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Petrie symmetric functions

Darij Grinberg

Abstract For any positive integer k and nonnegative integer m, we consider the symmetric
function G (k,m) defined as the sum of all monomials of degree m that involve only exponents
smaller than k. We call G (k,m) a Petrie symmetric function in honor of Flinders Petrie, as
the coefficients in its expansion in the Schur basis are determinants of Petrie matrices (and
thus belong to {0, 1,−1} by a classical result of Gordon and Wilkinson). More generally, we
prove a Pieri-like rule for expanding a product of the form G (k,m) · sµ in the Schur basis
whenever µ is a partition; all coefficients in this expansion belong to {0, 1,−1}. We also show
that G (k, 1) , G (k, 2) , G (k, 3) , . . . form an algebraically independent generating set for the
symmetric functions when 1− k is invertible in the base ring, and we prove a conjecture of Liu
and Polo about the expansion of G (k, 2k − 1) in the Schur basis.

Considered as a ring, the symmetric functions (which is short for “formal power series
in countably many indeterminates x1, x2, x3, . . . that are of bounded degree and fixed
under permutations of the indeterminates”) are hardly a remarkable object: By a
classical result essentially known to Gauss, they form a polynomial ring in countably
many indeterminates. The true theory of symmetric functions is rather the study
of specific families of symmetric functions, often defined by combinatorial formulas
(e.g. as multivariate generating functions) but interacting deeply with many other
fields of mathematics. Classical families are, for example, the monomial symmetric
functions mλ, the complete homogeneous symmetric functions hn, the power-sum
symmetric functions pn, and the Schur functions sλ. Some of these families – such
as the monomial symmetric functions mλ and the Schur functions sλ – form bases of
the ring of symmetric functions (as a module over the base ring).

In this paper, we introduce a new family (G (k,m))k>1; m>0 of symmetric functions,
which we call the Petrie symmetric functions in honor of Flinders Petrie. For any
integers k > 1 and m > 0, we define G (k,m) as the sum of all monomials of degree
m (in x1, x2, x3, . . .) that involve only exponents smaller than k. When G (k,m) is
expanded in the Schur basis (i.e. as a linear combination of Schur functions sλ), all
coefficients belong to {0, 1,−1} by a classical result of Gordon and Wilkinson, as they
are determinants of so-called Petrie matrices (whence our name for G (k,m)). We
give an explicit combinatorial description for the coefficients as well. More generally,
we prove a Pieri-like rule for expanding a product of the form G (k,m) · sµ in the
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Schur basis whenever µ is a partition; all coefficients in this expansion again belong
to {0, 1,−1} (although we have no explicit combinatorial rule for them). We show
some further properties of G (k,m) and prove that if k is a fixed positive integer
such that 1− k is invertible in the base ring, then G (k, 1) , G (k, 2) , G (k, 3) , . . . form
an algebraically independent generating set for the symmetric functions. We prove a
conjecture of Liu and Polo in [19, Remark 1.4.5] about the expansion of G (k, 2k − 1)
in the Schur basis.

This paper begins with Section 1, in which we introduce the notions and notations
that the paper will rely on. (Further notations will occasionally be introduced as
the need arises.) The rest of the paper consists of two essentially independent parts.
The first part comprises Section 2, in which we define the Petrie symmetric functions
G (k,m) (and the related power series G (k)) and state several of their properties, and
Section 3, in which we prove said properties. The second part is Section 4, which is
devoted to proving the conjecture of Liu and Polo.(1) A final Section 5 adds comments,
formulates two conjectures, and (in its last subsection) explores a more general family
of symmetric functions that still shares some of the properties of the Petrie functions
G (k,m). (As a byproduct of the latter generalization, a formula for the antipode of
G (k,m) – Corollary 5.25 – emerges.)

Acknowledgements. I thank Moussa Ahmia, Per Alexandersson, François Bergeron,
Steve Doty, Ira Gessel, Jim Haglund, Linyuan Liu, Patrick Polo, Sasha Postnikov,
Christopher Ryba, Richard Stanley, Ole Warnaar and Mark Wildon for interesting
and helpful conversations, and two referees for helpful suggestions. Special thanks are
due to Sasha Postnikov for his permission to include his generalization of the Petrie
symmetric functions.

This paper was started at the Mathematisches Forschungsinstitut Oberwolfach,
where I was staying as a Leibniz fellow in Summer 2019, and finished during a semes-
ter program at the Institut Mittag–Leffler in 2020. I thank both institutes for their
hospitality. The SageMath computer algebra system [26] has been used in discovering
some of the results.

Remarks. 1. A short exposition of the main results of this paper (without proofs),
along with an additional question motivated by it, can be found in [14].

2. While finishing this work, I have become aware of three independent discoveries
of the Petrie symmetric functions G (k,m):

(a) In [8, §3.3], Stephen Doty and Grant Walker define a modular complete sym-
metric function h′d, which is precisely our Petrie symmetric function G (k,m)
up to a renaming of variables (namely, their m and d correspond to our k
and m). Some of our results appear in their work: Our Theorem 2.20 is (a
slight generalization of) [8, Corollary 3.9]; our Theorem 2.26 is (part of) [8,
Proposition 3.15] restated in the language of Hopf algebras. The h′d are stud-
ied further in Walker’s follow-up paper [27], some of whose results mirror ours
again (in particular, the maps ψp and ψp from [27] are our fp and vp).

(b) The preprint [10] by Houshan Fu and Zhousheng Mei introduces the Petrie
symmetric functions G (k,m) and refers to them as truncated homogeneous
symmetric functions h[k−1]

m . Some results below are also independently ob-
tained in [10]. In particular, Theorem 2.8 is a formula in [10, §2], and Theo-
rem 2.13 is equivalent to [10, Proposition 2.9]. The particular case of Theorem
2.20 when k = Q is part of [10, Theorem 2.7].

(1)This proof is independent of the first part of the paper, except that it uses the very simple
Proposition 2.3 (c).
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(c) The paper [3] by Bazeniar, Ahmia and Belbachir introduces the symmetric
functionsG (k,m) as well, or rather their evaluations (G (k,m)) (x1, x2, . . . , xn)
at finitely many variables x1, x2, . . . , xn; it denotes them by E

(k−1)
m (n) =

E
(k−1)
m (x1, x2, . . . , xn). Ahmia and Merca continue the study of these

E
(k−1)
m (x1, x2, . . . , xn) in [1]. Our Theorem 2.19 is equivalent to the second

formula in [1, Theorem 3.3] (although we are using infinitely many variables).
(d) The formal power series G (k) also appears in [12, Chapter I, §6], under the

guise of Bott’s cannibalistic class θj (e) (for j = k and rewritten in the lan-
guage of λ-ring operations(2)); it is used there to prove an abstract Riemann–
Roch theorem. An application to group representations appears in [2].

3. The Petrie symmetric functions have been added to Per Alexandersson’s collec-
tion of symmetric functions at https://www.math.upenn.edu/~peal/polynomials/
petrie.htm .

Remark on alternative versions. This paper also has an arXiv version [15],
which includes some proofs that are here omitted for brevity. It also has a detailed
version [16] with many more details.

1. Notations
We will use the following notations (most of which are also used in [17, §2.1]):

• We let N = {0, 1, 2, . . .}.
• The words “positive”, “larger”, etc. will be used in their Anglophone meaning
(so that 0 is neither positive nor larger than itself).

• We fix a commutative ring k; we will use this k as the base ring in what
follows.

• A weak composition means an infinite sequence of nonnegative integers that
contains only finitely many nonzero entries (i.e. a sequence (α1, α2, α3, . . .) ∈
N∞ such that all but finitely many i ∈ {1, 2, 3, . . .} satisfy αi = 0).

• We let WC denote the set of all weak compositions.
• For any weak composition α and any positive integer i, we let αi denote the
i-th entry of α (so that α = (α1, α2, α3, . . .)). More generally, we use this
notation whenever α is an infinite sequence of any kind of objects.

• The size |α| of a weak composition α is defined to be α1 +α2 +α3 + · · · ∈ N.
• A partition means a weak composition whose entries weakly decrease (i.e. a
weak composition α satisfying α1 > α2 > α3 > · · · ).

• If n ∈ Z, then a partition of n means a partition α having size n (that is,
satisfying |α| = n).

• We let Par denote the set of all partitions. For each n ∈ Z, we let Parn denote
the set of all partitions of n.

• We will sometimes omit trailing zeroes from partitions: i.e. a partition
λ = (λ1, λ2, λ3, . . .) will be identified with the k-tuple (λ1, λ2, . . . , λk)
whenever k ∈ N satisfies λk+1 = λk+2 = λk+3 = · · · = 0. For example,
(3, 2, 1, 0, 0, 0, . . .) = (3, 2, 1) = (3, 2, 1, 0).

(2)See [18, §16.74] for the connection between symmetric functions (over Z) and universal opera-
tions on λ-rings. To be specific: If a is an element of a λ-ring A, then the canonical λ-ring morphism
ΛZ → A (where ΛZ is the ring of symmetric functions over Z) that sends e1 = x1 +x2 +x3 + · · · ∈ ΛZ
to a ∈ A will send the Petrie symmetric function G (k,m) to the “m-th graded component” of Bott’s
cannibalistic class θk (a). (Bott’s cannibalistic class θk (a) itself is defined only if a is a “positive
element” in the sense of [12] (or can only be defined in an appropriate closure of A). When it is
defined, it is the image of the series G (k). Otherwise, its “graded components” are the right object
to consider.)
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• The partition (0, 0, 0, . . .) = () is called the empty partition and denoted by
∅.

• A part of a partition λ means a nonzero entry of λ. For example, the parts of
the partition (3, 1, 1) = (3, 1, 1, 0, 0, 0, . . .) are 3, 1, 1.

• We will use the notation 1k for “1, 1, . . . , 1︸ ︷︷ ︸
k times

” in partitions. (For example,(
2, 14) = (2, 1, 1, 1, 1). This notation is a particular case of the more gen-
eral notation mk for “m,m, . . . ,m︸ ︷︷ ︸

k times

” in partitions, used, e.g. in [17, Definition

2.2.1].)
• We let Λ denote the ring of symmetric functions in infinitely many vari-
ables x1, x2, x3, . . . over k. This is a subring of the ring k [[x1, x2, x3, . . .]]
of formal power series. To be more specific, Λ consists of all power series
in k [[x1, x2, x3, . . .]] that are symmetric (i.e. invariant under permutations of
the variables) and of bounded degree (see [17, §2.1] for the precise meaning
of this).

• A monomial shall mean a formal expression of the form xα1
1 xα2

2 xα3
3 · · · with

α ∈WC. Formal power series are formal infinite k-linear combinations of such
monomials.

• For any weak composition α, we let xα denote the monomial xα1
1 xα2

2 xα3
3 · · · .

• The degree of a monomial xα is defined to be |α|.
• A formal power series is said to be homogeneous of degree n (for some n ∈ N)

if all monomials appearing in it (with nonzero coefficient) have degree n. In
particular, the power series 0 is homogeneous of any degree.

• If f ∈ k [[x1, x2, x3, . . .]] is a power series, then there is a unique family
(fi)i∈N = (f0, f1, f2, . . .) of formal power series fi ∈ k [[x1, x2, x3, . . .]] such
that each fi is homogeneous of degree i and such that f =

∑
i∈N

fi. This family

(fi)i∈N is called the homogeneous decomposition of f , and its entry fi (for any
given i ∈ N) is called the i-th degree homogeneous component of f .

• The k-algebra Λ is graded: i.e. any symmetric function f can be uniquely
written as a sum

∑
i∈N

fi, where each fi is a homogeneous symmetric function

of degree i, and where all but finitely many i ∈ N satisfy fi = 0.
We shall use the symmetric functions mλ, hn, en, pn, sλ in Λ as defined in [17,

Sections 2.1 and 2.2]. Let us briefly recall how they are defined:
• For any partition λ, we define the monomial symmetric function mλ ∈ Λ by(3)

mλ =
∑

xα,

where the sum ranges over all weak compositions α ∈ WC that can be ob-
tained from λ by permuting entries(4). For example,

m(2,2,1) =
∑
i<j<k

x2
ix

2
jxk +

∑
i<j<k

x2
ixjx

2
k +

∑
i<j<k

xix
2
jx

2
k.

The family (mλ)λ∈Par (that is, the family of the symmetric functions mλ as
λ ranges over all partitions) is a basis of the k-module Λ.

(3)This definition of mλ is not the same as the one given in [17, Definition 2.1.3]; but it is easily
seen to be equivalent to the latter (i.e. it defines the same mλ). See [16] for the details of the proof.

(4)Here, we understand λ to be an infinite sequence, not a finite tuple, so the entries being
permuted include infinitely many 0’s.
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• For each n ∈ Z, we define the complete homogeneous symmetric function
hn ∈ Λ by

hn =
∑

i16i26···6in

xi1xi2 · · ·xin =
∑

α∈WC;
|α|=n

xα =
∑

λ∈Parn

mλ.

Thus, h0 = 1 and hn = 0 for all n < 0.
We know (e.g. from [17, Proposition 2.4.1]) that the family (hn)n>1 =

(h1, h2, h3, . . .) is algebraically independent and generates Λ as a k-algebra.
In other words, Λ is freely generated by h1, h2, h3, . . . as a commutative k-
algebra.

• For each n ∈ Z, we define the elementary symmetric function en ∈ Λ by

en =
∑

i1<i2<···<in

xi1xi2 · · ·xin =
∑

α∈WC∩{0,1}∞;
|α|=n

xα.

Thus, e0 = 1 and en = 0 for all n < 0. If n > 0, then en = m(1n), where, as
we have agreed above, the notation (1n) stands for the n-tuple (1, 1, . . . , 1).

• For each positive integer n, we define the power-sum symmetric function pn ∈
Λ by

pn = xn1 + xn2 + xn3 + · · · = m(n).

• For each partition λ, we define the Schur function sλ ∈ Λ by

sλ =
∑

xT ,

where the sum ranges over all semistandard tableaux T of shape λ, and where
xT denotes the monomial obtained by multiplying the xi for all entries i of
T . We refer the reader to [17, Definition 2.2.1] or to [25, §7.10] for the details
of this definition and further descriptions of the Schur functions. One of the
most important properties of Schur functions (see, e.g. [17, (2.4.16) for µ = ∅]
or [21, Theorem 2.32] or [25, Theorem 7.16.1 for µ = ∅] or [23, Theorem 7.2.3
(a)]) is the fact that

(1) sλ = det
(

(hλi−i+j)16i6`, 16j6`

)
for any partition λ = (λ1, λ2, . . . , λ`). This is known as the (first, straight-
shape) Jacobi–Trudi formula.

The family (sλ)λ∈Par is a basis of the k-module Λ, and is known as the
Schur basis. It is easy to see that each n ∈ N satisfies s(n) = hn and s(1n) = en.
Moreover, for each partition λ, the Schur function sλ ∈ Λ is homogeneous of
degree |λ|.

Among the many relations between these symmetric functions is an expression for
the power-sum symmetric function pn in terms of the Schur basis:

Proposition 1.1. Let n be a positive integer. Then,

pn =
n−1∑
i=0

(−1)i s(n−i,1i).

Proof. This is a classical formula, and appears (e.g. ) in [9, Problem 4.21], [17, Exercise
5.4.12(g)] and [21, Exercise 2.2]. Alternatively, this is an easy consequence of the
Murnaghan–Nakayama rule (see [21, Theorem 6.3] or [24, Theorem 4.4.2] or [25,
Theorem 7.17.3] or [28, (1)]), applied to the product pns∅ (since s∅ = 1). �
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Finally, we will sometimes use the Hall inner product 〈·, ·〉 : Λ× Λ→ k as defined
in [17, Definition 2.5.12].(5) This is the k-bilinear form on Λ that is defined by the
requirement that

〈sλ, sµ〉 = δλ,µ for any λ, µ ∈ Par

(where δλ,µ denotes the Kronecker delta). Thus, the Schur basis (sλ)λ∈Par of Λ is an
orthonormal basis with respect to the Hall inner product. It is easy to see(6) that the
Hall inner product (·, ·) is graded: i.e. we have

(2) 〈f, g〉 = 0

if f and g are two homogeneous symmetric functions of different degrees. We shall
also use the following two known evaluations of the Hall inner product:

Proposition 1.2. Let n be a positive integer. Then, 〈hn, pn〉 = 1.

Proposition 1.3. Let n be a positive integer. Then, 〈en, pn〉 = (−1)n−1.

Both of these propositions follow easily from Proposition 1.1 (since hn = s(n) and
en = s(1n)). See [15] for details.

2. Theorems
2.1. Definitions. The main role in this paper is played by two power series that we
will now define:

Definition 2.1.

(a) For any positive integer k, we let(7)

(3) G (k) =
∑

α∈WC;
αi<k for all i

xα.

This is a symmetric formal power series in k [[x1, x2, x3, . . .]] (but does not
belong to Λ in general).

(b) For any positive integer k and any m ∈ N, we let

(4) G (k,m) =
∑

α∈WC;
|α|=m;

αi<k for all i

xα ∈ Λ.

(5)However, it is denoted by (·, ·) rather than by 〈·, ·〉 in [17]. (That is, what we call 〈a, b〉 is
denoted by (a, b) in [17].)

The Hall inner product also appears (for k = Z and k = Q) in [9, Definition 7.5], in [25, §7.9]
and in [20, Section I.4] (note that it is called the “scalar product” in the latter two references). The
definitions of the Hall inner product in [25, §7.9] and in [20, Section I.4] are different from ours, but
they are equivalent to ours (because of [25, Corollary 7.12.2] and [20, Chapter I, (4.8)]).

(6)See, e.g. [17, Exercise 2.5.13(a)] for a proof.
(7)Here and in all similar situations, “for all i” means “for all positive integers i”.
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Example 2.2. (a) We have

G (2) =
∑

α∈WC;
αi<2 for all i

xα

= 1 + x1 + x2 + x3 + · · ·+ x1x2 + x1x3 + x2x3 + · · ·
+ x1x2x3 + x1x2x4 + x2x3x4 + · · ·
+ · · ·

=
∑
m∈N

∑
16i1<i2<···<im

xi1xi2 · · ·xim︸ ︷︷ ︸
=em

=
∑
m∈N

em.

(b) For each m ∈ N, we have

G (2,m) =
∑

α∈WC;
|α|=m;

αi<2 for all i

xα =
∑

16i1<i2<···<im

xi1xi2 · · ·xim = em.

We suggest the name k-Petrie symmetric series for G (k) and the name (k,m)-
Petrie symmetric function for G (k,m). The reason for this naming is that the coeffi-
cients of these functions in the Schur basis of Λ are determinants of Petrie matrices,
as we will see in Subsection 3.6.

2.2. Basic identities. We begin our study of the G (k) and G (k,m) with some
simple properties:

Proposition 2.3. Let k be a positive integer.
(a) The symmetric function G (k,m) is the m-th degree homogeneous component

of G (k) for each m ∈ N.
(b) We have

G (k) =
∑

α∈WC;
αi<k for all i

xα =
∑
λ∈Par;

λi<k for all i

mλ =
∞∏
i=1

(
x0
i + x1

i + · · ·+ xk−1
i

)
.

(c) We have

G (k,m) =
∑

α∈WC;
|α|=m;

αi<k for all i

xα =
∑
λ∈Par;
|λ|=m;

λi<k for all i

mλ

for each m ∈ N.
(d) If m ∈ N satisfies k > m, then G (k,m) = hm.
(e) If m ∈ N and k = 2, then G (k,m) = em.
(f) If m = k, then G (k,m) = hm − pm.

