmD = Ωm(A).
Thus φ(y′ + Ωm(B)) = y′ + Ωm(A) = y + Ωm(A), and so φ is surjective, hence an
isomorphism. Also, surjectivity of φ implies that A = B + Ωm(A). If ωmD ⊆ A, then
Ωm(A) = ωmD, so the last assertion holds too. �

Corollary 3.13. For R = Zp[Γ], we have that φ induces an R-module isomorphism
Rm ∼= Zp[Γm].

Proof. As in Definition 3.11, we have Rm = R/Ωm(R) = R/(R ∩ ωmΛ). Now Zp[T ]
corresponds to Zp[γ] in the isomorphism between Zp[[T ]] and Λ, where γ is a fixed
topological generator for Γ. So we have

Rm = R/(R ∩ ωmΛ) (by definition)
∼= Λ/ωmΛ (by Proposition 3.12)
∼= Zp[γ]/(ωm) (by Proposition 3.9)
∼= Zp[γ]/(γp

m

− 1)
∼= Zp[Γm],

where the last isomorphism follows since Zp[γ]/(γpm − 1) is isomorphic to the group
ring of the cyclic group Z/pmZ ∼= Γm. Hence Rm ∼= Zp[Γm]. �

We now record an elementary lemma, which will be used in proving Claim 6(3) in
Section 3.3.
Lemma 3.14. If A ∼= Zp as a Zp-module and B is a Zp-submodule of A, then either
B = 0 or A/B is finite.
Proof. By hypothesis A is isomorphic to the ring Zp considered as a module over
itself, so its submodules are ideals. If B 6= 0, then B = pkA, for some k > 0, and so
A/B ∼= Zp/pkZp ∼= Z/pkZ, which is finite. �

In the next subsection, we now specify our Λ-modules to be finitely generated.
Theorem 3.22 will be used in Section 3.3 to ultimately prove Theorem 1.1.

3.2.1. Finitely Generated Λ-Modules. The following can be found as [29, Theorem
13.12].
Theorem 3.15 (Structure Theorem for Iwasawa modules). For any finitely generated
Λ-module M, we get the following pseudo-isomorphism:

M ∼ Λr ⊕
(
⊕si=1Λ/(pki)

)
⊕
(
⊕tj=1Λ/(gj(T )mj )

)
where r = rank(M), s, t, ki and mj ∈ Z and gi ∈ Zp[T ] is monic, distinguished
and irreducible. This decomposition is uniquely determined by M . If M is a torsion
module, then r = 0.

The growth formula for the orders of the finite Jacobians in the conclusion of the
main result, Theorem 1.1, ultimately comes from the orders of certain finite quotients
of the cyclic factors in the Iwasawa Structure Theorem decomposition of a finitely gen-
erated, torsion Iwasawa module that we shall construct shortly. The general structure
of finite quotients of cyclic Λ-modules is described in [29, Section 13.3].
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Definition 3.16. As in the notation of Theorem 3.15, we define the Iwasawa invari-
ants of M by

µ =
s∑
i=1

ki and λ =
∑
j

mj deg gj .

Definition 3.17. Let M be any finitely generated torsion Λ-module with pki and gmj

j ,
as in Theorem 3.15. The characteristic polynomial of M , denoted by Char(M), is the
product:

Char(M) = pk1+···+ksgm1
1 · · · gmt

t ,

where Char(M) = 1 if M is finite.

We record some basic facts about finitely generated torsion Λ-modules. These may
be found in Bence Forrás Master’s Thesis [15, Section 1.1]. Part (3) may also be found
in [9].

Proposition 3.18. Let P be any finitely generated torsion Λ-module.
(1) The relation “pseudo-isomorphism” is an equivalence relation on any set of

finitely generated torsion Λ-modules.
(2) For any Λ-module M , the characteristic polynomial is an invariant of the

pseudo-isomorphism equivalence class of M .
(3) If M is a submodule of P , then Char(P ) = Char(M)Char(P/M). In partic-

ular, Char(M)
∣∣Char(P ).

