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Forbidden subgraphs in generating graphs
of finite groups

Andrea Lucchini & Daniele Nemmi

Abstract Let G be a 2-generated finite group. The generating graph Γ(G) is the graph whose
vertices are the elements of G and where two vertices g1 and g2 are adjacent if G = 〈g1, g2〉.
This graph encodes the combinatorial structure of the distribution of generating pairs across
G. In this paper we study some graph theoretic properties of Γ(G), with particular emphasis on
those properties that can be formulated in terms of forbidden induced subgraphs. In particular
we investigate when the generating graph Γ(G) is a cograph (giving a complete description
when G is soluble) and when it is perfect (giving a complete description when G is nilpotent
and proving, among other things, that Γ(Sn) and Γ(An) are perfect if and only if n 6 4).
Finally we prove that for a finite group G, the properties that Γ(G) is split, chordal or C4-free
are equivalent.

1. Introduction
If a finite group G can be generated by d elements, then the problem of determining
the d-element generating sets for G is non-trivial. The simplest interesting case is
when G is 2-generated. One tool developed to study generators of a 2-generated finite
group G is the generating graph Γ(G) of G. This is the graph which has the elements
of G as vertices and an edge between two elements g1 and g2 if G is generated by g1
and g2. Some authors exclude the identity element in the set of vertices of Γ(G); there
is no substantial difference if G is is non-cyclic, but we choose to include the identity
because we will also consider cyclic groups. Note that the generating graph may be
defined for any group G, but it only has edges if G is 2-generated.

Several strong structural results about Γ(G) are known in the case where G is sim-
ple, and this reflects the rich group theoretic structure of these groups. For example,
if G is a non-abelian simple group, then the only isolated vertex of Γ(G) is the iden-
tity [13] and the graph ∆(G) obtained by removing the isolated vertex is connected
with diameter two [2] and, if |G| is sufficiently large, admits a Hamiltonian cycle [3]
(it is conjectured that the condition on |G| can be removed). Moreover, in recent
years there has been considerable interest in attempting to classify the groups G for
which Γ(G) shares the strong properties of the generating graphs of simple groups.
Recently, the following remarkable result has been proved in [4]: the identity is the
unique isolated vertex of Γ(G) if and only if all proper quotients of G are cyclic. An
open question is whether the subgraph ∆(G) of Γ(G) induced by the non-isolated
vertices is connected, for every finite group G. The answer is positive if G is soluble
[7] and in this case the diameter of ∆(G) is at most three [16]. In [14] it is proved that
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when G is nilpotent, then ∆(G) is maximally connected, i.e. the connectivity of the
graph ∆(G) equals its minimum degree (recall that the connectivity of a finite graph
Γ is the least size of a subset X of the set V (Γ) of the vertices such that the induced
subgraph on V (Γ)rX is disconnected).

The subgraph of a graph Γ induced by a subset X of the vertex set is the graph
whose vertices are the elements of X and where the edges are the edges of Γ with
both endpoints in X. A number of important classes of graphs can be defined either
structurally or in terms of forbidden induced subgraphs, i.e. by specifying a family
of graphs that cannot appear as induced subgraphs. The aim of this paper is to
investigate some properties of the forbidden subgraphs of the generating graphs of
finite groups.

A perfect graph is a graph in which the chromatic number of every induced sub-
graph equals the order of the largest clique of that subgraph (clique number). A hole
in a graph Γ is an induced subgraph of Γ isomorphic to a chordless cycle of length at
least 4. An antihole is an induced subgraph ∆ of Γ, such that ∆ is a hole of the com-
plement graph Γ. A hole (resp. an antihole) is odd or even according to the number of
its vertices. The strong perfect graph theorem is a forbidden graph characterization
of perfect graphs as being exactly the graphs that have neither odd holes nor odd an-
tiholes. It was conjectured by Claude Berge in 1961. A proof by Maria Chudnovsky,
Neil Robertson, Paul Seymour and Robin Thomas was announced in 2002 and pub-
lished by them in 2006 [6]. Motivated by the strong perfect graph theorem we analyze
the existence of m-holes or m-antiholes in the generating graph of a finite group G.
The first result that can be proved with this approach is a complete characterization
of the 2-generated finite nilpotent groups with a perfect generating graph.

Theorem 1.1. Let G be a finite 2-generated nilpotent group. Then Γ(G) is perfect
if and only if the index of the Frattini subgroup is the product of at most four (not
necessarily distinct) primes.

In general the condition on the number of prime divisors of the index of the Frattini
subgroup is neither necessary nor sufficient to ensure that the generating graph is
perfect, as it follows for example from the study of the generating graph of dihedral
groups.

Theorem 1.2. Let Dn be the dihedral group of order 2n. Then Γ(Dn) is perfect if and
only if one of the following occurs:

(1) n is even;
(2) n is odd and divisible by at most two distinct primes.

An interesting and surprising consequence of Theorem 1.2 is that if G is a 2-
generated finite group and N is a normal subgroup of G, then the fact that Γ(G) is
perfect does not imply that Γ(G/N) is also perfect. For example let m = p1 · p2 · p3
be the product of three distinct odd primes and let G = D2m be the dihedral group
of order 4m. By Theorem 1.2, Γ(G) is perfect. However, G has a normal subgroup N
of order 2 such that G/N ∼= Dm and, again by Theorem 1.2, Γ(G/N) is not perfect.

We will prove (see Theorem 3.30) that the alternating group A5 is the smallest
2-generated finite group whose generating graph is not perfect. Moreover:

Theorem 1.3. Γ(An) and Γ(Sn) are perfect if and only if n < 5.

The behaviour of the generating graph of the alternating groups suggests the fol-
lowing conjecture.

Conjecture 1.4. If G is a finite non-abelian simple group, then Γ(G) is not perfect.
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Indeed, the proof of Theorem 1.3 shows that if n > 5 then Γ(An) and Γ(Sn) contain
a 5-hole, so we may also formulate a stronger conjecture.

Conjecture 1.5. If G is a finite non-abelian simple group, then there exists a subset
X of G such that the subgraph of Γ(G) induced by X is a 5-hole.

With the use of GAP [10], we have checked the existence of a 5-hole in Γ(G) when
G is the Tits group or one of the sporadic simple groups with the exception of the
Janko group J4, the Thompson group, the Lyons group, the Baby Monster group and
the Monster group. Moreover Conjecture 1.5 is true when G is a rank one group of
Lie type, so we have:

Theorem 1.6. If G is a simple group of Lie type of rank one, then Γ(G) is not perfect.

A path graph is a graph whose vertices can be listed in the order v1, v2, . . . , vn
such that the edges are {vi, vi+1} where i = 1, 2, . . . , n − 1. A path graph with n-
vertices is usually denoted by Pn. A graph Γ is called a cograph if Γ has no induced
subgraph isomorphic to the four-vertex path P4. Several alternative characterizations
of cographs can be given:

(1) a cograph is a graph all of whose induced subgraphs have the property that
any maximal clique intersects any maximal independent set in a single vertex;

(2) a cograph is a graph in which every non-trivial induced subgraph has at least
two vertices with the same neighbourhoods;

(3) a cograph is a graph in which every connected induced subgraph has a dis-
connected complement;

(4) a cograph is a graph all of whose connected induced subgraphs have diameter
at most 2.

We will prove that if N is a normal subgroup of a 2-generated finite group G and
Γ(G/N) contains an induced subgraph isomorphic to Pn, then so does Γ(G) (see
Lemma 2.2). Thus, in contrast to perfectness, the property that Γ(G) is a cograph
is inherited by the epimorphic images of G. This is a considerable advantage in the
study of groups whose generating graph is a cograph and allows us to obtain some
quite general results. For example we can completely characterize the 2-generated
finite soluble groups whose generating graph is a cograph.

Theorem 1.7. Let G be a 2-generated finite soluble group. Then Γ(G) is a cograph if
and only if one of the following occurs.

(1) G is cyclic and |G| is divisible by at most two distinct primes.
(2) G is a p-group.
(3) G/Frat(G) ∼= V o 〈x〉 where x has prime order and V is a faithful irreducible
〈x〉-module.

Moreover we will prove the following theorems.

Theorem 1.8. Let G be a finite group and assume that the identity element is the
unique isolated vertex of Γ(G). If Γ(G) is a cograph, then G is soluble.

Theorem 1.9. Let G be a 2-generated finite group. If Γ(G) is a cograph and N is a
maximal normal subgroup of G, then G/N is abelian.

Corollary 1.10. Let G be a non-trivial 2-generated finite group. If G is perfect, then
Γ(G) is not a cograph.

The previous result suggests the following stronger conjecture.

Conjecture 1.11. Let G be a 2-generated finite group. If Γ(G) is a cograph, then G
is soluble.
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A graph is chordal if it contains no induced cycle of length greater then 3. A graph
is called split if its vertex set is the disjoint union of two subsets A and B so that
A induces a complete graph and B induces an empty graph. In the final part of the
paper, we will prove the following result.

Theorem 1.12. Let G be a 2-generated finite group. Then the following conditions
are equivalent.

(1) Γ(G) is split.
(2) Γ(G) is chordal.
(3) Γ(G) is C4-free, i.e. no induced subgraph of Γ(G) is isomorphic to a cyclic

graph with four vertices.
(4) Either G is a cyclic p-group or |G| = 2p for some prime p.

2. Cographs
Our first result is that if Γ(G) is a cograph, then Γ(G/N) is also a cograph, for every
normal subgroup N of G. In order to prove a more general statement which implies
the previous sentence, we need to recall an auxiliary result, which generalizes an
argument due to Gaschütz [11]. Given a subset X of a finite group G, we will denote
by dX(G) the smallest cardinality of a set of elements of G generating G together
with the elements of X. In the particular case when X = ∅, d∅(G) = d(G) is the
smallest cardinality of a generating set of G.