Proving Proposition 2.3 makes good practice in understanding the definitions of
mλ, hn, en, pn, G (k) and G (k, n). We omit the proof here; it can be found in full
(hardly necessary) detail in [16].

Parts (d) and (e) of Proposition 2.3 suggest to regard the Petrie symmetric func-
tions G (k,m) as an interpolation between the hm and the em.
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2.3. The Schur expansion. The solution to [25, Exercise 7.3] gives an expansion
of G (3) in terms of the elementary symmetric functions (due to I. M. Gessel); this
expansion can be rewritten as

G (3) =
∑
n∈N

e2
n +

∑
m<n

cm,nemen, where cm,n = (−1)m−n
{

2, if 3|m− n;
−1, if 3 -m− n.

We shall instead expand G (k) in terms of Schur functions. For this, we need to define
some notations.

Convention 1.We shall use the Iverson bracket notation: If A is a logical statement,

then [A] shall denote the truth value of A (that is, the integer
{

1, if A is true;
0, if A is false

).

We shall furthermore use the notation (ai,j)16i6`, 16j6` for the `× `-matrix whose
(i, j)-th entry is ai,j for each i, j ∈ {1, 2, . . . , `}.

Definition 2.4. Let λ = (λ1, λ2, . . . , λ`) ∈ Par and µ = (µ1, µ2, . . . , µ`) ∈ Par, and
let k be a positive integer. Then, the k-Petrie number petk (λ, µ) of λ and µ is the
integer defined by

petk (λ, µ) = det
(

([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
.

Note that this integer does not depend on the choice of ` (in the sense that it does not
change if we enlarge ` by adding trailing zeroes to the representations of λ and µ);
this follows from Lemma 2.6 below.

Example 2.5. Let λ be the partition (3, 2, 1) ∈ Par, let µ be the partition (1, 1) ∈ Par,
let ` = 3, and let k be a positive integer. Then, the definition of petk (λ, µ) yields

petk (λ, µ)

= det
(

([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
= det

 [0 6 λ1 − µ1 < k] [0 6 λ1 − µ2 + 1 < k] [0 6 λ1 − µ3 + 2 < k]
[0 6 λ2 − µ1 − 1 < k] [0 6 λ2 − µ2 < k] [0 6 λ2 − µ3 + 1 < k]
[0 6 λ3 − µ1 − 2 < k] [0 6 λ3 − µ2 − 1 < k] [0 6 λ3 − µ3 < k]


= det

 [0 6 3− 1 < k] [0 6 3− 1 + 1 < k] [0 6 3− 0 + 2 < k]
[0 6 2− 1− 1 < k] [0 6 2− 1 < k] [0 6 2− 0 + 1 < k]
[0 6 1− 1− 2 < k] [0 6 1− 1− 1 < k] [0 6 1− 0 < k]


(
since λ1 = 3 and λ2 = 2 and λ3 = 1
and µ1 = 1 and µ2 = 1 and µ3 = 0

)

= det

 [0 6 2 < k] [0 6 3 < k] [0 6 5 < k]
[0 6 0 < k] [0 6 1 < k] [0 6 3 < k]

[0 6 −2 < k] [0 6 −1 < k] [0 6 1 < k]

 .

Thus, taking k = 4, we obtain

pet4 (λ, µ) = det

 [0 6 2 < 4] [0 6 3 < 4] [0 6 5 < 4]
[0 6 0 < 4] [0 6 1 < 4] [0 6 3 < 4]

[0 6 −2 < 4] [0 6 −1 < 4] [0 6 1 < 4]

 = det

 1 1 0
1 1 1
0 0 1

 = 0.

On the other hand, taking k = 3, we obtain

pet3 (λ, µ) = det

 [0 6 2 < 3] [0 6 3 < 3] [0 6 5 < 3]
[0 6 0 < 3] [0 6 1 < 3] [0 6 3 < 3]

[0 6 −2 < 3] [0 6 −1 < 3] [0 6 1 < 3]

 = det

 1 0 0
1 1 0
0 0 1

 = 1.
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Lemma 2.6. Let λ ∈ Par and µ ∈ Par, and let k be a positive integer. Let ` ∈ N
be such that λ = (λ1, λ2, . . . , λ`) and µ = (µ1, µ2, . . . , µ`). Then, the determinant
det
(

([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
does not depend on the choice of `.

See Subsection 3.5 for the simple proof of Lemma 2.6.
Surprisingly, the k-Petrie numbers petk (λ, µ) can take only three possible values:

Proposition 2.7. Let λ ∈ Par and µ ∈ Par, and let k be a positive integer. Then,
petk (λ, µ) ∈ {−1, 0, 1}.

Proposition 2.7 will be proved in Subsection 3.6.
We can now expand the Petrie symmetric functions G (k,m) and the power series

G (k) in the basis (sλ)λ∈Par of Λ:

Theorem 2.8. Let k be a positive integer. Then,

G (k) =
∑
λ∈Par

petk (λ,∅) sλ.

(Recall that ∅ denotes the empty partition () = (0, 0, 0, . . .).)

We will not prove Theorem 2.8 directly; instead, we will first show a stronger result
(Theorem 2.15), and then derive Theorem 2.8 from it in Subsection 3.8.

Corollary 2.9. Let k be a positive integer. Let m ∈ N. Then,

G (k,m) =
∑

λ∈Parm

petk (λ,∅) sλ.

Corollary 2.9 easily follows from Theorem 2.8 using Proposition 2.3 (a); but again,
we shall instead derive it from a stronger result (Corollary 2.16) in Subsection 3.8.

We will see a more explicit description of the k-Petrie numbers petk (λ,∅) in Sub-
section 2.4.

Remark 2.10. Corollary 2.9, in combination with Proposition 2.7, shows that each
k-Petrie function G (k,m) (for any k > 0 and m ∈ N) is a linear combination of Schur
functions, with all coefficients belonging to {−1, 0, 1}. It is natural to expect the more
general symmetric functions

G̃ (k, k′,m) =
∑

α∈WC;
|α|=m;

k′6αi<k for all i

xα, where 0 < k′ 6 k,

to have the same property. However, this is not the case. For example,

G̃ (4, 2, 5) = m(3,2) = −2s(1,1,1,1,1) + 2s(2,1,1,1) − s(2,2,1) − s(3,1,1) + s(3,2).

2.4. An explicit description of the k-Petrie numbers petk (λ,∅). Can the
k-Petrie numbers petk (λ,∅) from Definition 2.4 be described more explicitly than
as determinants? To be somewhat pedantic, the answer to this question depends on
one’s notion of “explicit”, as determinants are not hard to compute, and another
algorithm for calculating petk (λ,∅) can be extracted from our proof of Proposition
2.7 (when combined with [13, proof of Theorem 1]). Nevertheless, there is a more
explicit description. This description will be stated in Theorem 2.13 further below.

First, let us get a simple case out of the way:

Proposition 2.11. Let λ ∈ Par, and let k be a positive integer such that λ1 > k.
Then, petk (λ,∅) = 0.
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Proof of Proposition 2.11. Write λ as λ = (λ1, λ2, . . . , λ`). Thus, ` > 1 (since λ1 >
k > 0). Moreover, the empty partition ∅ can be written as ∅ = (∅1,∅2, . . . ,∅`)
(since ∅i = 0 for each integer i > `).

Thus, we have λ = (λ1, λ2, . . . , λ`) and ∅ = (∅1,∅2, . . . ,∅`). Hence, the definition
of petk (λ,∅) yields

petk (λ,∅) = det


0 6 λi − ∅j︸︷︷︸

=0

−i+ j < k


16i6`, 16j6`


= det

(
([0 6 λi − i+ j < k])16i6`, 16j6`

)
.(5)

But each j ∈ {1, 2, . . . , `} satisfies [0 6 λ1 − 1 + j < k] = 0 (since λ1 − 1 + j︸︷︷︸
>1

>

λ1−1+1 = λ1 > k). In other words, the `×`-matrix ([0 6 λi − i+ j < k])16i6`, 16j6`
has first row (0, 0, . . . , 0). Therefore, its determinant is 0. In other words, petk (λ,∅) =
0 (since petk (λ,∅) is its determinant(8)). This proves Proposition 2.11. �

Stating Theorem 2.13 will require some notation:

Definition 2.12. For any λ ∈ Par, we define the transpose of λ to be the partition
λt ∈ Par determined by(

λt
)
i

= |{j ∈ {1, 2, 3, . . .} | λj > i}| for each i > 1.

This partition λt is also known as the conjugate of λ, and is perhaps easiest to un-
derstand in terms of Young diagrams: To wit, the Young diagram of λt is obtained
from that of λ by a flip across the main diagonal.

One important use of transpose partitions is the following fact (see, e.g. [17, (2.4.17)
for µ = ∅] or [21, Theorem 2.32] or [25, Theorem 7.16.2 applied to λt and ∅ instead
of λ and µ] for proofs): We have

(6) sλt = det
(

(eλi−i+j)16i6`, 16j6`

)
for any partition λ = (λ1, λ2, . . . , λ`). This is known as the (second, straight-shape)
Jacobi–Trudi formula.

We will use the following notation for quotients and remainders:

Convention 2. Let k be a positive integer. Let n ∈ Z. Then, n%k shall denote the
remainder of n divided by k, whereas n//k shall denote the quotient of this division
(an integer). Thus, n//k and n%k are uniquely determined by the three requirements
that n//k ∈ Z and n%k ∈ {0, 1, . . . , k − 1} and n = (n//k) · k + (n%k).

The “//” and “%” signs bind more strongly than the “+” and “−” signs. That is,
for example, the expression “a+b%k” shall be understood to mean “a+(b%k)” rather
than “(a+ b) %k”.

Now, we can state our “formula” for k-Petrie numbers of the form petk (λ,∅).

Theorem 2.13. Let λ ∈ Par, and let k be a positive integer. Let µ = λt.
(a) If µk 6= 0, then petk (λ,∅) = 0.
From now on, let us assume that µk = 0.
Define a (k − 1)-tuple (β1, β2, . . . , βk−1) ∈ Zk−1 by setting

(7) βi = µi − i for each i ∈ {1, 2, . . . , k − 1} .

(8)by (5)
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Define a (k − 1)-tuple (γ1, γ2, . . . , γk−1) ∈ {1, 2, . . . , k}k−1 by setting

(8) γi = 1 + (βi − 1) %k for each i ∈ {1, 2, . . . , k − 1} .

(b) If the k − 1 numbers γ1, γ2, . . . , γk−1 are not distinct, then petk (λ,∅) = 0.
(c) Assume that the k − 1 numbers γ1, γ2, . . . , γk−1 are distinct. Let

g =
∣∣∣{(i, j) ∈ {1, 2, . . . , k − 1}2 | i < j and γi < γj

}∣∣∣ .
Then, petk (λ,∅) = (−1)(β1+β2+···+βk−1)+g+(γ1+γ2+···+γk−1).

The proof of this theorem is technical and will be given in Subsection 3.9.
It is possible to restate part of Theorem 2.13 without using λt:

Proposition 2.14. Let λ ∈ Par, and let k be a positive integer. Assume that λ1 < k.
Define a subset B of Z by

B = {λi − i | i ∈ {1, 2, 3, . . .}} .

Let 0, 1, . . . , k − 1 be the residue classes of the integers 0, 1, . . . , k − 1 modulo k
(considered as subsets of Z). Let W be the set of all integers smaller than k − 1.

Then, petk (λ,∅) 6= 0 if and only if each i ∈ {0, 1, . . . , k − 1} satisfies∣∣(i ∩W )rB
∣∣ 6 1.

In Subsection 3.9, we will outline how this proposition can be derived from Theorem
2.13.

The sets B and
(
i ∩W

)
r B in Proposition 2.14 are related to the k-modular

structure of the partition λ, such as the β-set, the k-abacus, the k-core and the k-
quotient (see [22, §§1–3] for some of these concepts). Essentially equivalent concepts
include the Maya diagram of λ (see, e.g. [7, §3.3])(9) and the first column hook lengths
of λ (see [22, Proposition (1.3)]).

2.5. A “Pieri” rule. Now, the following generalization of Theorem 2.8 holds:

Theorem 2.15. Let k be a positive integer. Let µ ∈ Par. Then,

G (k) · sµ =
∑
λ∈Par

petk (λ, µ) sλ.

Theorem 2.8 is the particular case of Theorem 2.15 for µ = ∅.
We shall prove Theorem 2.15 in Subsection 3.7 (see [15] for another proof).
We can also generalize Corollary 2.9 to obtain a Pieri-like rule for multiplication

by G (k,m):

Corollary 2.16. Let k be a positive integer. Let m ∈ N. Let µ ∈ Par. Then,

G (k,m) · sµ =
∑

λ∈Parm+|µ|

petk (λ, µ) sλ.

Corollary 2.16 follows from Theorem 2.15 by projecting onto the (m+ |µ|)-th
graded component of Λ. (We shall explain this argument in more detail in Subsection
3.8.)

(9)The Maya diagram of λ is a coloring of the set
{
z +

1
2
| z ∈ Z

}
with the colors black and

white, in which the elements λi− i+
1
2
(for all i ∈ {1, 2, 3, . . .}) are colored black while all remaining

elements are colored white. Borcherds’s proof of the Jacobi triple product identity ([6, §13.3]) also
essentially constructs this Maya diagram (wording it in terms of the “Dirac sea” model for electrons).
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2.6. Coproducts of Petrie functions. In the following, the “⊗” sign will always
stand for ⊗k (that is, tensor product of k-modules or of k-algebras).

The k-algebra Λ is a Hopf algebra due to the presence of a comultiplication ∆ :
Λ→ Λ⊗ Λ. We recall (from [17, §2.1]) one way to define this comultiplication:

Consider the rings

k [[x]] := k [[x1, x2, x3, . . .]] , and
k [[x,y]] := k [[x1, x2, x3, . . . , y1, y2, y3, . . .]]

of formal power series. We shall use the notations x and y for the sequences
(x1, x2, x3, . . .) and (y1, y2, y3, . . .) of indeterminates. If f ∈ k [[x]] is any for-
mal power series, then f (y) shall mean the result of substituting y1, y2, y3, . . .
for the variables x1, x2, x3, . . . in f . (This will be a formal power series in
k [[y1, y2, y3, . . .]].) For the sake of symmetry, we also use the analogous nota-
tion f (x) for the result of substituting x1, x2, x3, . . . for x1, x2, x3, . . . in f ; of
course, this f (x) is just f . Finally, if the power series f ∈ k [[x]] is symmet-
ric, then we use the notation f (x,y) for the result of substituting the variables
x1, x2, x3, . . . , y1, y2, y3, . . . for the variables x1, x2, x3, . . . in f (that is, choosing some
bijection(10) φ : {x1, x2, x3, . . .} → {x1, x2, x3, . . . , y1, y2, y3, . . .} and substituting
φ (xi) for each xi in f). This result does not depend on the order in which the former
variables are substituted for the latter (i.e. on the choice of the bijection φ) because
f is symmetric.

Now, the comultiplication of Λ is the map ∆ : Λ → Λ ⊗ Λ determined as follows:
For a symmetric function f ∈ Λ, we have

(9) ∆ (f) =
∑
i∈I

f1,i ⊗ f2,i,

where f1,i, f2,i ∈ Λ are such that

(10) f (x,y) =
∑
i∈I

f1,i (x) f2,i (y) .

More precisely, if f ∈ Λ, if I is a finite set, and if (f1,i)i∈I ∈ ΛI and (f2,i)i∈I ∈ ΛI

are two families satisfying (10), then ∆ (f) is given by (9). (11)
For example, for any n ∈ N, it is easy to see that

en (x,y) =
n∑
i=0

ei (x) en−i (y) ,

and thus the above definition of ∆ yields

∆ (en) =
n∑
i=0

ei ⊗ en−i.

A similar formula exists for the image of a Petrie symmetric function under ∆:

Theorem 2.17. Let k be a positive integer. Let m ∈ N. Then,

∆ (G (k,m)) =
m∑
i=0

G (k, i)⊗G (k,m− i) .

(10)Such bijections clearly exist, since the sets {x1, x2, x3, . . .} and {x1, x2, x3, . . . , y1, y2, y3, . . .}
have the same cardinality (namely, ℵ0). (This is part of the familiar metaphor of “Hilbert’s hotel”.)

(11)In the language of [17, §2.1], this can be restated as ∆ (f) = f (x,y), because Λ ⊗ Λ is
identified with a certain subring of k [[x,y]] in [17, §2.1] (via the injection Λ ⊗ Λ → k [[x,y]] that
sends any u⊗ v ∈ Λ⊗ Λ to u (x) v (y) ∈ k [[x,y]]).
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The proof of Theorem 2.17 is a simple consequence of (9) (see [15] for the details).
We omit it here, since we will prove a more general fact (Theorem 5.15) in Subsection
5.7 further below.

It is well-known that ∆ : Λ → Λ ⊗ Λ is a k-algebra homomorphism. Equipping
the k-algebra Λ with the comultiplication ∆ (as well as a counit ε : Λ → k, which
we won’t need here) yields a connected graded Hopf algebra. (See, e.g. [17, §2.1] for
proofs.)

2.7. The Frobenius endomorphisms and Petrie functions. We shall next de-
rive another formula for the Petrie symmetric functions G (k,m). For this formula,
we need the following definition ([17, Exercise 2.9.9]):

Definition 2.18. Let n ∈ {1, 2, 3, . . .}. We define a map fn : Λ→ Λ by
fn (a) = a (xn1 , xn2 , xn3 , . . .) for each a ∈ Λ.

This map fn is called the n-th Frobenius endomorphism of Λ.

Clearly, this map fn is a k-algebra endomorphism of Λ (since it amounts to a
substitution of indeterminates). It is known (from [17, Exercise 2.9.9(d)]) that this
map fn : Λ→ Λ is a Hopf algebra endomorphism of Λ.

Using the notion of plethysm (see, e.g. [25, Chapter 7, Definition A2.6] or [20,
§I.8](12)), we can view the map fn as a plethysm with the n-th power-sum symmetric
function pn, in the sense that any a ∈ Λ satisfies fn (a) = a [pn] = pn [a] as long as
k = Z. (Plethysm becomes somewhat subtle when the base ring k is complicated;
fn (a) = a [pn] holds for any k, while fn (a) = pn [a] relies on good properties of k.)
The plethystic viewpoint makes some properties of fn clear, but we shall avoid it for
reasons of elementarity.

Now, we can express the Petrie symmetric functions G (k,m) using Frobenius en-
domorphisms as follows:

Theorem 2.19. Let k be a positive integer. Let m ∈ N. Then,

G (k,m) =
∑
i∈N

(−1)i hm−ki · fk (ei) .

(The sum on the right hand side of this equality is well-defined, since all sufficiently
high i ∈ N satisfy m− ki < 0 and thus hm−ki = 0.)

Theorem 2.19 will be proved in Subsection 3.10 below.

2.8. The Petrie functions as polynomial generators of Λ. We now claim
the following:

Theorem 2.20. Fix a positive integer k. Assume that 1− k is invertible in k. Then,
the family (G (k,m))m>1 = (G (k, 1) , G (k, 2) , G (k, 3) , . . .) is an algebraically inde-
pendent generating set of the commutative k-algebra Λ. (In other words, the canonical
k-algebra homomorphism

k [u1, u2, u3, . . .]→ Λ,
um 7→ G (k,m)

is an isomorphism.)

