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Comparing formulas for type GL,,
Macdonald polynomials — Supplement

Weiying Guo & Arun Ram

Dedicated to Héléne Barcelo

ABSTRACT This paper is a supplement to [5], containing examples, remarks and additional
material that could be useful to researchers working with Type GL, Macdonald polynomials.
In the course of our comparison of the alcove walk formula and the nonattacking fillings formulas
for type GL, Macdonald polynomials we did many examples and significant analysis of the
literature. In the preparation of [5] it seemed sensible to produce a document with focus and
this material was removed. This is paper resurrects and organizes that material, in hopes that
others may also find it useful.

0. INTRODUCTION

This paper is a supplement to [5], containing examples, remarks and additional mate-
rial that could be useful to researchers working with Type GL,, Macdonald polynomi-
als. In the course of our comparison of the alcove walk formula and the nonattacking
fillings formulas for type GL, Macdonald polynomials we did many examples and
significant analysis of the literature. In the preparation of [5] it seemed sensible to
produce a document with focus and this material was removed. This is paper resur-
rects and organizes that material, in hopes that others may also find it useful.

1. The material in Section 1: Several colleagues have asked us questions about
permuted basement Macdonald polynomials and KZ-families (the permuted
basement Macdonald polynomials are called relative Macdonald polynomials
in this paper). These questions are helpfully considered in the context of the
results of the two paragraphs following equation (6.6) in Macdonald’s Sémi-
naire Bourbaki article [11] and Sections 5.4 and 5.5 of Macdonald’s followup
book [12] treating the fully general case. In hopes of making these results
more accessible, in Section 1 we have recast these completely in the type GL,,
and included their proofs (which are not difficult). These results are the H-
decomposition in Section 1.1, symmetrization statement in Proposition 1.1,
and the KZ-family characterization in Proposition 1.2. We hope that these
type G L,, specific expositions of these results can be helpful to the community.

2. The material in Section 2: This section has a focus on counting the number of
alcove walks and the number of nonattacking fillings, in order to compare the
number of terms that appear in alcove walks formula and the nonattacking
fillings formula for Macdonald polynomials. Some explicit formulas for these
counts, which may not have been widely noticed before, are included.
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3. The material in Section 3: This section explains how to recast the alcove walks
and nonattacking fillings into path form and pipe dream form. Pictures are
provided.

4,5,6. The material in Sections 4-6: These sections provide explicit examples of the
main results of [5]: the inversions and the box-greedy reduced word for u,
proved in [5, Proposition 2.2], the step-by-step and box-by-box recursions for
computing Macdonald polynomials in [5, Proposition 4.1 and 4.3] and some
specific examples to help support the exposition of the type GL,, double affine
Hecke algebra (DAHA) given in [5, Section 5].

7. The material in Section 7: In this final section we provide additional explicit
expansions of Macdonald polynomials for special cases: n = 2, n = 3, a single
column, partitions with 3 boxes, and explicit nonattacking fillings and their
weights for E,, where u has less than 3 boxes.

8. Section 8 contains some brief remarks about the queue tableaux and multiline
queues which appear in [4, Section 1.2 and Definition A.2].

A small warning: Even though they all have a Type A root system, type SL,, Mac-
donald polynomials, type PGL, Macdonald polynomals and type GL, Macdonald
polynomials are all different (though the relationship is well known and not difficult).
We should stress that this paper is specific to the GL,-case and some results of this
paper do not hold for Type SL,, or type PGL,, unless properly modified.

1. SYMMETRIZATION, H DECOMPOSITION OF C[X] AND KZ-FAMILIES

Let ¢,t2 € CX. Following the notation of [10, Ch. VI (3.1)], let T,-1 ,,, be the operator
on ClzE!, ... zx!] given by

Ty z, h(x1,. . 20) =z, ... 201, qilxn).
The symmetric group S,, acts on (C[xfl, ...,z by permuting the the variables
T1,...,%,. Define operators T1,...,T,_1, g and g% on Clzi?, ... =] by
1 tx; — Tita
1 T,=t2(t————(1-s;)),
(1) R e )
g==5182Sp1Ty1 4., 9" =xTy -+ Ty,

where s1,...,s,_1 are the simple transpositions in S,,. The Cherednik-Dunkl operators
are

2) Yi=ghya-T, Yo=TyMIT ..., Y,=TY, T "

For 1 € Z™ the nonsymmetric Macdonald polynomial E,, is the (unique) element
E, € Clzi', ..., x| such that the coefficient of £ ---z#n in E, is 1 and

(3) Vi), = qimtf(v“(i)ilH%(nil)Em

where v, € Sy, is the minimal length permutation such that v, u is weakly increasing.
Let p= (p1,..., pn) and let z € Sy,.

(4)  The relative Macdonald polynomial E7, is E; = t*%(e(“;l)*z(”;l))TzEﬂ.
Let A=A =--- 2 \y) €2

(5) The symmetric Macdonald polynomial Py is Py, = Z t%az“)TZVEA7
vESKA

where the sum is over rearrangements v of A and z, € S, is minimal length such that
V=2z,A\
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1.1. THE H-moDULES C[X]*. Let H be the algebra generated by the operators
Ti,...,Th—1 and Y7,...,Y, (so that H is an affine Hecke algebra) and let

1
31—t
Tiv:Tﬁ# forie {1,...,n—1}.
1-Y7Yi

As H-modules
Clay!,..., 2" 1 =@C[X]*  where  C[X]* =span{E, | u € S,A},
X

and the direct sum is over decreasing A = (A; = --- > \,,) € Z". A description of the
action of H on C[X]" is given by the following. Let 1 € Z™ and, with notations as in
(3), let

a, = ghi it g () —ou(itl)

4 4 D — (1 —ta,)(1 —tas,,)
Qg = @i+t H tvu(l-‘rl)—vu(l)7 H

(1—a,)(d —as;u)
Assume that p; > p;41. By using the identity F,, = t%TivEM from [5, (3.5)], the
eigenvalue from (3) and [5, Proposition 5.5 (5.23)], it is straightforward to compute
that

and

(6) Yi_1Yi+1Eu = auky, t%TivEu = Esips
YleHlEsm = s;uls;ps tz21)Es,, = D, E,,
1 1-t¢ 1 1—1t
2B, = ——FE,+E,,, and t*TiEs,,, = D,E, + ——FE,,,..
1—a, ’ ' 1—ag,

Now assume that p; = pi1. Then v, (i + 1) = v,(i) + 1 and a, =t~ so that
(7)Y, WinE,=t"'BE,,  (#27)E, =0, and  (t2T))E, =tE,.

These formulas make explicit the action of H on C[X]* in the basis {E,, | u € S,A}.
The formulas in (6) are the type GL,, special cases of [12, (5.4.3),(5.6.6)].

1.2. SYMMETRIZATION OF E,, FOR p € Z". If z € S,, and

zZ =8; - 8;, is a reduced word, let T, =1 T,

Let wq be the longest element of S, so that

we(i) =n—i+1, forie{l,...,n}, and €(w0):n(n2_1):<z>.
Following [12, (5.5.7), (5.5.16), (5.5.17)], let
(8) 1o = ¢~ 2¢(wo) Z 2t
2€ESy
so that Tj1g = 19T} = t2 1, for i € {1,...,n—1}, and
(9) 13 =Wo(t)lo,  where Wy(t)= Y _
2€Sn

is the Poincaré polynomial for S,.
For p € Z™, the symmetrization of E,, is (see [12, (5.7.1)] and [11, Remarks after

(6.8)])
(10) Fy, _ 10Eu — t—%E(wo) Z t%(@(z)—(&(m;l)+£(U;1)E;’
2€8n

so that F), is a (weighted) sum of the relative Macdonald polynomials £}, defined in
(4)). The following Proposition shows that F), is always, up to an explicit constant
factor, equal to the symmetric Macdonald polynomial Py (defined in (5)). Proposition
1.1 is the specialization of [11, remarks after (6.8)] and [12, (5.7.2)] to our setting.
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PROPOSITION 1.1. Let pp = (p1, ..., ftn) € Z™. Let X = (A1,...,\n) be the weakly
decreasing rearrangement of (1 and let z, € S, be minimal length such that pn = z,\.
Let
Sx={y€Sn|yr=2A} and Wi(t) = Z ttW),
yESA

H 1 _q/\i—/\jtj—i-s-l)F“'
(4,5)€lnv(z,)

Then

IRTNG

Py

Proof. The proof is by induction on #(z,). The base case z, = 1 has 4 = A and
Uy = wpzy so that

Fy = 1oE) = féawo)( oy t%euw(y)TzTy) E,
UESn/SA vES)
= t*%“wo)( > t%E(I)Tx)WA(t)E,\ = =3 W)W, (1) Py,
u€Sy, /Sx
where T, E) = t%é(y)Ey is a consequence of (7) and the last equality is (5). For the
induction step, assume that p is not weakly decreasing and let ¢ € {1,...,n — 1} be
such that p; < piq1. Then zg,, = s;2, and €(z,,,) = ¥(z,) — 1. Using E,, = t%TiVESm
and 1o7; = 1ot2 from (6) and (7) gives

1-1¢
Fﬂ = loE# = ]-Ot%TilEsi,u = 10 (t%ﬂ + 7)Es,;y

1-Y Y
1t 1— Y'Y,
1Y, Yin 1Y, Yin
1 — tgti+r—rigvn(itl)—vu (i) 1 — gritr—higou(itl)—vu(i)+1
= 10 1— qﬂi+1—ﬂitvu(i+1)*vu(i) sitn = 1— quJrl—lMtvu(i‘i’l)*vu(i) sift
and the result follows by induction (see Section 1.3.3 for an example). O

1.3. THE KZ-FAMILY BAsIS OF C[X]*. For p € Z", let A = (A = --- > \,) be the
decreasing rearrangement of ;1 and let 2z, € S, be minimal length such that p = z,\.
Define

(11) fu= Eiu — t%K(Z}L)TZME)V
It follows from the identities in the last column of (6) that
{fu| e S,A\} isanother basis of C[X]*.

The following Proposition says that the {f, | © € Z"} form a KZ-family, in the
terminology of [8, Def. 3.3] (see also [4, Def. 1.13], [2, (17), (18), (19)], [3, Def. 2]).