Lemma 2.1. [7, Lemma 6] Let X be a subset of G and N a normal subgroup of G and
suppose that 〈g1, . . . , gr, X,N〉 = G. If r > dX(G), then we can find n1, . . . , nr ∈ N
so that 〈g1n1, . . . , grnr, X〉 = G.

Lemma 2.2. Let G be a 2-generated finite group and N a normal subgroup of G and
let t ∈ N with t > 2. If Γ(G/N) contains an induced subgraph isomorphic to Pt, then
so does Γ(G).

Proof. Assume that (a1N, a2N, . . . , atN) is a t-vertex path in Γ(G/N). By Lemma 2.1
there exist n1, n2 ∈ N such that 〈a1n1, a2n2〉 = G. In particular d{a2n2}(G) 6 1, so,
again by Lemma 2.1, if t > 3 then there exists n3 ∈ N such that 〈a2n2, a3n3〉 = G. By
repeating this argument, we can find n1, . . . , nt ∈ N such that 〈aini, ai+1ni+1〉 = G
for 1 6 i 6 t− 1. If (r, s) 6= (i, i+ 1) for some i ∈ {1, . . . , t− 1}, then 〈ar, as〉N 6= G,
and consequently 〈arnr, asns〉 6= G. So (a1n1, . . . , atnt) is a t-vertex path in Γ(G). �

Proof of Theorem 1.8. This can be proved with the same argument used by Cameron
in [5, Theorem 8.8]. Let ∆(G) be the subgraph of Γ(G) obtained by deleting the
identity element. By [4, Theorem 1] the graph ∆(G) is connected. The join graph
of G is the graph whose vertices are the non-trivial proper subgroups of G and in
which two vertices H and K are adjacent if and only if H ∩ K 6= 1. By [20] if G
is not soluble, then this graph is connected. It can be easily seen that this implies
that the complement graph ∆(G) is connected. Since the graph complement of a
connected cograph is disconnected, it follows that ∆(G) (and consequently Γ(G)) is
not a cograph when G is not soluble. �

Proof of Theorem 1.9. Let N be a maximal normal subgroup of G. If G/N is non-
abelian, then it is isomorphic to a non-abelian simple group and by [13] the identity
element is the unique isolated vertex of Γ(G/N). So the conclusion follows immediately
by combining Lemma 2.2 and Theorem 1.8. �

Let Frat(G) be the Frattini subgroup of G.
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Lemma 2.3. Let G be a 2-generated finite nilpotent group. If Γ(G) is a cograph, then
|G/Frat(G)| is the product of at most two primes.

Proof. Assume that |G/Frat(G)| is divisible by p1p2p3, with p1, p2, p3 prime numbers.
Since d(G) 6 2, we cannot have p1 = p2 = p3 and so we may assume p3 /∈ {p1, p2}.
Consider X = 〈x1〉 × 〈x2〉 × 〈x3〉 with |xi| = pi for 1 6 i 6 3. It can be easily checked
that (x1, 1, 1), (1, x2, x3), (x1, 1, x3), (1, x2, 1) is a four-vertex path in Γ(X). Since X
is an epimorphic image of G, Lemma 2.2 would imply that Γ(G) is not a cograph. �

Before we state the following lemma, let us recall some definitions that will be used
in the statement. A chief factor X/Y of a finite group H is said to be complemented
in H if X/Y has a complement in H/Y. If V is a finite irreducible H-module, then
a chief factor X/Y of H is H-isomorphic to V if there exists a group isomorphism
φ : X/Y → V with the property that φ(xhY ) = φ(xY )h, for any x ∈ X and h ∈ H.

Lemma 2.4. Let H be a 2-generated finite soluble group and V a finite non-trivial
irreducible H-module. Assume that there exist a, b ∈ H such that

(1) H = 〈a, b〉;
(2) H 6= 〈a〉, H 6= 〈b〉;
(3) a /∈ CH(V ), b /∈ CH(V ).

Consider the semidirect product G = V o H. If no complemented chief factor of H
is H-isomorphic to V , then Γ(G) contains a subgraph isomorphic to the four-vertex
path P4.

Proof. Let |V | = pt, with p a prime. Define
Ωa = {v ∈ V | 〈a, bv〉 = G}, Ωb = {v ∈ V | 〈av, b〉 = G}.

Assume v /∈ Ωa. Then 〈a, bv〉 is a complement of V in G. The fact that no com-
plemented chief factor of H is H-isomorphic to V ensures that all the complements
of V in G form a single conjugacy class (see [12, Satz 3]), so there exists w ∈ V
such that (a, bv) = (aw, bw). In particular w ∈ CV (a) and v = [b, w]. This implies
|V r Ωa| 6 |[b, CV (a)]| 6 |CV (a)|. Since we are assuming CV (a) < V , we deduce
(1) |Ωa| > |V | − |CV (a)| > pt − pt−1.

For the same reason
(2) |Ωb| > |V | − |CV (b)| > pt − pt−1.

Let Ω = {(v1, v2) ∈ V 2 | 〈av1, bv2〉 = G}. The number of pairs (v1, v2) in V 2 r Ω
coincides with the number of complements of V in G, so
(3) |Ω| = |V 2| − |V |.
If (v1, v2) ∈ Ω ∩ (Ωb × Ωa) then (a, bv2, av1, b) is a four-vertex path in Γ(G). In
particular, if |Ωa ×Ωb|+ |Ω| > |V |2, then (Ωa ×Ωb) ∩Ω 6= ∅, and Γ(G) contains P4.
So we may assume
(4) |Ωa||Ωb| 6 |V 2| − |Ω| = |V |.
In particular it follows from (1), (2) and (3), that (pt − pt−1)2 6 pt, i.e.

(5) pt 6

(
p

p− 1

)2
.

This implies p = 2 and t = 2, i.e. V ∼= C2 × C2. We have two possibilities:
a) H/CH(V ) ∼= GL(2, 2) ∼= S3. In this case G/CH(V ) ∼= S4. Since

((1, 2), (2, 3, 4), (1, 4), (1, 2, 3))
is a four-vertex path in S4, the conclusion follows from Lemma 2.2.
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b) H/CH(V ) ∼= C3. In this case CV (a) = CV (b) = {0}, but then, by (1) and (2),
|Ωa|, |Ωb| > 3, in contradiction with (4). �

Lemma 2.5. Let G be a non-nilpotent 2-generated finite soluble group. If Γ(G) is a
cograph, then G/Frat(G) ∼= N oH, where N is a faithful irreducible H-module and
H is cyclic of prime order.

Proof. Assume that Γ(G) is a cograph. Then also Γ(G/Frat(G)) is a cograph. More-
over G/Frat(G) is not nilpotent (otherwise G would be nilpotent) so it is not restric-
tive to assume Frat(G) = 1. Since G is not nilpotent, there exists a minimal normal
subgroup of G, say N , which is not central in G. Set H = G/CG(N). Then N is a
faithful irreducible H-module and the semidirect product N o H is an epimorphic
image of G. By Lemma 2.2, Γ(N o H) is a cograph, so it follows from Lemma 2.4
that H is a cyclic group and consequently dimEndH (N) N = 1.

Let K be a complement of N in G. Since G is 2-generated and dimEndH (N) N = 1,
it follows from [11, Satz 4] that no complemented chief factor of K is K-isomorphic
to N . Since G/CG(N) is cyclic, there exists x ∈ K such that K = 〈x,CK(N)〉.
Moreover, since K is 2-generated, by Lemma 2.1 there exist c1, c2 ∈ CK(N) such that
〈xc1, xc2〉 = K. If K is not cyclic, then the two elements a = xc1 and b = xc2 satisfy
the assumptions of Lemma 2.4. But this would imply that Γ(G) is not a cograph, a
contradiction. With a similar argument we can prove that K/CK(N) is a p-group.
Indeed assume |K/CK(N)| = rs with r, s > 2 and (r, s) = 1. There exist y1, y2 ∈ K
such that 〈y1, y2〉 = K, |y1CK(N)| = r and |y2CK(N)| = s. We take y1, y2 in the role
of a, b in Lemma 2.4 and we deduce that Γ(G) is not a cograph. So we may assume
K = 〈xy〉 where |x| is a p-power, y ∈ CK(N) and (|y|, p) = 1. If y 6= 1, then, for any
1 6= n ∈ N, (n, xy, ny, x) is a four-vertex path in Γ(G). So y = 1 and K is a cyclic
p-group. In particular CK(N) 6 Frat(K). However Frat(K)∩CK(N) 6 Frat(G) = 1,
so we deduce that CK(N) = 1.

We have now proved that K = 〈x〉 is cyclic of order pt, for some t ∈ N and N is a
faithful irreducible K-module. In particular K acts fixed-point-freely on N . Choose
1 6= n ∈ N. Then K and Kn are two maximal subgroups of G with trivial intersection.
If t > 1, then (xp, xn, x, (xn)p) is a four-vertex path in Γ(G). Since Γ(G) is a cograph
we conclude t = 1. �

Proof of Theorem 1.7. Assume that Γ(G) is a cograph. If G is nilpotent then, by
Lemma 2.3, G/Frat(G) is either a p-group or a cyclic group of order p1p2, where p1
and p2 are two different primes. In the first case G is a p-group, in the second G is a
cyclic group and p1, p2 are the only prime divisors of |G|. If G is not nilpotent, then,
by Lemma 2.5, G/Frat(G) ∼= V o 〈x〉 where x has prime order and V is a faithful
irreducible 〈x〉-module.

Conversely we have to prove that if G satisfies (1), (2) or (3), then Γ(G) is
a cograph. If (g1, g2, g3, g4) is a four-vertex path in Γ(G), then either (g1 Frat(G),
g2 Frat(G), g3 Frat(G), g4 Frat(G)) is a four-vertex path in Γ(G/Frat(G)) or there ex-
ist 1 6 i < j 6 4 with gi Frat(G) = gj Frat(G). However if the second possibility
occurs, then there exists k ∈ {1, 2, 3, 4}r {i, j} such that gk is adjacent to gj but not
to gi. This implies G = 〈gk, gj〉 = 〈gk, gj ,Frat(G)〉 = 〈gk, gi,Frat(G)〉 < G, a contra-
diction. Therefore, to complete the proof of the theorem we may assume Frat(G) = 1.