We shall prove Theorem 2.20 in Subsection 3.11. The proof uses the following two
formulas for Hall inner products (which use Convention 1 again):

(12)Note that [25] uses the notation f [g] for the plethysm of f with g, whereas [20] uses the
notation f ◦ g for this. We shall use f [g].
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Lemma 2.21. Let k and m be positive integers. Let j ∈ N. Then, 〈pm, fk (ej)〉 =
(−1)j−1 [m = kj] k.

Proposition 2.22. Let k and m be positive integers. Then
〈pm, G (k,m)〉 = 1− [k|m] k.

Both of these formulas will be proved in Subsection 3.11 as well.

2.9. The Verschiebung endomorphisms. Now we recall another definition ([17,
Exercise 2.9.10]):

Definition 2.23. Let n ∈ {1, 2, 3, . . .}. We define a k-algebra homomorphism vn :
Λ→ Λ by

vn (hm) =
{
hm/n, if n | m;
0, if n - m

for each m > 0.

(This is well-defined, since the sequence (h1, h2, h3, . . .) is an algebraically independent
generating set of the commutative k-algebra Λ.)

This map vn is called the n-th Verschiebung endomorphism of Λ.

Again, it is known ([17, Exercise 2.9.10(e)]) that this map vn : Λ → Λ is a Hopf
algebra endomorphism of Λ. Moreover, the following holds ([17, Exercise 2.9.10(f)]):

Proposition 2.24. Let n ∈ {1, 2, 3, . . .}. Then, the maps fn : Λ→ Λ and vn : Λ→ Λ
are adjoint with respect to the Hall inner product on Λ. That is, we have

〈a, fn (b)〉 = 〈vn (a) , b〉 for any a ∈ Λ and b ∈ Λ.

Furthermore, it is known (see, e.g. [17, Exercise 2.9.10(a)]) that any positive inte-
gers n and m satisfy

(11) vn (pm) =
{
npm/n, if n | m;
0, if n - m.

2.10. The Hopf endomorphisms Uk and Vk. In this final subsection, we shall show
another way to obtain the Petrie symmetric functions G (k,m) using the machinery
of Hopf algebras. We refer, e.g. to [17, Chapters 1 and 2] for everything we will use
about Hopf algebras.

Convention 3.As already mentioned, Λ is a connected graded Hopf algebra. We let
S denote its antipode.

Definition 2.25. If C is a k-coalgebra and A is a k-algebra, and if f, g : C → A are
two k-linear maps, then the convolution f ? g of f and g is defined to be the k-linear
map mA ◦ (f ⊗ g) ◦∆C : C → A, where ∆C : C → C ⊗ C is the comultiplication of
the k-coalgebra C, and where mA : A⊗A→ A is the k-linear map sending each pure
tensor a⊗ b ∈ A⊗A to ab ∈ A.

We also recall Definition 2.23 and Definition 2.18. We now claim the following.

Theorem 2.26. Fix a positive integer k. Let Uk be the map fk ◦ S ◦ vk : Λ → Λ. Let
Vk be the map idΛ ?Uk : Λ → Λ. (This is well-defined by Definition 2.25, since Λ is
both a k-coalgebra and a k-algebra.) Then:

(a) The map Uk is a k-Hopf algebra homomorphism.
(b) The map Vk is a k-Hopf algebra homomorphism.
(c) We have Vk (hm) = G (k,m) for each m ∈ N.
(d) We have Vk (pn) = (1− [k | n] k) pn for each positive integer n.
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See Subsection 3.12 for a proof of this theorem.
Note that Theorem 2.26 can be used to give a second proof of Theorem 2.17; see

[16] for this.
We also obtain the following corollary from Theorem 2.17:

Corollary 2.27. Let k and n be two positive integers. Then, there exists a polynomial
f ∈ k [x1, x2, x3, . . .] such that
(12) (1− [k|n] k) pn = f (G (k, 1) , G (k, 2) , G (k, 3) , . . .) .

This corollary will be proved in Subsection 3.13.

3. Proofs
3.1. The symmetric functions hλ. We shall now approach the proofs of the claims
made above. First, let us introduce a family of symmetric functions, obtained by
multiplying several hn’s:
Definition 3.1. Let λ be a partition. Write λ in the form λ = (λ1, λ2, . . . , λ`), where
λ1, λ2, . . . , λ` are positive integers. Then, we define a symmetric function hλ ∈ Λ by

hλ = hλ1hλ2 · · ·hλ` .

The symmetric function hλ is called the complete homogeneous symmetric function
corresponding to the partition λ.

From [17, Corollary 2.5.17(a)], we know that the families (hλ)λ∈Par and (mλ)λ∈Par
are dual bases with respect to the Hall inner product. Thus,
(13) 〈hλ,mµ〉 = δλ,µ for any λ ∈ Par and µ ∈ Par .

We note that h0 = 1; therefore, Definition 3.1 can be restated as follows: For any
partition λ, we have

hλ = hλ1hλ2hλ3 · · ·
(this infinite product hλ1hλ2hλ3 · · · is well-defined, since every sufficiently high posi-
tive integer i satisfies λi = 0 and thus hλi = h0 = 1). This is how hλ is defined in [20,
Section I.2].

3.2. Skew Schur functions. Let us define a classical partial order on Par (see,
e.g. [17, Definition 2.3.1]):
Definition 3.2. Let λ and µ be two partitions.

We say that µ ⊆ λ if each i ∈ {1, 2, 3, . . .} satisfies µi 6 λi.
We say that µ 6⊆ λ if we don’t have µ ⊆ λ.
For example, (3, 2) ⊆ (4, 2, 1), but (3, 2, 1) 6⊆ (4, 2) (since (3, 2, 1)3 = 1 is not 6 to

(4, 2)3 = 0).
For any two partitions λ and µ, a symmetric function sλ/µ called a skew Schur

function is defined in [17, Definition 2.3.1] and in [20, §I.5] (see also [25, Definition
7.10.1] for the case when µ ⊆ λ). We shall not recall its standard definition here, but
rather state a few properties.

The first property (which can in fact be used as an alternative definition of sλ/µ)
is the first Jacobi–Trudi formula for skew shapes; it states the following:
Theorem 3.3. Let λ = (λ1, λ2, . . . , λ`) and µ = (µ1, µ2, . . . , µ`) be two partitions.
Then,

(14) sλ/µ = det
((
hλi−µj−i+j

)
16i6`, 16j6`

)
.

Theorem 3.3 appears (with proof) in [17, (2.4.16)] and in [20, Chapter I, (5.4)].
The following properties of skew Schur functions are easy to see:
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• If λ is any partition, then sλ/∅ = sλ. (Recall that ∅ denotes the empty
partition.)

• If λ and µ are two partitions satisfying µ 6⊆ λ, then sλ/µ = 0.

3.3. A Cauchy-like identity. We shall use the following identity, which connects
the skew Schur functions sλ/µ, the symmetric functions hλ from Definition 3.1 and
the monomial symmetric functions mλ:

Theorem 3.4. Recall the symmetric functions hλ defined in Definition 3.1. Let µ be
any partition. Then, in the ring k [[x,y]], we have∑

λ∈Par
sλ/µ (x) sλ (y) = sµ (y) ·

∑
λ∈Par

hλ (x)mλ (y) .

Here, we are using the notations introduced in Subsection 2.6.

Theorem 3.4 appears in [20, fourth display on page 70], so we omit its proof.(13)

3.4. The k-algebra homomorphism αk : Λ → k. Recall that the family
(hn)n>1 = (h1, h2, h3, . . .) is algebraically independent and generates Λ as a k-
algebra. Thus, Λ can be viewed as a polynomial ring in the (infinitely many)
indeterminates h1, h2, h3, . . .. The universal property of a polynomial ring thus shows
that if A is any commutative k-algebra, and if (a1, a2, a3, . . .) is any sequence of
elements of A, then there is a unique k-algebra homomorphism from Λ to A that
sends hi to ai for all positive integers i. We shall refer to this as the h-universal
property of Λ. It lets us make the following definition:(14)

Definition 3.5. Let k be a positive integer. The h-universal property of Λ shows that
there is a unique k-algebra homomorphism αk : Λ→ k that sends hi to [i < k] for all
positive integers i. Consider this αk.

The following elementary properties of αk will be used many times:

Lemma 3.6. Let k be a positive integer.
(a) We have

(15) αk (hi) = [i < k] for all i ∈ N.

(b) We have

(16) αk (hi) = [0 6 i < k] for all i ∈ Z.

(c) Let λ be a partition. Define hλ as in Definition 3.1. Then,

(17) αk (hλ) = [λi < k for all i] .

(Here, “for all i” means “for all positive integers i”.)

Proof of Lemma 3.6. Since αk is a k-algebra homomorphism, we have αk (1) = 1
and αk (0) = 0. Parts (a) and (b) follow by combining this with Definition 3.5.
Part (c) follows from Definition 3.5 as well, because if λ = (λ1, λ2, . . . , λ`), then
hλ = hλ1hλ2 · · ·hλk and [λ1 < k] · [λ2 < k] · · · · · [λ` < k] = [λi < k for all i]. �

(13)See also [16] for a detailed proof. (The main ingredients are [17, proof of Proposition 2.5.15]
and [17, Exercise 2.5.11(a)].)

(14)We are using the Iverson bracket notation (see Convention 1) here.
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3.5. Proof of Lemma 2.6. Lemma 2.6 can be proved directly using Laplace ex-
pansion of determinants. But the homomorphism αk from Definition 3.5 allows for a
slicker proof:

Proof of Lemma 2.6. Recall that αk is a k-algebra homomorphism. Thus, applying
αk to both sides of (14), we obtain

αk
(
sλ/µ

)
= det

((
αk
(
hλi−µj−i+j

))
16i6`, 16j6`

)
= det

(
([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
(18)

(by (16)). Thus, det
(

([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
does not depend on the

choice of ` (since αk
(
sλ/µ

)
does not depend on the choice of `). This proves Lemma

2.6. �

We record a restatement of (18) for subsequent use:

Lemma 3.7. Let k be a positive integer. Let λ and µ be two partitions. Then, the
homomorphism αk : Λ→ k from Definition 3.5 satisfies
(19) αk

(
sλ/µ

)
= petk (λ, µ) .

3.6. Proof of Proposition 2.7.

Proof of Proposition 2.7. Write the partitions λ and µ in the forms λ = (λ1, λ2, . . . , λ`)
and µ = (µ1, µ2, . . . , µ`) for some ` ∈ N (15). The definition of petk (λ, µ) yields

petk (λ, µ) = det
(

([0 6 λi − µj − i+ j < k])16i6`, 16j6`

)
= det

(
([µj − j 6 λi − i < µj − j + k])16i6`, 16j6`

)
(20)

(since the statement “0 6 λi − µj − i + j < k” is equivalent to “µj − j 6 λi − i <
µj − j + k” for any i, j ∈ {1, 2, . . . , `}).

Let B be the ` × `-matrix ([µj − j 6 λi − i < µj − j + k])16i6`, 16j6` ∈ k`×`.
Then, (20) rewrites as follows:
(21) petk (λ, µ) = detB.

We will use the concept of Petrie matrices (see [13, Theorem 1]). Namely, a Petrie
matrix is a matrix whose entries all belong to {0, 1} and such that the 1’s in each
column occur consecutively (i.e. as a contiguous block). In other words, a Petrie matrix
is a matrix whose each column has the form
(22) ( 0, 0, . . . , 0︸ ︷︷ ︸

a zeroes

, 1, 1, . . . , 1︸ ︷︷ ︸
b ones

, 0, 0, . . . , 0︸ ︷︷ ︸
c zeroes

)T

for some nonnegative integers a, b, c (where any of a, b, c can be 0). For example, 0 0 1
1 0 1
0 0 0

 is a Petrie matrix, but

 0 1 0
1 0 0
0 1 1

 is not.

A well-known result due to Fulkerson and Gross (first stated in [11, §8](16)) says
that if a square matrix A is a Petrie matrix, then
(23) detA ∈ {−1, 0, 1} .

Now, we shall show that B is a Petrie matrix.

(15)Such an ` can always be found, since each of λ and µ has only finitely many nonzero entries.
(16)See [13, Theorem 1] for an explicit proof.
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Indeed, fix some j ∈ {1, 2, . . . , `}. We have λ1 > λ2 > · · · > λ` (since λ is a
partition) and thus λ1−1 > λ2−2 > · · · > λ`−`. Hence, the set of all i ∈ {1, 2, . . . , `}
satisfying µj − j 6 λi− i < µj − j+ k is a (possibly empty) integer interval(17). Thus,
the j-th column of the matrix B has a contiguous (but possibly empty) block of 1’s
(in the rows corresponding to all these i’s), while all other entries of this column are
0. In other words, this column has the form (22) for some nonnegative integers a, b, c.

Since j was arbitrary, we thus have shown that B is a Petrie matrix. Therefore, (23)
(applied to A = B) yields detB ∈ {−1, 0, 1}. In view of (21), this proves Proposition
2.7. �

3.7. Proof of Theorem 2.15. We are now ready to prove Theorem 2.15:

Proof of Theorem 2.15. We shall use the notations k [[x]], k [[x,y]], x, y, f (x)
and f (y) introduced in Subsection 2.6. If R is any commutative ring, then R [[y]]
shall denote the ring R [[y1, y2, y3, . . .]] of formal power series in the indeterminates
y1, y2, y3, . . . over the ring R. We will identify the ring k [[x,y]] with the ring
(k [[x]]) [[y]] = (k [[x1, x2, x3, . . .]]) [[y1, y2, y3, . . .]]. Note that Λ ⊆ k [[x]] and thus
Λ [[y]] ⊆ (k [[x]]) [[y]] = k [[x,y]]. We equip the rings k [[y]], Λ [[y]] and k [[x,y]]
with the usual topologies that are defined on rings of power series, where Λ itself is
equipped with the discrete topology. This has the somewhat confusing consequence
that Λ [[y]] ⊆ k [[x,y]] is an inclusion of rings but not of topological spaces; however,
this will not cause us any trouble, since all infinite sums in Λ [[y]] we will consider
(such as

∑
λ∈Par

sλ/µ (x) sλ (y) and
∑

λ∈Par
hλ (x)mλ (y)) will converge to the same value

in either topology.
We consider both k [[y]] and Λ as subrings of Λ [[y]] (indeed, k [[y]] embeds into

Λ [[y]] because k is a subring of Λ, whereas Λ embeds into Λ [[y]] because Λ [[y]] is a
ring of power series over Λ).

In this proof, the word “monomial” may refer to a monomial in any set of variables
(not necessarily in x1, x2, x3, . . .).

Recall the k-algebra homomorphism αk : Λ → k from Definition 3.5. This k-
algebra homomorphism αk : Λ→ k induces a k [[y]]-algebra homomorphism αk [[y]] :
Λ [[y]]→ k [[y]], which is given by the formula

(αk [[y]])

 ∑
n is a monomial
in y1,y2,y3,...

fnn

 =
∑

n is a monomial
in y1,y2,y3,...

αk (fn) n

for any family (fn)n is a monomial in y1,y2,y3,...
of elements of Λ. This induced k [[y]]-

algebra homomorphism αk [[y]] is k [[y]]-linear and continuous (with respect to the
usual topologies on the power series rings Λ [[y]] and k [[y]]), and thus preserves infinite
k [[y]]-linear combinations. Moreover, it extends αk (that is, for any f ∈ Λ, we have
(αk [[y]]) (f) = αk (f)).

Recall the skew Schur functions sλ/µ defined in Subsection 3.2. Also, recall the
symmetric functions hλ defined in Definition 3.1. Theorem 3.4 yields∑

λ∈Par
sλ/µ (x) sλ (y) = sµ (y) ·

∑
λ∈Par

hλ (x)mλ (y) =
∑
λ∈Par

sµ (y)hλ (x)mλ (y)

=
∑
λ∈Par

sµ (y)mλ (y)hλ (x)︸ ︷︷ ︸
=hλ

=
∑
λ∈Par

sµ (y)mλ (y)hλ.

(17)An integer interval means a subset of Z that has the form {a, a+ 1, . . . , b} for some a ∈ Z
and b ∈ Z. (If a > b, then this is the empty set.)
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Comparing this with

∑
λ∈Par

sλ/µ (x) sλ (y) =
∑
λ∈Par

sλ (y) sλ/µ (x)︸ ︷︷ ︸
=sλ/µ

=
∑
λ∈Par

sλ (y) sλ/µ,

we obtain ∑
λ∈Par

sλ (y) sλ/µ =
∑
λ∈Par

sµ (y)mλ (y)hλ.

Consider this as an equality in the ring Λ [[y]] = Λ [[y1, y2, y3, . . .]]. Apply the map
αk [[y]] : Λ [[y]]→ k [[y]] to both sides of this equality. We obtain

(αk [[y]])
( ∑
λ∈Par

sλ (y) sλ/µ

)
= (αk [[y]])

( ∑
λ∈Par

sµ (y)mλ (y)hλ

)
.

Comparing this with

(αk [[y]])
( ∑
λ∈Par

sλ (y) sλ/µ

)
=
∑
λ∈Par

sλ (y) · (αk [[y]])
(
sλ/µ

)︸ ︷︷ ︸
=αk(sλ/µ)

(since αk[[y]] extends αk)

(since the map αk [[y]] preserves infinite k [[y]] -linear combinations)

=
∑
λ∈Par

sλ (y) · αk
(
sλ/µ

)︸ ︷︷ ︸
=petk(λ,µ)
(by (19))

=
∑
λ∈Par

petk (λ, µ) · sλ (y) ,

we obtain∑
λ∈Par

petk (λ, µ) · sλ (y)

= (αk [[y]])
( ∑
λ∈Par

sµ (y)mλ (y)hλ

)
=
∑
λ∈Par

sµ (y)mλ (y) (αk [[y]]) (hλ)︸ ︷︷ ︸
=αk(hλ)

(since αk[[y]] extends αk)

(since the map αk [[y]] preserves infinite k [[y]] -linear combinations)

=
∑
λ∈Par

sµ (y)mλ (y) αk (hλ)︸ ︷︷ ︸
=[λi<k for all i]

(by (17))

=
∑
λ∈Par

[λi < k for all i] · sµ (y)mλ (y)

=
∑
λ∈Par;

λi<k for all i

sµ (y)mλ (y)

(since the [λi < k for all i] factor inside the sum causes all addends to vanish except
for the addends that satisfy “λi < k for all i”). Renaming the indeterminates y =
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(y1, y2, y3, . . .) as x = (x1, x2, x3, . . .) on both sides of this equality, we obtain∑
λ∈Par

petk (λ, µ) · sλ (x) =
∑
λ∈Par;

λi<k for all i

sµ (x)︸ ︷︷ ︸
=sµ

mλ (x)︸ ︷︷ ︸
=mλ

=
∑
λ∈Par;

λi<k for all i

sµmλ

= sµ ·
∑
λ∈Par;

λi<k for all i

mλ

︸ ︷︷ ︸
=G(k)

(by Proposition 2.3 (b))

= sµ ·G (k) = G (k) · sµ.

This proves Theorem 2.15. �

A second proof of Theorem 2.15 can be found in [15].