PROPOSITION 1.2. Let 1 = (1, ..., pn) € Z%,. Let i € {1,...,n — 1} and let T; and
g be as defined in (1). Then

1 fS'J,a Z.fl‘l/1>/u"l+1; _

T f =" and  9fu =07 fpngitpn1)-

H {tf/_“ Zf,uz = lit1, H (Hr s 1 5eees b —1)

Proof. Assume p1; > piy1. Then zg,,, = s;2, and £(z,,) = €(2,) + 1 so that
t%Tifp - t%Tﬂg%é(Zu)TzuEA — t%é(zw)Tsz/\ = foip-

Assume p; = py1. Then there exists j € {1,...,n — 1} such that s;A = A and
$izy = zu8; (so that s;u = s;z, A = 2z,5;A). Then

3Ty f, = 3Tt 3 COT, By = 3G T, 13T By = t3°CIT, 1By = tf,.
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(c) Let p = (p1,...,un) and let ¢ and j be such that \; is the first part of A equal
to pn and A; is the last part of A equal to pp,. Thus p, = A = Aip1 = -+ = Aj.
Write 2, = zsp,—1---s; with z € S;,_; and let ¢, = s1---5,,—1. Then, using vx(j) =
1+(j—4)+n—j=n—1i+1 from [5, Proposition 2.1(a)],

9fu = gt?'CIT, B\ = gt? O3 =IT, - TE,
= 3D g3t g 1T, ). T By
=29 (g3 AT, g YTy - 'Tj—l(Tj__ll T YT,y - T E)
- t%(n_j)(t%Z(Z)Tcnzc;l)Tl Ty YGEy
— t%(nfj)(t%Z(Z)T )Ty - Tjilq*/\jt*(vx(j)*l)Jr%(nfl)EA
—Ajt%(n—j)—(n—i+1—1)+%(n—1)(t%E(Z)TanC:Ll)Tl Ty 4Ty Ty Ey
=q THng— 3i+i—3 (tZZ(Z)TC oo )Tl .. ‘Ti—lt%(jii)EA
= q_“” (tié(z)Tcnchl)752’(z 1)T1 o TiflE)\
= q_unf()\m,,ul,...,pn_l) = q_unf(,un,ul,...,pn_l)v
where the next to last equality follows from
S1 - "Sifl()\l,. . ,)\n) = ()\i,)\l,. . '7)\1'717)\2'#»17 .. 7)\n) and
an’cgl(/\i, Alyeves N1, )‘i+17 . /\n) = ()\i; M1y, ,un_l). [l

1.3.1. Ezamples of the elements E, and f, in C[X]Z10),

_ .2 -
E(271>0) - .’1715(}2 + (1 _ th)qx1$2x3)
E =22z +(1_t>x2x +( _ ):L’xz'
(2,0,1) = L7123 1— ¢t 122 1_th123a

1—t 1—1
E(1,2,0) = w123 + (1 — qt>$%$2 + (1 — qt)qxwzm,
1—t 1—t 1—t 1-—t
_ .2 2 2 2
E(O»Q’l) = a3 + (1 _qt>‘r1x2 + (1 . q2t2)x1x3 + (1 —q2t2) (1 — )ﬁ[:le
T1X2T
1_qt 1_q2t2 1_qtq 14243,
1-1¢ 1-1¢ 1-1¢ 1-—-t¢
_ 2 2 2 2
B2 =273+ (1 7qt>$1w3 + (1 7q2t2)x1x2+ (1 7q2t2)(1 7qt)x1x2
T1%2T3,
1—qt 1—q?t2/\1—qt 4)*1t2ts
1—t 1—t 1—t \/1—t
_ 2 2 2 2
Pror) =z + (1 —qt>x2x3 " (1 - qt)xlx?’ + (1 —q2t2) (1 —qt)xlx?’

+( 1—1¢ )t2 +( 1—t )(1—75)2
—— |tzix Tix
1 — g2t2 172 1—¢q2t2)\1—qt/)"! 2

1—t y/1—t 1=t N/ 1=ty

+(1—q2t2)(1—qt)qmlx2+<1 2t2>(1—qt>x1$2
1—1t\2 1—-t 1—-1

+ (1_7(]1) .’131.1‘21‘3+< 2t2)(1 )th1x2x3
1-—-t¢ 1-—-t¢ 1—t

+ (1 —q2t2) (1 fqt) q¥122%3 + (1 —qt)xlxzx‘g’
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1—1¢

fear = Eeio) = ziwg + q(i_qtz)mxzw&
1 (1 —t)qt?

faz0) =12To Ep0) = 2123 +1 1((1_(1)52):61902%3’
1 (1 —1t)qt?

feon =2 Ty, B, 0) = wias + 1((1_q)t2>x1x2173’
2 1-—1t

f(1,0,2) =215, T5, E2,10) = xlx% + (i—qtg)xlzzx37
2 1—1t

f(0,2,1) = t2T81T32E(2,1’0) = l‘%.ﬁg + (i_qtg)l‘l-%?x?n

1-—1
Jo,1,2) = t%T91T92TS1E(2,1,0) = xox3 + tumxzmg-
(1—qt?)

1.3.2. Pia,1,0) as a symmetrization of E(31,0). When n = 3 then

(1- (1 -

Wolt)= S #0) = (L4 )1+t +2) = EED R

wES3

and
o=t %+t 3T +t 3Ty +t 2T\ Ty + t 2 ToTy + T\ ToT}.

Since S(2,1,0y = {1} then W31 0)(t) = 1 and

Nlw

t
P10y = W

LoE@2,1,0 = t%10t7%TVTV7—1\/T7\r/1’
(2,1,0)(t)

and, with f2 1.0y, f(1,2,0)5 - - > f(0,1,2) as in Section 1.3.1,

Ponoy = (L4+t3Ty + 13Ty + 3T\ Ty + t3 15Ty + 211 TT1) Ea.10)
= fee1,0 T fa20 t feo0) + fao2) + fo2) + fo12

1—-1¢ 1-t¢
= (afws + ql(_qt2)171332$3) + (w125 + qt(i_qtg)xlxzx:s)
(1-1) (1-1)
+ (2225 + qtml'lexg) + (z123 + mwlxgxg,)
(1-1¢) (1-t¢
+ (.’I]%x?, + mxlx}fﬂg) + (.’I}QCL‘% + tml‘lew?,)
= x?:ﬂg + mlxg + fE%ZL’g + xlxg + x%xg + mgxg
1—1%) (1—¢% 1—t) (1—¢?
I [ ) IR YU o
(1—qt) (1 —qt?)  (1-q)(1—qt)
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1.3.3. Symmetrizations for p with distinct parts whenn =3. If n =3 and Ay > Ay >
Az then Sy = {1} and W, (¢) = 1 and wy = s18281 and £(wg) = 3. Then

3
Fixinens) =2 10E0 a008) = Pouae )
5 /1 —tgh 22l
d

Fozanng = 1 — gh—2ag2-1 )P()\h)\zv\a)’

3 (1 —tgr2e a3 2
F(Al,)\s,)\2) =t2 ( — )\2 o 3-2 )P()\l A2,A3))

3 1 )\1 )\3t3 1 )\1 )\2t2 1
F(A2,>\3,)\1) =t2 ( T q>\1 pywEs ) ( >\1 pvwom )P()\h/\zv\a)?

5/1— )\1 Az3—1 )\2 A3p3—2
Fonaanne) =17 ( 1_ /\1 X33—1 )( ,\2 X33—2 )P(/\l A2,A3)>

)\ A2 42—1 )\ Az43—1 A2 —A343—2
F(/\A)\):t%<1 1= Az )( 1=Az¢ )(1 tqr2 st )P()\/\/\)
3,A2,A1 1 — C]>‘1 A2¢2-1 1— q)\l Azg3—1 1— q’\2 A343—2 1,A2,A3

For example, using vy (1) = 3, vx(2) =2, vA(3) =1, and
YiileE(/\h)\mAs) - qA “hagn - UA(J)E(MJQ,)\J)

and va(i) —ua(j)=(n—i+1)—(n—j+1)=1i—j,

1 1 1—1
Fxoning) = 108270 By asne) = 1o (t“’Tl T vy E Y—l))é)E(Al)\z,)G)
1
(1—1) 1—tY 'Y,
ot D Y = 122
0 1 _ Y1_1Y2 (A1,A2,23) 1— Y1_1}/2 (A1,22,A3)

1 thli}\QtQil 1— tq)\lf)\2t271
= 10( 1— gh—eg2-1 )E(Aw\z)\a) = ( 1 — gh—2ag2-1 )P(Ah)\z«\s))

and

1—tY, Vs 1
2 3) tzr E()\17)\2 Aj)

Finonsan) = Lot2 15 127 By agng) = 10(71 Yy, 2
2

-1 A1—A343—1
_ 1 /1=t 'Y 1 —tg™ =73t
= 1ot27 ( 1— Y1_1Y3 )E()\h)\z,)\s) 10t27'1 ( 1 — gh1—Asg3—1 )E()\h)\z,)\z)
1— tq/\17/\3t371 1 tq/\17>\2t271
= ( 1— q>\1—>\3t3—1 ) ( 1— q>\1—>\2t2—1 )P(Ah)\z,/\s)'

1.3.4. Exzamples of the gf,, condition for a KZ-family. Let n = 3 and A = (2,1,0).
Then vy (1) = 3, vA(2) =2 and v»(3) = 1 and

YiE(Q,l,O) _ (]_Mt_(UA(i)_1)+%(n_l)E(2,1,0)~

Then
Vi =ghTy,  Yo=T'gTy, Ys=T,'T?
Since
f1,00 = E@2,1,0), faz20 = t%TlE(Q,LO)u feo01) = t%T2E(2,1,0)7

fo,21) = t%T1T2E(2,1,0)> fa,02) = t%T2T1E(2,1,0), fo,1,2) = t%TszTlE(z,l,o)»

Algebraic Combinatorics, Vol. 5 #5 (2022) 891
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then

9f1,0) = 9E @10 = TiTo(Ty ' Ty '9)Eo.1,0) = TiT2Y3E (2,10

=q¢ "' TVT2E2,1.0) = f0.2,1)5

1 1 1

9fa,2,0 = 9gt2T1E@q1,0) = t2T2gF31,0) = 12 TotThT2E3 1,0y = f(0,1,2);
1 1 _ 1

9f201) = 9t?TaEo 10 = 2T T ' gToE2,1,0) = t2T1Y2E(2,1.0)

1 1, —
=t2T1q "t " Ep10) = q " f,2,0)

2 2 2 _ _
9f,2,1) =gt2TiTo B 0) = t2TagTaE 5 1 0) = t2T2T1q 1t0E(2,1,0) =q 1]"1(1,0,2)7
2 2 2 _9, _ _
9f02 =t2g1T1Ex0) = t2Y1E@g 10 =t2¢ 2t > Eg1.0) =0 *f210),
9fo1,2) = t%9T1T2T1E(2,1,0) = t%TlgTleE(zl,o) = t%TllfolE(Q,l,o)

= q_zf(1,2,0)~

2. BOXES, ARMS, LEGS AND COUNTING TERMS

2.0.1. Common terminology.

The set of weak compositions, 7%, = {p=(p1,-..

the set of strong compositions, 72, = {p = (u1,...

the lattice of integral weights, Z"™ = {p = (p1,...
dominant integral weights, (Z™)T = {(u1, ...
partititions of length <n  (Z%,)* = {(p1, ...

sHn) | 1i € Zzo},
a/j/n) | Hi S Z>0}7
a,un) | Hi € Z}7

Hn) EZ" [y = p2 = 2 pnt,
shn) € L3¢ | pa = p2 = -

> pn}

2.0.2. Examples of box diagrams. If X = (5,4,4,1,0) and pu = (0,4,5,1,4) then

L

To conform to [10, p.2], we draw the box (i,j) as a square in row ¢ and column j
using the same coordinates as are usually used for matrices.