Assume by contradiction that (g1, g2, g3, g4) is a four-vertex path in Γ(G). There
are four possibilities to consider.

a) G ∼= Cp. There exists i ∈ {1, 2, 3, 4} such that |gi| = p, but then gi is adjacent
to gj for any j 6= i, a contradiction.

b) G ∼= Cp × Cp. In this case |g1| = |g2| = |g3| = |g4| = p. Since g1 and g3 are
not adjacent in Γ(G), 〈g1〉 = 〈g3〉. Moreover, since g3 and g4 are adjacent
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Γ(G), 〈g3〉 6= 〈g4〉. But then 〈g1〉 6= 〈g4〉 and g1 and g4 are adjacent in Γ(G),
a contradiction.

c) G ∼= Cp1 ×Cp2 , with p1 6= p2. There is no i ∈ {1, 2, 3, 4} such that |gi| = p1p2,
since this would imply gi adjacent to gj for any j 6= i. It is not restrictive
to assume |g1| = p1. This would imply |g2| = p2, |g3| = p1, |g4| = p2, and
consequently that g1 and g4 are adjacent, a contradiction.

d) G ∼= V o 〈x〉 where x has order p and V is a faithful irreducible 〈x〉-module.
There exists a prime q 6= p such that V is an elementary abelian q-group
and every non-trivial element g of G has order p or q. Assume that |g1| = p.
Then 〈g1〉 is the unique maximal subgroup of G containing g1. Since g3 and
g4 are not adjacent to g1, we must have g3, g4 ∈ 〈g1〉, but then g3, g4 are not
adjacent in Γ(G). So |g1| = q. For the same reason |g4| = q and consequently
|g2| = |g3| = p. But this would imply that g2 and g4 are adjacent.

�

3. Perfect graphs
3.1. Preliminary results. The results of this section strongly depend on the strong
perfect graph theorem, that has been already mentioned in the introduction and can
be stated in the following way [6].

Theorem 3.1. A graph is perfect if and only if it admits neither odd holes nor anti-
holes as induced subgraph.

In the following, we will use Y to denote the following graph:

x2

x1

x3 x4

Recall that the tensor product Γ1 ∧Γ2 of two graphs Γ1 and Γ2 is the graph whose
vertex set coincides with the cartesian product of the vertex sets of Γ1 and Γ2 and
where (x1, y1) and (x2, y2) are adjacent if and only if x1, x2 are adjacent in Γ1 and
y1, y2 are adjacent in Γ2. If G1 and G2 are 2-generated finite groups, then Γ(G1×G2)
is a subgraph of Γ(G1) ∧ Γ(G2), and Γ(G1 × G2) ∼= Γ(G1) ∧ Γ(G2) if |G1| and |G2|
are coprime (see [14, Lemma 2.5]).

Theorem 3.2 ([18, Theorem 3.2]). The tensor product Γ1 ∧ Γ2 of two graphs Γ1 and
Γ2 is perfect if and only if either

(1) Γ1 or Γ2 is bipartite, or
(2) neither Γ1 nor Γ2 contain Y or an odd n-hole with n > 5, as an induced

subgraph.

Remark 3.3. Let Γ1 ∼= Y be a graph with vertex-set {x1, x2, x3, x4} and Γ2 ∼= K3 be
a complete graph with vertex-set {y1, y2, y3}. Then

((x1, y1), (x2, y3), (x3, y1), (x4, y2), (x3, y3))
is a 5-hole in the tensor product Γ1 ∧ Γ2.

Another remark that will be used in some of the proofs is that a 5-hole in a graph
Γ is also a 5-antihole. Indeed if {x1, x2, x3, x4, x5} is a subset of the vertices of a graph
Γ inducing a 5-hole and (x1, x2, x3, x4, x5) is a 5-cycle in Γ, then (x1, x3, x5, x2, x4) is
a 5-cycle in the complement graph.
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In this and in the following sections we will use the notations g1 ∼ g2 and g1 � g2
to denote that g1 and g2 are adjacent, or non-adjacent, in Γ(G).
Lemma 3.4. Γ(G) is perfect if and only if Γ(G/Frat(G)) is perfect.
Proof. By the strong perfect graph theorem, it suffices to prove that if m > 5, then
Γ(G) contains an m-hole or an m-antihole if and only if Γ(G/Frat(G)) has the same
property. Since 〈g1 Frat(G), g2 Frat(G)〉 = G/Frat(G) if and only if 〈g1, g2〉 = G,
if the subset {x1 Frat(G), . . . , xm Frat(G)} induces an m-hole or an m-antihole
in Γ(G/Frat(G)), then so does {x1, . . . , xm} in Γ(G). Conversely, assume that
{x1, . . . , xm} induces an m-hole or an m-antihole in Γ(G). If 1 6 i < j 6 m, then
there exists k ∈ {1, . . . ,m} r {i, j} such that xk is adjacent to xi but not to xj .
In particular xi Frat(G) 6= xj Frat(G) and {x1 Frat(G), . . . , xm Frat(G)} induces an
m-hole or an m-antihole in Γ(G/Frat(G)). �

Let In = {1, . . . , n} and consider the graph ∆n whose vertices are the subsets of
In and where J1 and J2 are adjacent if and only if J1 ∪ J2 = In.

Lemma 3.5. The graph ∆n is perfect if and only if n 6 4.
Proof. If n > 5, then ({1, 2, 4, 6, . . . , n}, {1, 3, 5, 6, . . . , n}, {2, 4, 5, 6, . . . , n},
{1, 3, 4, 6, . . . , n}, {2, 3, 5, 6, . . . , n}) is a 5-hole in ∆n so ∆n is not perfect. We
may assume n 6 4. Let m > 5 be an odd integer and assume that X is a subset
of the vertex-set of ∆n inducing an m-hole or an m-antihole. Clearly In /∈ X. As
a consequence, ∅ /∈ X. Moreover if {i} is a singleton, then In r {i} is the unique
proper subset of In adjacent to {i}, so {i} /∈ X. So we have at most 2n − n − 2
possible choices for an element of X. This implies that n = 4 and X consists of sets
of cardinality 2 or 3. Since I4 contains only four subsets of cardinality 3, it is not
restrictive to assume {1, 2} ⊆ X. Note that a subset of cardinality 3 is adjacent to
all the other subsets of cardinality 3. So if X induces an m-hole, then X contains
at most 2 (adjacent) subsets of cardinality 3. This implies that X contains at least
3 subsets of cardinality 2, inducing a 3-vertex path. But this is impossible since a
subset of cardinality 2 is adjacent to only one subset of cardinality 2. If X induces
an m-antihole, then it contains at least one subset of cardinality 2, say Y , and this
must be adjacent to another m− 3 elements of X. However there is a unique subset
of cardinality 2 and two subsets of cardinality 3 adjacent to Y , hence m− 3 6 3. But
this implies m = 5 and we may exclude this possibility since a 5-antihole is also a
5-hole, as noted above. �

Lemma 3.6. Let G be a finite group and let g ∈ G be an element which is contained
in a unique maximal subgroup of G. Then g cannot be the vertex of an m-hole or
m-antihole in Γ(G) with m > 5.
Proof. Let M 6 G be the unique maximal subgroup containing g and let m > 5.

Let (g, a2, . . . , am) be an m-hole. We have g � a3, a4, which implies a3, a4 ∈M , so
they cannot be adjacent in Γ(G), a contradiction.

Let (g, a2, . . . , am) be an m-antihole. We have g � a2, am, which implies a2, am ∈
M , so they cannot be adjacent in Γ(G), a contradiction. �

Lemma 3.7. Let m > 5 and suppose (a1, . . . , am) is an m-hole or an m-antihole in
Γ(G). If 〈ai〉 = 〈aj〉, then i = j.
Proof. Let i 6= j and 〈ai〉 = 〈aj〉. We can assume without loss of generality that
i = 1 and 2 6 j 6 m+1

2 . If (a1, . . . , am) is an m-hole, then am ∼ a1, and this implies
am ∼ aj and consequently j = m − 1. But then m − 1 6 m+1

2 , hence m 6 3, a
contradiction. If (a1, . . . , am) is an m-antihole, then am � a1, and so am � aj and we
argue as before. �
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3.2. Nilpotent groups. The aim of this subsection is to prove Theorem 1.1. First
we prove the statement in the special case where G is cyclic.

Lemma 3.8. Let G be a finite cyclic group. Then Γ(G) is perfect if and only if |G| is
divisible by at most four different primes.

Proof. By Lemma 3.4, we may assume Frat(G) = 1, so |G| = p1 · · · pt where p1, . . . , pt
are distinct primes. Assume that (a1, . . . , am) is an m-hole or an m-antihole in Γ(G).
Let π = {p1, . . . , pt} and for any i ∈ {1, . . . , t}, let πi be the set of prime divisors of
|ai|. By Lemma 3.7, if i 6= j, then πi 6= πj , moreover ai and aj are adjacent in Γ(G) if
and only if πi ∪ πj = π. This implies that Γ(G) is perfect if and only if ∆t is perfect,
and the conclusion follows from Lemma 3.5. �

The proof of the general case requires some preliminary lemmas and remarks.