3.8. Proofs of Corollary 2.16, Theorem 2.8 and Corollary 2.9. Having
proved Theorem 2.15, we can now obtain Corollary 2.16, Theorem 2.8 and Corollary
2.9 as easy consequences:

Proof of Corollary 2.16. Proposition 2.3(a) yields that them-th degree homogeneous
component of G (k) is G (k,m). Hence, the (m+ |µ|)-th degree homogeneous compo-
nent of G (k) · sµ is G (k,m) · sµ (because sµ is homogeneous of degree |µ|).

Theorem 2.15 yields

G (k) · sµ =
∑
λ∈Par

petk (λ, µ) sλ.

Taking the (m+ |µ|)-th degree homogeneous components on both sides of this equal-
ity, we obtain

G (k,m) · sµ =
∑

λ∈Parm+|µ|

petk (λ, µ) sλ

(because each Schur function sλ is homogeneous of degree |λ|, whereas the (m+ |µ|)-
th degree homogeneous component of G (k) ·sµ is G (k,m) ·sµ). This proves Corollary
2.16. �

Proof of Theorem 2.8. Theorem 2.15 (applied to µ = ∅) yields

G (k) · s∅ =
∑
λ∈Par

petk (λ,∅) sλ.

Comparing this with G (k) · s∅︸︷︷︸
=1

= G (k), we obtain

G (k) =
∑
λ∈Par

petk (λ,∅) sλ.

This proves Theorem 2.8. �

Proof of Corollary 2.9. Corollary 2.16 (applied to µ = ∅) yields

G (k,m) · s∅ =
∑

λ∈Parm+|∅|

petk (λ,∅) sλ.

In view of G (k,m) · s∅︸︷︷︸
=1

= G (k,m) and m+ |∅|︸︷︷︸
=0

= m, we can rewrite this as

G (k,m) =
∑

λ∈Parm

petk (λ,∅) sλ.

This proves Corollary 2.9. �
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3.9. Proof of Theorem 2.13. Our proof of Theorem 2.13 will depend on two lem-
mas about determinants:

Lemma 3.8. Let m ∈ N. Let R be a commutative ring. Let (ai,j)16i6m, 16j6m ∈
Rm×m be an m×m-matrix.

(a) If τ is any permutation of {1, 2, . . . ,m}, then

det
((
aτ(i),j

)
16i6m, 16j6m

)
= (−1)τ · det

(
(ai,j)16i6m, 16j6m

)
.

Here, (−1)τ denotes the sign of the permutation τ .
(b) Let u1, u2, . . . , um be m elements of R. Let v1, v2, . . . , vm be m elements of R.

Then,

det
(

(uivjai,j)16i6m, 16j6m

)
=
(

m∏
i=1

(uivi)
)
· det

(
(ai,j)16i6m, 16j6m

)
.

Proof of Lemma 3.8. (a) This is just the well-known fact that if the rows of a square
matrix are permuted using a permutation τ , then the determinant of this matrix gets
multiplied by (−1)τ .

(b) This follows easily from the definition of the determinant. �

Lemma 3.9. Let k be a positive integer. Let γ1, γ2, . . . , γk−1 be k − 1 elements of the
set {1, 2, . . . , k}. Let G be the (k − 1)× (k − 1)-matrix(

(−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]
)

16i6k−1, 16j6k−1
.

(a) If the k − 1 numbers γ1, γ2, . . . , γk−1 are not distinct, then

detG = 0.

(b) If γ1 > γ2 > · · · > γk−1, then

detG = (−1)(γ1+γ2+···+γk−1)−(1+2+···+(k−1))
.

(c) Assume that the k − 1 numbers γ1, γ2, . . . , γk−1 are distinct. Let

g =
∣∣∣{(i, j) ∈ {1, 2, . . . , k − 1}2 | i < j and γi < γj

}∣∣∣ .
Then,

detG = (−1)g+(γ1+γ2+···+γk−1)−(1+2+···+(k−1))
.

Proof of Lemma 3.9. (a) Assume that γ1, γ2, . . . , γk−1 are not distinct. Then, the
matrix G has two equal rows. Thus, detG = 0. This proves Lemma 3.9 (a).

(b) Assume that γ1 > γ2 > · · · > γk−1. Thus, {γ1, γ2, . . . , γk−1} is a (k − 1)-
element subset of {1, 2, . . . , k}.

Hence, {γ1, γ2, . . . , γk−1} = {1, 2, . . . , k} r {u} for some u ∈ {1, 2, . . . , k} (since
any (k − 1)-element subset of {1, 2, . . . , k} has such a form). Consider this u. From
{γ1, γ2, . . . , γk−1} = {1, 2, . . . , k}r{u}, we conclude that γ1, γ2, . . . , γk−1 are the k−1
elements of the set {1, 2, . . . , k}r{u}, listed in decreasing order (since γ1 > γ2 > · · · >
γk−1). In other words,

(24) (γ1, γ2, . . . , γk−1) = (k, k − 1, . . . , û, . . . , 2, 1) ,

where the “hat” over the u signifies that u is omitted from the list (i.e. the ex-
pression “(k, k − 1, . . . , û, . . . , 2, 1)” is understood to mean the (k − 1)-element list
(k, k − 1, . . . , u+ 1, u− 1, . . . , 2, 1), which contains all k integers from 1 to k in de-
creasing order except for u).
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Now, we claim that

(−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]

= (−1)γi+j−k [γi + j ∈ {k, k + 1}](25)

for any i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1}.
[Proof of (25): Let i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1}. We must prove

the equality (25).
From i ∈ {1, 2, . . . , k − 1}, we obtain 1 6 i 6 k − 1 and thus k − 1 > 1. Thus,

k > k − 1 > 1. Hence, k + 1 < 2k, so that (k + 1) %k = 1.
If we don’t have (γi + j) %k ∈ {0, 1}, then both truth values

[(γi + j) %k ∈ {0, 1}] and [γi + j ∈ {k, k + 1}] are 0 (indeed, the statement “γi + j ∈
{k, k + 1}” is false, since otherwise it would imply (γi + j) %k ∈ {0, 1}), and therefore
the equality (25) simplifies to (−1)(γi+j)%k 0 = (−1)γi+j−k 0 in this case, which is
obviously true. Hence, for the rest of this proof, we WLOG assume that we do have
(γi + j) %k ∈ {0, 1}.

Adding γi ∈ {1, 2, . . . , k} with j ∈ {1, 2, . . . , k − 1}, we find that γi + j ∈
{2, 3, . . . , 2k − 1}. Thus, γi + j is an integer in the set {2, 3, . . . , 2k − 1} that leaves
the remainder 0 or 1 upon division by k (since (γi + j) %k ∈ {0, 1}). But the only such
integers are k and k+ 1. Hence, we obtain γi+ j ∈ {k, k + 1} ⊆ {k, k + 1, . . . , 2k − 1}
(since k + 1 < 2k), and therefore (γi + j) %k = γi + j − k. Thus,

(−1)(γi+j)%k︸ ︷︷ ︸
=(−1)γi+j−k

(since (γi+j)%k=γi+j−k)

[(γi + j) %k ∈ {0, 1}]︸ ︷︷ ︸
=1

(since (γi+j)%k∈{0,1})

= (−1)γi+j−k .

Comparing this with

(−1)γi+j−k [γi + j ∈ {k, k + 1}]︸ ︷︷ ︸
=1

(since γi+j∈{k,k+1})

= (−1)γi+j−k ,

we obtain

(−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}] = (−1)γi+j−k [γi + j ∈ {k, k + 1}] .

This proves (25).]
Now, G is a (k − 1) × (k − 1)-matrix. For each i ∈ {1, 2, . . . , k − 1} and j ∈

{1, 2, . . . , k − 1}, we have

(the (i, j) -th entry of G)

= (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}] (by the definition of G)

= (−1)γi+j−k [γi + j ∈ {k, k + 1}] (by (25))

=


1, if γi + j = k;
−1, if γi + j = k + 1;
0, otherwise

=


1, if j = k − γi;
−1, if j = k − γi + 1;
0, otherwise.

Thus, we can explicitly describe the matrix G as follows: For each i ∈ {1, 2, . . . , k − 1},
the i-th row of G has an entry equal to 1 in position k−γi if k−γi > 0, and an entry
equal to −1 in position k − γi + 1 if k − γi + 1 < k; all remaining entries of this row
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are 0. Recalling (24), we thus see that G has the following form:(18)

G =



−1
1 −1

1 −1
. . . . . .

1 −1

1 −1
1 −1

1 −1
. . . . . .

1



,

where the horizontal bar separates the (k − u)-th row from the (k − u+ 1)-st row,
while the vertical bar separates the (k − u)-th column from the (k − u+ 1)-st column.
Thus, G can be written as a block-diagonal matrix

(26) G =
(

A 0(k−u)×(u−1)
0(u−1)×(k−u) B

)
,

where A is a lower-triangular (k − u)× (k − u)-matrix with all diagonal entries equal
to −1, and where B is an upper-triangular (u− 1)× (u− 1)-matrix with all diagonal
entries equal to 1. Since the determinant of a block-diagonal matrix equals the product
of the determinants of its diagonal blocks, we thus conclude that detG = detA·detB.

However, detA = (−1)k−u (since A is a lower-triangular (k − u)× (k − u)-matrix
with all diagonal entries equal to −1) and detB = 1 (since B is an upper-triangular
(u− 1)× (u− 1)-matrix with all diagonal entries equal to 1). Hence, this becomes

(27) detG = detA︸ ︷︷ ︸
=(−1)k−u

·detB︸ ︷︷ ︸
=1

= (−1)k−u .

But (24) yields
γ1 + γ2 + · · ·+ γk−1 = k + (k − 1) + · · ·+ û+ · · ·+ 2 + 1

= (1 + 2 + · · ·+ k)− u = (1 + 2 + · · ·+ (k − 1)) + k − u.
Solving this for k − u, we find

k − u = (γ1 + γ2 + · · ·+ γk−1)− (1 + 2 + · · ·+ (k − 1)) .
Hence, (27) rewrites as

detG = (−1)(γ1+γ2+···+γk−1)−(1+2+···+(k−1))
.

This proves Lemma 3.9 (b).
(c) Assume that the k−1 numbers γ1, γ2, . . . , γk−1 are distinct. Then, there exists

a unique permutation σ of {1, 2, . . . , k − 1} such that γσ(1) > γσ(2) > · · · > γσ(k−1).
Consider this σ.

Let τ denote the permutation σ−1.
Let δ1, δ2, . . . , δk−1 denote the k−1 elements γσ(1), γσ(2), . . . , γσ(k−1) of {1, 2, . . . , k}.

Thus, for each j ∈ {1, 2, . . . , k − 1}, we have
(28) δj = γσ(j).

Hence, the chain of inequalities γσ(1) > γσ(2) > · · · > γσ(k−1) (which is true) can be
rewritten as δ1 > δ2 > · · · > δk−1.

(18)Empty cells are understood to have entry 0.
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Moreover, from (28), we obtain

δ1 + δ2 + · · ·+ δk−1 = γσ(1) + γσ(2) + · · ·+ γσ(k−1)

= γ1 + γ2 + · · ·+ γk−1(29)

(since σ is a permutation of {1, 2, . . . , k − 1}).
Moreover, for each i ∈ {1, 2, . . . , k − 1}, we have

δτ(i) = γσ(τ(i)) (by (28), applied to j = τ (i))
= γi

(
since τ = σ−1 entails σ (τ (i)) = i

)
.(30)

Recall that an inversion of the permutation τ is defined to be a pair (i, j) of
elements of {1, 2, . . . , k − 1} satisfying i < j and τ (i) > τ (j). Hence, the inversions
of τ are precisely the pairs (i, j) of elements of {1, 2, . . . , k − 1} satisfying i < j and
δτ(i) < δτ(j) (since δ1 > δ2 > · · · > δk−1 shows that the statement “τ (i) > τ (j)”
is equivalent to “δτ(i) < δτ(j)”). In other words, the inversions of τ are precisely the
pairs (i, j) of elements of {1, 2, . . . , k − 1} satisfying i < j and γi < γj (since (30)
shows that any i, j ∈ {1, 2, . . . , k − 1} satisfy γi = δτ(i) and γj = δτ(j)). Hence, the
number of inversions of τ equals

∣∣∣{(i, j) ∈ {1, 2, . . . , k − 1}2 | i < j and γi < γj

}∣∣∣ = g

(by the definition of g). Therefore, the sign (−1)τ of the permutation τ is (−1)g (since
the sign of a permutation is defined to be (−1)m, where m is the number of inversions
of this permutation). Thus, we have shown that (−1)τ = (−1)g.

Let H be the (k − 1)× (k − 1)-matrix

(
(−1)(δi+j)%k [(δi + j) %k ∈ {0, 1}]

)
16i6k−1, 16j6k−1

.

Then, we can apply Lemma 3.9 (b) to δi and H instead of γi and G (since
δ1, δ2, . . . , δk−1 are k − 1 elements of {1, 2, . . . , k} and satisfy δ1 > δ2 > · · · > δk−1).
We thus obtain

detH = (−1)(δ1+δ2+···+δk−1)−(1+2+···+(k−1)) = (−1)(γ1+γ2+···+γk−1)−(1+2+···+(k−1))

(by (29)).
But the definition of G yields

G =
(

(−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]
)

16i6k−1, 16j6k−1

=
(

(−1)(δτ(i)+j)%k [(
δτ(i) + j

)
%k ∈ {0, 1}

])
16i6k−1, 16j6k−1
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(since (30) yields γi = δτ(i) for each i ∈ {1, 2, . . . , k − 1}). Hence,

detG = det
((

(−1)(δτ(i)+j)%k [(
δτ(i) + j

)
%k ∈ {0, 1}

])
16i6k−1, 16j6k−1

)

= (−1)τ︸ ︷︷ ︸
=(−1)g

det


(

(−1)(δi+j)%k [(δi + j) %k ∈ {0, 1}]
)

16i6k−1, 16j6k−1︸ ︷︷ ︸
=H

(by the definition of H)


(by Lemma 3.8 (a), applied to m = k − 1 and R = k

and ai,j = (−1)(δi+j)%k [(δi + j) %k ∈ {0, 1}]

)
= (−1)g detH︸ ︷︷ ︸

=(−1)(γ1+γ2+···+γk−1)−(1+2+···+(k−1))

= (−1)g (−1)(γ1+γ2+···+γk−1)−(1+2+···+(k−1))

= (−1)g+(γ1+γ2+···+γk−1)−(1+2+···+(k−1))
.

This proves Lemma 3.9 (c). �

Next, we recall a well-known property of symmetric functions (see, e.g. [25, proof
of Theorem 7.6.1] or [17, (2.4.3)]):

Lemma 3.10. Consider the ring Λ [[t]] of formal power series in one indeterminate t
over Λ. In this ring, we have

(31) 1 =

∑
n>0

(−1)n entn
∑

n>0
hnt

n

 .

Next, we shall prove yet another evaluation of the homomorphism αk:

Lemma 3.11. Let k be a positive integer such that k > 1. Consider the k-algebra
homomorphism αk : Λ → k from Definition 3.5. Also, recall Convention 1. Let r be
an integer such that r > −k + 1. Then,

(32) αk (er) = (−1)r+r%k [r%k ∈ {0, 1}] .

Proof of Lemma 3.11. Consider the ring Λ [[t]] of formal power series in one indeter-
minate t over Λ. Consider also the analogous ring k [[t]] over k.

The map αk : Λ → k is a k-algebra homomorphism. Hence, it induces a k [[t]]-
algebra homomorphism

αk [[t]] : Λ [[t]]→ k [[t]]

that sends each formal power series
∑
n>0

ant
n ∈ Λ [[t]] (with an ∈ Λ) to

∑
n>0

αk (an) tn.

Consider this αk [[t]].
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Applying the map αk [[t]] to both sides of the equality (31), we obtain

(αk [[t]]) (1) = (αk [[t]])

∑
n>0

(−1)n entn
∑

n>0
hnt

n


= (αk [[t]])

∑
n>0

(−1)n entn


︸ ︷︷ ︸
=
∑
n>0

αk((−1)nen)tn

(by the definition of αk[[t]])

· (αk [[t]])

∑
n>0

hnt
n


︸ ︷︷ ︸

=
∑
n>0

αk(hn)tn

(by the definition of αk[[t]])

(since αk [[t]] is a k [[t]] -algebra homomorphism)

=

∑
n>0

αk ((−1)n en)︸ ︷︷ ︸
=(−1)nαk(en)

(since αk is k-linear)

tn

 ·
∑
n>0

αk (hn)︸ ︷︷ ︸
=[n<k]
(by (15))

tn


=

∑
n>0

(−1)n αk (en) tn
 ·

∑
n>0

[n < k] tn


︸ ︷︷ ︸
=t0+t1+···+tk−1=

1− tk

1− t

=

∑
n>0

(−1)n αk (en) tn
 · 1− tk

1− t .

Comparing this with
(αk [[t]]) (1) = 1 (since αk [[t]] is a k [[t]] -algebra homomorphism) ,

we obtain ∑
n>0

(−1)n αk (en) tn
 · 1− tk

1− t = 1.

Hence,∑
n>0

(−1)n αk (en) tn = 1− t
1− tk = (1− t) · 1

1− tk︸ ︷︷ ︸
=1+tk+t2k+t3k+···

= (1− t) ·
(
1 + tk + t2k + t3k + · · ·

)
= 1− t+ tk − tk+1 + t2k − t2k+1 + t3k − t3k+1 ± · · ·

=
∑
n>0

(−1)n%k [n%k ∈ {0, 1}] tn

(here, we have used that k > 1, since for k = 1 there would be cancellations in the
sum 1− t+ tk − tk+1 + t2k − t2k+1 + t3k − t3k+1± · · · ). Comparing coefficients before
tm on both sides of this equality, we obtain

(33) (−1)m αk (em) = (−1)m%k [m%k ∈ {0, 1}]
for each m ∈ N.

Multiplying both sides of this equality by (−1)m, we obtain

(34) αk (em) = (−1)m+m%k [m%k ∈ {0, 1}] .

Algebraic Combinatorics, Vol. 5 #5 (2022) 972



Petrie symmetric functions

We must prove that

αk (er) = (−1)r+r%k [r%k ∈ {0, 1}] .
If r ∈ N, then this follows by applying (34) to m = r. Hence, for the rest
of this proof, we WLOG assume that r /∈ N. Thus, r is negative, so that
r ∈ {−k + 2,−k + 3, . . . ,−1} (since r > −k + 1). Hence, r%k ∈ {2, 3, . . . , k − 1}, so
that r%k /∈ {0, 1}. Consequently, [r%k ∈ {0, 1}] = 0. Also, er = 0 (since r is negative)
and thus αk (er) = αk (0) = 0. Comparing this with (−1)r+r%k [r%k ∈ {0, 1}]︸ ︷︷ ︸

=0

= 0,

we obtain αk (er) = (−1)r+r%k [r%k ∈ {0, 1}]. This concludes the proof of Lemma
3.11. �

Proof of Theorem 2.13. (a) Assume that µk 6= 0. Thus, the partition µ has at least
k entries. But we have µ = λt, and thus (by a known and easy fact) the partition µ
has precisely λ1 entries. Reconciling the previous two sentences, we see that λ1 > k.
Thus, Proposition 2.11 yields petk (λ,∅) = 0. This proves Theorem 2.13 (a).