The cylindrical coordinate of the box (i, ) is the number i 4 nj.

2.0.3. Formulas for #Nleg,, (i, j) and #Narm,, (i, j). Using cylindrical coordinates for

boxes define, for a box b € dg(u),

(12) attack, (b) = {b—1,...,b—n+ 1} Ndg(p),
(13) Nleg,, (b) = (b +nZ=o) Ndg(p) and
(14) Narm,, (b) = {a € attack,(b) | #Nleg,(a) < #Nleg,, (b)}.

As in [6, (15)], the number of elements of Nleg,, (i, j) and Narm,, (i, j) are
#Nleg, (4, j) = #{(i,5") € dg(p) | 5" > j} = pi — 4,
#Narmy, (i, j) = #{(i', j) € dg(p) | i < i and pyr < pi}
+#{(i,5 — 1) €dg(p) | ' > i and pir < p;},

where dg(p) = dg(p) U {(1,0), ..., (n,0)}.

Algebraic Combinatorics, Vol. 5 #5 (2022)
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2.0.4. Relating HHL arms and legs to Macdonald arms and legs. If p is decreasing so
that 1 > pe > - -+ > uy, then p is a partition and

#Narm,, (i, §) = pj_y —i=leg,(i,j —1) and #Nleg,(i,7) = p; — j = army (i, j).

If 11 is increasing so that pg < o < -+ < piy, then wou = (lp, ..., p1) is a partition
and
Narm, (i.9) = (won)j — (n—i)  #Nleg,(i.1) = i~ j = (wo)u—s — J
:legww(n—i,j) = army,,,(n — 14, J)

(see [6, remarks before (17)] and [7, p. 136, remarks before Figure 6]).

2.0.5. Formulas for the number of alcove walks and nonattacking fillings. The moti-
vation for computing #AW}, and #NAF] is that the alcove walks formula and the
nonattacking fillings formulas for the relative Macdonald polynomial Ej are, respec-
tively,

E; = Z wt(p) and E; = Z wt(T).

PEAW TENAF;,

(see [5, Theorem 1.1]). The number of terms in the first formula is #AW}, and the
number of terms in the second formula is #NAF}.

For a box (7,7) € dg(n) define u, (¢, j) by the equation

u,(4,5) + 1 =n — #attack, (¢, 7).

Since #attack, (i,7) = #{i' e {1,...,i =1} | py 2 j}+#{ e i+ 1,...,n} | por >
j — 1} then
i) = B4 € {1, yi=1} | o < < psb Al € (i1, o} | o < =1 < i}

Let = (p1,..., pn) € Z5, and 2 € Sy, By [5, Proposition (2.2)] and the definition
of alcove walks and nonattacking fillings in [5, (1.11) and (1.7)],

(15)  #AW: =2/) = T 2%@)  and  #NAF, = [ (u.(i.) + D).
(ig)en (hen

(The right hand side does not depend on the choice of z.) For example (as in [4, Table

1)),
7

Ot Ot Ot O

#NAF(, 353221100 = = 3189375, for z € S1o.

= T = S S SO ee
W W W w W w

2.1. THE COLUMN STRICT TABLEAUX FORMULA FOR P,. Let A and p be partitions
such that A D g and A/p is a horizontal strip. Following [10, Ch. VI §7 Ex. 2(b)],
define

where the infinite product (7;q)eo = (1 — 2)(1 — 2¢)(1 — 2¢?) - .
A column strict tableau of shape X is a filling T': dg(\) — {1,...,n} such that

T(i,5) <T(,j+1) and T(i,7) <T@ +1,79).

q)\i—/\j+1t]—l+1; q

)oo( )
Joo(qhi~ A1 1~ )
)Oo(qm—A;#l tI—it1. q>

)

ghi—mit1gi—i,

)

b

( (qm—uj tj—i+1; q
( q
(

U/ = H

Ai—pjpg—i+1.
1<i<i<(p) ( LY

)

g 18 |8 |3

(qhe—rat I =0 q) oo (qre At H 1T

i
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For a column strict tableau T define
Yr = [[vaone-n  where AD ={uedg()) | T(u) < i}.
i=1

Then [10, Ch. VI (7.13)] gives

(16) Py, = Z Yra’, where 7 = xf(ls inT)  p#nsinT)
T

n

By [10, Ch. 1 §3 Ex. 4], this formula for Py has

b
Lc() terms, where

ver )

¢(b) is the content of the box b,
h(b) is the hook length at the box b.

2.1.1. Comparing numbers of terms in formulas for Py. Let A = (A\1,...,A,) be a
partition and write A = (0™°1™12™2...) go that m, is the number of rows of A of
length 7. Then number of elements of the orbit S, A (the number of rearrangements
of \) is
|
Card(S,A) = L, where my! = mglmylma! -+ .

m,\!
By (5), the symmetric Macdonald polynomial is given by Py =3 . s, a E5, and using
the alcove walks formula for E5 and the nonattacking fillings formulas for E5 provide
formulas for P, with

n!

n!
il - #AW} terms, and P #NAF5 terms, respectively.

mx

Alternatively, by Proposition 1.1, there is a constant (const) such that

if A= ()\17)\2,...,)\]“0,...,0) with )\k;«é()

Py = (const) Z Breon)s where then rev(\) = (Mg, ..., A2, A1,0,...,0).

vESLA

Then using the alcove walks formula for Efev( N and the nonattacking fillings formulas

for £Z ev(N) provide formulas for Py with

n! n!

o~ #AWT, (1) terms, and p—

Let A be a partition. Let X = (\],..., \}) be the conjugate partition to A so that
A’ is the length of the jth column of A. For A = (A1, Az, ..., Ag,0,...,0) with Ay # 0
let rev(A) = (Mg, ..., A2, A1,0,...,0). Then ux(i,1) = Upey(r)(i,1) = 0 and if j > 1
then ux(7,7) =n — N;_; and Upey(n)(3,5) = n — Aj. Thus

#AW, = ] 2n %,

- #NAF7,, () terms, respectively.

(4,5)EX
j>1
#NAFA = H (n - )‘;'—1 + 1)7 #NAFT‘EU()\) = H (n - /\; + 1)a
(i,)EX (i,4)EX
i>1 i>1

and
t(\) =n!- H (n—=XN,_;+1),

(i,5) €A
ji>1
on=Xj_1 n—M+1
(N=1] ———F— =11 —*—
(i,5) €A n-= )\j—l +1 (i,5)EX n-—= )\j—l +1
i>1 i>1
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are formulas for the values provided in the table in [9, end of §3] (Lenart assumes
that the parts of A are distinct so that my! = 1). For example, if A = (5,4,2,1,0) as
in the last row of Lenart’s table then

N NN
w W
=~

— = e

20.21.22.23.923

20 .91
20

W W[ =
= Ot

NN N WWW
[ ST

[ e T T U B Sy S S S

[ e T =S
DN DN DN

so that t(\) = 552960, c(\) = 2% ~ 14.222 and r(A\) = 3 = 7.5. To compare this
with the number of column strict tableaux of shape A = (5,4,2,1,0) (the number of
terms in the formula for Py in (16)),

5-6-7-8-9
4.5-6-7
3.4
P
H"+C(b)— —5.7-3.5.7= 3675,
70 86-4-3-1
EA
6-4-2-1
3.1
1
552960
d 222727 _ 150.465.
an 3675 50.465

3. CONVERTING FILLINGS AND ALCOVE WALKS TO PATHS AND PIPE DREAMS

3.0.1. Hyperplanes and alcoves. Let R” = af = Req+---+Re,,. Fori, j,k € {1,...,n}
with ¢ < j and £ € Z define

aeiv —e)/ +HK _ {(

Hiyeosfin) €ER™ | py —pj = —L}, and
(17) = (g, ) €R | gy =~}
The union of these hyperplanes is
H={(u1,...,ptn) eR" |if 5,5 €{1,...,n} and i # j then p; ¢ Z and p; — p; ¢ Z}.
An alcove is a connected component of
R™ —H, the complement of the hyperplanes listed in (17).