Remark 3.9. Let p and q be two different primes. If P = 〈a1, a2〉 is a finite, 2-
generated, non-cyclic p-group and Q = 〈b1, b2〉 is a finite, 2-generated, non-cyclic
q-group, then Γ(P ×Q) contains an induced subgraph isomorphic to Y :

(a1, b1)

(a2, b2)

(a1a2, b1b2) (a1, b2)

Remark 3.10. If P = 〈a1, a2〉 is a finite, 2-generated, non-cyclic finite p-group and
C = 〈x〉 is a non-trivial finite cyclic group whose order is not divisible by p, then
Γ(P × C) contains an induced subgraph isomorphic to Y :

(a1, 1)

(a2, x)

(a1a2, x) (a2, 1)

Remark 3.11. If G is a 2-generated finite group of order at least 3, then Γ(G) contains
an induced subgraph isomorphic to K3. In particular Γ(G) is not a bipartite graph.

Proof. If G = 〈a, b〉 is not cyclic, then we can take the subgraph of Γ(G) induced by
{a, b, ab}. If G = 〈x〉, we can take the subgroup induced by {1, x, x−1}. �

Lemma 3.12. Let G be a 2-generated finite nilpotent group. If Γ(G) is perfect, then the
order of G/Frat(G) is the product of at most four (not necessarily distinct) primes.

Proof. By Lemma 3.4 we may assume Frat(G) = 1. For any prime divisor p of |G|, the
Sylow p-subgroup ofG is either cyclic of order p or elementary abelian of order p2. If all
the Sylow subgroups of G are cyclic, then G is cyclic and the conclusion follows from
Lemma 3.8. So we may assume that G contains a non-cyclic Sylow p-subgroup, say P ,
of order p2. Let K be a complement of P in G. Assume, by contradiction, that |K| is
the product of at least three primes. If K is not cyclic, then K = Q1×Q2×H where
Q1, Q2 are Sylow subgroups, Q1 is non-cyclic and Q2 6= 1. By Remarks 3.10 and 3.11,
Γ(P ×Q2) and Γ(Q1 ×H) contain an induced subgraph isomorphic, respectively, to
Y and K3. But then we deduce from Remark 3.3 that Γ(G) ∼= Γ(P ×Q2)∧Γ(Q1×H)
is not perfect. So we may assume that K = 〈x〉 and that |x| is divisible by at least
three different primes q1, q2, q3. Let Ω be the set of the vertices y of Γ(K) with the
property that 〈y〉 6= K and let Λ be the subgraph of Γ(K) induced by Ω. Notice that
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the subgraph of Γ(G) induced by the subset P × Ω is isomorphic to Γ(P ) ∧ Λ and
that {xq1 , xq2 , xq3 , xq1q2} induces a subgraph of Λ isomorphic to Y . But then, again
by Remark 3.3, Γ(P ) ∧ Λ, and consequently Γ(G), contains a 5-hole. �

Lemma 3.13. Let G be a non-cyclic 2-generated finite p-group. Then Γ(G) is perfect
and does not contain an induced subgraph isomorphic to Y .

Proof. We have G/Frat(G) ∼= Cp × Cp. If g is a non-isolated vertex of Γ(G), then
|g Frat(G)| = p and 〈g〉 is the unique maximal subgroup of G containing g. It follows
from Lemma 3.6 that Γ(G) contains no m-hole or m-antihole with m > 5, so it
follows from the strong perfect graph theorem that Γ(G) is perfect. Now assume by
contradiction that {g1, g2, g3, g4} induces a subgraph of Γ(G) isomorphic to Y.We may
order these four vertices in such a way that g1 and g2 are adjacent, while g4 is not
adjacent to g1 nor to g2. The latter condition implies 〈g4 Frat(G)〉 = 〈g1 Frat(G)〉 =
〈g2 Frat(G)〉, in contradiction with 〈g1, g2〉 = G. �

Proof of Theorem 1.1. By Lemma 3.4 we may assume that Frat(G) = 1. By Lemma
3.12, the condition that |G| is the product of at most 4 primes is necessary for Γ(G)
to be perfect. We have to prove that this condition is also sufficient. By Lemma 3.8,
we may assume that G is not cyclic. This means that G = P ×K, where P ∼= Cp×Cp
for a suitable prime p and K is a nilpotent group whose order is coprime with p and
is the product of at most two primes. By Lemma 3.13, we may assume K 6= 1.

If K is not cyclic, then K ∼= Cq × Cq, for a prime q 6= p and Γ(G) ∼= Γ(P ) ∧ Γ(Q)
is perfect, as a consequence of Theorem 3.2 and Lemma 3.13.

The previous argument does not work if K = 〈g〉 is cyclic. Indeed, Γ(G) and
Γ(P )∧Γ(K) are not isomorphic. For example, if P = 〈a1, a2〉, then (a1, g) and (a2, g)
are adjacent in Γ(G) but not in Γ(P )∧ Γ(K). However we can argue in the following
way. Assume that X ⊆ G induces an m-hole or an m-antihole, with m > 5. If K = 〈g〉
and y ∈ P, then either (y, g) is an isolated vertex of Γ(G) (when y = 1), or 〈(y, g)〉
is the unique maximal subgroup of G containing (y, g). In both the cases, since the
vertices of an m-hole or an m-antihole are not isolated, Lemma 3.6 implies that
(y, g) /∈ X. In particular, this implies that K has composite order (no element of K
could belong to X), so it remains to handle the case where K is cyclic of order r ·s for
distinct primes r and s. In this case, we consider the subgraph ∆ of Γ(K) induced by
the elements of K of prime order. From what we said above, it follows that X induces
an m-hole or m-antihole in Γ(G) if and only if it induces an m-hole or m-antihole
in Γ(P ) ∧ ∆. This would imply that Γ(P ) ∧ ∆ is not perfect, and consequently, by
Theorem 3.2 and Lemma 3.8, that ∆ contains an induced subgraph isomorphic to Y.
So assume by contradiction that {g1, g2, g3, g4} induces a subgraph of ∆ isomorphic
to Y.We may order these four vertices in such a way that g1 and g2 are adjacent while
g4 is not adjacent to g1 nor to g2. The latter condition implies 〈g4〉 = 〈g1〉 = 〈g2〉, in
contradiction with 〈g1, g2〉 = K. �

3.3. The dihedral group. In this subsection we determine when the dihedral group
Dn =

〈
ρ, ι | ρn = ι2 = 1, ρι = ρ−1〉

has a perfect generating graph. We start with a preliminary lemma.

Lemma 3.14. Let N be a normal subgroup of G such that G/N ∼= C2×C2. Then Γ(G)
has no m-antihole with m > 7.

Proof. Let a, b, c ∈ G be such that G/N := {N, aN, bN, cN}. Suppose (a1, . . . , am) is
an m-antihole in Γ(G). Since a1 and a3 are adjacent vertices of Γ(G), we may assume
without loss of generality that a1N = aN and a3N = bN . Since a5, . . . , am−1 are
adjacent to both a1 and a3, it follows that a5N, . . . , am−1N are all equal to cN . In
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particular, if m > 7, then a5N = a7N implies a5 � a7, a contraction. So we may
assume m = 7. Since a4 ∼ a1, a4 ∼ a6, a1N = aN and a6N = cN , we must have
a4N = bN . Analogously, from a2 ∼ a4 and a2 ∼ a6 it follows that a2N = aN .
But now consider a7N : a7N 6= aN since a7 ∼ a2, a7N 6= bN since a7 ∼ a3 and
a7N 6= cN since a7 ∼ a5. This would imply a7 ∈ N , and consequently that a7 is an
isolated vertex of Γ(G), a contradiction. �

Proof of Theorem 1.2. Let m > 5 be odd. We start with two general remarks.
(a) No rotation ρi can appear in an m-hole or m-antihole. Indeed if |ρi| < n, then

ρi is an isolated vertex of Γ(Dn). If |ρi| = n, then 〈ρ〉 is the unique maximal
subgroup of Dn containing ρi and we conclude using Lemma 3.6. So every
m-hole or m-antihole in Γ(Dn) must be of the form

(a1, . . . , am) = (ρx1ι, . . . , ρxmι)

for some xi ∈ Z.
(b)

〈
ρaι, ρbι

〉
= Dn if and only if (a− b, n) = 1.

First we prove that if n is odd, then (2) is a necessary condition for Γ(Dn) to be
perfect. Suppose n is odd and n = paqbrck with p, q, r distinct primes and k > 1
coprime to these primes. Consider the elements α1, . . . , α4, obtained by solving the
following systems (note that the existence of solutions is guaranteed by the Chinese
Reminder Theorem):

α1 ≡ 1 mod p

α1 ≡ b mod q

α1 ≡ −1 mod r

(α1 ≡ 1 mod k)


α2 ≡ −1 mod p

α2 ≡ −1− b mod q

α2 ≡ c mod r

(α2 ≡ 1 mod k)
α3 ≡ 1 mod p

α3 ≡ 1 mod q

α3 ≡ d mod r

(α3 ≡ 1 mod k)


α4 ≡ a mod p

α4 ≡ −1 mod q

α4 ≡ −c− d mod r

(α4 ≡ 1 mod k)
where the conditions in the round brackets are considered only when k 6= 1, and
a, b, c, d are such that

a 6≡ 0,−1 mod p, b 6≡ 0,−1 mod q, c, d 6≡ 0 mod r, c+ d 6≡ 0 mod r.

It can be easily checked that (ι, ρα1ι, ρα1+α2ι, ρα1+α2+α3ι, ρα1+α2+α3+α4ι) is a 5-hole
in Γ(Dn).

Now we prove that if (1) and (2) are satisfied, then Γ(Dn) is perfect. We distinguish
three cases according to n.

First assume n is even. Since Dn has an epimorphic image isomorphic to C2 ×C2,
by Lemma 3.14 the graph Γ(Dn) has no m-antihole with m > 7. Suppose that Γ(Dn)
contains an m-hole (a1, . . . , am), as described in (a). Since Dn = 〈ρxiι, ρxi+1ι〉 for
every i (where m+ 1 is considered to be 1), by (b) we should have xi+1 − xi odd for
every 1 6 i 6 m. Then, consider

0 =
m∑
i=1

xi+1 − xi.