The following theorem can be found in Romyar Sharifi’s online notes [26, Theorem
2.4.7]. In it, O is a valuation ring of a p-adic field. We simplify his statement by taking
O = Zp. This can also be obtained from [29, Proposition 13.19 and Lemma 13.21].

Theorem 3.19. Let M be a finitely generated, torsion, Λ-module, and let n0 > 0 be
such that Char(M) and ωm,n0 = ωm/ωn0 are relatively prime for all m > n0. Set
λ(M) = λ and µ(M) = µ. Then there exists an integer ν such that

|M/ωm,n0M | = qem where em = µpm + λm+ ν

for all sufficiently large m > 0.

This theorem is used to prove Theorem 3.22. First we present two lemmas.

Lemma 3.20. Let U be any Unique Factorization Domain and let d ∈ U with d 6= 0.
Suppose {am}∞m=0 is any sequence of nonzero elements of U with am

∣∣ am+1 for all
m > 0. Then there exists some n0 > 0 such that

gcd(an0 , d) = gcd(am, d) for all m > n0, and
gcd(am/an0 , d) = 1 for all m > n0.

Proof. This is an easy exercise. The key point is that d has only finitely many divisors,
so the chain of gcd(am, d) must stabilize after finitely many steps. �

Lemma 3.21. Let P be a finitely generated Λ-module. Let Pm = ωmP , for all m > 0.
Assume there is a Λ-submodule N of P such that Pm ⊆ N and |N/Pm | <∞, for all
m > 0. Assume also that P/N ∼= Zp. Then P is a torsion Λ-module.

Proof. By hypothesis P/N is a projective (free) Zp-module, so as Zp-modules we have

(1) P/ωmP ∼= (P/N)× (N/ωmP ) ∼= Zp × finite for all m > 0.

If P is not a torsion Λ-module, then in Theorem 3.15 we have r > 1, so P has a
Λ-submodule K such that P/K is pseudo isomorphic to Λ (where K is the kernel of
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the map P ∼ Λr ⊕ (Λ-torsion)→ Λ). Let overbars denote passage to P/K. Then (as
in Claim 1 in Section 3.3 below)

P/ωmP ∼= P/ωmP ∼ Λ/ωmΛ ∼= Zp[Γm].

However Zp[Γm] is a free Zp-module of rank pm, and so for any m > 1 it cannot be
pseudo-isomorphic to a homomorphic image of P/ωmP by (1) and the characterization
of finitely generated modules over the PID Zp, a contradiction. �

Theorem 3.22. Let P be a finitely generated Λ-module. Let Pm = ωmP , for all m > 0.
Assume there is a Λ-submodule N of P such that Pm ⊆ N and |N/Pm | <∞, for all
m > 0. Assume also that P/N ∼= Zp. Then there are nonnegative integers µ and λ
and an integer ν such that

|N/Pm | = pem where em = µpm + λm+ ν,

for all m > m0, for some constant m0 > 0.

Proof. By the preceding lemma, P is a torsion Λ-module. Let d = Char(P ) and
apply Lemma 3.20 in U = Λ to am = ωm, for all m > 0. Let n0 be as provided by
the conclusion of that lemma. For any m > n0, define ωm,n0 = ωm/ωn0 ∈ Λ. Let
M = Pn0 .

Note that for all m > n0 we have

ωm,n0M = (ωm/ωn0)(ωn0P ) = ωmP = Pm.

By hypotheses then, for all m > n0,

|M/ωm,n0M | = |Pn0/Pm |

= |N/Pm|
|N/Pn0 |

6 |N/Pm | <∞.

By Lemma 3.20 we have that ωm,n0 = ωm/ωn0 is relatively prime to Char(P ) = d, for
all m > n0. By Proposition 3.18(3) we have that ωm,n0 is relatively prime to Char(M)
as well.

We now have the hypotheses of Theorem 3.19 above. This theorem proves that
there are µ, λ, and some ν′ such that

|M/ωm,n0M | = pe
′
m where e′m = µpm + λm+ ν′,

for all m greater than or equal to some fixed m0 > n0.
Now, as noted above, ωm,n0M = Pm, and so for all m > m0, by Lagrange we have

|N/Pm | = |N/Pn0 | · |Pn0/Pm |
= |N/M | · |M/ωm,n0M |

= pk · pe
′
m where pk = |N/M | and e′m = µpm + λm+ ν′.