The fundamental alcove is

n | H1— pn € Ryo and }

A= {N:(#h“w#n) €R if’iE{l,...,’n} then HiER(fl,O)

For n = 2, some pictures of these hyperplanes and paths in aj = R? are in section
3.0.8.
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3.0.2. Bijection W < W - %p > {alcoves}. Let W be the group of n-periodic permu-
tations and define an action of Wgr,, on R™ by

(18) (s ey fin) = (o + 1, 1505 fin)
and S (p1, - fn) = (s oo Mie 1y i 1o By i1y -+ Hin)

fori e {1,...,n—1}. Let

(19)  p=(22,n58, ., Ty — (n— 1 n—2,...,1,0) - 251(1,1,...,1).
Then the maps

W +— W - Lp+— {alcoves}

(20) w — %wp — wA;

are bijections,

and so we can identify W with the set of alcoves and with the orbit W - % p. The
statement in (20) holds because the stabilizer of % p under the action of W on R" is

{1}.
3.0.3. Reflections in W. For any pair (j,k) € Z x Z with j # k define
sik(j) =k, sjp(k)=(j), s;x(4) =14if i # j mod n and i # k mod n..
Ifie{l,....,n—1} and t,v = ((#1)v(1), (H2)v(2), - - - > (n)w(n)) then
5t = (1) v(1)s - > (Bim1)wii—1)s (it 1) v(i+1)> (i) () (Hit2)v(it2)s - -+ (Bn)v(n))s

so that, in extended one-line notation, s; acts by switching the ith and (i + 1)st
components. The hyperplane

a?” between t,vA; and s;t,vA; has root BY = EZ(H_U — siv)(i) + (i — pis1) K.
3.0.4. Paths. A path is a piecewise linear function v: Ry, — R", where a € R>g

and Ry q = {t € R | 0 < ¢ < a}. The concatenation of paths v1: Ryg 4 — bg and
72t Rpop) — by is the path

i! (t)’ ifie R[O,a],

17Y2: Rpoats) — b given by  (7172)(t) = .
(0.a+b] R 11(a) +72(t —a), ift € Ry aq-

3.0.5. Paths corresponding to nonattacking fillings. The straight line path 0 — €; is

xZ;: R[O,l] — R™
t > te;.

If T is a nonattacking filling of type (z, 1) then the word, or path, of T is

rr = H TP (w) taken in increasing order of cylindrical coordinate.
uepn

The path, or word,
fT:QJilZL’iQ'-'ZL'ie is 0_>5i1_>(5i1+5i2)_>"'_>5i1+"'+5ig

as a sequence of straight line segments.
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3.0.6. Paths corresponding to alcove walks. Define paths w: R — R" and
Rjg,1) — R™ and fo: Rjg,;; — R” by

. ta7 if 0 lv
w(t)=~(L1....1),  calt)=ta and fa(t):{(l_t)a rlt<
) 2

//\ //\

<t
<t

Let p = (p1,..-,in) € Z%, and z € Sp. Let sy = m and let @, = s;, ---s;. be a
reduced word for u,. An alcove walk of type (z,4,) is

(21) a sequence p = (po,p1,---,pr) of elements of W such that

po = z; if 8;, = m then py = pr_17; and if s;, # 7 then pr € {pr—1,Pr—-15:, }- The
path corresponding to p is

fpkfloéik7 if pr, = pr—1,
(22) YB1 T VBes where ’Yﬁj = Cpk,ﬂlika if Pk = Pk—1Siy,
w, if pr = pe—17,

See §6.0.3 for pictures in R?, for n = 2. The pictures of paths for n = 3 in sections 3.0.9
and 3.0.9 are projections from R? to the plane {(y1,72,73) € R® | v1 + 92 + 73 = 0}.

3.0.7. Pipe dreams corresponding to nonattacking fillings. Let p € Z%,. A filling of
dg(u) is a function T': dg(p) — {1,...,n}. If the filling is nonattacking then it satisfies
the column distinct condition,

(CD) if j € Zso and (i, ), (', 7) € D then T(i,j) # T(i, j),

and so the filling T' can be converted into a pipe dream P: {1,...,n} X Zxo —
{1,...,n} by setting

(23) P(k,j) =1 if and only if T(i,7) =k,

and putting P(k,7) = 0 if there does not exist ¢ € {1,...,n} such that T(i,5) = k.

(This bijection is given in [1, (5.10)] and [4, Definition A.6]. In [4, Definition A.6] the

pipe dreams are the multiline queues and the fillings are the Queue Tableaux and

n [1, (5.10)] the pipe dreams are the p-legal configurations.) The column distinct

condition on 7' is exactly the condition that P obtained in this way is a function.
For example,

111 111 1113 1113
2|22 2|23 2121 2|2 2
3 3 3 3

are the 4 nonattacking fillings of u = (2,2,0). Converting these to pipe dreams gives

111 111 112 1110
2|22 2|20 2121 2122
3100 310 2 3100 3|01

The example in [1, Figure 5] has

1 1122200
211112 2005020
filling 3|3 with corresponding pipe dream 3130550
4144544 444044
55233 50400
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and the picture of this pipe dream from [1, Figure 5] is

1 3 25 4
|
SJ 5 5 | 5 5
5 S
0 0 0 0 0
4 4 4 2 7
4
1 1 1 1 1
3 3 3 3 3
(24) T .
) 2 2 2 2
2 2 2 2 2
: T
3 3 3 3 3
1 1 1 1 1

([1] index rows bottom to top instead of top to bottom). The example in [4, Figures
3 and 12] has

66 53 21200
116 31330
2122 6001
nonattacking filling T = ;;4 and pipe dream P = ;8;18
3 11120
4 4400
5 5500

and the picture of this pipe dream (multiline queue in the terminology of [4]) from
[4, Fig. 3] is

the multiline queue

3.0.8. Alcove walks, nonattacking fillings and paths for E(3 ). The explicit expansion
of E(370) is

1—-1 1—-t¢ 1—-t 1—-1¢
Bao = ot + (=g ) ot + (7= o+ (=) (=) ot
(3,0) = 71 + 1— ¢t q r175 + T—qt q+ -t/ \ T g q" ) riT2
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The nonattacking fillings, words, paths, alcove walks and corresponding weights for
E3,0) are

11111 11112
2 2
1121 T1T1X2
©0) 4 0oF— X
(5% [
TS1TS1 syl
1—t
! o(55)
11122 11121
2 2
T1T2X2 T1T2X1
©0 j 7 COF—
73 3
mlmsym mlrlw

2f 1—t 2 1=t \ [ 1-t
7 (i) 7 (i) (55)

The first row contains the nonattacking fillings. The second row contains the words
of the nonattacking fillings. The red paths are the paths corresponding to the words
of the nonattacking fillings, and the blue paths are the paths corresponding to the
alcove walks. We used a shortened notation for the alcove walks so that

ms1msym represents the alcove walk (1,7, w81, m817, TS17S1, TS1TSIT),
msymlm represents the alcove walk (1,7 7r51,7r517r ST, W81 T2),
mlmsym represents the alcove walk (1,7, 7, 7r 281, m281T),

mlmlr  represents the alcove walk (1,7, m, w2, w2, 73).

The last row contains the weights of the alcove walks (which are the same as the

weights of the nonattacking fillings to illustrate that the factors of the form (1_1(1%)

are in bijection with the folds of the blue path.

3.0.9. Alcove walks, nonattacking fillings and pipe dreams for E ¢.1). In the orthog-
onal projection from R? to the plane

{(v1,72,73) €R® | 71 + 72 + 3 = 0}
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(so that we can draw 2-dimensional pictures), the straight line paths x1, 9, 23 to 1,
€9, €3, respectively, are pictured as

X
X2
X3
The explicit expansion of F(3 1) is
1> Jr1—15 thl—t n 1-¢t 1-—-¢
= T123T T1ToT ——T123% —— T2
(2,0,1) 12321 1—qt121 ql—qt2132 ql—qtl—qt2123

The nonattacking fillings, words, paths, alcove walks and corresponding weights for
E(2,071) are

111 111
2 2
3|3 3|2
2 ZI‘v 1 2 3 1
3 3
2 |t 2
1 1
TS1TS1IT mlrsim
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1|12 1|13
2 2
3(3 3|2
2 3 1 2 3 1
3 3 I I
2 et 2 -
1 1
syl mlmlm

where we have used the same shortened notation for alcove walks as in the table
in Section 3.0.8. The sections of type w in the paths corresponding to the alcove

walks (see (22)) are not visible in these pictures since the pictures are in a projection
orthogonal to the direction of w.

3.0.10. Alcove walks, nonattacking fillings and pipe dreams for E( 20). The explicit
expansion of E(; 5 ) is

1—t (1—qt?) (1—1)
Bioo = -
(1,2,0) = T1T2T2 + 11— qt$1$2$1 +4q 1—qt) (1—qt?)

T1T2T3

The nonattacking fillings, words, paths, alcove walks and corresponding weights for
E(1’270) are

11 11
2|12 2 2|21
3 3
3l 1 2 1? 1 2
3,_] 3—'
2 2 >

TTWS981T mrwlsym

A
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1|1
2|2 3
3
3‘ 1 2
AT
2
1
arwllmw wwsolmw

VAVARRV,AV,

where we have used the same shortened notation for alcove walks as in the table
in Section 3.0.8. The sections of type w in the paths corresponding to the alcove
walks (see (22)) are not visible in these pictures since the pictures are in a projection
orthogonal to the direction of w. For this example, there are 4 alcove walks and 3
nonattacking fillings.

4. REDUCED WORDS AND INVERSIONS

4.0.1. Examples of the inversion set Inv(w). Define n-periodic permutations 7 and
805815581 € W by

(25) m(@)=i+1, fori€Z,

SZ(Z) =1+ 1,

(26) 1) =i,

and s;(j) =4 forje{0,1,...,i—1,i+2,...,n—1}.

An inversion of a bijection w: Z — Z is
(J,k) €ZxZ with j<kandw(j)>wk).
and the affine root corresponding to an inversion
(27) (i,k) = (i,j+n) withi,je{l,....,n}and € Z, is BY =g/ —c]+IK.
Let n = 3. The element
w =818y has w(l)=2 w(2)=3, w3) =1,
and w(1) > w(3) and w(2) > w(3) and
Inv(w) = {ag, ss0y'} = {e3 — &5, 6] — e}
The element
w= 8381 has w(l)=3, w(2)=1, w(3) =2,
and w(l) > w(2) and w(1) > w(3) and
Inv(w) = {a,s103 } = {ef —¢ey,ef — ey }.

These are examples of [5, (2.11)].
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4.0.2. Relations in the affine Weyl group W. The following relations are useful when
working with n-periodic permutations.

PRroOPOSITION 4.1. Then

(28) S0 =ley ey Sp—1-"" 825182 Sn_1, ley = TSp—1- " S281,

(29) and tsivJrl = silev s, s = 841,
forie{l,...,n—1}.
Proof. Proof of (28): If i & {1,n}
tev _cvSn—1-" 528182 " sn_l(i)tglv_av (1) =i = s0(3).
If i =1 then
ey cySn—1- 528182 " Sn—1(1) = tey —ey (n)=n—n=0=sp(1),
and, if ¢ = n then
tev _eySn—1-"- 825182 Sp—1(n) =ty v (1) =14+ n = so(n),
Forie{2,...,n}
(i—1)=1i=1t,(), and

sitey si(i +1) = sitey (i) = si(i +n) =i+ 1+n,=ty (i+1), and

sitey si(J) = sitey (4) = s:(J) = J = tey, (4),
if je{1,...,n} and j & {i,i + 1}. Finally,

msim H(i) = wsi(i — 1) = 7w(i) =i+ 1 = s;41(i), and
s i+ 1) =7s;(i) =7 +1) =i +2=s;11(i + 1).
O

4.0.3. The “affine Weyl group” and the “extended affine Weyl group”. The type GL,,
affine Weyl group W is generated by s1,...,s, and 7. The group W contains also

so and all the elements ¢, for p € Z". The projection homomorphism is the group
homomorphism : W — S,, given by

(30)

U =, fory € Z" and v € S,.