The right hand side should be odd, because it is a sum of an odd number of odd
terms, contradiction. This shows that Γ(Dn) has no m-holes nor m-antiholes for all
m > 5 (recall that a 5-hole is also a 5-antihole), so Γ(Dn) is perfect.
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Next suppose n = pa is a prime power. Suppose that Γ(Dn) contains an m-hole
(a1, . . . , am). Since a1 � a3, a4, we should have that x4 − x1 and x3 − x1 are divisible
by p, hence their difference (i.e. x4−x3) should be divisible by p and therefore a3 � a4,
a contradiction. Suppose now there is an m-antihole (a1, . . . , am). Since a2 � a1, a3,
the prime p should divide x3 − x2 and x2 − x1 and so p should divide their sum (i.e.
x3 − x1), which means a1 � a3, a contradiction.

Finally let us assume n = paqb, where p, q are distinct primes. Suppose there is an
m-hole (a1, . . . , am) in Γ(Dn). Since a1 � a3, a4, the differences x3 − x1 and x4 − x1
are divisible by at least one of p or q. We may assume without loss of generality that
x3 − x1 is divisible by p. Then x4 − x1 is divisible by q, otherwise a3 � a4. Similarly
x4 − x2 is divisible by p and xm − x3 is divisible by q. From the fact that p divides
x4 − x2, arguing as before we deduce that if 5 6 i 6 m, then xi − x2 is divisible by
q when i is odd and by p when i is even. In particular xm − x2 is divisible by q and
since q also divides xm − x3, we have a2 � a3, a contradiction. Suppose now there
is an m-antihole (a1, . . . , am) in Γ(Dn). Since ai � ai+1, the difference xi+1 − xi is
divisible by at least one of p or q. We have an odd number of possible i, so there
must be a k such that xk+1−xk and xk−xk−1 are both divisible by the same prime,
which means that xk+1 − xk−1 is also divisible by this prime, hence ak+1 � ak−1, a
contradiction. �

3.4. Groups of order paqb and pqr. We have seen in the previous subsections
that if G is a dihedral group or a 2-generated nilpotent group and |G| is divisible by
at most three distinct primes, then Γ(G) is perfect. However there exist 2-generated
finite groups whose generating graph is not perfect, although their order is divisible
only by two distinct primes.

Example 3.15. Let H = C2
2 and let h1, h2, h3 be the non-trivial elements of H. Let

p be an odd prime number and consider N = 〈x1, x2, x3〉 ∼= C3
p . We may define an

action of H on N by setting

xh1
1 = x1, xh2

1 = x−1
1 , xh3

1 = x−1
1 ,

xh1
2 = x−1

2 , xh2
2 = x2, xh3

2 = x−1
2 ,

xh1
3 = x−1

3 , xh2
3 = x−1

3 , xh3
3 = x3.

Let G be the semidirect product N oH. Then G is 2-generated and it can be easily
checked that

(x1h1, x2x3h2, x1x3h3, x
2
1x2h2, x2x3h3)

is a 5-hole in Γ(G).

Lemma 3.16. Let G be a 2-generated finite group and let m be an odd integer, with
m > 5. Let X ⊆ G. If there exist two maximal subgroups M1 and M2 of G such that
X ⊆M1 ∪M2, then X does not induce an m-hole nor an m-antihole.

Proof. Suppose that (a1, . . . , am) is an m-hole induced by X. We may assume a1 ∈
M1. Since G = 〈ai, ai+1〉, it follows ai ∈ M2 rM1 if i is even, ai ∈ M1 rM2 if i is
odd. In particular, since m is odd, G = 〈a1, am〉 6M1, a contradiction. Now suppose
that (a1, . . . , am) is an m-antihole induced by X. Again we may assume a1 ∈ M1. If
3 6 i 6 m − 1, then G = 〈a1, ai〉 implies ai ∈ M2 and therefore m = 5, otherwise
G = 〈a3, am−1〉 6 M2. We may exclude this possibility since a 5-antihole is also a
5-hole. �

Lemma 3.17. Suppose that G = (〈x〉 × 〈y〉) o 〈z〉, with |x| = p1, |y| = p2, |z| = p3,
where p1, p2, p3 are primes. If G is 2-generated, then Γ(G) is perfect.
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Proof. If G is abelian, then the conclusion follows from Theorem 1.1. So we may
assume x /∈ Z(G). Let m > 5 be an odd integer and suppose that X ⊆ G induces an
m-hole or an m-antihole in Γ(G).

First we claim that if y ∈ Z(G), then p2 = p3. Indeed assume y ∈ Z(G) and p2 6= p3
and let g = xiyjzk ∈ G. If |yjzk| = p2p3, then |g| = p2p3, so 〈g〉 is the unique maximal
subgroup of G containing g and g /∈ X by Lemma 3.6. But then X ⊆M1 ∪M2, with
M1 = 〈x, z〉 and M2 = 〈x, y〉, in contradiction with Lemma 3.16.

Our second claim is that 〈x〉 and 〈y〉 are not 〈z〉-isomorphic. This is obvious if
p1 6= p2, otherwise it is a necessary condition for G being 2-generated.

The two previous claims imply that for every r, s, u, v ∈ Z, 〈xrys, xuyvz〉 = G if
and only if xr, ys 6= 1. In particular consider w = xrys ∈ 〈x, y〉. If either xr = 1 or
ys = 1, then w is an isolated vertex in Γ(G). Moreover, the fact that 〈x〉 and 〈y〉 are
not 〈z〉-isomorphic implies that 〈x, y〉 is the unique maximal subgroup of G containing
w. In any case, w cannot be an element of X.

Let (a1, . . . , am) be an m-hole or an m-antihole in Γ(G) induced by X. By what
we have said above, it is not restrictive to assume ai = xriysiz with ri, si ∈ Z and in
particular we may assume that a1 = z. Notice that 〈xriysiz, xrjysjz〉 = G if and only
if ri 6≡ rj mod p1 and si 6≡ sj mod p2.

If (a1, . . . , am) is an m-hole, then a1 6∼ aj for any j ∈ {3, . . . ,m− 1}. This implies
that either aj ∈ 〈x, z〉 or aj ∈ 〈y, z〉. On the other hand aj ∼ aj+1, so it is not
restrictive to assume
s3 ≡ 0 mod p2, r4 ≡ 0 mod p1, . . . , sm−2 ≡ 0 mod p2, rm−1 ≡ 0 mod p1.

Notice that a1 ∼ a2 and a1 ∼ am implies r2, rm 6≡ 0 mod p1 and s2, sm 6≡ 0 mod p2.
By Lemma 3.7, r3 6≡ 0 mod p1 and sm−1 6≡ 0 mod p2. Since a2 6∼ am−1 and a3 6∼ am,
we deduce s2 ≡ sm−1 mod p2 and r3 ≡ rm mod p1. Since a2 ∼ a3 and am−1 ∼ am,
it follows r2 6≡ r3 mod p1 and sm−1 6≡ sm mod p2, but then r2 6≡ rm mod p1 and
s2 6≡ sm mod p2. This implies a2 ∼ am, a contradiction.

Now suppose that (a1, . . . , am) is an m-antihole. We may assume m > 7 since a
5-antihole is isomorphic to a 5-hole. From the conditions a1 6∼ a2 and a1 6∼ am it
follows that it is not restrictive to assume s2 = 0 and rm = 0. Since ai 6∼ ai+1, it
follows
a1 = z, a2 = xr2z, a3 = xr2ys3z, a4 = xr4ys3z, a5 = xr4ys5z, a6 = xr6ys5z . . .

In particular
am−2 = xrm−3ysm−2z, am−1 = xrm−1ysm−2z, am = ysmz.

From am−1 ∼ a1, it follows rm−1 6≡ 0 mod p1 and from am ∼ am−2, it follows
sm 6≡ sm−2 mod p2. However this implies that am−1 ∼ am, a contradiction. �

Proposition 3.18. If |G| = pq with p, q primes, then Γ(G) is perfect.

Proof. This follows immediately from Lemma 3.6. �

Proposition 3.19. If |G| = pqr, where p, q and r are three distinct primes, then G
is 2-generated and Γ(G) is perfect.

Proof. By [19, 10.1.10], G is 2-metacyclic. We may assume that G is non-abelian,
so G = 〈x〉 o 〈y〉, with y 6= 1 and C〈y〉(x) = 1. If |x| is the product of two different
primes, then the conclusion follows from Lemma 3.17. So we may assume that |x| = p.
Assume that X induces an m-hole or an m-antihole in Γ(G), where m > 5 is an odd
integer. By Lemma 3.6, X contains only elements of prime order; moreover an element
of order p is adjacent in Γ(G) only to elements of order q · r, so X can contain only
elements of order q or r. On the other hand two elements of the same order q or r
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are not adjacent in Γ(G), and it is easy to see that this implies that X cannot induce
neither an m-hole nor an m-antihole. �

Proposition 3.20. If |G| = p2q, where p and q are distinct primes, then Γ(G) is
perfect.

Proof. First assume G has a unique Sylow p-subgroup P . If P ∼= Cp × Cp, then
the conclusion follows from Lemma 3.17. If P ∼= Cp2 , then Frat(G) has order p, so
Γ(G/Frat(G)) is perfect by Proposition 3.18 and consequently Γ(G) is perfect by
Lemma 3.4. So we may assume that the Sylow p-subgroups are not normal, which
implies that the Sylow q-subgroup, say Q, is normal. Either G ∼= (Cp × Cq) o Cp
or G ∼= Cq o Cp2 . In the first case the conclusion follows again from Lemma 3.17.
In the second case the only non-trivial elements of G that are contained in at least
two different maximal subgroups are those of order p, so, by Lemma 3.6, if X ⊆ G
induces an m-hole or an m-antihole, with m > 5 an odd integer, then X contains only
elements of order p. However no two elements of order p are adjacent in Γ(G), so we
reached a contradiction. �

3.5. The symmetric and alternating group. In this subsection we prove Theo-
rem 1.3, determining the values of n for which the generating graphs of the symmetric
and alternating groups of degree n are perfect. In the proofs we will need the following
elementary lemmas:

Lemma 3.21. Let H 6 Sn be a transitive permutation group. If σ ∈ H is a cycle of
length n− 1, then H is primitive.