Finally, let ν = k + ν′ to obtain the conclusion to the theorem. �

The goal of the next subsection is to construct a finitely generated torsion Λ-
module, P = PicΛ. We will then apply Theorem 3.22 to PicΛ in Section 3.3.

3.2.2. Constructing a Finitely Generated Λ-Module. Let R = Zp[Γ] be the usual group
ring of Γ with coefficients from Zp. For the given voltage p-tower let Xp∞ be its
completion, so by Theorem 3.4 we may henceforth identify the intermediate graphs
of Xp∞/X with corresponding graphs in the tower.

Fix the following subset of Xp∞ :

B = {vi,0 | 1 6 i 6 n},
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where 0 is the additive identity of Zp, so these vertices are taken from the “zeroth
sheet”. We fix the identification of X and X0 with B by vi is identified with vi,0.

We first take the free Z-module on basis B, DivZ(X), and extend scalars (see [14,
Section 10.4, Corollary 18]) to the free Zp-module with the same basis, now viewed
over Zp. Denote this module by DivZp(X0). We can do likewise for each of the graphs
Xm and for Xp∞ too. We obtain the free Zp-modules of divisors

DivZp
(Xm) = Zp ⊗Z DivZ(Xm), m > 0

DivZp
(Xp∞) = Zp ⊗Z DivZ(Xp∞).

Now for every m > 0, each DivZ(Xm) is a free Z[Γm]-module on the set B too,
once we consider the group indices for vertices in Xm to be p-adic indices reduced
to Zp/pmZp ∼= Z/pmZ; and so DivZp(Xm) is a free module of rank n over Zp[Γm].
We may do likewise for Xp∞ to obtain that DivZp(Xp∞) is a free R-module, also of
rank n (on basis B). In order to emphasize the free, rank n nature of these respective
modules, we adopt the following notation:

DivRm = DivZp(Xm) and DivR = DivZp(Xp∞).
Since DivRm

= DivZp
(Xm) is a free Zp-module on the basis of vertices of Xm,

{vi,g | 1 6 i 6 n, g ∈ Γm}, we may define the usual degree zero divisors with respect
to this Zp-basis, and denote this by

Div0
Zp

(Xm) =

∑
i,g

ai,gvi,g | ai,g ∈ Zp and
∑
i,g

ai,g = 0


where these sums are for 1 6 i 6 n and g ∈ Γm.

Next we extend scalars from R to Λ. Since DivR is a free R-module of rank n, its
extension is a free Λ-module of rank n, denoted by

DivΛ = Λ⊗R DivR.
Since R is a subring of Λ we may simply view the elements of DivΛ as Λ-linear
combinations of B and DivR as the subset of these consisting of R-linear combinations
of B.

Next we define the Laplacian endomorphism:
Lp∞ : DivR −→ DivR by Lp∞(vi,0) = pi,0 1 6 i 6 n,

where pi,0, the principal divisor “based at vi,0” is, by definition,

pi,0 = nivi,0 −
n∑
j=1
vi∼vj

vj,0+αi,j ,

where ni is the degree of vi in X. This is extended by R-linearity to all of DivR.
Because Γ acts transitively on vertices in each fiber of Xp∞/X, as usual we have that
the image of Lp∞ is the Zp-span of the set of all principal divisors. We encapsulate
this by the following notation (definition):

PrR = Lp∞(DivR).
By taking the “same map”, but defined on the basis B of the free Λ-module DivΛ we
denote this by

L̂p∞ : DivΛ −→ DivΛ by L̂p∞(vi,0) = pi,0 1 6 i 6 n,

extended now by Λ-linearity. (Formally, L̂p∞ = 1⊗ Lp∞ .) Now we just define

PrΛ = L̂p∞(DivΛ).
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Likewise, because Γm acts transitively on the vertices of Xm, using the same Lp∞ ,
but instead reading the vertices vi,0 as lying in DivRm

(i.e. with the vertex indices
reduced to Zp/pmZp), and extended by Rm-linearity—call this map Lm—defines the
usual Laplacian endomorphism of DivRm . Its image is the Rm-module of principal
divisors of DivRm , denoted as

PrRm
= Lm(DivRm

).