~+

The subgroup Wpgr, generated by so, S1,...,Sn—1 is the type PGLy-affine Weyl
group.

Weer, = {tuv | p=(pt1,...,pn) € Z" with g3 +---+ pp, =0and v € S, }, and
Wer, =W ={t,v | p€Z"ve S} = {n"w| h€Z,weWpar,}.
Then
War, =Z" xS, =Qx Wpgr,,  where Q= {rn"|hecZ} with Q=Z.

The symbols x and x are brief notations whose purpose is to indicate that the
relations in (29) hold.
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The group Wpar, is also a quotient of Wgp,,, by the relation 7 = 1. The type SL,,
affine Weyl group is the quotient of Wy, by the relation 7™ = 1. This is equivalent
to putting a relation requiring

t, =1, if p; = v; mod n for ¢ € {1,...,n}.

As explained in [13, Ch. 3, Exercise after Corollary 5], there is a Chevalley group Gq4
for each positive integer d dividing n. The group Gy is a central extension of PGL,
by Z/dZ (so that G; = PGL,, and G,, = SL,). Each of these groups G4 has an affine
Weyl group Wg,,. The group W, is the quotient of Wy, by the relation 7¢ = 1, and
is an extension of Wpgy, by Z/dZ. The group Wpey, is sometimes called the “affine
Weyl group of type A” and the groups W, and W, for d # 1 are sometimes called
the “extended affine Weyl groups of type A”. We prefer the more specific terminologies
“affine Weyl group of type PGL,,” for Wpqr,,, “affine Weyl group of type SL,,” for
Wsr, , “affine Weyl group of type GL,,” for Wqy, , and “affine Weyl group of type
PGL,, x (Z/dZ)” for Wg, (the symbol x indicates a central extension).

4.0.4. The elements u,, v, 2, and t,. Let p= (p1,...,pn) € Z%, and let u,, be the
minimal length n-periodic permutation such that

1, (0,0,...,0) = (K1, .., fn)-
Let A = (A, ..., \,) be the weakly decreasing rearrangement of p and let

2, € S, be minimal length such that z,A = pu, and let

v, € S, be minimal length such that v, u is weakly increasing.
Let t,,: Z — 7Z be the n-periodic permutation determined by

(31) t,(1) =14+nu, t,(2)=2+nps, ..., tu(n)=n+nu,.

4.0.5. Relating u,, vy, z, to ux,vx, zx. Let X = (A1,...,Ap) € Z" with Ay > -+ > \,,.
Let Sy = {w € S, | wA = A} be the stabilizer of A in S,,. Let

wg be the longest element in S,,,
wy the longest length element in Sy, and
w? the minimal length element in the coset wS}y,

so that

wo = wiwy, and (Z) = l(wo) = £(w™) + L(wy).

Let 1 € Z™ and let X be the decreasing rearrangement of A. Let 2z, € S,, be minimal
length such that p = z,A. Then z) =1,

A -1 :
t, = uuv, = (Zuun)vy and ¢y = upvy = ur(w*)”", with

U(t) = €up) + €v) = £(za) +L(un) +L(v)  and €(tx) = L(ux) + () 7).

Using that zut,\z,jl =1,,A = t, gives that the elements u, and v, are given in terms
of z,, uy and w? by

u, =zuuy and v, = UAZIII = (wA)712;1 = (z,w™) 7 = (zpwowy) "t = wAwozgl,

since vy = (w*) 7! and vy = vz, with £((wy) ™) = L(vy) = €(v,) + £(z,).

Algebraic Combinatorics, Vol. 5 #5 (2022) 904



Type GLy,, Macdonald polynomials — Supplement

4.0.6. Inversions of t.,, t_, andt.,. Let t, be as in (31) and let
g; =(0,...,0,1,0,...,0) where the 1 appears in the ith position. Then

1 2.---n
t€1:(117027~~~,0n): <n+12 n) =TSp—1"""51,

1 2..-n _
t—61:(7117027"'70n): <1_n2 n) =81 8p—1T 1,

1 23---n
site, = (12,01,03,...,0,) = <2+n13~~ n

1 2 3---n
t52 = 51t6151 = (017127037'”7071) = ( ) = 81TTSp—1 """ 89,

1 2 3---n
t6181:(02711703a-~-a0n): (21+n3 ’I’L) = TSp—1"""952,

and
Inv(te,) = {(1,2),(1,3),...,(1,n)}
={af,s105,...,81 spoay 1} ={e) —ey,e) —e3,...,e] —¢)
Inv(t_.,) ={(2-n,1),3=n,1),...,(n—n,1)}
={(n,1+n),(n—1,1+n),...,(2,14+n)}
={ra) |, TSp_ 10 o ... TSy_1-- S0y }
={en —(ef —K),ep_ 1 — (e —K),...e5 — (ef — K)}
Inv(te,s1) = {(2,3),...,(2,n)}

={ay,8003,...,82  Sp_o0y 1} ={ey —¢c5,e5 —€),....e5 —&,.}
Inv(site,) = {(1,2),(1,3),...,(1,n), (1 —n,2)} = {(1,2),(1,3),...,(1,n),(1,2 +n)}
={ay, 510y, ... ,81 - Sp_oq) 1,51 Sp_o2Sy_1T )
={ef —ey,ef —¢e3,...,e) —e), (e + K) —e5}
Inv(te,) = {((2,3),...,(2,n),(2—n, 1)} = {((2,3),...,(2,n), (2,1 +n)}
= {800, 89 Sp_oq) |, 82 Sp_25p 1T L
={ey —ey,ey —€f,...,e5 —¢e,,(e5 + K) — 7},

where we have used

104}/ =51 sn,lﬂ'_l(ey —&)

=s1-sn1((en + K)—¢f) = (e + K) — ey

S1- - Snflﬂ-_

and

Sy sy oy =898y 1((e) + K) —e)) = (e + K) — ).

4.0.7. The elements u, and v, for p = (0,4,5,1,4). Let u,, vy, 2, and t, be as in
Section 4.0.4. If u = (0,4,5,1,4) then

A= (5,4,4,1,0) and 2y = 525451525354,
since (5,4,4,1,0) 2% (0,5,4,4,1) 2 (0,5,4,1,4) 23 (0,4,5,1,4). Also
Uu(l) =1=1,
12345 Uu(2)23:1+#{1},
Uy = 548283 = (1 359 4> , with vu(3) =5 =14+ #{1,2} + #{4},
vu(4) =2 =1+ #{1},
v,(5) =4 =1+#{2,4}.
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Then Uy = (01, 03, 057 03704) and

IHV(’UH) = {(25 4)7 (3’ 4)? (37 5)} = {ag/a 3304;/7 5352044\1/}

:{Eg/ 7621/78;/75}1/75%/75%/}'
Then, with n =5,
1 (12345

Y =\14253

I
Uy = tpv;1 = (01743a55a 12744)

(1 2 3 4 ) (123 45
T \1l44+n2+4n54+4n3+5n) \19222528)"

) = (01,04, 02,05,03) and

Then
(5—4)+(5—4)+(5—1)+(5—0)
R I B =26 = U(t,) = U(u,) + £(n,),
+(1-0)
with

luy)=6+7-2+3=23, (L(v,) =3, L(z,)=6.
The decreasing rearrangement of p = (0,4,5,1,4) is A = (5,4,4,1,0) and

=1, wx=s2, vx=wps2

4.0.8. The box greedy reduced word for w,. If p = (0,4,5,1,4) then the box greedy
reduced word for u, is

S1T S1T S981T || S2851T

(32) uE:(slﬂ)6(828177)7(8382817r): s1m| |81 | | 89817 || S2817 || 8380817

S1T

S1T || 82817 || S2S81TT || S2851TT

and the length of u, is
l(uy,) =6+ 1443 =23, since f(m) =0 and {(s;)=1.
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Using one-line notation for n-periodic permutations, the computation verifying the

expression for uE is

(01,43,55,12,44)
(01,55, 12,44, 33))
(01,12,44,33,45))
(01,44,33,45,02))
(01,33,45,02,34))
(01,45, 02,34,23))
(01,02,34,23,35))
(01,02,23,35,24))
(01,02, 35,24, 13))
(01,02,24,13,25))
(01,09, 13,25, 14))
(01,02,25,14,03))
(01,02, 14,03, 15))
(01,02,03,15,04))

= (15,01,02,03,04)) =

4.0.9. Inversions of u,. If p =

%% (43,01, 55, 12,44) —

7\'

|
-

2 (55,01, 12,44, 33)) —
= (12,01, 44,35,45)) =Y
2% (44,01, 35, 45,05))
=5 (33,01,45,02,34)) =
24 (45,01, 02, 34,23)) ﬂ—;
% (01,34,02,23,35)) =
3 (01,25,02,35,24)) =
2 (01,35,02,24,13)) =
3 (01,24,02,15,25)) =3
3 (01,15,02,25,14)) =
2 (01,25,00,14,03)) 2
2 (01,14, 02,05, 15))
R (01,02, 15,03,04)) =

(0,4,5,1,4) then the

(34,01,05,25,35)) ™
(25,0105, 35,24))
(35,01,02,24,13)) ~
(24,01, 00, 13,25)) 5
(13,01,00,25,14))
(25,01,05,14,03))
(14,01, 00,03, 15)) 5
(01, 15,02,03,04))