Proof. Wemay assume without loss of generality that the fixed point of σ is 1. Suppose
H is imprimitive. Let B be the imprimitivity block which contains 1, then Bσ = B
since 1σ = 1. By the imprimitivity assumption, there exists 1 6= i ∈ B. But then
i, iσ, iσ

2
, . . . , iσ

n−2 are all distinct elements, so B = {1, . . . , n}, a contradiction. �

Lemma 3.22. Let n > 3 be an odd natural number and H 6 Sn be a transitive permu-
tation group. If σ ∈ H is an (n− 2)-cycle, then H is primitive.

Proof. Suppose, without loss of generality, that the fixed points of σ are 1 and 2.
Suppose H is imprimitive. As in the proof of the previous lemma, take B to be the
block containing 1. Since n is odd, |B| > 3, so there is at least an element i in
Br{1, 2}. Arguing as in the proof of the previous lemma, we obtain that |B| > n−1
and, since |B| divides n, we conclude B = {1, . . . , n}, a contradiction. �

Theorem 3.23. Γ(Sn) is perfect if and only if n 6 4.

Proof. If n ∈ {2, 3}, then Γ(Sn) is perfect, indeed Γ(S2) ∼= K2 while S3 ∼= D3, in
which case we may apply Theorem 1.2.

Assume n = 4. Suppose there is an m-hole (a1, . . . , am) in Γ(S4), with m > 5. Two
consecutive vertices ai and ai+1 are adjacent and therefore they cannot both belong
to A4. Since m is odd, there must be two consecutive vertices which are in S4 r A4.
Since two elements of order 2 do not generate the group, one of these two vertices
should be a 4-cycle. However a 4-cycle is contained in a unique maximal subgroup,
so we have a contradiction by Lemma 3.6. Suppose now that there is an m-antihole
(a1, . . . , am) in Γ(S4), with m > 7. Since 4-cycles cannot occur in an m-antihole and
elements of the Klein subgroup cannot generate with another element, each vertex
in the antihole must be a transposition or a 3-cycle. There are at most two 3-cycles
among the vertices of the antihole. Indeed if we pick three elements in an m-antihole,
at least two of them are adjacent but two 3-cycles do not generate S4. So, at leastm−2
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of the vertices of the antihole (a1, . . . , am) are transpositions. Since two transpositions
do not generate S4, we have a contradiction. We conclude that Γ(S4) is perfect.

If n = 5, 6, 7, then Γ(Sn) is not perfect. Indeed it can be easily checked that the
following are 5-holes in Γ(Sn) :
Γ(S5) : ((1, 2, 3, 4, 5), (2, 4), (1, 2, 3, 5, 4), (2, 4, 5, 3), (1, 2, 4, 5));
Γ(S6) : ((1, 3, 2, 4), (3, 4, 6, 5), (1, 2, 3, 4, 5), (1, 3, 4, 6), (2, 3, 4, 5, 6));
Γ(S7) : ((1, 5, 4, 7, 2, 3), (2, 6, 5, 7, 3, 4), (1, 2, 3, 4, 5, 7, 6), (4, 5), (1, 2, 3, 4, 5, 6, 7)).

We remain with two cases: n > 8 even and n > 9 odd.
Assume n > 8 even. In this case we claim that

a1 = (1, . . . , n− 2)
a2 = (3, . . . , n)
a3 = (1, . . . , n− 1)
a4 = (1, 3, 4, n)
a5 = (2, . . . , n)

is a 5-hole in Γ(Sn).
Notice that 〈a1, a3〉, 〈a1, a4〉, 〈a2, a4〉, 〈a2, a5〉 are intransitive subgroups and

〈a3, a5〉 6 An, so the pairs of corresponding vertices are not joined by an edge.
Since a3 and a5 are (n− 1)-cycles, the transitive subgroups 〈a2, a3〉, 〈a3, a4〉, 〈a4, a5〉,
〈a5, a1〉 are also primitive by Lemma 3.21. Let us now prove that the transitive
subgroup 〈a1, a2〉 is also primitive. Let B be an imprimitive block which contains 1.
Clearly Ba2 = B. If B ∩ {3, . . . , n} 6= ∅, then {1, 3, . . . , n} ⊆ B, a contradiction. So
B = {1, 2}, but then B ∩ Ba1 = {2}, another contradiction and we conclude that
〈a1, a2〉 is primitive. Moreover

a1a
−1
2 = (1, 2, n, n−1, n−2) ∈ 〈a1, a2〉

a3a
−1
2 = (1, 2, n, n−1) ∈ 〈a2, a3〉
a4 = (1, 3, 4, n) ∈ 〈a3, a4〉
a4 = (1, 3, 4, n) ∈ 〈a4, a5〉

a1a
−1
5 = (1, n, n−1, n−2) ∈ 〈a5, a1〉

But then, by [15, Corollary 1.3], the five subgroups 〈a1, a2〉 , 〈a2, a3〉 , 〈a3, a4〉 , 〈a4, a5〉
and 〈a5, a1〉 contain An. Since they also contain elements outside An, they must be
equal to Sn and so the corresponding pairs of vertices are joined by an edge.

Finally assume n > 9 odd. In this case we claim that
a1 = (1, . . . , n− 3)
a2 = (4, . . . , n)
a3 = (1, . . . , n− 2)
a4 = (1, 2, 4, 5, n−1, n−2)
a5 = (3, . . . , n)

is a 5-hole in Γ(Sn).
As in the discussion of the previous case, 〈a1, a3〉, 〈a1, a4〉, 〈a2, a4〉, 〈a2, a5〉 are

intransitive subgroups and 〈a3, a5〉 6 An, so the pairs of corresponding vertices are
not joined by an edge. Since a3 and a5 are (n − 2)-cycles, the transitive subgroups
〈a2, a3〉, 〈a3, a4〉, 〈a4, a5〉, 〈a5, a1〉 are also primitive by Lemma 3.22. We claim that
the transitive subgroup 〈a1, a2〉 is also primitive. Let B be an imprimitivity block
which contains 1, so that Ba2 = B. If B ∩ {4, . . . , n} 6= ∅, then {1, 4, . . . , n} ⊆ B, a
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contradiction. Since |B| > 3, the only possibility is B = {1, 2, 3}, but this leads to a
contradiction since B ∩Ba1 = {2, 3}. Finally, observe that

a1 = (1, . . . , n− 3) ∈ 〈a1, a2〉
a3a
−1
2 = (1, 2, 3, n, n−1, n−2) ∈ 〈a2, a3〉
a4 = (1, 2, 4, 5, n−1, n−2) ∈ 〈a3, a4〉
a4 = (1, 2, 4, 5, n−1, n−2) ∈ 〈a4, a5〉
a1 = (1, . . . , n− 3) ∈ 〈a5, a1〉

and, as in the previous case, we deduce from [15, Corollary 1.3] that 〈a1, a2〉 =
〈a2, a3〉 = 〈a3, a4〉 = 〈a4, a5〉 = 〈a5, a1〉 = Sn. �

Theorem 3.24. Γ(An) is perfect if and only if n 6 4.

Proof. If n = 3, then Γ(A3) ∼= K3 is perfect.
Assume n = 4. Let m be an odd positive integer, with m > 5. In an m-hole or in

an m-antihole, at least one vertex should be a 3-cycle, since in a pair of generators
one should be outside the Klein subgroup. However a 3-cycle is contained in a unique
maximal subgroup, so we conclude using Lemma 3.6 that there is neither an m-hole
nor an m-antihole.

For n > 5, it remains to show that Γ(An) is not perfect.
First assume n > 5 odd. In this case we claim that

a1 = (1, 2, 3, 6 . . . , n)
a2 = (2, 4, 5, 6 . . . , n)
a3 = (1, 3, 5, 6 . . . , n)
a4 = (2, 3, 4, 6 . . . , n)
a5 = (1, 4, 5, 6 . . . , n)

is a 5-hole in Γ(An). The cases n = 5, 7, 9 can be easily checked by hand, so we assume
n > 11. Notice that 〈a1, a3〉, 〈a1, a4〉, 〈a2, a4〉, 〈a2, a5〉 and 〈a3, a5〉 are intransitive
subgroups, so the pair of corresponding vertices are not joined by an edge. Since
a1, . . . , a5 are (n−2)-cycles, the transitive subgroups 〈a1, a2〉, 〈a2, a3〉, 〈a3, a4〉, 〈a4, a5〉
and 〈a5, a1〉 are also primitive from Lemma 3.22. Moreover

a2
1a
−2
2 = (1, 3, 5, 2, 4, n, n−1) ∈ 〈a1, a2〉

a2a
−1
3 = (1, n, 2, 4, 3) ∈ 〈a2, a3〉

a2
3a
−2
4 = (1, 5, 4, 2, n−1) ∈ 〈a3, a4〉

a2
4a
−2
5 = (1, n−1, 2, n, 3, 4, 5) ∈ 〈a4, a5〉

a5a
−1
1 = (1, 4, 5, 3, 2) ∈ 〈a5, a1〉

and we can use [15, Corollary 1.3] to conclude that 〈a1, a2〉 = 〈a2, a3〉 = 〈a3, a4〉 =
〈a4, a5〉 = 〈a5, a1〉 = An.