We now define the appropriate Picard groups as follows:

PicRm = DivRm/PrRm (an Rm-module)
PicR = DivR/PrR (an R-module)
PicΛ = DivΛ/PrΛ (a Λ-module).

So these modules are cokernels of the respective module endomorphisms.
Next, we identify the Λ-submodule that plays the role of “degree zero divisors” in

the proof of Theorem 1.1.

Definition 3.23. Let

S1 = {vi,0 − vj,0 | 1 6 j < i 6 n} and
S2 = {pi,0 | 1 6 i 6 n}

Let MΛ be the Λ-submodule of DivΛ generated by S1, S2 and (γ − 1)DivΛ, and let
MR = DivR ∩MΛ and NΛ = MΛ/PrΛ.

It turns out that MΛ is actually generated by just S1 and (γ − 1)DivΛ (see
Claim 5(1) in the next subsection).

Since DivΛ is a finitely generated Λ-module and Λ is Noetherian, all of its submod-
ules are finitely generated, and so it follows that the quotient modules DivΛ/PrΛ =
PicΛ and MΛ/PrΛ = NΛ are also finitely generated as Λ-modules.

Theorem 3.24. Let DivΛ, PrΛ, PicΛ and NΛ be as above. Then PicΛ is a finitely
generated module over the Iwasawa Algebra Λ = Zp[[Γ]] and therefore so is its sub-
module NΛ.

3.3. The Main Theorem. We now go on to prove Theorem 1.1.

Proposition 3.25. The following diagram holds.
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PrR

QR

PrΛ

Km +QR

ωmDivΛ + PrΛ

ωmDivΛ

Km

PrRm

DivR

Zp
{

DivΛ

DivRm}
Zp

MR

Jp(Xm)
{

MΛ

Jp(Xm)
{

Zp
{

MRm

πm

}
Jp(Xm)

Figure 2. Lattice and map diagram showing that MΛ/(ωmDivΛ +
PrΛ) ∼= Jp(Xm),

Proposition 3.25 is proved by combining the following six claims 1-6 concerning
the columns of Figure 2.

First consider the reduction map

πm : DivR → DivRm
by vi,g 7→ vi,g

where g ∈ Γ and g ∈ Γm is the reduction of g to Γ/Γpm ∼= Zp/pmZp, (and recall
DivRm = DivZp(Xm)). Here we are really defining πm on the free R-basis vectors on
the zeroth sheet, and then extending by R-linearity to all of DivR. It is helpful to
keep in mind that for all m > 0, by the above map and by the previous subsection
we have

DivR is an R-submodule of DivΛ, and
DivRm

is an R-quotient module of DivR.

Now let D = DivΛ as in Proposition 3.12, but we simplify notation by writing
Ωm(DivR) to denote ΩDm(DivR).
Claim 1
The kernel of πm is Ωm(DivR) = DivR ∩ ωmDivΛ, where ωm = γp

m − 1.
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Proof. By Proposition 3.12 and Corollary 3.13, we get the following isomorphisms,
where the composition of these isomorphisms is the induced map on DivR mod kerπm:

DivR/Ωm(DivR) ∼= DivΛ/ωmDivΛ
∼= (Λ⊕ Λ⊕ · · · ⊕ Λ)/(ωm(Λ⊕ Λ⊕ · · · ⊕ Λ))
∼= (Λ/(ωm))⊕ · · · ⊕ (Λ/(ωm))
∼= Rm ⊕ · · · ⊕Rm
∼= Zp[Γm]⊕ · · · ⊕ Zp[Γm]
∼= DivRm

the free Zp[Γm]-module of rank n. Thus, the kernel of πm is Ωm(DivR). �

Now let
Km = kerπm and QR = PrΛ ∩DivR.