Now, let us prepare for the proof of parts (b) and (c).
Consider the k-algebra homomorphism αk : Λ→ k from Definition 3.5.
We have sλ = sλ/∅, so that

(35) αk (sλ) = αk
(
sλ/∅

)
= petk (λ,∅)

(by (19), applied to ∅ instead of µ).
For each i ∈ {1, 2, . . . , k − 1}, we have γi ∈ {1, 2, . . . , k} (by (8), since the remainder

(βi − 1) %k clearly belongs to {0, 1, . . . , k − 1}). In other words, γ1, γ2, . . . , γk−1 are
k − 1 elements of the set {1, 2, . . . , k}.

Assume that µk = 0. Thus, µ = (µ1, µ2, . . . , µk−1) (since µ ∈ Par).
It is known that (λt)t = λ. Hence, λ = (λt)t = µt (since λt = µ). Therefore,

sλ = sµt = det
(

(eµi−i+j)16i6k−1, 16j6k−1

)
(by (6), applied to µ and k − 1 instead of λ and `), because µ = (µ1, µ2, . . . , µk−1).
This rewrites as

sλ = det
(

(eβi+j)16i6k−1, 16j6k−1

)
(since (7) yields µi − i = βi for each i ∈ {1, 2, . . . , k − 1}). Applying the map αk to
both sides of this equality, we find

αk (sλ) = αk

(
det
(

(eβi+j)16i6k−1, 16j6k−1

))
= det

(
(αk (eβi+j))16i6k−1, 16j6k−1

)
(since αk is a k-algebra homomorphism, and thus commutes with taking determinants
of matrices). Comparing this with (35), we obtain

(36) petk (λ,∅) = det
(

(αk (eβi+j))16i6k−1, 16j6k−1

)
.

But each i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1} satisfy k > 1 (19) and
βi︸︷︷︸

=µi−i
(by (7))

+j = µi︸︷︷︸
>0

− i︸︷︷︸
6k−1

+ j︸︷︷︸
>0

> 0− (k − 1) + 0 = −k + 1

and thus
(37) αk (eβi+j) = (−1)(βi+j)+(βi+j)%k [(βi + j) %k ∈ {0, 1}]
(by (32), applied to r = βi + j).

(19)Indeed, if i ∈ {1, 2, . . . , k − 1}, then 1 6 i 6 k − 1 and thus k − 1 > 1 > 0, so that k > 1.
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Furthermore, each i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1} satisfy

(−1)(βi+j)+(βi+j)%k [(βi + j) %k ∈ {0, 1}]

= (−1)βi (−1)j (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}] .(38)

[Proof of (38): Let i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1}. We have
(βi − 1) %k ≡ βi − 1 mod k (since u%k ≡ umod k for any u ∈ Z), so that
1 + (βi − 1) %k ≡ βi mod k. But the definition of γi yields γi = 1 + (βi − 1) %k ≡
βi mod k. Hence, γi + j ≡ βi + jmod k, and therefore (γi + j) %k = (βi + j) %k
(because if two integers are congruent modulo k, then their remainders upon division
by k are equal). Hence,

(−1)βi (−1)j (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]

= (−1)βi (−1)j (−1)(βi+j)%k [(βi + j) %k ∈ {0, 1}]

= (−1)(βi+j)+(βi+j)%k [(βi + j) %k ∈ {0, 1}] .

This proves (38).]
Now, for each i ∈ {1, 2, . . . , k − 1} and j ∈ {1, 2, . . . , k − 1}, we have

αk (eβi+j) = (−1)(βi+j)+(βi+j)%k [(βi + j) %k ∈ {0, 1}] (by (37))

= (−1)βi (−1)j (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}] (by (38)) .

Thus, (36) can be rewritten as follows:

petk (λ,∅)

= det
((

(−1)βi (−1)j (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]
)

16i6k−1, 16j6k−1

)
=
(
k−1∏
i=1

(
(−1)βi (−1)i

))

· det
((

(−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}]
)

16i6k−1, 16j6k−1

)
(by Lemma 3.8 (b), applied to m = k − 1 and R = k and
ai,j = (−1)(γi+j)%k [(γi + j) %k ∈ {0, 1}] and ui = (−1)βi and vj = (−1)j).

Define a (k − 1) × (k − 1)-matrix G as in Lemma 3.9. Then, the matrix whose
determinant appears on the right hand side of this equality is precisely G; thus, this
equality rewrites as

(39) petk (λ,∅) =
(
k−1∏
i=1

(
(−1)βi (−1)i

))
· detG.

Now, we can readily prove parts (b) and (c) of Theorem 2.13:
(b) Assume that the k−1 numbers γ1, γ2, . . . , γk−1 are not distinct. Then, Lemma

3.9 (a) yields detG = 0. Hence, (39) simplifies to petk (λ,∅) = 0. This proves Theo-
rem 2.13 (b).
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(c) The equality (39) becomes
petk (λ,∅)

=
(
k−1∏
i=1

(
(−1)βi (−1)i

))
︸ ︷︷ ︸

=(−1)(β1+β2+···+βk−1)+(1+2+···+(k−1))

· detG︸ ︷︷ ︸
=(−1)g+(γ1+γ2+···+γk−1)−(1+2+···+(k−1))

(by Lemma 3.9 (c))

= (−1)(β1+β2+···+βk−1)+(1+2+···+(k−1)) · (−1)g+(γ1+γ2+···+γk−1)−(1+2+···+(k−1))

= (−1)(β1+β2+···+βk−1)+g+(γ1+γ2+···+γk−1)
.

This proves Theorem 2.13 (c). �

The proof of Proposition 2.14 relies on the following known fact:

Proposition 3.12. Let λ ∈ Par. Let µ = λt. Then:
(a) If i and j are two positive integers satisfying λi > j, then µj > i.
(b) If i and j are two positive integers satisfying λi < j, then µj < i.
(c) Any two positive integers i and j satisfy λi + µj − i− j 6= −1.
For each positive integer i, set αi = λi−i. For each positive integer j, set βj = µj−j

and ηj = −1− βj. Then:
(d) The two sets {α1, α2, α3, . . .} and {η1, η2, η3, . . .} are disjoint, and their union

is Z.
(e) Let p be an integer such that p > λ1. Then, the two sets {α1, α2, α3, . . .} and
{η1, η2, . . . , ηp} are disjoint, and their union is

{. . . , p− 3, p− 2, p− 1} = {k ∈ Z | k < p} .
(f) Let p and q be two integers such that p > λ1 and q > µ1. Then, the two sets
{α1, α2, . . . , αq} and {η1, η2, . . . , ηp} are disjoint, and their union is

{−q,−q + 1, . . . , p− 1} = {k ∈ Z | −q 6 k < p} .

Note that Proposition 3.12 (f) is a restatement of [20, Chapter I, (1.7)].

Proof of Proposition 3.12. Left to the reader (see [16] for a detailed proof). The eas-
iest way to proceed is by proving (a) and (b) first, then deriving (c) as their conse-
quence, then deriving (f) from it, then concluding (d) and (e). �

Proof of Proposition 2.14. Let µ = λt. Then, the number of parts of µ is λ1. Hence,
from λ1 < k, we conclude that µ has fewer than k parts. Thus, µk = 0.

For each positive integer i, set αi = λi − i. Hence,

{α1, α2, α3, . . .} =

 αi︸︷︷︸
=λi−i

| i ∈ {1, 2, 3, . . .}

 = {λi − i | i ∈ {1, 2, 3, . . .}}

= B (by the definition of B) .
For each positive integer j, set βj = µj − j and ηj = −1 − βj . Note

that (β1, β2, . . . , βk−1) ∈ Zk−1 is thus the same (k − 1)-tuple that was called
(β1, β2, . . . , βk−1) in Theorem 2.13. It is easy to see that β1 > β2 > · · · > βk−1 and
λ1 − 1 > λ2 − 2 > λ3 − 3 > · · · .

From λ1 < k, we obtain k − 1 > λ1. Hence, Proposition 3.12 (e) (applied to
p = k−1) yields that the two sets {α1, α2, α3, . . .} and {η1, η2, . . . , ηk−1} are disjoint,
and their union is
{. . . , (k − 1)− 3, (k − 1)− 2, (k − 1)− 1} = {all integers smaller than k − 1} = W.
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Since {α1, α2, α3, . . .} = B, we can restate this as follows: The two sets B and
{η1, η2, . . . , ηk−1} are disjoint, and their union is W . Hence, {η1, η2, . . . , ηk−1} =
W rB.

It is also easy to see that β1 > β2 > · · · > βk−1, so that η1 < η2 < · · · < ηk−1.
Hence, η1, η2, . . . , ηk−1 are the elements of the set {η1, η2, . . . , ηk−1} listed in increasing
order (with no repetition).

Let us define a (k − 1)-tuple (γ1, γ2, . . . , γk−1) ∈ {1, 2, . . . , k}k−1 as in Theorem
2.13. Now, we have the following chain of logical equivalences:

(petk (λ,∅) 6= 0)
⇐⇒ (the k − 1 numbers γ1, γ2, . . . , γk−1 are distinct)

(by parts (b) and (c) of Theorem 2.13)
⇐⇒ (the k − 1 numbers (β1 − 1) %k, (β2 − 1) %k, . . . , (βk−1 − 1) %k are distinct)

(since γi = 1 + (βi − 1) %k for each i)
⇐⇒ (no two of the k − 1 numbers β1 − 1, β2 − 1, . . . , βk−1 − 1

are congruent modulo k)
⇐⇒ (no two of the k − 1 numbers β1, β2, . . . , βk−1 are congruent modulo k)
⇐⇒ (no two of the k − 1 numbers − 1− β1,−1− β2, . . . ,−1− βk−1

are congruent modulo k)
⇐⇒ (no two of the k − 1 numbers η1, η2, . . . , ηk−1 are congruent modulo k)

(since ηj = −1− βj for each j)
⇐⇒ (no two of the k − 1 elements of {η1, η2, . . . , ηk−1} are congruent modulo k)(

since η1, η2, . . . , ηk−1 are the elements of the set {η1, η2, . . . , ηk−1}
listed in increasing order (with no repetition)

)
⇐⇒ (no two of the k − 1 elements of W rB are congruent modulo k)

(since {η1, η2, . . . , ηk−1} = W rB)
⇐⇒

(
each congruence class i has at most 1 element in common with W rB

)
⇐⇒

(
each i ∈ {0, 1, . . . , k − 1} satisfies

∣∣i ∩ (W rB)
∣∣ 6 1

)
⇐⇒

(
each i ∈ {0, 1, . . . , k − 1} satisfies

∣∣(i ∩W )rB
∣∣ 6 1

)
(since i ∩ (W rB) =

(
i ∩W

)
rB for each i). This proves Proposition 2.14. �

3.10. Proof of Theorem 2.19.

Proof of Theorem 2.19. Consider the ring (k [[x1, x2, x3, . . .]]) [[t]] of formal power se-
ries in one indeterminate t over k [[x1, x2, x3, . . .]]. We equip this ring with the topology
that is obtained by identifying it with k [[x1, x2, x3, . . . , t]] (or, equivalently, which is
obtained by considering k [[x1, x2, x3, . . .]] itself as equipped with the standard topol-
ogy on a ring of formal power series, and then adjoining the extra indeterminate t).

Now, consider the map

Fk : k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] ,
a 7→ a

(
xk1 , x

k
2 , x

k
3 , . . .

)
.
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This map Fk is a continuous k-algebra homomorphism (since it is an evaluation
homomorphism).(20) Hence, it induces a continuous(21) k [[t]]-algebra homomorphism

Fk [[t]] : (k [[x1, x2, x3, . . .]]) [[t]]→ (k [[x1, x2, x3, . . .]]) [[t]]

that sends each formal power series
∑
n>0

ant
n ∈ (k [[x1, x2, x3, . . .]]) [[t]] (with

an ∈ k [[x1, x2, x3, . . .]]) to
∑
n>0

Fk (an) tn. Consider this k [[t]]-algebra homomorphism

Fk [[t]].
The definition of Fk yields

(40) Fk (xi) = xki for each i ∈ {1, 2, 3, . . .} .

Also, for each a ∈ Λ, we have

Fk (a) = a
(
xk1 , x

k
2 , x

k
3 , . . .

)
(by the definition of Fk)

= fk (a) (by the definition of fk) .(41)

It is known (e.g. [17, (2.2.18) and (2.2.19)]) that

(42)
∞∏
i=1

(1− xit)−1 =
∑
n>0

hnt
n

and
∞∏
i=1

(1 + xit) =
∑
n>0

ent
n.

Applying the map Fk [[t]] to both sides of the latter equality, we obtain

(Fk [[t]])
( ∞∏
i=1

(1 + xit)
)

= (Fk [[t]])

∑
n>0

ent
n

 =
∑
n>0

Fk (en) tn

(by the definition of Fk [[t]]). Hence,∑
n>0

Fk (en) tn = (Fk [[t]])
( ∞∏
i=1

(1 + xit)
)

=
∞∏
i=1

(Fk [[t]]) (1 + xit)︸ ︷︷ ︸
=1+Fk(xi)t

(by the definition of Fk[[t]])(
since Fk [[t]] is a continuous k [[t]] -algebra homomorphism,

and thus respects infinite products

)

=
∞∏
i=1

1 + Fk (xi)︸ ︷︷ ︸
=xki

(by (40))

t

 =
∞∏
i=1

(
1 + xki t

)
.

Substituting −tk for t in this equality, we find∑
n>0

Fk (en)
(
−tk

)n =
∞∏
i=1

(
1 + xki

(
−tk

))︸ ︷︷ ︸
=1−(xit)k

=
∞∏
i=1

(
1− (xit)k

)
.

(20)It is well-defined, since k is positive.
(21)Continuity is defined with respect to the topology that we defined on (k [[x1, x2, x3, . . .]]) [[t]].
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We can divide both sides of this equality by
∞∏
i=1

(1− xit) (since the formal power series
∞∏
i=1

(1− xit) has constant term 1 and thus is invertible), and thus obtain

∑
n>0

Fk (en)
(
−tk

)n
∞∏
i=1

(1− xit)

=

∞∏
i=1

(
1− (xit)k

)
∞∏
i=1

(1− xit)
=
∞∏
i=1

1− (xit)k

1− xit︸ ︷︷ ︸
=(xit)0+(xit)1+···+(xit)k−1

=
k−1∑
u=0

(xit)u

=
∞∏
i=1

k−1∑
u=0

(xit)u

=
∑

α=(α1,α2,α3,...)∈{0,1,...,k−1}∞;
αi=0 for all but finitely many i︸ ︷︷ ︸

=
∑

α∈WC;
αi<k for all i

(x1t)α1 (x2t)α2 (x3t)α3 · · ·︸ ︷︷ ︸
=(xα1

1 x
α2
2 x

α3
3 ··· )tα1+α2+α3+···

(here, we have expanded the product)

=
∑

α∈WC;
αi<k for all i

(xα1
1 xα2

2 xα3
3 · · · )︸ ︷︷ ︸

=xα
(by the definition of xα)

tα1+α2+α3+···︸ ︷︷ ︸
=t|α|

(since α1+α2+α3+···=|α|)

=
∑

α∈WC;
αi<k for all i

xαt|α|.

Hence,∑
α∈WC;

αi<k for all i

xαt|α|

=

∑
n>0

Fk (en)
(
−tk

)n
∞∏
i=1

(1− xit)
=

∑
n>0

Fk (en)︸ ︷︷ ︸
=fk(en)
(by (41))

(
−tk

)n︸ ︷︷ ︸
=(−1)ntkn

 ·
∞∏
i=1

(1− xit)−1

︸ ︷︷ ︸
=
∑
n>0

hnt
n

(by (42))

=

∑
n>0

fk (en) (−1)n tkn
 ·

∑
n>0

hnt
n


︸ ︷︷ ︸

=
∑
j>0

hjtj

=

∑
n>0

fk (en) (−1)n tkn
 ·

∑
j>0

hjt
j



=
∑
n>0

∑
j>0︸ ︷︷ ︸

=
∑

(n,j)∈N2

fk (en) (−1)n tknhjtj︸ ︷︷ ︸
=hjtkn+j

=
∑

(n,j)∈N2

fk (en) (−1)n hjtkn+j .

This is an equality between two power series in (k [[x1, x2, x3, . . .]]) [[t]]. If we compare
the coefficients of tm on both sides of it (where x1, x2, x3, . . . are considered scalars,
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not monomials), we obtain∑
α∈WC;
|α|=m;

αi<k for all i

xα =
∑

(n,j)∈N2;
kn+j=m

fk (en) (−1)n hj =
∑
n∈N

fk (en) (−1)n ·
∑
j∈N;

kn+j=m

hj .

However, the left hand side of this equality is G (k,m) (since G (k,m) was defined
this way). Thus, the right hand side is G (k,m) as well. That is, we have

(43) G (k,m) =
∑
n∈N

fk (en) (−1)n ·
∑
j∈N;

kn+j=m

hj .

But the right hand side of this equality can be simplified. Namely, for each n ∈ N,
we have

(44)
∑
j∈N;

kn+j=m

hj = hm−kn.

[Proof of (44): Let n ∈ N. We must prove the equality (44). If m− kn < 0, then it
boils down to 0 = 0 (since its left hand side is an empty sum and its right hand side
is hm−kn = 0 by definition). If m− kn > 0, then the sum

∑
j∈N;

kn+j=m

hj has exactly one

addend, namely the addend for j = m− kn, and thus this sum equals hm−kn. Thus,
(44) holds in either case.]

Now, using (44), we can rewrite (43) as

G (k,m) =
∑
n∈N

fk (en) (−1)n · hm−kn =
∑
n∈N

(−1)n hm−kn · fk (en) .

Renaming the summation index n as i on the right hand side, we obtain the claim of
Theorem 2.19. �

Another proof of Theorem 2.19 is sketched in a footnote in Section 4 below.

3.11. Proofs of the results from Section 2.8. We shall now prove the results
from Section 2.8. We begin with Lemma 2.21. This will rely on the Verschiebung
endomorphisms vn introduced in Definition 2.23, and on Proposition 2.24 and the
equality (11).

Proof of Lemma 2.21. Applying (11) to n = k, we obtain

(45) vk (pm) =
{
kpm/k, if k | m;
0, if k - m.

Applying Proposition 2.24 to n = k, a = pm and b = ej , we obtain

(46) 〈pm, fk (ej)〉 = 〈vk (pm) , ej〉 .

Now, we are in one of the following three cases:
Case 1: We have m = kj.
Case 2: We have k - m.
Case 3: We have neither m = kj nor k - m.
Let us first consider Case 1. In this case, we have m = kj. Thus, k | m (since

j ∈ N ⊆ Z) and m/k = j. Hence, j = m/k, so that the integer j is positive (since m
and k are positive). Recall again that k | m; thus, (45) simplifies to

vk (pm) = kpm/k = kpj (since m/k = j) .
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Hence, (46) rewrites as
〈pm, fk (ej)〉 = 〈kpj , ej〉

= 〈ej , kpj〉 (since the Hall inner product is symmetric)

= k 〈ej , pj〉︸ ︷︷ ︸
=(−1)j−1

(by Proposition 1.3)

= k (−1)j−1 = (−1)j−1
k.

Comparing this with
(−1)j−1 [m = kj]︸ ︷︷ ︸

=1
(since m=kj)

k = (−1)j−1
k,

we obtain 〈pm, fk (ej)〉 = (−1)j−1 [m = kj] k. Thus, Lemma 2.21 is proven in Case 1.
A similar (but simpler) argument can be used to prove Lemma 2.21 in Case 2. The

main “idea” here is that k - m implies m 6= kj. The details are left to the reader.
Let us finally consider Case 3. In this case, we have neither m = kj nor k - m.