Finally, assume n > 6 even. Notice Γ(A6) contains the following 5-hole:

((1, 2, 3, 4, 5), (1, 3)(5, 6), (1, 2, 4, 5, 6), (1, 4, 2, 3, 5), (1, 2, 6)).
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We claim that if n > 8, then
a1 = (1, 2, 3, 4, 5, 9, . . . , n)
a2 = (1, 3, 6, 7, 8, 9, . . . , n)
a3 = (2, 7, 8, 4, 5, 9, . . . , n)
a4 = (1, 6, 3, 4, 5, 9, . . . , n)
a5 = (1, 2, 6, 7, 8, 9, . . . , n)

is a 5-hole in Γ(An). The subgroups 〈a1, a3〉, 〈a1, a4〉, 〈a2, a4〉, 〈a2, a5〉 and 〈a3, a5〉 are
intransitive, so the pair of corresponding vertices are not joined by an edge. We prove
that the transitive subgroup 〈a1, a2〉 is primitive (a similar argument works for the
subgroups 〈a2, a3〉, 〈a3, a4〉, 〈a4, a5〉 and 〈a5, a1〉). Suppose it is imprimitive. Let B
be an imprimitive block containing 6, so that Ba1 = B. We must have B ⊆ {6, 7, 8},
otherwise we would have {1, 2, 3, 4, 5, 6, 9, . . . , n} ⊆ B. Moreover, since B ∩ Ba2 =
{7, 8}, B 6= {6, 7, 8}, so either B = {6, 7} or B = {6, 8}. In the first case the block
containing 8 also contains an element different from 6, 7, 8 and we get a contradiction
as before. A similar argument applies in the second case, working with the block
containing 7. Since a1, . . . , a5 are (n−3)-cycles, we can conclude, using [15, Corollary
1.3], that 〈a1, a2〉 = 〈a2, a3〉 = 〈a3, a4〉 = 〈a4, a5〉 = 〈a5, a1〉 = An. �

3.6. Rank one groups of Lie type. In the previous subsection we have proved
that Γ(An) contains a 5-hole when n > 5 and we conjecture that this could be true
for every finite non-abelian simple group. In this subsection we prove that Conjecture
1.5 is true when G is isomorphic to one of the groups

PSL2(q),PSU3(q), 2B2(q), 2G2(q),

i.e. when G is a rank one group of Lie type. We need the following elementary obser-
vation.

Lemma 3.25. Let G be a permutation group on the set Ω. Let ω1, . . . , ω5 ∈ Ω such
that StabG(ωi) < G for i = 1, . . . , 5. Let

a ∈ StabG(ω1) ∩ StabG(ω2),
b ∈ StabG(ω3) ∩ StabG(ω4),
c ∈ StabG(ω5) ∩ StabG(ω1),
d ∈ StabG(ω2) ∩ StabG(ω3),
e ∈ StabG(ω4) ∩ StabG(ω5).

If 〈a, b〉 = 〈b, c〉 = 〈c, d〉 = 〈d, e〉 = 〈e, a〉 = G, then (a, b, c, d, e) is a 5-hole in Γ(G).

Proposition 3.26. Let G = PSL2(q), with q > 3. Then Γ(G) contains a 5-hole.

Proof. We may assume q /∈ {4, 5, 9}, since PSL2(4) ∼= PSL2(5) ∼= A5 and PSL2(9) ∼=
A6. The group G has a faithful 2-transitive action on the q + 1 points of the 1-
dimensional projective space PG(1, q) over the field Fq with q elements. Let A,B,C,D
be four distinct points of PG(1, q). The subgroups H = StabG(A) ∩ StabG(B) and
K = StabG(C) ∩ StabG(D) are cyclic of order u = (q − 1)/(q − 1, 2). Notice that
〈H,K〉 connot be contained in the stabilizer of an element of PG(1, q), since the only
element of G which fixes three distinct points is the identity. The list of the maximal
subgroups of G is well-known (see for example [1, Tables 8.1, 8.2]). In particular if
q /∈ {7, 11}, then no maximal subgroup of G, except from a point stabilizer, contains
two distinct cyclic subgroups of order u. This implies G = 〈H,K〉 and we can use
Lemma 3.25 to conclude.
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Finally, if q = 7, then G 6 S8 and the following is a 5-hole in Γ(G) :
((2, 3, 4)(5, 8, 7), (1, 4, 5)(3, 7, 6), (2, 7, 8)(3, 6, 5), (1, 2, 4)(6, 7, 8), (1, 2, 5, 7)(3, 8, 6, 4)).
Similarly, if q = 11, then G 6 S12 and the following is a 5-hole in Γ(G) :
((3, 9, 5, 11, 7)(4, 10, 6, 12, 8), (1, 6, 3, 4, 12)(2, 11, 9, 10, 7), (1, 3, 8, 5, 4)(6, 7, 9, 12, 10),

(2, 12, 11, 8, 3)(4, 7, 9, 10, 6), (1, 9, 6, 7, 5)(2, 4, 12, 3, 10)). �

Proposition 3.27. Let G = PSU3(q), with q > 2. Then Γ(G) contains a 5-hole.

Proof. Let d = (q+1, 3). The group G is a 2-transitive group of permutations of the set
Ω of the q3+1 points of the corresponding polar space. If A1, A2 are two distinct points
of Ω, then StabG(A1)∩StabG(A2) is a cyclic group of order (q2−1)/d. MoreoverA1 and
A2 are the only points fixed by StabG(A1) ∩ StabG(A2) and StabG(A1) ∩ StabG(A2)
acts on the remaining q3 − 1 point with q · d orbits of size (q2 − 1)/d and one orbit of
size q − 1 (this information can be deduced for example from the description of the
action of G on Ω given in [8, Section 7.7, pages 248-249]).

The statement can be directly proved using GAP if q 6 5, by searching elements
in the intersections of stabilizers, in such a way to reproduce the situation of Lemma
3.25; so we may assume q > 7.

Let A1, A2, A3, A4 be four distinct points of Ω and consider H = StabG(A1) ∩
StabG(A2) and K = StabG(A3) ∩ StabG(A4). The list of the maximal subgroups of
G is well-known (see for example [1, Tables 8.5, 8.6]). In particular, since q > 7, if M
is a maximal subgroup of G containing an element of order (q2 − 1)/d, then either
M is a point-stabilizer or M = X/Y with X ∼= GU2(q) and Y cyclic of order d. In
the first case M cannot contain both H and K, since H fixes only A1 and A2 and K
fixes only A3 and A4. In the second case Z(M) is cyclic of order (q + 1)/d and fixes
precisely q + 1 elements of Ω and any element of order q2 − 1 contained in M acts
on the set of these q + 1 elements with two fixed points and an orbit of cardinality
q−1. In particular, if we choose A3, A4 such that they don’t belong to the orbit of size
q− 1 of H, then G = 〈H,K〉. With this choice of A3 and A4, choose A5 distinct from
A1, A2, A3, A4 and not contained in the orbit of size q− 1 of StabG(Ai)∩ StabG(Aj),
for any 1 6 i < j 6 4. We can use Lemma 3.25 to conclude. �

Proposition 3.28. Let q = 22n+1 with n > 1. If G = 2B2(q) is a Suzuki group, then
Γ(G) contains a 5-hole.

Proof. The group G has a faithful 2-transitive action on an ovoid Ω in a 4-dimensional
symplectic geometry over Fq. Up to conjugacy, the maximal subgroups of G are as
follows (for example, see [1, Table 8.16]):

(1) the stabilizer of ω ∈ Ω (the Borel subgroup of order q2(q − 1));
(2) the dihedral group of order 2(q − 1);
(3) Cq+

√
2q+1 o C4;

(4) Cq−√2q+1 o C4;
(5) 2B2(q0), where q = qr0, r is prime and q0 > 2.
If ωi and ωj are distinct elements of Ω, then StabG(ωi)∩StabG(ωj) is cyclic of order

q− 1. Let x be a generator of this cyclic group. Next choose ωl and ωk in Ω such that
ωi, ωj , ωk, ωl are all distinct, and let y be a generator of StabG(ωk)∩StabG(ωl). Since
the only element fixing three points is the identity, we have that 〈x〉 6= 〈y〉. Consider
the subgroup H := 〈x, y〉. If H is a proper subgroup, it is contained in a maximal
subgroup. However H cannot be contained in subgroups of type (3), (4) and (5), since
they do not contain elements of order q − 1. Since 〈x〉 6= 〈y〉 we can also rule out the
possibility that H is contained in a subgroup of type (2). Finally, if H 6 StabG(ω),
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for some ω ∈ Ω, then either x or y must fix three different points, which is impossible.
Therefore H = G and we can use Lemma 3.25 to construct a 5-hole. �

Proposition 3.29. Let q = 32n+1 with n > 1. If G := 2G2(q), then Γ(G) contains a
5-hole.
Proof. The group G has a faithful 2-transitive action on an ovoid Ω in a 7-dimensional
orthogonal geometry over Fq. The maximal subgroups of G are as follows, up to
conjugacy (see for example [1, Table 8.43]):

(1) the stabilizer of ω ∈ Ω (the Borel subgroup of order q3(q − 1));
(2) the centralizer of an involution, which is isomorphic to C2 × PSL2(q);
(3) the normalizer of a four-group, which is isomorphic to (22 ×D(q+1)/4)o 3;
(4) Cq+

√
3q+1 o C6;

(5) Cq−√3q+1 o C6;
(6) 2G2(q0), where q = qr0 and r prime.

The intersection of two different point-stabilizers is cyclic with order q− 1. Moreover
any involution t in G fixes precisely q + 1 points in Ω, and the set of these q + 1
elements is called the block of t. Any two blocks can intersect in at most 1 point and
any two points are pointwise fixed by a unique involution.