Claim 2:
Columns 1 and 2 have the following intersections:

(1) DivR ⊆ DivΛ,
(2) DivR ∩MΛ = MR,
(3) PrΛ ∩DivR = QR,
(4) (ωmDivΛ + PrΛ) ∩DivR = Km +QR = Km + PrR.

Proof. (1) holds by Subsection 3.2.2, while (2) and (3) are by definition of MR and
QR, respectively. By Proposition 3.12 applied with D = DivΛ, A = PrΛ+ωmDivΛ and
B = PrR, since PrR and PrΛ are both generated (as R- and Λ-modules, respectively)
by the same generators, they both have the same image in DivΛ/ωmDivΛ as in Claim
1. So, by the last sentence of Proposition 3.12,

(2) PrR + ωmDivΛ = PrΛ + ωmDivΛ.

Then since
PrR ⊆ QR ⊆ PrΛ,

by Equation (2), we get

(3) PrR + ωmDivΛ = QR + ωmDivΛ = PrΛ + ωmDivΛ.

Now because PrR and QR are contained in DivR, intersecting the subgroups in Equa-
tion (3) with DivR gives

(PrR + ωmDivΛ) ∩DivR = PrR + (ωmDivΛ ∩DivR) = PrR +Km

= QR + (ωmDivΛ ∩DivR) = QR +Km

= (PrΛ + ωmDivΛ) ∩DivR,

which gives (4). �

Claim 3:
Columns 1 and 2 have the following containments:

(1) PrΛ ⊆ ωmDivΛ + PrΛ ⊆MΛ ⊆ DivΛ,
(2) PrR ⊆ QR ⊆ Km +QR ⊆MR ⊆ DivR.

Proof. (1) is clear. From Claim 1, we have that kerπm = Km = DivR ∩ ωmDivΛ.
Then since ωm = (γ − 1)(1 + γ + · · ·+ γp

m−1), we have

ωmDivΛ = (γ − 1)(1 + γ + · · ·+ γp
m−1)DivΛ ⊆ (γ − 1)DivΛ ⊆MΛ.

Thus we have kerπm ⊆ DivR ∩MΛ = MR. So all containments in (2) are clear. �

Algebraic Combinatorics, Vol. 5 #5 (2022) 841



S. R. Gonet

Claim 4:
Columns 1 and 2 have the following joins:

(1) MΛ + DivR = DivΛ,
(2) (ωmDivΛ + PrΛ) +MR = MΛ.

Proof. Apply Proposition 3.12 to D = A = DivΛ and B = DivR. Its final assertion
gives that ωmDivΛ + DivR = DivΛ. Then (1) is immediate because ωmDivΛ ⊆ MΛ
by definition. Finally, since ωmDivΛ + DivR = DivΛ and by the latter observation,
we have

MΛ = MΛ ∩ (ωmDivΛ + DivR)
= ωmDivΛ + (MΛ ∩DivR)
= ωmDivΛ +MR

as needed for (2). �

Claim 5:
As R-modules we have the following:

(1) DivΛ/MΛ ∼= Zp and MΛ is the Λ-submodule of DivΛ generated by
S1 ∪ (γ − 1)DivΛ,

where S1 is as in Definition 3.23,
(2) DivR/MR

∼= Zp.

Proof. We first prove (1). We may obtain DivΛ/MΛ as follows: first factor DivΛ by
(γ − 1)DivΛ. By Corollary 3.13 applied with m = 0, and as in the proof of Claim 1,
we have that

DivΛ/(γ − 1)DivΛ ∼= (Λ/ω0Λ)⊕ · · · ⊕ (Λ/ω0Λ) ∼= Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
n of these

,

where the divisors v1,0, . . . , vn,0 map to a basis of this free Zp-module of rank n. Now
factor out the submodule generated by the images of all vi,0 − vj,0 ∀i, j from the
quotient DivΛ/(γ − 1)DivΛ. By doing this, we are simply identifying all the basis
vectors with each other, leaving the rank-1 Zp-module quotient. The latter process is
the same as modding DivZp

(X0) by the degree zero divisors in DivZp
(X0). So this tells

us that pi,0 for 1 6 i 6 n must already be contained in the Λ-submodule generated
by just S1 ∪ (γ − 1)DivΛ. This proves (1).