In other words, we have m 6= kj and k | m. From k | m, we conclude that m/k is a
positive integer(22). From m 6= kj, we obtain m/k 6= j. Thus, the symmetric functions
pm/k and ej are homogeneous of different degrees (namely, of degrees m/k and j),
and therefore satisfy

〈
pm/k, ej

〉
= 0 (by (2)).

Now, recall that k | m. Hence, (45) simplifies to
vk (pm) = kpm/k.

Thus, (46) rewrites as
〈pm, fk (ej)〉 =

〈
kpm/k, ej

〉
= k

〈
pm/k, ej

〉︸ ︷︷ ︸
=0

= 0.

Comparing this with
(−1)j−1 [m = kj]︸ ︷︷ ︸

=0
(since m6=kj)

k = 0,

we obtain 〈pm, fk (ej)〉 = (−1)j−1 [m = kj] k. Thus, Lemma 2.21 is proven in Case 3.
We have thus proven Lemma 2.21 in all three possible cases. �

Next, we shall need a simple property of Hall inner products:

Lemma 3.13. Let m, α and β be positive integers. Let a be a homogeneous symmetric
function of degree α. Let b be a homogeneous symmetric function of degree β. Then,
〈pm, ab〉 = 0.

Proof of Lemma 3.13. It is known (see, e.g. [17, Proposition 2.4.3(j)]) that the family
(hλ)λ∈Par is a graded basis of the graded k-module Λ. Thus, a is a k-linear combination
of symmetric functions hλ with λ ∈ Parα (since a ∈ Λ is homogeneous of degree α),
and a similar fact holds for b. Hence, it suffices to prove that 〈pm, hλhµ〉 = 0 whenever
λ ∈ Parα and µ ∈ Parβ (since the Hall inner product is k-bilinear).

However, proving this is easy: Let λ ∈ Parα and µ ∈ Parβ . Let λ t µ be the
partition obtained by listing all parts of λ and of µ and sorting the resulting list in
weakly decreasing order.(23) Using Definition 3.1, we can easily see that hλtµ = hλhµ.
However, each of the partitions λ and µ has a positive size (since α and β are positive),
and thus has at least one part. Therefore, the partition λ t µ has at least 2 parts.

(22)Indeed, it is positive since m and k are positive.
(23)For example: If λ = (5, 3, 2) and µ = (6, 4, 3, 1, 1), then λ t µ = (6, 5, 4, 3, 3, 2, 1, 1).
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Consequently, λ t µ 6= (m). Now, recall that pm = m(m) (where, of course, the two
“m”s in “m(m)” mean completely unrelated things). Since the Hall inner product is
symmetric, we have

〈pm, hλhµ〉 =
〈
hλhµ︸ ︷︷ ︸
=hλtµ

, pm︸︷︷︸
=m(m)

〉
=
〈
hλtµ,m(m)

〉
= δλtµ,(m) (by (13))

= 0 (since λ t µ 6= (m)) .

As explained above, this proves Lemma 3.13. �

See [16] for a different proof of Lemma 3.13, using the graded dual Λo of the Hopf
algebra Λ and the primitivity of the element pm ∈ Λ.

We can now prove Proposition 2.22:

Proof of Proposition 2.22. Theorem 2.19 yields G (k,m) =
∑
i∈N

(−1)i hm−ki · fk (ei).

Hence,

(47) 〈pm, G (k,m)〉 =
∑
i∈N

(−1)i 〈pm, hm−ki · fk (ei)〉

(since the Hall inner product is k-bilinear).
Now, we claim that every i ∈ Nr {0,m/k} satisfies

(48) 〈pm, hm−ki · fk (ei)〉 = 0.

[Proof of (48): Let i ∈ N r {0,m/k}. Thus, i ∈ N and i 6= 0 and i 6= m/k. From
i 6= m/k, we obtain ki 6= m, so that m− ki 6= 0.

We must prove the equality (48). This equality clearly holds if m − ki < 0 (since
hm−ki = 0 in this case). Thus, for the rest of this proof, we WLOG assume that
m− ki > 0. Combining this with m− ki 6= 0, we obtain m− ki > 0. Thus, m− ki is
a positive integer. Also, i is a positive integer (since i ∈ N and i 6= 0), and thus ki is
a positive integer (since k is a positive integer).

The map fk : Λ→ Λ operates by replacing each xi by xki in a symmetric function
(by the definition of fk). Thus, if g ∈ Λ is any homogeneous symmetric function of some
degree γ, then fk (g) is a homogeneous symmetric function of degree kγ. Therefore,
fk (ei) is a homogeneous symmetric function of degree ki (since ei is a homogeneous
symmetric function of degree i). Also, hm−ki is a homogeneous symmetric function
of degree m− ki.

Hence, Lemma 3.13 (applied to α = m − ki, a = hm−ki, β = ki and b = fk (ei))
yields 〈pm, hm−ki · fk (ei)〉 = 0. This proves (48).]

Note that e0 = 1 and thus fk (e0) = fk (1) = 1 (by the definition of fk).
Note that m/k > 0 (since m and k are positive). Hence, m/k 6= 0. Now, we are in

one of the following two cases:
Case 1: We have k|m.
Case 2: We have k -m.
Let us consider Case 1 first. In this case, we have k|m. Hence, m/k is a positive

integer (since m/k > 0). Thus, 0 and m/k are two distinct elements of N.
Now, consider the sum on the right hand side of (47). All addends of this sum

are 0, except for the one for i = 0 and the one for i = m/k (because (48) shows
that the Hall inner products 〈pm, hm−ki · fk (ei)〉 that appear in these addends vanish
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whenever i /∈ {0,m/k}). Thus, (47) simplifies to(24)

〈pm, G (k,m)〉

= (−1)0︸ ︷︷ ︸
=1

〈
pm, hm−k·0︸ ︷︷ ︸

=hm

· fk (e0)︸ ︷︷ ︸
=1

〉
+ (−1)m/k

〈
pm, hm−k·m/k︸ ︷︷ ︸

=hm−m=h0=1

·fk
(
em/k

)〉

= 〈pm, hm〉︸ ︷︷ ︸
=〈hm,pm〉

(since the Hall inner
product is symmetric)

+ (−1)m/k
〈
pm, fk

(
em/k

)〉︸ ︷︷ ︸
=(−1)m/k−1[m=k(m/k)]k

(by Lemma 2.21, applied to j=m/k)

= 〈hm, pm〉︸ ︷︷ ︸
=1

(by Proposition 1.2)

+ (−1)m/k (−1)m/k−1︸ ︷︷ ︸
=−1

[m = k (m/k)]︸ ︷︷ ︸
=1

(since m=k(m/k))

k = 1− k.

Comparing this with

1− [k|m]︸ ︷︷ ︸
=1

(since k|m)

k = 1− k,

we obtain 〈pm, G (k,m)〉 = 1− [k|m] k. Hence, Proposition 2.22 is proven in Case 1.
Case 2 is similar to Case 1, but simpler because the addend for i = m/k does not

exist (since m/k /∈ N in this case). We leave it to the reader.
We have now proven Proposition 2.22 in both possible cases. �

Theorem 2.20 will follow from Proposition 2.22 using the following general criterion
for generating sets of Λ:

Proposition 3.14. For each positive integer m, let vm ∈ Λ be a homogeneous sym-
metric function of degree m.

Assume that 〈pm, vm〉 is an invertible element of k for each positive integer m.
Then, the family (vm)m>1 = (v1, v2, v3, . . .) is an algebraically independent gener-

ating set of the commutative k-algebra Λ.

Proof of Proposition 3.14. Proposition 3.14 is [17, Exercise 2.5.24]. �

Proof of Theorem 2.20. Let m be a positive integer. Proposition 2.22 yields that

〈pm, G (k,m)〉 = 1− [k|m] k =
{

1− k, if k|m;
1, if k -m.

Hence, 〈pm, G (k,m)〉 is an invertible element of k (because both 1 − k and 1 are
invertible elements of k).

Forget that we fixed m. We thus have showed that 〈pm, G (k,m)〉 is an invertible
element of k for each positive integer m. Also, clearly, for each positive integer m,
the element G (k,m) ∈ Λ is a homogeneous symmetric function of degree m. Thus,
Proposition 3.14 (applied to vm = G (k,m)) shows that the family (G (k,m))m>1 =
(G (k, 1) , G (k, 2) , G (k, 3) , . . .) is an algebraically independent generating set of the
commutative k-algebra Λ. This proves Theorem 2.20. �

(24)We note that the addends for i = 0 and for i = m/k really do exist and are two different
addends (since 0 and m/k are two distinct elements of N).
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3.12. Proof of Theorem 2.26.

Proof of Theorem 2.26. The k-Hopf algebra Λ is both commutative and cocommu-
tative (by [17, Exercise 2.3.7(a)]). Its antipode S is a k-Hopf algebra homomorphism
(by [17, Proposition 2.4.3(g)]).

Let ∆ = ∆Λ : Λ → Λ ⊗ Λ be the comultiplication of the k-coalgebra Λ. Let
mΛ : Λ ⊗ Λ → Λ be the k-linear map sending each pure tensor a ⊗ b ∈ Λ ⊗ Λ to
ab ∈ Λ. Definition 2.25 then yields idΛ ?Uk = mΛ ◦ (idΛ⊗Uk) ◦∆. Thus,
(49) Vk = idΛ ?Uk = mΛ ◦ (idΛ⊗Uk) ◦∆.

(a) The map fk is a k-Hopf algebra homomorphism (by [17, Exercise 2.9.9(d)],
applied to n = k). The map vk is a k-Hopf algebra homomorphism (by [17, Exercise
2.9.10(e)], applied to n = k). Thus, we have shown that all three maps fk, S and vk
are k-Hopf algebra homomorphisms. Hence, their composition fk ◦ S ◦ vk is a k-Hopf
algebra homomorphism as well. In other words, Uk is a k-Hopf algebra homomorphism
(since Uk = fk ◦ S ◦ vk). This proves Theorem 2.26 (a).

(b) Recall (from [17, Exercise 1.5.11(a)]) the following fact:
Claim 1: If H is a k-bialgebra and A is a commutative k-algebra,
then the convolution f ?g of any two k-algebra homomorphisms f, g :
H → A is again a k-algebra homomorphism.

The following fact is dual to Claim 1:
Claim 2: If H is a k-bialgebra and C is a cocommutative k-coalgebra,
then the convolution f ? g of any two k-coalgebra homomorphisms
f, g : C → H is again a k-coalgebra homomorphism.

(See [17, solution to Exercise 1.5.11(h)] for why exactly Claim 2 is dual to Claim
1, and how it can be proved.)

Theorem 2.26 (a) yields that the map Uk is a k-Hopf algebra homomorphism.
Hence, Uk is both a k-algebra homomorphism and a k-coalgebra homomorphism.

Now, recall that Λ is commutative, and that idΛ and Uk are two k-algebra homo-
morphisms from Λ to Λ. Hence, Claim 1 (applied to H = Λ, A = Λ, f = idΛ and
g = Uk) shows that the convolution idΛ ?Uk is a k-algebra homomorphism. In other
words, Vk is a k-algebra homomorphism (since Vk = idΛ ?Uk).

Next, recall that Λ is cocommutative, and that idΛ and Uk are two k-coalgebra
homomorphisms from Λ to Λ. Hence, Claim 2 (applied to H = Λ, C = Λ, f = idΛ
and g = Uk) shows that the convolution idΛ ?Uk is a k-coalgebra homomorphism. In
other words, Vk is a k-coalgebra homomorphism (since Vk = idΛ ?Uk).

So we know that the map Vk is both a k-algebra homomorphism and a k-coalgebra
homomorphism. Thus, Vk is a k-bialgebra homomorphism, therefore a k-Hopf algebra
homomorphism.(25) This proves Theorem 2.26 (b).

(c) The map vk is a k-algebra homomorphism; thus, vk (1) = 1. Now, we have

(50) vk (hm) =
{
hm/k, if k|m;
0, if k -m

for each m ∈ N. (Indeed, if m > 0, then this follows from the definition of vk. But if
m = 0, then this follows from vk (1) = 1, since h0 = 1.)

We have
(51) S (hn) = (−1)n en for each n ∈ N.
(This follows from [17, Proposition 2.4.1(iii)].)

(25)This follows since any k-bialgebra homomorphism between two k-Hopf algebras is automati-
cally a k-Hopf algebra homomorphism.
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Each i ∈ N satisfies

vk (hki) =
{
hki/k, if k|ki;
0, if k -ki

(by (50), applied to m = ki)

= hki/k (since k|ki)
= hi(52)

and

Uk (hki) = (fk ◦ S ◦ vk) (hki) (since Uk = fk ◦ S ◦ vk)

= fk

S
vk (hki)︸ ︷︷ ︸

=hi
(by (52))


 = fk

 S (hi)︸ ︷︷ ︸
=(−1)iei
(by (51))

 = fk
(

(−1)i ei
)

= (−1)i fk (ei) .(53)

On the other hand, if j ∈ N satisfies k - j, then

(54) vk (hj) = 0 (by (50), applied to m = j)

and

Uk (hj) = (fk ◦ S ◦ vk) (hj) (since Uk = fk ◦ S ◦ vk)
= (fk ◦ S) (vk (hj)) = (fk ◦ S) (0) (by (54))
= 0.(55)

Let m ∈ N (not to be mistaken for the map mΛ). Then, [17, Proposition 2.3.6(iii)]
(applied to n = m) yields

∆ (hm) =
∑

i+j=m
hi ⊗ hj

(where the sum ranges over all pairs (i, j) ∈ N× N with i+ j = m)

=
m∑
j=0

hm−j ⊗ hj

(here, we have substituted (m− j, j) for (i, j) in the sum). Applying the map idΛ⊗Uk
to both sides of this equality, we obtain

(idΛ⊗Uk) (∆ (hm)) = (idΛ⊗Uk)

 m∑
j=0

hm−j ⊗ hj

 =
m∑
j=0

hm−j ⊗ Uk (hj) .
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Applying the map mΛ to both sides of this equality, we find

mΛ ((idΛ⊗Uk) (∆ (hm)))

= mΛ

 m∑
j=0

hm−j ⊗ Uk (hj)

 =
m∑
j=0

hm−jUk (hj) (by the definition of mΛ)

=
∞∑
j=0︸︷︷︸
=
∑
j∈N

hm−jUk (hj)−
∞∑

j=m+1
hm−j︸ ︷︷ ︸

=0
(since m−j<0)

Uk (hj)

=
∑
j∈N

hm−jUk (hj)−
∞∑

j=m+1
0Uk (hj)︸ ︷︷ ︸
=0

=
∑
j∈N

hm−jUk (hj) =
∑
j∈N;
k|j

hm−jUk (hj) +
∑
j∈N;
k-j

hm−j Uk (hj)︸ ︷︷ ︸
=0

(by (55))

=
∑
j∈N;
k|j

hm−jUk (hj) +
∑
j∈N;
k-j

hm−j0

︸ ︷︷ ︸
=0

=
∑
j∈N;
k|j

hm−jUk (hj) =
∑
i∈N

hm−ki Uk (hki)︸ ︷︷ ︸
=(−1)ifk(ei)
(by (53))

(here, we have substituted ki for j in the sum)

=
∑
i∈N

(−1)i hm−ki · fk (ei) .

Comparing this with

G (k,m) =
∑
i∈N

(−1)i hm−ki · fk (ei) (by Theorem 2.19) ,

we obtain

G (k,m) = mΛ ((idΛ⊗Uk) (∆ (hm))) = (mΛ ◦ (idΛ⊗Uk) ◦∆)︸ ︷︷ ︸
=Vk

(by (49))

(hm) = Vk (hm) .

This proves Theorem 2.26 (c).
(d) From [17, Exercise 2.9.10(a)], we know that every positive integers n and m

satisfy

(56) vn (pm) =
{
npm/n, if n|m;
0, if n -m.

On the other hand, it is easy to see (directly using the definition of fn) that every
positive integers n and m satisfy

(57) fn (pm) = pnm.

Finally, [17, Proposition 2.4.1(i)] yields that every positive integer n satisfies

(58) S (pn) = −pn.

Now, let n be a positive integer. We first claim the following:
Claim 1: We have Uk (pn) = − [k|n] kpn.
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[Proof of Claim 1: We are in one of the following two cases:
Case 1: We have k|n.
Case 2: We have k -n.
Let us first consider Case 1. In this case, we have k |n. Hence, n/k is a positive

integer. Now, (56) (applied to k and n instead of n and m) yields

vk (pn) = kpn/k (since k|n) .

Applying the map S to both sides of this equality, we find

S (vk (pn)) = S
(
kpn/k

)
= k S

(
pn/k

)︸ ︷︷ ︸
=−pn/k
(by (58),

applied to n/k instead of n)

= k
(
−pn/k

)
= −kpn/k.

Applying the map fk to both sides of this equality, we find

fk (S (vk (pn))) = fk
(
−kpn/k

)
= −k fk

(
pn/k

)︸ ︷︷ ︸
=pk(n/k)
(by (57),

applied to k and n/k
instead of n and m)

= −kpk(n/k) = −kpn.

Now, the definition of Uk yields Uk = fk ◦ S ◦ vk. Hence,

Uk (pn) = (fk ◦ S ◦ vk) (pn) = fk (S (vk (pn))) = −kpn.

Comparing this with

− [k|n]︸︷︷︸
=1

(since k|n)

kpn = −kpn,

we obtain Uk (pn) = − [k|n] kpn. Hence, Claim 1 is proved in Case 1.
Let us now consider Case 2. In this case, we have k - n. Therefore, (56) (applied to

k and n instead of n and m) yields

vk (pn) = 0.

But the definition of Uk yields Uk = fk ◦ S ◦ vk. Hence,

Uk (pn) = (fk ◦ S ◦ vk) (pn) = (fk ◦ S)

vk (pn)︸ ︷︷ ︸
=0

 = (fk ◦ S) (0) = 0.

Comparing this with

− [k|n]︸︷︷︸
=0

(since k-n)

kpn = 0,

we obtain Uk (pn) = − [k|n] kpn. Hence, Claim 1 is proved in Case 2.
We have now proved Claim 1 in both Cases 1 and 2. Thus, Claim 1 always holds.]
Theorem 2.26 (a) shows that the map Uk is a k-Hopf algebra homomorphism.

Hence, Uk (1) = 1.
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But [17, Proposition 2.3.6(i)] yields ∆ (pn) = 1⊗ pn + pn ⊗ 1. Now,

Vk︸︷︷︸
=mΛ◦(idΛ⊗Uk)◦∆

(by (49))

(pn)

= (mΛ ◦ (idΛ⊗Uk) ◦∆) (pn) = mΛ

(idΛ⊗Uk)

 ∆ (pn)︸ ︷︷ ︸
=1⊗pn+pn⊗1



= mΛ

(idΛ⊗Uk) (1⊗ pn + pn ⊗ 1)︸ ︷︷ ︸
=idΛ(1)⊗Uk(pn)+idΛ(pn)⊗Uk(1)


= mΛ (idΛ (1)⊗ Uk (pn) + idΛ (pn)⊗ Uk (1))
= idΛ (1)︸ ︷︷ ︸

=1

· Uk (pn)︸ ︷︷ ︸
=−[k|n]kpn
(by Claim 1)

+ idΛ (pn)︸ ︷︷ ︸
=pn

·Uk (1)︸ ︷︷ ︸
=1

(by the definition of mΛ)

= − [k|n] kpn + pn = (1− [k|n] k) pn.