(017 02a 037 04705))

inversion set of w,, is

a¥) +4K ||aY; + 3K ||aY; + 2K || oy, + K
ayy + 2K || afy + K
ayy + 5K || Yy + 4K || aY) + 3K ||, + 2K || o, + K
Inv(u,) = aYy + 3K ||aYy + 2K ||aYy + K
ags + K
oy + K
ayy 4K ||ay; + 3K ||ay; + 2K || o + K
ayo + 3K ||y + 2K || )y + K
where oy = ¢ —¢;/. The following is an example that executes the last line of the

proof of [5, Proposition 2.2]. The factor of s; in the factorization u, = s1mu(o5,1,4,3)
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gives the root
u(_o}571,473)ﬂ-71(5}/ - 55/) = u(_()15 1,4 3)771(5\1/ - 5;) = u(_()15 1,4 3)((5%/ + K) - 51/)
= 0(0,5,1,4,3)1 (0 5,14, 3)( —ef + K) =v05143) (5 +3K — (¢f +0K) + K)
=ey —ef +4K, since v(5,1,4,3)(5) = 3.
4.0.10. The column-greedy reduced word for u,. Let p = (p1,...,pn) € Z%,. Let

J = (j1 <...<jr) be the sequence of positions of the nonzero entries of 11 and let v
be the composition defined by

vi=pn;—1 ifjeJ and vp=0 ifk¢&J,

so that v is the composition which has one fewer box than p in each (nonempty) row.
Define the column-greedy reduced word for the element u,, inductively by setting

T
(33) Ut = ( H Sjm—1""" 8m+18m)7TTUlJ;,
m=1
where the product is taken in increasing order.
For example, if A = (5,4,4,1,0) then z)y = 1, wy = s9, v\ = wpsz and the column
greedy reduced word for u) is

$281 || S281 || S2S51
§382 || S3S2
uf\ = 71'481828371'3(8281535284337T3)282817T =
5453 || S453
7t w73 3 T

The computation verifying the expression for uf\ is

IS

s

5,4,4,1,0) =

w

T

%

:\
Q-

(
(0,4,3,3,0) 723 (4,3,3,0,0

( N

(2, —+

)
)
(0,0,3,2,2) ***17232%4% (3 2,20, 0)
(0,0,2,1,1) *>**°282%4% (9 1.1,0,0) ™

(0,0,2,0,0) *33" (1,0,0,0,0) (00000)

If p=(0,4,5,1,4) then the column greedy reduced word for u, is
¢ _ 3 3 3
= 818283847T © 5185284837 - 8251535254837 - 5251535254837 - §3S8251T.

This follows from (32) by using that ms;7 ! = s;,1.

5. THE STEP-BY-STEP AND BOX-BY-BOX RECURSIONS

5.0.1. Examples of the step-by-step recursion. Examples illustrating [5, Proposition
4.1(a)] are

(156234) (562341) (516234) (162345)
E(1 0,0,1,0,0) — 1E(0 0,1,0,0,0)° E(l 0,0,1,0,0) — 5E(0 0,1,0,0,0)?
(651234) (512346)
E(l 0,0,1,0,0) — 6E(0,0,1,0,o,0)'
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An example illustrating [5, Proposition 4.1(b)] with zs; < z is

E(561234) _ a(516234) +( 1-1¢ ) /52,3 (561234)
1

(0,0,1,1,0,0) (0,1,0,1,0,0) g2 (0,1,0,1,0,0)
_ (516234) 1-1¢ (561234)
= E(0,1,0,1,0,0) (1 g2 E0,1,0,1,0,0)

with = (0,0,1,1,0,0) and z = (561234),

zu,t = (563412), v, = (125634), zv), = (513462), v}, = (135624),

I3 52

and

=3 (v, ") = L(v, ") = L(zvg,),) + L)) = —5(12—4—T+5) =5 -6 =-3.

2 S22/

An example illustrating [5, Proposition 4.1(b)] with zs; > z is

p(561280)  _ p(651234) 1-% (561234)
(01,0100 = #(1,00.1,00) T\ 7T 551 ) #(1,0,01.00)

with p = (0,1,0,1,0,0) and z = (561234),

-1 __ -1 _ -1 _ -1 _
st = (513462), vl = (135624), vyl = (613452), vyl = (235614),

and

=2 (v, = L(v, ") = L(zvg) + (v )) = —5(T—5—8+6) =0.

5.0.2. Ezamples of the box by box recursion. An example executing the box-by-box
recursion is provided just after Theorem 1.1. in [5].

5.0.3. An example of a 2771 to j term compression when j = 3. In order to check the
powers of ¢ in [5, Lemma 4.2] compute 7y 7’ E,,

T2\/T1\/E,Y = C_,g; (T1 + f_/gy)E,y = C—Bﬁ/TlE’Y + f_,glvc_,gg/E,\/
=CpyTiEy +cpyfpy By = (To+ fpy )TV Ey +cpy fpy By
=TT Ey + f_py T\ By +t7 % f_sE,
=N E, +t3f_ g (t I E, +t72E,).

Now replace Tp = Tt + (t2 — ¢~ 2) to get
T By = (T 4 (82 = )B4+ 62y (3B, + 12 E,)
=Ty "TiEy + (t— 1+ t2 f_gy )t P11 Ey + 3 f gyt 2E,
=Ty "I Ey +t5f_gyd_pyt STIE, +t3f gt 3B,
and then replacing Ty in the first term by 77 = T + (t% — t*%)
By =Ty "(IT 472t —1)Ey +t3f_gyd_p,t *TiE, +t5f_ gyt 2E,
=T T By + 3 fpyd gt PTE, +t5(1— )t IE, +tif gt 3R,
=T T By + 3 fopyd gt PTE, + (t— 1+ t3 f_ g0 )t 2B,

=T, T By + 3 fpyd_p,t PTE, + 13 f_gvd_pyt 3 E,.
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5.0.4. Check of the norm statistic in the step by step recursion. This is an example
which is helpful for checking the coefficients in [5, Proposition 4.3] and its proof. Let

p=(0,0,1,1,0,0), ~=(1,0,0,1,0,0), v =(0,0,1,0,0,0)
and z =y = (561234). Then
vt = (125634),

£(v,") =
yv, b = (563412), Z(yggl) =4+44+2+2=12,
vyl = (235614), lo')=14+1+2+2=6,
ysasivy !t = (563412) U(ysasivst) =44+4+2+2=12,
ysivy ! = (513462) lysivyt) =4+1+1+1=1,
yv;t = (613452) lyvy')=b5+1+14+1=28.

Then j = 3 and

EY = ¢~ 3¢t =GD vV = 324 v

Egswl = t—%(Z(ysst;l)—é(v;l)TySMl EW = t_%(12_6)Tyszsl EW = t_gTyTngflEv
1

EsSI = t_E(Z(yslv;l)_é(v;l)Tylev = t_%”_ﬁ)Tysl E, = t_%TyTlE’Y
EBY =t 3 N B 3BT B =t 3T, R,

b4
so that
thﬁ - thgSQSl +d_py f—ﬂft%Egsl + tiéd_ﬂlv f—Bft%an,
= t2 Y 4 #qﬁ—z@sl i Tft;_gqtsszg
giving

as in the second line of the example in 5.0.2.

5.0.5. Check of the statistic for EZ where 2(j) = j + k. This is an example of [5,
Proposition 4.3] with

H=2¢&j; Y=¢€1, Y= Sjyk-1)"""5;:

-1 -1
u :Sj“'sn—17 v, =81 " Sp—1-

Uy = Sn—1"""54, Uy = Sp—1"""951, v Y

L =84k spo1 and L(yv, ') = (n—1) = (j — 1) — k and

Uyo, ) =L, ) =G -D=((n=-1)=(G-1) k) —(n-1) - (G —-1))
— k- (- D).
Next, ycglcjv;l = ((8j4(k=1) "~ 55)(Sa - 55-1)(85 - 5p-1) and
Uyegtejuy ) =G =1+k=(G-1)+((G -1~ (a=1))+(n-1-(j 1)
=n-1)—(a—1)+k.
So
Uyegteju ) — Ly, ) — Uegtey)

=n-D-(@@-D+k-(n-1)-0G-1)=k)—-(G-1—(a-1)
= 2k.

Algebraic Combinatorics, Vol. 5 #5 (2022) 910



Type GLy,, Macdonald polynomials — Supplement

Thus

-1
(1—1) ] Lok ye, e
Ca— Yy — . YCn a Cn
Bu=Eu=nobB 1 0 mGD Z_()” Ty(a) B

_ (1=t
=G T ghiton@=G-1) z%t Ty(a)-
-

6. TYPE GL, DAART, DAHA AND THE POLYNOMIAL REPRESENTATION

6.0.1. Example to check the eigenvalues of Y; on E,. The box greedy reduced words
for w210y, U(2,0,1) and u(y 2,0y are

- . .
U,1,0) = U,0,1) = U 2,0) =

Using u,, = t,v;," to carefully compute v, *:

2
U(2,1,0) = T 1T = lc, S182te, S152518e, 5152
= tc,te, 81828182818, 8182

= t61t6282t618182

-1
= 12¢,+¢,525152, SO V(a,1,0) = 525152-

U(2,0,1) = TS1TSIT = Tz S15281te, S15281te, 5182

=ty 1e;815251518281te, 8182

— -1 _
= t251+535152, SO U(27071) = S1892.

2
U(1,2,0) = T S281T = te, S1528-, S1525251tc, S152
= ey +2¢, 51525182

-1
= ¢, +2¢,5251, SO V(1,2,0) = 5251

Using
U(2,1,0) = £(2,1,0)515251 = £(2,1,0) V(21 0): U(2,0,1) = £2,01)5152 = 1(2,0,1)V 50,15
U(1,2,0) = t1,2,0)5251 = £1,2,0)0(1 9,0): U0,2,1) = 02,152 = 1(0,2,1)V (012,15
U(1,0,2) = 1(1,0,2)52, = £(1,0,2)V(1,0,2)> U(0,1,2) = t(0,1,2) = 75(0,1,2)7)(70’11,2),

and the relations

\Y —1_V \Y, Y \Y, \Y
YlTﬂ_ =q 7'ﬂ_)/37 YQTﬂ. :7'ﬂ.}/17 Y3Tﬂ. :Tﬂ}/g,
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then

-3 V.V, V,_V -3 —1_v V.V, Vv -2 —1_v,_Vv V.V
YiEga0 =t 2V i1 =t"2q 7/ Yar /T, 1=t"2q 7.7 Yory 7,1
_3 _ _3 _
=t 2qg VY YitYl =t 2 g 2 Y Y Y Vsl
:q—Qt—(3—1)+%(3—1)E

3 3 3
=3, NV _V Vg =3 vy VvV Vg =3 _1_V_Vy _V_V
YoEoa0 =t 2Yer il =t 2, it/ mr /1 =1"2q" 7 /7. Y3r 7/ 1

(2,1,0)5

= t—%q_lTXﬂYTYY:sTxl = t_%q_lTXvaTlvTTYY?l
= ¢ 1t~ @-D+36-D g

3 3 3
=3, NV V_V Vg =3 vy VvV _Vq =3 _1_V_Vy_V_V
YsEoi10 =t 2Yar il =t 2 Yor i r 1 =t"2q" 77, V1T 7/ 1

(2,1,0)5

_3 _ _3 _
=t g Y Yor 1 =t 2 g Y Y T i1

= OB ).