To prove (2): First note that by definition MR = MΛ ∩DivR. Then by Claim 4(1)
we have that

DivΛ/MΛ = (DivR +MΛ)/MΛ.

Then by the Diamond Isomorphism Theorem (which says that (DivR + MΛ)/MΛ ∼=
DivR/MR) and the previous part we see that

DivR/MR
∼= Zp.

as desired. �

By the proof of Claim 3(2), it follows that the kernel of the map πm restricted to
MR (which we simply denote by πm too) is also equal to Km = DivR∩ωmDivΛ. From
the definition in Section 3.2.2 we introduce the new notation:

MRm
= Div0

Zp
(Xm).

Claim 6:
For Columns 2 and 3 the following holds:

(1) PrRm
⊆MRm

⊆ DivRm
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(2) πm : DivR → DivRm
is well-defined and surjective,

(3) πm(MR) = MRm
and MR = π−1

m (MRm
),

(4) πm(Km +QR) = PrRm
and π−1

m (PrRm
) = Km +QR.

Proof. Items (1) and (2) are clear by their respective definitions. It is clear that
S1 ∪ (γ − 1)DivR ⊆ DivR ∩MΛ = MR.

Next we show that the image of S1 ∪ (γ − 1)DivR under πm generates Div0
Zp

(Xm) as
a Zp-module. The Zp-module Div0

Zp
(Xm) is generated as a Zp-module by differences

of vertices, vi,r − vj,s, where 1 6 i, j 6 n and r, s ∈ Z/pmZ. Such differences can be
written as

vi,r − vj,s = (vi,r − vi,0) + (vi,0 − vj,0) + (vj,0 − vj,s),
where the middle term on the right is in S1. For each i (and j) we may express the
first (and third, resp.) differences on the right as telescoping sums of divisors of the
form vi,t+τ − vi,t for all t, where τ = πm(γ) is any additive generator for Z/pmZ. The
claim then follows since all of the latter differences are in the image of (γ − 1)DivR
under πm. This argument shows that
(4) MRm

⊆ πm(MR).
To show the reverse containment, let D = π−1

m (MRm), (the complete preimage). By
basic properties of homomorphisms (part of the Lattice Isomorphism Theorem) and
since kerπm ⊆MR we have:

π−1
m (πm(MR)) = MR + kerπm = MR.

By applying π−1 to Equation (4) we get D ⊆ MR. By the Lattice Isomorphism
Theorem we have that πm induces an isomorphism

DivR/D ∼= DivRm
/πm(D) = DivRm

/MRm
= DivZp

(Xm)/Div0
Zp

(Xm) ∼= Zp,

where the latter follows from deg : DivZp(Xm)→ Zp.
Since D ⊆ MR we get that DivR/MR is a quotient Zp-module of the Zp-module

DivR/D. By Claim 5(2) we also have DivR/MR
∼= Zp. This is illustrated in Figure 3.

MR Zp

DivR

Zp
{

D

Figure 3. DivR/MR
∼= Zp is a quotient Zp-module of the Zp-module DivR/D

However, the only Zp-module quotient of Zp that is also isomorphic to Zp is the
quotient by the zero submodule (this follows by Lemma 3.14 in Section 3.2) i.e. we
must have MR = D; and so πm(MR) = πm(D) = MRm . This gives (3).

Now πm induces the surjective map
πm : MR/PrR →MRm

/PrRm
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where, by definition, MR/PrR = NR and MRm
/PrRm

= Jp(Xm) (the isomorphism
MRm

/PrRm
∼= Jp(Xm) is obtained by taking ⊗Zp to Div0(Xm)/Pr(Xm) = J (Xm)).

This is defined by the following commutative diagram in Figure 4.