This proves Theorem 2.26 (d). �

3.13. Proof of Corollary 2.27.

Proof of Corollary 2.27. Recall that the family (hn)n>1 = (h1, h2, h3, . . .) generates
Λ as a k-algebra. Hence, each g ∈ Λ can be written as a polynomial in h1, h2, h3, . . ..
Applying this to g = pn, we conclude that pn can be written as a polynomial in
h1, h2, h3, . . .. In other words, there exists a polynomial f ∈ k [x1, x2, x3, . . .] such
that

(59) pn = f (h1, h2, h3, . . .) .

Consider this f . We shall show that this f satisfies (12). This will clearly prove
Corollary 2.27.

Consider the map Vk defined in Theorem 2.26. Theorem 2.26 (c) yields that
Vk (hm) = G (k,m) for each positive integer m. In other words,

(60) (Vk (h1) , Vk (h2) , Vk (h3) , . . .) = (G (k, 1) , G (k, 2) , G (k, 3) , . . .) .

The map Vk is a k-Hopf algebra homomorphism (by Theorem 2.26 (b), and thus
is a k-algebra homomorphism. Hence, it commutes with polynomials over k. Thus,

Vk (f (h1, h2, h3, . . .)) = f (Vk (h1) , Vk (h2) , Vk (h3) , . . .)
= f (G (k, 1) , G (k, 2) , G (k, 3) , . . .) (by (60)) .

Now, applying the map Vk to both sides of the equality (59), we obtain

Vk (pn) = Vk (f (h1, h2, h3, . . .)) = f (G (k, 1) , G (k, 2) , G (k, 3) , . . .) .

Comparing this with

Vk (pn) = (1− [k|n] k) pn (by Theorem 2.26 (d)) ,

we obtain
(1− [k|n] k) pn = f (G (k, 1) , G (k, 2) , G (k, 3) , . . .) .

Thus, we have shown that our f satisfies (12). As we said, this proves Corollary
2.27. �
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4. Proof of the Liu–Polo conjecture
Let us recall a well-known partial order on the set of partitions of a given n ∈ N:

Definition 4.1. Let n ∈ N. We define a binary relation . on the set Parn as follows:
Two partitions λ, µ ∈ Parn shall satisfy λ . µ if and only if we have

λ1 + λ2 + · · ·+ λk > µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , n} .
This relation . is the greater-or-equal relation of a partial order on Parn, which is
known as the dominance order (or the majorization order).

This definition is precisely [17, Definition 2.2.7]. Note that if we replace “for each
k ∈ {1, 2, . . . , n}” by “for each k ∈ {1, 2, 3, . . .}” in this definition, then the relation .
does not change.

Our goal in this section is to prove the conjecture made in [19, Remark 1.4.5]. We
state this conjecture as follows:(26)

Theorem 4.2. Let n be an integer such that n > 1. Then:
(a) We have ∑

λ∈Parn;
(n−1,1).λ

mλ =
n−2∑
i=0

(−1)i s(n−1−i,1i+1).

(b) We have ∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ =
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1).

Example 4.3. For this example, let n = 3. Then, n − 1 = 2 and 2n − 1 = 5. Hence,
the left hand side of the equality in Theorem 4.2 (b) is∑

λ∈Par2n−1;
(n−1,n−1,1).λ

mλ =
∑

λ∈Par5;
(2,2,1).λ

mλ = m(2,2,1) +m(2,1,1,1) +m(1,1,1,1,1).

Meanwhile, the right hand side of the equality in Theorem 4.2 (b) is
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1) =
1∑
i=0

(−1)i s(2,2−i,1i+1) = s(2,2,1) − s(2,1,1,1).

Thus, Theorem 4.2 (b) claims thatm(2,2,1)+m(2,1,1,1)+m(1,1,1,1,1) = s(2,2,1)−s(2,1,1,1)
in this case.

We will pave our way to the proof of Theorem 4.2 by several lemmas. We begin
with a particularly simple one:

Lemma 4.4. Let n be an integer such that n > 1. Let λ ∈ Par2n−1. Then,
(n− 1, n− 1, 1) . λ if and only if all positive integers i satisfy λi < n.

Proof. This simple proof (an exercise in following Definition 4.1) is left to the reader.
�

Lemma 4.5. Let n be an integer such that n > 1. Let λ ∈ Parn. Then, (n− 1, 1) . λ if
and only if all positive integers i satisfy λi < n.

Proof of Lemma 4.5. This is analogous to the proof of Lemma 4.4. �

(26)Note that (n− 1, n− 1, 1) is a partition whenever n > 1 is an integer.
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The next lemma identifies the left hand side of Theorem 4.2 (a) as the Petrie
symmetric function G (n, n), and the left hand side of Theorem 4.2 (b) as the Petrie
symmetric function G (n, 2n− 1):

Corollary 4.6. Let n be an integer such that n > 1. Then:
(a) We have ∑

λ∈Parn;
(n−1,1).λ

mλ = G (n, n) .

(b) We have ∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = G (n, 2n− 1) .

Proof. (b) Proposition 2.3 (c) (applied to k = n and m = 2n− 1) yields

(61) G (n, 2n− 1) =
∑

α∈WC;
|α|=2n−1;

αi<n for all i

xα =
∑
λ∈Par;
|λ|=2n−1;

λi<n for all i

mλ.

But Lemma 4.4 yields the following equality of summation signs:∑
λ∈Par2n−1;

(n−1,n−1,1).λ

=
∑

λ∈Par2n−1;
λi<n for all i

=
∑
λ∈Par;
|λ|=2n−1;

λi<n for all i

.

Hence, ∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ =
∑
λ∈Par;
|λ|=2n−1;

λi<n for all i

mλ.

Comparing this with (61), we obtain∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = G (n, 2n− 1) .

This proves Corollary 4.6 (b).
(a) This is analogous to Corollary 4.6 (b), but uses Lemma 4.5 instead of Lemma

4.4. �

It was Corollary 4.6 that led the author to introduce and study the Petrie symmetric
functions G (k,m) in general, even if little of their general properties has proven
relevant to Theorem 4.2.

The next proposition gives a simple formula for certain kinds of Petrie symmetric
functions:

Proposition 4.7. Let n be a positive integer. Let k ∈ {0, 1, . . . , n− 1}. Then,
G (n, n+ k) = hn+k − hkpn.

Proposition 4.7 can be viewed as a particular case of Theorem 2.19 (applied to n
and n+ k instead of k and m), after realizing that in the sum on the right hand side
of Theorem 2.19, only the first two addends will (potentially) be nonzero in this case.
However, let us give an independent proof of the proposition.

Proof of Proposition 4.7. From k ∈ {0, 1, . . . , n− 1}, we obtain k < n and thus n +
k < n+ n. Thus we conclude:
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Observation 1: A monomial of degree n + k cannot have more than
one variable appear in it with exponent > n (since this would require
it to have degree > n+ n > n+ k).

Let Mk be the set of all monomials of degree k. The definition of hk shows that

(62) hk =
∑

m∈Mk

m.

Let Mn+k be the set of all monomials of degree n+k. The definition of hn+k shows
that
(63) hn+k =

∑
n∈Mn+k

n.

Let N be the set of all monomials of degree n + k in which all exponents are
< n. These monomials are exactly the xα for α ∈ WC satisfying |α| = n + k and
(αi < n for all i). Hence,

(64)
∑
n∈N

n =
∑

α∈WC;
|α|=n+k;

αi<n for all i

xα.

But Proposition 2.3 (c) (applied to n and n+ k instead of k and m) yields

G (n, n+ k) =
∑

α∈WC;
|α|=n+k;

αi<n for all i

xα =
∑
λ∈Par;
|λ|=n+k;

λi<n for all i

mλ.

Hence,

(65) G (n, n+ k) =
∑

α∈WC;
|α|=n+k;

αi<n for all i

xα =
∑
n∈N

n

(by (64)).
Clearly, the set N is a subset of Mn+k, and furthermore its complement Mn+krN

is the set of all monomials of degree n + k in which at least one exponent is > n.
Hence, the map

Mk × {1, 2, 3, . . .} →Mn+k rN,

(m, i) 7→ m · xni
is well-defined (because if m is a monomial of degree k, and if i ∈ {1, 2, 3, . . .}, then
m · xni is a monomial of degree k + n = n+ k, and the variable xi appears in it with
exponent > n). This map is furthermore surjective (for simple reasons) and injective
(in fact, if n ∈Mn+krN, then n is a monomial of degree n+k, and thus Observation
1 yields that there is at most one variable xi that appears in n with exponent > n;

but this means that the only preimage of n under our map is
(

n

xni
, i

)
). Hence, this

map is a bijection. We can thus use it to substitute m·xni for n in the sum
∑

n∈Mn+krN

n.

We thus obtain∑
n∈Mn+krN

n =
∑

(m,i)∈Mk×{1,2,3,...}

m · xni =
( ∑

m∈Mk

m

)
︸ ︷︷ ︸

=hk
(by (62))

·
∑

i∈{1,2,3,...}

xni︸ ︷︷ ︸
=pn

= hkpn.(66)
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But (63) becomes

hn+k =
∑

n∈Mn+k

n =
∑
n∈N

n︸ ︷︷ ︸
=G(n,n+k)
(by (65))

+
∑

n∈Mn+krN

n

︸ ︷︷ ︸
=hkpn
(by (66))

(since N ⊆Mn+k)

= G (n, n+ k) + hkpn.

In other words, G (n, n+ k) = hn+k − hkpn. This proves Proposition 4.7. �

We note in passing that the idea used in the above proof of Proposition 4.7 can
be generalized to yield a second proof of Theorem 2.19, using an inclusion/exclusion
argument.(27)

Corollary 4.8. Let n be an integer such that n > 1. Then:
(a) We have ∑

λ∈Parn;
(n−1,1).λ

mλ = hn − pn.

(b) We have ∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = h2n−1 − hn−1pn.

(27)Here is an outline of this second proof: For any positive integer k and any m ∈ N, we have

G (k,m) =
∑

α∈WC;
|α|=m;

αi<k for all i

xα =
∑

I⊆{1,2,3,...}

(−1)|I|
∑

α∈WC;
|α|=m;

αi>k for all i∈I

xα

︸ ︷︷ ︸
=

(∏
i∈I

xki

)
·

∑
β∈WC;

|β|=m−k|I|

xβ

(by an infinite-set version of the inclusion-exclusion principle)

=
∑

I⊆{1,2,3,...}︸ ︷︷ ︸
=
∑
p∈N

∑
I⊆{1,2,3,...};
|I|=p

(−1)|I|
(∏
i∈I

xki

)
·

∑
β∈WC;

|β|=m−k|I|

xβ

︸ ︷︷ ︸
=hm−k|I|

=
∑
p∈N

∑
I⊆{1,2,3,...};
|I|=p

(−1)|I|︸ ︷︷ ︸
=(−1)p

(∏
i∈I

xki

)
· hm−k|I|︸ ︷︷ ︸

=hm−kp
(since |I|=p)

=
∑
p∈N

(−1)p hm−kp
∑

I⊆{1,2,3,...};
|I|=p

∏
i∈I

xki

︸ ︷︷ ︸
=fk(ep)

(this is easy to check)

=
∑
p∈N

(−1)p hm−kp · fk (ep)

=
∑
i∈N

(−1)i hm−ki · fk (ei) .
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Proof. (b) Corollary 4.6 (b) yields∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = G (n, 2n− 1) = h2n−1 − hn−1pn

(by Proposition 4.7, applied to k = n− 1). This proves Corollary 4.8 (b).
(a) Corollary 4.6 (a) yields∑

λ∈Parn;
(n−1,1).λ

mλ = G (n, n) = hn − h0pn

(by Proposition 4.7, applied to k = 0). Since h0 = 1, this proves Corollary 4.8 (a). �

Our next claim is an easy consequence of Proposition 1.1:

Corollary 4.9. Let n be a positive integer. Then,

hn − pn =
n−2∑
i=0

(−1)i s(n−1−i,1i+1).

Proof. Proposition 1.1 yields

pn =
n−1∑
i=0

(−1)i s(n−i,1i) = (−1)0︸ ︷︷ ︸
=1

s(n−0,10)︸ ︷︷ ︸
=s(n−0)=s(n)=hn

+
n−1∑
i=1

(−1)i s(n−i,1i)

= hn +
n−1∑
i=1

(−1)i s(n−i,1i),

so that

hn − pn = −
n−1∑
i=1

(−1)i s(n−i,1i) =
n−1∑
i=1

(
− (−1)i

)
︸ ︷︷ ︸

=(−1)i−1

s(n−i,1i) =
n−1∑
i=1

(−1)i−1
s(n−i,1i)

=
n−2∑
i=0

(−1)i s(n−1−i,1i+1)

(here, we have substituted i+ 1 for i in the sum). �

We can now immediately prove Theorem 4.2 (a):

Proof of Theorem 4.2 (a). Corollary 4.8 (a) yields∑
λ∈Parn;

(n−1,1).λ

mλ = hn − pn =
n−2∑
i=0

(−1)i s(n−1−i,1i+1) (by Corollary 4.9) .

This proves Theorem 4.2 (a). �

We shall use the skewing operators f⊥ : Λ→ Λ for all f ∈ Λ as defined in [17, §2.8]
or in [20, Chapter I, Section 5, Example 3]. The easiest way to define them (following
[20, Chapter I, Section 5, Example 3]) is as follows: For each f ∈ Λ, we let f⊥ : Λ→ Λ
be the k-linear map adjoint to the map Lf : Λ→ Λ, g 7→ fg (that is, to the map that
multiplies every element of Λ by f) with respect to the Hall inner product. That is,
f⊥ is the k-linear map from Λ to Λ that satisfies〈

g, f⊥ (a)
〉

= 〈fg, a〉 for all a ∈ Λ and g ∈ Λ.
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It is not hard to show that such an operator f⊥ exists.(28) The definition of f⊥ in
[17, §2.8] is different but equivalent (because of [17, Proposition 2.8.2(i)]). One of the
most important properties of skewing operators is the following fact ([17, (2.8.2)]):

Lemma 4.10. Let λ and µ be any two partitions. Then,
(67) s⊥µ (sλ) = sλ/µ.

(Here, sλ/µ is a skew Schur function, defined in Subsection 3.2.)

Using skewing operators, we can define another helpful family of operators on Λ:

Definition 4.11. For any m ∈ Z, we define a map Bm : Λ→ Λ by setting

Bm (f) =
∑
i∈N

(−1)i hm+ie
⊥
i f for all f ∈ Λ.

It is known ([17, Exercise 2.9.1(a)]) that this map Bm is well-defined and k-linear.

(Actually, the well-definedness of Bm is easy to check: If f ∈ Λ has degree d, then all
integers i > d satisfy e⊥i f = 0 for degree reasons, and thus the sum

∑
i∈N

(−1)i hm+ie
⊥
i f

has only finitely many nonzero addends. The k-linearity of Bm is even clearer.)
The operators Bm for m ∈ Z have first appeared in Zelevinsky’s [29, §4.20] (in

the different-looking but secretly equivalent setting of a PSH-algebra), where they
are credited to J. N. Bernstein. They have since been dubbed the Bernstein cre-
ation operators and proved useful in various contexts (e.g. the definition of the “dual
immaculate functions” in [4] takes them for inspiration). One of their most fundamen-
tal properties is the following fact (which originates in [29, 4.20, (∗∗)] and appears
implicitly in [20, Chapter I, Section 5, Example 29]):

Proposition 4.12. Let λ be any partition. Let m ∈ Z satisfy m > λ1. Then,

(68)
∑
i∈N

(−1)i hm+ie
⊥
i sλ = s(m,λ1,λ2,λ3,...).

See [17, Exercise 2.9.1(b)] for a proof of Proposition 4.12. Thus, if λ is any partition,
and if m ∈ Z satisfies m > λ1, then

Bm (sλ) =
∑
i∈N

(−1)i hm+ie
⊥
i sλ (by the definition of Bm)

= s(m,λ1,λ2,λ3,...) (by (68)) .(69)

Lemma 4.13. Let n be a positive integer. Let m ∈ N. Then, Bm (hn) = hmhn −
hm+1hn−1.

Proof of Lemma 4.13. We have e0 = 1 and thus e⊥0 = 1⊥ = id. Hence, e⊥0 (hn) = hn.
We shall use the notion of skew Schur functions sλ/µ (as in Subsection 3.2). Recall

that sλ/µ = 0 when µ 6⊆ λ.
From e1 = s(1) and hn = s(n), we obtain

e⊥1 (hn) = s⊥(1)
(
s(n)

)
= s(n)/(1) (by (67)) .

(28)This is not completely automatic: Not every k-linear map from Λ to Λ has an adjoint with
respect to the Hall inner product! (For example, the k-linear map Λ → Λ that sends each Schur
function sλ to 1 has none.) The reason why the map Lf : Λ → Λ, g 7→ fg has an adjoint is that
when f is homogeneous of degree k, this map Lf sends each graded component Λm of Λ to Λm+k,
and both of these graded components Λm and Λm+k are k-modules with finite bases. (The case
when f is not homogeneous can be reduced to the case when f is homogeneous, since each f ∈ Λ is
a sum of finitely many homogeneous elements.)
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But it is easy to see that s(n)/(1) = s(n−1). (Indeed, this follows from the combina-
torial definition of skew Schur functions, since the skew Ferrers diagram of (n) / (1)
can be obtained from the Ferrers diagram of (n− 1) by parallel shift(29). Alternatively,
this follows easily from Theorem 3.3, because s(n−1) = hn−1.)

Thus, we obtain

e⊥1 (hn) = s(n)/(1) = s(n−1) = hn−1.

For each integer i > 1, we have

e⊥i (hn) = s⊥(1i)
(
s(n)

) (
since ei = s(1i) and hn = s(n)

)
= s(n)/(1i) (by (67))
= 0

(
since

(
1i
)
6⊆ (n) (because i > 1)

)
.(70)

Now, the definition of Bm yields

Bm (hn) =
∑
i∈N

(−1)i hm+ie
⊥
i (hn)

= (−1)0︸ ︷︷ ︸
=1

hm+0︸ ︷︷ ︸
=hm

e⊥0 (hn)︸ ︷︷ ︸
=hn

+ (−1)1︸ ︷︷ ︸
=−1

hm+1 e
⊥
1 (hn)︸ ︷︷ ︸
=hn−1

+
∑
i>2

(−1)i hm+i e
⊥
i (hn)︸ ︷︷ ︸

=0
(by (70))

= hmhn − hm+1hn−1. �

Corollary 4.14. Let n be a positive integer. Then, Bn−1 (hn) = 0.

Proof. Apply Lemma 4.13 to m = n− 1 and simplify. �

Lemma 4.15. Let m ∈ N. Let n be a positive integer. Then, Bm (pn) = hmpn−hm+n.

Proof. This is [17, Exercise 2.9.1(f)]. But here is a more direct proof: We will use
the comultiplication ∆ : Λ → Λ⊗ Λ of the Hopf algebra Λ (see [17, §2.3]). Here and
in the following, the “⊗” sign denotes ⊗k. The power-sum symmetric function pn is
primitive(30) (see [17, Proposition 2.3.6(i)]); thus,

∆ (pn) = 1⊗ pn + pn ⊗ 1.