Choose ω1, . . . , ω5 ∈ Ω all distinct in the following way: ω1, ω2 and ω3 are chosen
randomly and let Ωi,j be the unique block which contains ωi and ωj . Since |Ω| =
q3 + 1 and a block has cardinality q + 1, it is possible to choose ω4 ∈ Ω r Ω2,3 and
ω5 ∈ Ω r (Ω3,4 ∪ Ω1,2). Since the block containing two elements is unique, we have
that four of these five elements never belong to the same block. Let ωi, ωj , ωk, ωl
be four of these five elements. Let x be a generator of StabG(ωi) ∩ StabG(ωj) and
y a generator of StabG(ωl) ∩ StabG(ωk) and consider H := 〈x, y〉. The subgroup H
cannot be contained in maximal subgroups of type (3), (4), (5) and (6), since these
maximal subgroups do not contain elements of order q − 1. There are no elements
in G of order q − 1 which fix three distinct elements on Ω, so H is not contained in
maximal subgroups of type (1). Therefore, if H < G is proper, then H 6 CG(t) for a
suitable involution t of G. This occurs when t is contained in the intersection of the
four stabilizers of ωi, ωj , ωk, ωl, as can be deduced from [17, Lemma 3.2, 3], but in this
case ωi, ωj , ωk, ωl belong to the same block, which is incompatible with our choice of
ω1, . . . , ω5. So H = G and we may conclude by applying Lemma 3.25. �

3.7. Small groups. Here we prove that A5 is the smallest 2-generated finite group
with a non-perfect generating graph.
Theorem 3.30. Let G be a 2-generated finite group, with |G| 6 60. Then Γ(G) is
perfect if and only if G 6= A5.

Proof. By Theorem 3.24, we only have to prove that if |G| 6 60 and G 6= A5, then
Γ(G) is perfect. By Theorem 1.1, C30×C6 is the smallest 2-generated finite nilpotent
group whose generating graph is not perfect. So we may assume that G is not nilpo-
tent, and by the results in subsection 3.4 we may exclude |G| ∈ {pq, pqr, p2q} with
p, q, r different primes. Hence |G| ∈ {24, 36, 40, 48, 54, 56, 60}. This requires a case by
case analysis.

As an example we consider G ∼= C6 × D5, which is the case that requires more
attention. The other cases can be handled with similar, but in general shorter, argu-
ments.

Let m > 5 be odd. Set 〈c〉 = C6 and 〈ρ, ι〉 = D5, with ρ a rotation of order 5 and ι
a reflection. Since C2 × C2 is an epimorphic image of G, it follows from Lemma 3.14
that Γ(G) does not contain m-antiholes with m > 7, so we only have to check the
non-existence of m-holes. To prove this, we need the list of maximal subgroups of G:
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• M1 =
〈
c2, ι, ρ

〉
;

• M2 =
〈
c3, ι, ρ

〉
;

• M3 = 〈c, ρ〉;
• M4 = 〈ρ, cι〉;
• M5+α = 〈c, ραι〉 with α ∈ {0, 1, 2, 3, 4}.

Suppose (a1, . . . , am) is an m-hole. Consider the two projections π1 : G → 〈c〉,
π2 : G→ 〈ρ, ι〉 . Notice that 〈π1(ai)〉 = 〈c〉 for some i ∈ {1, . . . ,m}. Indeed, if this fails
to hold then |π1(aj)| ∈ {2, 3} for every 1 6 j 6 m, and, since m is odd, there would
exist two consecutive vertices ak and ak+1 with |π1(ak)| = |π1(ak+1)| = t ∈ {2, 3},
and consequently G = 〈ak, ak+1〉 6

〈
c6/t〉 × D5. So without loss of generality we

may assume that π1(a1) = c. Next observe that π2(a1) 6= 1 (otherwise a1 would
be an isolated vertex of Γ(G)). Moreover π2(a1) /∈ 〈ρ〉 , otherwise M3 would be the
unique maximal subgroup of G containing a1, which contradicts Lemma 3.6. So we
may assume a1 = cι. Let 3 6 j 6 m − 1. Since 〈a1, aj〉 6= G and M4, M5 are the
only maximal subgroups of G containing a1, it follows that aj ∈ M4 ∪ M5. Two
consecutive vertices of (a1, . . . , am) generate G, so they cannot belong to the same
maximal subgroup. Hence we can label the vertices of the m-hole so that a3 ∈ M5
(and consequently a4 ∈ M4). So a3 = cαι with α ∈ {0, 1, 2, 3, 4, 5}. Moreover α 6= 3
(otherwise 〈a3, a4〉 6M4) and α /∈ {1, 5} (since, by Lemma 3.7, 〈a3〉 6= 〈a1〉), and so we
have α = ±2. Notice thatM1 andM5 are the only maximal subgroups of G containing
a3, so am ∈M1 ∪M5. On the other hand, from 〈a1, am〉 = G and a1 ∈M5, it follows
that am /∈M5 and therefore am ∈M1. Now let a2 = cxρyιz, with 0 6 x 6 5, 0 6 y 6 4
and 0 6 z 6 1.We have x /∈ {0, 2, 4}, otherwise 〈a2, a3〉 6M1. If x ∈ {1, 5}, then z = 1
(otherwise a2 would have order 30 and consequently would be contained in a unique
maximal subgroup), but this would imply 〈a1, a2〉 6M4, a contradiction. So we must
have x = 3. If z = 1, then again 〈a1, a2〉 6M4, a contradiction, so z = 0 and therefore
a2 = c3ρy with y 6= 0. In particular M2 and M3 are the only maximal subgroups of
G containing a2, and, since am and a2 are not adjacent, am ∈ M2 ∪M3. We have
already proved that am ∈M1 so am ∈ (M1 ∩M2)∪ (M1 ∩M3). Since M1 ∩M3 6M4
and a1 ∈ M4, if am ∈ M1 ∩ M3, then G = 〈a1, am〉 6 M4, a contradiction. So
am ∈ M1 ∩M2 = 〈ρ, ι〉, and consequently we may assume am−1 = cρsιt. We have
t = 1, otherwise am−1 is contained in a unique maximal subgroup. Then 〈a2, am−1〉 =〈
cρsι, c3ρy

〉
=
〈
cρsι, c3, ρ

〉
=
〈
cι, c3, ρ

〉
= 〈c, ι, ρ〉 = G, a contradiction. �

4. Other forbidden graphs
The main aim of this final section is to give the proof of Theorem 1.12, stated in
the introduction. As a preliminary auxiliary result, we classify the 2-generated finite
groups whose generating graphs do not contain the path P3 of length 3 as an induced
subgraph.
Proposition 4.1. Let G be a non-trivial 2-generated finite group. Then Γ(G) does
not contain an induced subgraph isomorphic to P3 if and only if either G ∼= C2 × C2
or G ∼= Cp for some prime p.
Proof. Suppose that G satisfies the following property:

(*) there exist a, b ∈ G such that G = 〈a, b〉, G 6= 〈a〉, G 6= 〈b〉 and a 6= a−1.

Then (a, b, a−1) is a three-vertex path in Γ(G).
First assume G = 〈a, b〉 is not cyclic. If G is not a dihedral group, then (|a|, |b|) 6=

(2, 2). If G ∼= Dn is a dihedral group of order 2n, then we may choose a, b such that
(|a|, |b|) = (n, 2). So if G is not cyclic, then either G satisfies (*) or G ∼= C2 × C2. In
this latter case, assume that (x1, x2, x3) is a three-vertex path in Γ(G): then xi 6= 1
for any i ∈ {1, 2, 3}, but then {x1, x2, x3} induces a complete graph K3.
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Finally, suppose G = 〈x〉 ∼= Cn. If n = rs and (r, s) = 1, then G = 〈xr, xs〉 and
(|xr|, |xs|) = (s, r) 6= (2, 2) so G satisfies (*). If n = pt with p a prime and t > 2, then
(1, x, xp) is a three-vertex path in Γ(G). If n = p is a prime and x1, x2, x3 are three
distinct elements of G, then {x1, x2, x3} induces a complete graph K3. �

Lemma 4.2. Let p be a prime and assume that either G is a cyclic p-group or |G| =
2p. Suppose that the subgraph of Γ(G) induced by four distinct non-isolated vertices
contains at least one edge. Then at least one of the four vertices is adjacent to all the
others.

Proof. Assume that X = {g1, g2, g3, g4} induces a non empty-edges subgraph of Γ(G).
If G ∼= Cpn is cyclic of prime power order, then there exists i with |gi| = pn (otherwise
all the elements of X belong to the unique maximal subgroup of G). But then gi is
adjacent to gj whenever j 6= i.

Now assume |G| = 2p with p a prime. If X contains an element of order 2p then
this element generates G so it is adjacent to all the others. Moreover we cannot have
|gj | = p for every j ∈ {1, . . . , 4}, since all the elements of order p belong to the same
maximal subgroup. Thus there exists gi ∈ X with |gi| = 2, but again this implies that
gi is adjacent to gj whenever j 6= i. �

Proof of Theorem 1.12. Clearly (2) implies (3).
Assume that (3) holds. If there exist a, b ∈ G so that G = 〈a, b〉, 〈a〉 6= G, 〈b〉 6= G,

|a| 6= 2, |b| 6= 2, then the subgraph of Γ(G) induced by {a, b, a−1, b−1} is a four-vertex
cycle. If G is cyclic of order n, then we can find a, b with these properties except when
n is a prime-power or n = 2p with p a prime. So we may assume that G is non-cyclic
and G = 〈a, b〉 with |a| = 2. Moreover either b or ab has order 2, otherwise (b, ab)
is a generating pair with the previous properties. Hence G = 〈a, b〉 = 〈a, ab〉 can be
generated by two involutions, so G is isomorphic to a dihedral group Dn of order 2n
and we may assume |b| = n. If n is not a prime and p is a prime divisor of n, then
the subgraph of Γ(G) induced by {a, b, abp, b−1} is a four-vertex cycle.

It follows from Lemma 4.2 that (4) implies (2).
It was shown in [9] that a graph is split if and only if it does not have an induced

subgraph isomorphic to one of the three forbidden graphs, C4, C5 or 2K2 (here 2K2
denotes the graph with four vertices, two disjoint edges, and no further edges con-
necting the vertices). In particular (1) implies (3) and we may immediately deduce
from Lemma 4.2 that (4) implies (1). �
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