MR MRm

proj

MR/PrR = NR

MRm
/PrRm

= Jp(Xm)πm

proj
πm

Figure 4. The map πm : NR → Jp(Xm) commutes with the natural
projection map

To prove (4), first invoke Claim 2(4) to obtain that Km +QR = Km + PrR. Since
Km is the kernel of πm, the subgroups QR and PrR have the same image under πm.
By definition, PrR is generated as an R-module by the principal divisors based at the
vertices in the zeroth sheet of Xp∞ ; and likewise PrRm is generated as an Rm-module
by the images of these principal divisors in DivRm . Thus πm maps PrR, hence also
Km+ PrR, surjectively onto PrRm

. This gives the first assertion of (4) . Furthermore,
since Km + PrR contains the full kernel of πm and PrR maps onto PrRm

, the Lattice
Isomorphism Theorem immediately gives the second assertion of (4) . �

Claims 1–6 prove Proposition 3.25.
Now for each subgroup A of DivΛ let Ã denote the image of A under the natural

projection map

∼: DivΛ −→ DivΛ/PrΛ

(which is both a Λ- and an R-module homomorphism). Since ∼ is a Λ-module ho-
momorphism, the image of ωmDivΛ + PrΛ under it is ωmPicΛ. Since DivR is an
R-submodule of DivΛ, we may apply ∼ to it as well, and to its submodules.

By the Diamond Isomorphism Theorem, since we have checked all the appropriate
intersections from column 1 to column 2 in Figure 2, this natural projection gives
the first two columns in Figure 5 as well as all intersections (depicted, as usual, by
horizontal lines) between their subgroups in column 2. To get the third column of
Figure 5, factor the third column of Figure 2 by PrRm

. The horizontal lines—which
are homomorphisms—relating column 2 to column 3 in Figure 5 are obtained by
taking images of the subgroups in column 2 under πm.

By the Lattice Isomorphism Theorem, the (already established) quotient groups
(in red) are consequently also preserved when passing between columns (thus also
transitively from column 1 to column 3). We only need these to be abelian group
isomorphisms; but they are, in fact, R- and Λ-module isomorphisms.
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0̃
0

K̃m

ωmPicΛ

0 = PrRm

D̃ivR

Zp
{

PicΛ

PicRm}
Zp

M̃R

Jp(Xm)
{

NΛ

Jp(Xm)
{

Zp
{

Jp(Xm)}
Jp(Xm)

πm

Figure 5. The natural projection homomorphism from DivΛ to PicΛ
indicated in the first two columns and the passage from πm to πm
indicated in the third column

Now we apply Theorem 3.22 with P = PicΛ and N = NΛ = MΛ/PrΛ used as
P and N in its hypotheses. Since Xm is connected and ωmPicΛ ⊆ NΛ for all m by
Figure 5, we have

|NΛ/ωmPicΛ| = |Jp(Xm)| <∞.
This leads immediately to the conclusion of Theorem 1.1.

An important invariant of any voltage graph with abelian voltage group is the
reduced Stickelberger Element. With respect to the basis B of both DivR (as an R-
basis) and DivΛ (as a Λ-basis) (see Subsection 3.2.2), the two maps, Lp∞ and L̂p∞ ,
have the same matrix representation. Thus we define

Θp∞ = detLp∞ = det L̂p∞ ,

which is an element of R = Zp[Γ] that plays the role of the reduced Stickelberger
element.

Remark 3.26. Θp∞ annihilates both PicR and PicΛ— see [16] for discussion and
additional uses of the reduced Stickelberger element.

Corollary 3.27. Under the hypothesis and notation of Theorem 1.1, the ranks of
Jp(Xm) are bounded as m → ∞ if and only if p does not divide Θp∞ in Λ (or in
Zp[Γ]).

Proof. By definition, PicΛ is the cokernel of the voltage Laplacian, Lp∞ : DivΛ →
DivΛ, where Θp∞ = detLp∞ . In the notation of Theorem 3.15, let pµ be the product
of the pki . Then the characteristic polynomial, as in Definition 3.17, is equal to

(5) pµ
t∏

j=1
g
mj

j = Char(PicΛ).