Then

1 1 _1,—(2— l(g_
ViEq20) = t2Yim B0 = 21 YaEa0) = ¢ 't VTV E 5 ),

1 1 _92,_(3— l(g_
YaE(20) = t2Yar Ba10) = 121 YiEa0) = ¢ 2t VIO VE 5 ),

1 1 —0,—(1— l(g_
YsE(120) = t2Yar Ba1,0) = 127 YaEp1,0) = ¢ %t TTECTVE 5 ),

and v(120)(1) = s152(1) = s1(1) = 2, v12,0)(2) = s152(2) = 51(3) = 3 and
v(1,2,0)(3) = 5152(3) = 51(2) = 1.

6.0.2. The elements X“r. Fori e {1,...,n}let w; =e1 + -+ +¢&;. Then

wi

w; e1+--+e&; V1 1 .
X=X —(g)T s where wl<z 1.oon 1 ’L>

In W, the element ¢, = mtw;. There are two favorite choices of reduced word for w;,
which are

w; = (si .. .Snfl)(sifl .. 'STL*Q) P (81 e snii)

= (s;-+51)(Sia1-82) (St Sn_s).
For example, if n = 6 then

W1 = 8554535251,

W2 = (54535251)(85845352) = (8485)(5354)(5253)(5152)

w3 = (535251)(545352)(555453) = (535455)(525354)(515253)
wy = (5251)(5352)(5453)(5554) = (52535455)(51525354)

W5 = $1525354S5

’LU(;Zl7
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and

Xwi — gVT—lT—lT—lT—lT—l

X2 = (g")X(Ty 1T o T T T T
gV (T T ) (T T ) (T T (T Ty
X« = (g¥)(Ty ng MY (T T Ty (T T T

=(g")

(")

(gv)?,(T 1T4 1Ts )(T271T371T471)(T171T271T§1)

Xt = (g Ty T ) (T Ty ) (T Ty (T T )

=(9")
(")
(7).

gV

g\/

N T T T (T T T T
5T1 1 1T 1T4 1T—
6

X“s =

X% =

6.0.3. Type GLo. For type GLo, X1 = gVT;* and Xo = Ty X1 Ty = Thg" and
X1X2 _ (g\/)Z7 X{C+1T1 _ (g\/izﬁlfl)k:g\/7 (TlgV)k: _ Xéc

The box greedy reduced words for the first few cases are

O O
U0 = Uo,1) =

_ O _
Uo,2) =

_@ET

.

s

In this case the construction of F,, as F, = t%e(vgl)ﬂ\ful in [5, Proposition 5.7] is

_1 —
By =72 ()M m )" /1 and - By = (7)) (m'r))",

with 7¥ = gV.
Let h € Z~o. The nonattacking fillings and words for E, gy and E(g p) are

ULy - dp_y in 1
with i1, ..., € {1,2}.

:L'lxi2 e xih :Z:il e :Eih

7. ADDITIONAL EXAMPLES
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7.0.1. Formulas for E, when n = 2.

Eqpo =1,
E@0) = 21,
1-—1t
E = <7> )
(0,1) = T2 + 1—qt 1
E@1,1) = 7172,
1—t
fom =it (120
(2,0) = 1 + 1—qt qT1T2,

Foa =+ (7)ot + (7o) + (T (T g0
(0,2) = L2 1—q2t) "1 1— gt 1— ¢t 1—qtq 122,

. 1—-t 1-1¢ 1-1¢ 1-1¢
Eo = it (1 — q%)qulx% + ((1 —qt)qu (1 - qgt) (1 — qt)qQ)x%zQ'

Then [12, (6.2.7) and (6.28)] provides the general formula as follows. Let

($§Q)oo:(1—$)(1—1‘q)(1—xq2)-~- ) (55'561)7": (;Zfl()]ci;7

and

Let k € Z~¢ and let t = ¢*. Then

k -t E4i—1][k+4] . .
E(O,m):|: —i—m} Z { +Z_ }[ +j}x]1wé and

m & ? J
1+ij=m
k4+m] ! k4i—1][k+75] ; o1 4
=[] 5 [ e
i+j=m

Since t = ¢*, it appears that ¢ must be a power of ¢. But this is not really the case
since we may rewrite these formulas using

m

{kﬂﬂ _ (@ Dkm (600" Do (65D _ (0™ Dot Doe _ (EDm
(G Dm(G Dk (@D o0(6Doo(G Voo (1475 0)00 (G000 (€3D)m

and

{kﬂ'— 1} [kﬂ} _ (@5 9)=(ta " 0)0 (@739)0(t; @)os
i J (ta" @)oo (45 @)oo (1473 @) 00 (45 @)oo

_ (45000 (¢5 D)oo (tq ™5 D)oo (13 )

(49000 (€5 D)oo (115 @)oo (1475 @) oo

)
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7.0.2. Some small E,, for n = 3.

Ew,0,0 =1,

E(10,0) = 21,

1—1t

1—qt?
P 1t
(0,0,1) = T3 + (1 — qt>(332 + 1)
E(1,1,0) = 172,
Eq,0,1) = 7173 + (1 — qiz)xlx%
oy = mam g (121
(0,1,1) = T2T3 + (1 — qt) (123 + 2122),
, /1t
E2,0,0) =21+ (ﬁ)qmlﬂ% + x1732),
q
E20) = zias + (11_7;2)(155%172933 + (%q;)qxlx%xg,

and E(2’170)7 E(Z,O,l)a E(LZ,O)’ E(0’271)7 E(1,0,2)a E(071’2) are given in section 1.3.1. Ad-

ditionally,

P1,0,0) =m1 = x1 + T2 + T3,

(1= -1
(1—q)(1—tq)
P1,1,0) = mi2 = 2122 + 173 + T2T3,

P00y =m2+ mz,

where my = >_ g , ' is the monomial symmetric function so that my = r2+a3+a3.

7.0.3. Ey\ and P\ when X is a partition with 3 bozes. Letting 7 = x]* -+ 2,7, if

Y= (71%"7771)7 let

my = E z”, be the monomial symmetric function (orbit sum).
YESnA

PROPOSITION 7.1. Let e; = (0,...,0,1,0,...,0) where the 1 appears in the ith spot.

Then

1-—1¢
4 ke{2,...n}

1-t 1-t
() 2
+(1—¢)(+_1—q% o > i

ke{2,...,n}
1—t 1—-t
— )1 2
+(17qt)(1fq2t)( +a) Z TITREL,

{k, £} 2,0}

1-t¢

iﬁ:}ﬁg)q(wlxzxn<+---+—x1x2x44—x1x2x3%

2
E251+52 = X{Tp + (

E51+62+83 = T1T2X3,
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1—¢%) (1—t 1—¢%) (1—¢°) (1 —1t\2
Pa =y + q>(1_q)m21+( ¢°) ( q)( )mm

(1—tq?) (1-tg®) 1—tg) \1—¢
_ A=) (1-¢®) (-0 (1)
Poeiye, =mo1 + ((1—qt) (I—q?) " (1=9 (1—qt))m13’ and

P tcytes = mys = e3, where e, denotes the elementary symmetric function.

Proof. From [5, Proposition 3.5(b)],

1-1¢ 1-t¢ 1-t¢
— 2 2
Bze, = o+ (l—th) Z Tkt (1—qt>(1+ (1—q2t)q> Z Thtn

ke{l,...,n—1} ke{l,...,n—1}
1-1¢ 1-t¢
—F— (1
+(1fqt)(1fq2t)( +a) Z ThL
(k,0}CLL,...n—1}
and applying [5, Proposition 5.8(c)] gives the formula for E3., = Ero.,. Similarly,

from [5, Proposition 3.5(c)],

1_7@2) (r1Zp—1 + -+ + T123 + T122),

Esl—i-sn = T1Tn + (
and applying [5, Proposition 5.8(c)] gives the formula for Fa. ., = Er(c, 4c,) in the
statement. The formula for E,, 1.,4., follows from the first statement of Proposition
7.2.

For r € Z>o and p € ZY,, define (z;¢), = (1 —2)(1 —2q)(1 — %) (1 —zq"™ 1)

and  (239), = (@), - (259,

(when r = 0 then (x;¢)o = 1). As proved in [10, Ch. VI equation (4.9) and Ch. VI §2
Ex. 1], if r € Z~¢ then

(¢ D)r (6D
Pt qe, =€ =myr and P. = my,.
bt ! ' g_:r Ga)r (G)u "
By [10, Ch. VI (4.3) and (4.10)], the formula for Py, 4, follows from the formula for
P(3,1,0) in 3 variables given at the end of section 1.3.1. 0

7.0.4. Macdonald polynomials E}, and P, when p is a single column.
PROPOSITION 7.2. Let r € {1,...,n} and let w, = €1+ -+ &,.
E51+...+6T =T1T2 " Ty.

Let W¥r be the set of z € S, such that z is the minimal length element of its coset
2(Sy X Sp—y) in Sy. If z € WY then

12--rr+1--- n . i <ig <--- <1, and
z= 1. . . . . with . : .
1292 J1  Jn—r <)< <Jn-—r
and

t%E(Z)TzEw,. =T ... T, and Pwr = Z t%e(Z)TzEw,. = éer,
zEWwr

where e, is the rth elementary symmetric function.

Proof. Since
_ 1 ---rr+1---n . _
Vbt = <r+1 m 1 ) with (o5} 42,) = (n—r)r,

r
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and Ug, 4...4¢, = 7 then
Eepponse, = 072070 (r)) 11 = 47200707 (gV)1
—¢zlnrrx, L X, T, 1,=21 2

Seter

A reduced word for z is z = (8;,-1 - $1)(Sip—1 - 82) - (Si.—1--8r). Then
AT B, = (43T, 1) (2T1)) - (3 Thy_1) - -~ (£2T))

) (BT)) (w122 20)

2T1)) - (42 Tim) - (2 T2))

((2Ts_ 1) (2T ) (@1 - Ty,

(3 T) - (3 Tipa) - (t7T))

(3T ym1) - (13 T2)) (a2 - 2o, )

:...:xilxi2...xi .