LetM = ωm0PicΛ where m0 > 0 is fixed. Then since PicΛ/M has finite p-rank (fixed,
independent of m → ∞), the ranks of PicΛ and M differ by a constant, and one is
bounded as m→∞ if and only if the other is bounded.
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We now compare µ invariants for PicΛ and M , as follows. By Proposition 3.18(3),
we have

(6) Char(M) = Char(PicΛ)
Char(PicΛ/M) .

The Λ-module PicΛ/M is a quotient of the module DivΛ/(ωm0DivΛ); and as in
Claim 1,

DivΛ/(ωm0DivΛ) ∼= (Λ/ωm0Λ)⊕ · · · ⊕ (Λ/ωm0Λ)︸ ︷︷ ︸
n of these

.

But by Lemma 3.10 we know ωm0 maps to a distinguished polynomial in Zp[[T ]] ∼= Λ,
so (Λ/(ωm0))n is already in Iwasawa decomposition form, and it clearly has charac-
teristic polynomial ωnm0

(again, under the identification γ 7→ T + 1). One more usage
of Proposition 3.18(3) gives that

Char(PicΛ/M)
∣∣ωnm0

,

so Char(PicΛ/M) is relatively prime to p (since the distinguished polynomial ωm0 is).
By Equation (6), this shows

p
∣∣Char(PicΛ) ⇐⇒ p

∣∣Char(M).

If µ(PicΛ) = 0, then Char(PicΛ) = Θp∞ by [21, Proposition 10.23]. In this case, p
does not divide Θp∞ by definition of Char(PicΛ). By [29, Lemma 13.20], we have that
the ranks of the finite Λ-module quotients of a finitely generated torsion Λ-module
stay bounded if and only if the µ invariant of the Iwasawa decomposition is zero. So
if the ranks of Jp(Xm) stay bounded as m→∞, then p does not divide Θp∞ .

Conversely, we show that if the ranks of Jp(Xm) don’t stay bounded as m → ∞,
then p does divide Θp∞ in Λ. So if the rank of Jp(Xm) → ∞ as m → ∞, then the
µ-invariant of the submodule M , and hence also of PicΛ, must be nonzero. i.e. the
Iwasawa decomposition of PicΛ must have at least one factor of the form Λ/(pa), for
some a > 1. This forces p to divide Θp∞ as follows. By [16, Corollary 9] or [29, p.
297], Θp∞ annihilates PicΛ. It follows from the definition of pseudo-isomorphism that
there is some submodule of fixed finite index in the Iwasawa Decomposition factor
Λ/(pa) that is also annihilated by Θp∞ ; and hence Θp∞ annihilates a submodule of
fixed finite index in every quotient of Λ/(pa). But the latter module has quotient
modules, Λ/(pa, T k), of order pak, for every k > 1, and none of these possess a
nonzero submodule annihilated by an element of Λ that is prime to p. Thus p must
divide Θp∞ . �

Example 3.28. Let X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · be a cyclic voltage
p-tower of derived graphs over a base graph X whose vertices are v1, . . . , vn, with
v1 adjacent to v2. Assume that the voltage adjacency matrix for Xm/X (with the
standard orientation on X) has a generator for the cyclic group of order pm in entry
1, 2; its inverse in entry 2,1; and has a 1 (the identity of the voltage group) in entry
i, j whenever vi is adjacent to vj for {i, j} 6= {1, 2}; and has zeros elsewhere (including
on the diagonal). Then

|Jp(Xm)| = pem , where em = µpm + λm+ ν for all m > 0,

where pµ is the largest power of p dividing the reduced Stickelberger element (pµ can
be shown to be independent of m), and λ = 1. In particular, when X is the complete
graph on n vertices, pµ is the largest power of p dividing (n− 2)nn−3, for n > 3.

Starting just with a base graph X as above, we can choose generators for voltage
groups Z/pmZ so that the sequence of 1, 2 entries in such voltage adjacency matrices
converges in Zp. This constructs derived graphs Xm/X that form a cyclic voltage
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p-tower (and if X1 is connected, then all Xm are too) — see [16] for further details
on these “single voltage” derived covers.
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