The last equality then follows from (5). O
7.0.5. EF for a single box.
PROPOSITION 7.3. Let j € {1,...,n} and let z € S,,. Then

EZ, = cjag) + o etz +a1mz)

where
(T ot 20 < <(a),
= (g 9 #26) > =),
L if 2(j) = z(a).
with
. z(k) < z(j) < z(a) o
Coy {k e{j+1,....,n} ’ or 2(j) < 2(a) < (k) }, if z(j) < z(a),

{(keli+l...on}[20) > 2(k) > 2(a)}, if 2(j) > 2(a).

Proof. The proof is by induction on £¢(z). If z = 1 then 7, = 1 and the formula is
the same as given in [5, Proposition 3.5(a)] for E,,. Let r € {1,...,n — 1} such that
srz > z. Recall

Typi1, if ¢ =r,
(34) 2T () = { tay + (£ — Daypq, ifl=r+1,
tzy, otherwise.
t~ o, ifr =24,
(35) 3T () = @+ (1 — ™ V)apgr, if0=7r+1,
Ty, otherwise.

—L(zo ) —t(v Tt -
t 3 (¢( = )—£( = )Egi — Zczzmz(l)
i=1
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If we multiply by 3T, then t%Tr(cjmT +ciarqr) = cxrp ity + (= Dapg) =
teyxy + (cj(t — 1) + ¢g) x4 giving

et =teg and gt =c(t—-1)+c.
If we multiply by t=3T). then t_%TT(chT + CExpyr) = T T + Glae + (1 -
t V2 1) = Gy + (E(1 =t + 712w, 41 giving

=c and gt =ci(l—t )+t e
Let
a=z1(r)and b=2"Y(r+1) sothat b= (s.2)"1(r)and a = (s,2) 1 (r+1).

Assume s,z > z so that a < b. In each of the cases

j) <r a<j b<j c=c

y<r a<j b>j ¢ =0

i) <r a>j b>j c=cf=0
)=r a=j b>j =1 ¢ =0
)=r+1 a<j b=j =1
)>r+1 a<j b<j c=c
)>r+1 a<j b>j =0
)>r+1 a>j b>j c=cf=0

(1) multiply by t—%TT to get rF =l =
llg) multiply by ¢t~ 27, to get F =0, ¢&F =t 12
(g ply by g A , G a
(lgg) multiply by t;%TT to get crf =" =0

(ele) multiply by t2 ?} to get i =0, ¢ =1,
(fif) multiply by t~2 T,

(gll) multiply by t~27T, to get gt =cp =ck

(
(

glg) multiply by t*%TT to get ¢rF =0, ¢rF = .
ggg) multlply by t— 21, to get - C?.z -0

a

z
a

Now we need to show that the statistics C'(a) provide the same recursions. For
example, in the case (fif), r +1 = 2(j) > 2z(a) = r with C(a) = 0 and r = (s,2)(j) <
(srz)(a) =r+1and C(a) =n—j. So

1—1¢
1— qt"—j-i-l

J

C’?f:17 CZ:( 2

1-—t .
)to and crt=1, rF = <71 )qt”ﬂ
since

1—t
rz -1 -1 0
rF=(1—t"")+t (717qt"*j+1)t

1—t ~1 n—j+1 ~1 -t n—j
:(1_qtn_j+1>(7t (1— gt"=i+1) 4 ¢ ):(1_qtn_j+1)qt i O

Some examples are

, (1-1)

(t%Ti+(k—1)) T (tEE)EEi = Tit+k + mtk((mfl + 4 {El),

(t—%Ti_k) .. (t_%Ti—l)Eai

(1-1) (qtni(xi+xi1 +"'+$z’—(k—1))>

:xi—k+ (1_qtn—(z—1)) +(xi—(k‘+l) ++x1)
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7.0.6. The nonattacking fillings for E.,. The box greedy reduced word for u., is
N : :
with ¢ non-attacking fillings, :

: n n
[] P>k

(L=t
1_qtn—(i—1)
7.0.7. The nonattacking fillings for EZ . If z(i) = i+k then the 7 non-attacking fillings

are

1+ kli+k i+k

1>721
—k 1—
t (rgp=m)
If z(i) = i — k then the 7 non-attacking fillings are

izji>i—k

: i—k>j>1
(%) 1 (o)

7.0.8. The nonattacking fillings for Es.,. The box greedy reduced word for usg,, is
UQDQ = (8i—1--$17)(Sp—1 -+ 817) = D

‘Si—l"'slﬂHSn—l"'Slﬂ'

m

The case Fso., has i - n nonattacking fillngs and 2"7=2 alcove walks. There are no

covid triples for any of the nonattacking fillings so that t°°v*T) = O = 1, and
¢ = ¢* = ¢ exactly when T(i,1) < T(i,2).

1 1 1 1 1
1|71 1|k k i1l ili k ik
n n n n n
k<1 {>1 k<i k<i
1— 1— 1— 1— 1—
(W) (f&)q (fqtt) (W) (fqtt)q
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1 1 1
ilk ¢ ik ilk
n n n
k<i, 0> (kY C{l,...i—1} {kOC{l,....i—1}

(ﬁ)(f:qtt)q (ﬁ)(ﬁ) (ﬁ)(ﬁ)q

7.0.9. The nonattacking fillings for E., yc, . Let ji,j2 € {1,...,n} with j; < ja.
The box greedy reduced word for uc; e, is

B P
N =y

Ee; +e,, has j1(j2 — 1) nonattacking fillings and 271=1972=2 3]cove walks.

U .
€j1tE50

1 1 1
Jilj |k Jiljt
J2|J2 J2|J2 Jal £
n n n
I1<k<jii—1 pn+1<l<ja—1
1—t 1—t
1 (17qt"*)'1) (1—qt"—(J2—2))
1 1
Ji|k Ji)d1
J2|71 Jo| k
n n
1<k —1 1<k<j—1

( 1_;;t—Jl ) ( 1—qt71Lj(tj272) ) t( 1_qtvltj(thf?) )
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1 1 1
qlk julk qile
jalt jalt jolk
n n n

kE{ljl—l} R .
A k0y C{L,...,51 -1 kY C{l,...,5; —1
tef{j+1,...,50—1} kSl -1 (kG C{l....j—1}

(o=t () (o) (=) (mete) (=017

8. QUEUE TABLEAUX

8.0.1. An instance of compression of NAFs — Motivation for Queue Tableauz. In [5,
Proposition 3.5(c)], if j1 = jo — 1 then the third and fifth summands disappear to give

1—t =
Bejy14es, = Tpp—1T5; + (m) Z Tk jz
k=1

1-—t 1—t¢ Jj2—2
+ (1 — qt”_(j2—2)) (1 — qt"L_(j2—1) + t) kzﬂ LELjy—1

1—t¢ 1—t
+ (1 — qt”—(j2—2)) (1 — qtn—a ) (1+1) Z LTrTe
{k,€}C{1,....52—2}

1—t =2
= it + (T ta ) 2 T

_ 1 — gtz 22
+<1/_Q1’5y;2/27>(17qt” (j2—1 )JZ TELjp—1

1-—t¢ 1—-t¢
+( , )( : )(1+t) > Tre,
— gtn—(j2—2) — gtn—02-1)
Logtnte Lo (k{1 da—2}
which is an example of the additional cancellation that occurs when there are adjacent

rows of equal length and illustrates the the difference between nonattacking fillings
and queue tableaux.

8.0.2. Queue tableauz. Following (and slightly generalizing) [4, Definition A.1l], a
queue tableau of shape (z, 1) is a nonattacking filling T of (z, u) such that

(QT) If Hi = Hi—1 = " = fi—r then T(Zaj) ¢ {T(Z -1,j- 1)a s vT(Z —-rJ— 1)}
If the parts of u are distinct then a queue tableau is no different than a nonattacking

filling. More generally, if p; # p;41 for i € {1,...,n — 1} then a queue tableau is no
different than a nonattacking filling.

8.0.3. Multiline queues. The multiline queue corresponding to a queue tableau T is
the pipe dream P corresponding to T' under the map given in (23), namely

P(k,j) =1 if and only if T(i,j) =k,
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The example in [4, Figures 3 and 12] has

6(6 53 21200
1116 31330
2(2 2 6001
queue tableau T = ;; and pipe dream P = 284118
3 11120
4 41400
5 5500

The picture of this pipe dream from [4, Figures 3] is

the multiline queue

8.0.4. Compression not captured by NAFs or QT. Let AW, = AWif, NAF, = NAFifl,
and QT, = QTi?. The example
#AW (221100 =16, #NAF@221100 =9 and #QT (251100 =T
is provided in [4, Figure 4]). The equalities (see (see [5, Proposition 5.8])
Eo1)(21,22,23;,t) = (312223)* E1 2.0y (25, 25, 27 55 ¢,t),  and
E(22.0)(%1,22,23;¢,t) = ¢ " E(a,0,1) (%3, 21, 225 ¢, t)

indicate that if one provides a formula for E(; 5 ¢y then there are formulas for E; g 1)
and E(3 2 ) with exactly the same number of terms. For these cases,

#AW @1 20) =4, #NAF120) =3, #QT (12,0 =3
#AW 2 01) =4, #NAFno1) =4, #QT(901) =4
#AW(200) =4, #NAFo20 =4, #QTn50) =3.
Thus u = (2,0,1) is a case where possible compression is not realized by either the
NAFs or the QT.
8.0.5. Comparing #NAF and #QT for (r,0,...,0) and (r,...,r,0). Since u(,... 0y =
7(8p_1---51m)" ! and U(ryr,.r0) = 7" (sym) D=1 then
#AW (00,00 = (2" 1)1, #NAF (00,00 =n""",
#Aw(r,r,...,r,o) = (27171)7"71’ #NAF(T‘,'P,...,T‘,O) = (2n71)r71’
#QT(T‘7O,07...,0) = nT_l and #QT(’I‘J‘,.‘.J‘,O) = nT_l'
To see the last equality: In a queue tableau of shape (r,r,...,r,0), for each column

after the first, we get to choose the position of the j € {1,...,n} that did not appear
in the column before (n choices total for each column).
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