Hence, for each i ∈ N, the definition of e⊥i given in [17, Definition 2.8.1] (not the
equivalent definition we gave above) yields

(71) e⊥i (pn) = 〈ei, 1〉 pn + 〈ei, pn〉 1.

(29)See [17, §2.3] for the notions we are using here.
(30)Recall that an element x of a Hopf algebra H is said to be primitive if the comultiplication

∆H of H satisfies ∆H (x) = 1⊗ x+ x⊗ 1.
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Now, the definition of Bm yields

Bm (pn) =
∑
i∈N

(−1)i hm+i e⊥i (pn)︸ ︷︷ ︸
=〈ei,1〉pn+〈ei,pn〉1

(by (71))

=
∑
i∈N

(−1)i hm+i (〈ei, 1〉 pn + 〈ei, pn〉 1)

=
∑
i∈N

(−1)i hm+i · 〈ei, 1〉 pn︸ ︷︷ ︸
=(−1)0hm+0·〈e0,1〉pn

(because the Hall inner product 〈ei,1〉
equals 0 whenever i 6=0 (by (2)),

and thus the only nonzero addend of this
sum is the addend for i=0)

+
∑
i∈N

(−1)i hm+i · 〈ei, pn〉 1︸ ︷︷ ︸
=(−1)nhm+n·〈en,pn〉1

(because the Hall inner product 〈ei,pn〉
equals 0 whenever i 6=n (by (2)),

and thus the only nonzero addend of this
sum is the addend for i=n)

= (−1)0︸ ︷︷ ︸
=1

hm+0︸ ︷︷ ︸
=hm

· 〈e0, 1〉︸ ︷︷ ︸
=〈1,1〉=1

pn + (−1)n hm+n · 〈en, pn〉︸ ︷︷ ︸
=(−1)n−1

(by Proposition 1.3)

1

= hmpn + (−1)n hm+n · (−1)n−1 1︸ ︷︷ ︸
=−hm+n

= hmpn − hm+n. �

Lemma 4.16. Let n be a positive integer. Then,

Bn−1 (hn − pn) = h2n−1 − hn−1pn.

Proof. The map Bn−1 is k-linear. Thus,

Bn−1 (hn − pn) = Bn−1 (hn)︸ ︷︷ ︸
=0

(by Corollary 4.14)

− Bn−1 (pn)︸ ︷︷ ︸
=hn−1pn−h(n−1)+n
(by Lemma 4.15,

applied to m=n−1)

= −
(
hn−1pn − h(n−1)+n

)
= h(n−1)+n︸ ︷︷ ︸

=h2n−1

−hn−1pn = h2n−1 − hn−1pn.

�

Lemma 4.17. Let n be a positive integer. Then,

Bn−1 (hn − pn) =
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1).

Proof of Lemma 4.17. We have

Bn−1 (hn − pn) = Bn−1

(
n−2∑
i=0

(−1)i s(n−1−i,1i+1)

)
(by Corollary 4.9)

=
n−2∑
i=0

(−1)i Bn−1
(
s(n−1−i,1i+1)

)︸ ︷︷ ︸
=s(n−1,n−1−i,1i+1)

(by (69), applied to m=n−1
and λ=(n−1−i,1i+1)
(since n−1>n−1−i))

(since Bn−1 is k-linear)

=
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1). �

Now the proof of Theorem 4.2 (b) is a trivial concatenation of equalities:
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Proof of Theorem 4.2 (b). Corollary 4.8 (b) yields∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = h2n−1 − hn−1pn = Bn−1 (hn − pn) (by Lemma 4.16)

=
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1) (by Lemma 4.17) . �

5. Final remarks
5.1. SageMath code. The SageMath computer algebra system [26] does not (yet)
natively know the Petrie symmetric functions G (k,m); but they can be easily con-
structed in it. For example, the code that follows computes G (k, n) expanded in the
Schur basis:
Sym = SymmetricFunctions (QQ) # Replace QQ by your favorite base ring .
m = Sym.m() # monomial symmetric functions
s = Sym.s() # Schur functions

def G(k, n): # a Petrie function
return s(m.sum(m[lam] for lam in Partitions (n, max_part =k-1)))

5.2. Understanding the Petrie numbers. Combining Corollary 2.9 with Theo-
rem 2.13 yields an explicit expression of all coefficients in the expansion of a Petrie
symmetric function G (k,m) in the Schur basis. It would stand to reason if the iden-
tity in Theorem 4.2 (b) (whose left hand side is G (n, 2n− 1)) could be obtained from
this expression. Surprisingly, we have been unable to do so, which suggests that the
description of petk (λ,∅) in Theorem 2.13 might not be optimal.

As to petk (λ, µ), we do not have an explicit description at all, unless we count the
recursive one that can be extracted from the proof in [13].

5.3. MNable symmetric functions. Combining Theorem 2.15 with Proposition
2.7, we conclude that for any k > 0 and m ∈ N, the symmetric function G (k,m) ∈ Λ
has the following property: For any µ ∈ Par, its product G (k,m) · sµ with sµ can be
written in the form

∑
λ∈Par

uλsλ with uλ ∈ {−1, 0, 1} for all λ ∈ Par. It has this property

in common with the symmetric functions hm and em (according to the Pieri rules)
and pm (according to the Murnaghan–Nakayama rule) as well as several others. The
study of symmetric functions having this property – which we call MNable symmetric
functions (in honor of Murnaghan and Nakayama) – has been initiated in [14, §8],
but there is much to be done.

5.4. A conjecture of Per Alexandersson. In February 2020, Per Alexanders-
son suggested the following conjecture:

Conjecture 5.1. Let k be a positive integer, and m ∈ N. Then, G (k,m) ·p2 ∈ Λ can
be written in the form

∑
λ∈Par

uλsλ with uλ ∈ {−1, 0, 1} for all λ ∈ Par.

For example,

G (3, 4) · p2 = s(1,1,1,1,1,1) + s(2,2,2) − s(3,1,1,1) − s(3,3) + s(4,2).

Conjecture 5.1 has been verified for all k and m satisfying k +m 6 30.
Note that Conjecture 5.1 becomes false if p2 is replaced by p3. For example,

G (3, 4)·p3 = −s(1,1,1,1,1,1,1)+s(2,2,1,1,1)−2s(2,2,2,1)+s(3,2,1,1)−s(4,1,1,1)−s(4,3)+s(5,2).
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5.5. A conjecture of François Bergeron. An even more mysterious conjecture
was suggested by François Bergeron in April 2020:

Conjecture 5.2. Let k and n be positive integers, and m ∈ N. Let ∇ be the nabla
operator as defined (e.g. ) in [5, §3.2.1]. Then, there exists a sign σn,k,m ∈ {1,−1}
such that σn,k,m∇n (G (k,m)) is an N [q, t]-linear combination of Schur functions.

Using SageMath, this conjecture has been checked for n = 1 and all k,m ∈
{0, 1, . . . , 9}; the signs σ1,k,m are given by the following table:

1 2 3 4 5 6 7 8 9

2 + + + + + + + + +
3 + − − − + + + − −
4 + − + + + − + + +
5 + − + − − − + − +
6 + − + − + + + − +
7 + − + − + − − − +
8 + − + − + − + + +
9 + − + − + − + − −

(where the entry in the row indexed k and the column indexed m is the sign σ1,k,m,
represented by a “+” sign if it is 1 and by a “−” sign if it is −1). I am not aware
of a pattern in these signs, apart from the fact that σ1,2,m = 1 for all m ∈ N (a
consequence of Haiman’s famous interpretation of ∇ (em) as a character), and that
σ1,k,m appears to be (−1)m−1 whenever 1 6 m < k (which would follow from the
conjecture that (−1)m−1∇ (hm) is an N [q, t]-linear combination of Schur functions
for any m > 1).

5.6. “Petriefication” of Schur functions. Theorem 2.26 shows the exis-
tence of a Hopf algebra homomorphism Vk : Λ → Λ that sends the complete
homogeneous symmetric functions h1, h2, h3, . . . to the Petrie symmetric func-
tions G (k, 1) , G (k, 2) , G (k, 3) , . . .. It thus is natural to consider the images of
all Schur functions sλ under this homomorphism Vk. Experiments with small λ’s
may suggest that these images Vk (sλ) all can be written in the form

∑
λ∈Par

uλsλ

with uλ ∈ {−1, 0, 1}. But this is not generally the case; counterexamples include
V3
(
s(4,4,4)

)
, V4

(
s(4,4)

)
and V4

(
s(5,1,1,1,1)

)
. (Of course, it is true when λ is a single

row, because of Vk
(
s(m)

)
= Vk (hm) = G (k,m); and it is also true when λ is a single

column, because the Hopf algebra homomorphism Vk commutes with the antipode S
that sends hm 7→ (−1)m em and sλ 7→ (−1)|λ| sλt .)

Note that these images Vk (sλ) are precisely the modular Schur functions s′λ studied
in [27].

5.7. Postnikov’s generalization. At the MIT Algebraic Combinatorics presem-
inar roundtable (2020), Alexander Postnikov has suggested a generalization of the
Petrie symmetric functions that preserves some of their more elementary properties.
In this subsection, we shall survey this generalization.

Proofs will be sketched (at best); the reader can find the details in the detailed
version [16].

Convention 4.We fix a formal power series F ∈ k [[t]] whose constant term is 1.
(We will keep this F fixed throughout the present subsection.)

The notations in the following definition will also be used throughout this subsec-
tion:
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Definition 5.3.
(a) Let f0, f1, f2, . . . be the coefficients of the formal power series F , so that F =∑

n∈N
fnt

n. Thus, f0 = 1 (by Convention 4).

(b) We set fi = 0 for each negative integer i.
(c) For any weak composition α, we define an element fα ∈ k by

fα = fα1fα2fα3 · · · .

(Here, the infinite product fα1fα2fα3 · · · is well-defined, since every suffi-
ciently high positive integer i satisfies αi = 0 and thus fαi = f0 = 1.)

(d) We define the power series

(72) GF =
∑
α∈WC

fαxα.

This is a formal power series in k [[x1, x2, x3, . . .]].
(e) For any m ∈ N, we define the power series

(73) GF,m =
∑

α∈WC;
|α|=m

fαxα.

This is a formal power series in k [[x1, x2, x3, . . .]].

Example 5.4. Let us see how these power series GF and GF,m look for specific values
of F .

(a) Let F = 1
1− t = 1 + t + t2 + t3 + · · · . Then, fi = 1 for each i ∈ N. Hence,

fα = 1 for any weak composition α. Thus,

GF =
∑
α∈WC

fα︸︷︷︸
=1

xα =
∑
α∈WC

xα

and
GF,m =

∑
α∈WC;
|α|=m

fα︸︷︷︸
=1

xα =
∑

α∈WC;
|α|=m

xα = hm for each m ∈ N.

(b) Now, let F = 1. Then, fi = [i = 0] for each i ∈ N (where we are again using
Convention 1). Hence, fα = [α = ∅] for any weak composition α. Thus, it is
easy to see that GF = 1 and GF,m = [m = 0] for each m ∈ N.

(c) Now, fix a positive integer k, and set F = 1 + t + t2 + · · · + tk−1. Then,
fi = [i < k] for each i ∈ N. Hence, fα =

∏
i>1

[αi < k] = [αi < k for all i] for

any weak composition α. Thus,

GF =
∑
α∈WC

fα︸︷︷︸
=[αi<k for all i]

xα =
∑
α∈WC

[αi < k for all i] xα

=
∑

α∈WC;
αi<k for all i

xα = G (k) .

Likewise, we can see that GF,m = G (k,m) for each m ∈ N. This shows that
the GF and the GF,m are generalizations of the Petrie symmetric series G (k)
and the Petrie symmetric functions G (k,m), respectively.

The next proposition generalizes parts (a)–(c) of Proposition 2.3:

Proposition 5.5.
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(a) The formal power series GF,m is the m-th degree homogeneous component of
GF for each m ∈ N.

(b) We have

GF =
∑
α∈WC

fαxα =
∑
λ∈Par

fλmλ =
∞∏
i=1

F (xi) .

(c) We have
GF,m =

∑
α∈WC;
|α|=m

fαxα =
∑
λ∈Par;
|λ|=m

fλmλ ∈ Λ

for each m ∈ N.
(d) The formal power series GF is symmetric.
(e) We have GF,0 = 1.

Proof of Proposition 5.5. Parts (a)–(c) of Proposition 5.5 generalize the correspond-
ing parts of Proposition 2.3, and are proved more or less analogously. (The only
novelty is the use of a fact that says that fα = fλ whenever a weak composition α is
obtained by permuting the entries of a partition λ. Of course, this fact follows from
the definitions of fα and fλ.)

Part (d) of Proposition 5.5 is clear from part (b). Part (e) follows from f∅ = 1. �

Next, let us generalize Definition 2.4:

Definition 5.6. Let λ = (λ1, λ2, . . . , λ`) ∈ Par and µ = (µ1, µ2, . . . , µ`) ∈ Par. Then,
the F -Petrie number petF (λ, µ) of λ and µ is the element of k defined by

(74) petF (λ, µ) = det
((
fλi−µj−i+j

)
16i6`, 16j6`

)
.

Note that this integer does not depend on the choice of ` (in the sense that it does not
change if we enlarge ` by adding trailing zeroes to the representations of λ and µ);
this follows from Lemma 5.8 below.

Example 5.7. For ` = 3, the equality (74) rewrites as

petF (λ, µ) = det

 fλ1−µ1 fλ1−µ2+1 fλ1−µ3+2
fλ2−µ1−1 fλ2−µ2 fλ2−µ3+1
fλ3−µ1−2 fλ3−µ2−1 fλ3−µ3

 .

We can now state the generalization of Lemma 2.6 that is needed to justify Defi-
nition 5.6:

Lemma 5.8. Let λ ∈ Par and µ ∈ Par. Let ` ∈ N be such that λ = (λ1, λ2, . . . , λ`) and
µ = (µ1, µ2, . . . , µ`). Then, the determinant det

((
fλi−µj−i+j

)
16i6`, 16j6`

)
does not

depend on the choice of `.

The slickest way to prove Lemma 5.8 is using a k-algebra homomorphism αF :
Λ→ k that generalizes the αk from Definition 3.5. Let us introduce this αF :

Definition 5.9. The h-universal property of Λ (see Subsection 3.4) shows that there
is a unique k-algebra homomorphism αF : Λ → k that sends hi to fi for all positive
integers i. Consider this αF .

For future use, we state some elementary properties of αF .

Lemma 5.10.
(a) We have

αF (hi) = fi for all i ∈ N.
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(b) We have
αF (hi) = fi for all i ∈ Z.

(c) Let λ be a partition. Define hλ as in Definition 3.1. Then,
αF (hλ) = fλ.

Proof of Lemma 5.10. Analogous to the proof of Lemma 3.6. �

Proof of Lemma 5.8. Adapt the proof of Lemma 2.6, using αF instead of αk. �

We now come to more substantive properties of GF and GF,m.
The following theorem generalizes Theorem 2.8:

Theorem 5.11.We have
GF =

∑
λ∈Par

petF (λ,∅) sλ.

(Recall that ∅ denotes the empty partition () = (0, 0, 0, . . .).)

The following corollary (which already appeared in [25, Exercise 7.91 (d)]) gener-
alizes Corollary 2.9:

Corollary 5.12. Let m ∈ N. Then,

GF,m =
∑

λ∈Parm

petF (λ,∅) sλ.

The following theorem generalizes Theorem 2.15:

Theorem 5.13. Let µ ∈ Par. Then,

GF · sµ =
∑
λ∈Par

petF (λ, µ) sλ.

The following corollary generalizes Corollary 2.16:

Corollary 5.14. Let m ∈ N. Let µ ∈ Par. Then,

GF,m · sµ =
∑

λ∈Parm+|µ|

petF (λ, µ) sλ.

Proofs of Theorem 5.13, Corollary 5.14, Theorem 5.11 and Corollary 5.12. These
proofs are analogous to the proofs of Theorem 2.15, Corollary 2.16, Theorem 2.8 and
Corollary 2.9, respectively (but using αF instead of αk). �

Proposition 5.5 (c) shows that GF,m ∈ Λ for each m ∈ N. Hence, we can apply
the comultiplication ∆ of the Hopf algebra Λ to GF,m. The next theorem (which
generalizes Theorem 2.17) gives a simple expression for the result of this:

Theorem 5.15. Let m ∈ N. Then,

∆ (GF,m) =
m∑
i=0

GF,i ⊗GF,m−i.

Proof of Theorem 5.15. Proposition 5.5 (b) tells us that GF =
∞∏
i=1

F (xi). However,

Proposition 5.5 (a) yields GF =
∑
k∈N

GF,k =
∑
k∈N

GF,k (x). Comparing these two equal-

ities, we find

(75)
∑
k∈N

GF,k (x) =
∞∏
i=1

F (xi) .
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Substituting y1, y2, y3, . . . for the variables x1, x2, x3, . . . in this equality, we obtain

(76)
∑
k∈N

GF,k (y) =
∞∏
i=1

F (yi) .

Substituting the variables x1, x2, x3, . . . , y1, y2, y3, . . . for the variables x1, x2, x3, . . .

on both sides of the equality GF =
∞∏
i=1

F (xi), we obtain

GF (x,y) =
( ∞∏
i=1

F (xi)
)( ∞∏

i=1
F (yi)

)
=
(∑
k∈N

GF,k (x)
)(∑

k∈N
GF,k (y)

)

(by (75) and (76)). Comparing the m-th degree homogeneous components of both
sides of this equality, we find

GF,m (x,y) =
∑

i∈{0,1,...,m}

GF,i (x)GF,m−i (y)

(since Proposition 5.5 (a) shows that the m-th degree homogeneous component
of GF (x,y) is GF,m (x,y), whereas the homogeneity of the GF,k’s shows that

the m-th degree homogeneous component of
(∑
k∈N

GF,k (x)
)(∑

k∈N
GF,k (y)

)
is∑

i∈{0,1,...,m}
GF,i (x)GF,m−i (y)). Hence, (10) holds for f = GF,m, I = {0, 1, . . . ,m},

(f1,i)i∈I = (GF,i)i∈{0,1,...,m} and (f2,i)i∈I = (GF,m−i)i∈{0,1,...,m}. Therefore, (9)
(applied to these f , I, (f1,i)i∈I and (f2,i)i∈I) yields

∆ (GF,m) =
∑

i∈{0,1,...,m}

GF,i ⊗GF,m−i =
m∑
i=0

GF,i ⊗GF,m−i.

This proves Theorem 5.15. �

The next few results we will state rely on the following definition:

Definition 5.16. Let F ′ be the derivative of the formal power series F ∈ k [[t]]. Let us

write the formal power series F
′

F
∈ k [[t]] (which is well-defined, since F has constant

term 1) in the form F ′

F
=
∑
n∈N

γnt
n for some γ0, γ1, γ2, . . . ∈ k.

Example 5.17. Let us see how F ′ and γn look for specific values of F .

(a) Let F = 1
1− t = 1 + t+ t2 + t3 + · · · . Then, F ′ = 1

(1− t)2 , so that

F ′

F
= 1

1− t = 1 + t+ t2 + t3 + · · · =
∑
n∈N

tn.

Therefore, γn = 1 for each n ∈ N.

(b) Now, let F = 1. Then, F ′ = 0, so that F
′

F
= 0 =

∑
n∈N

0tn. Therefore, γn = 0

for each n ∈ N.
(c) Now, fix a positive integer k, and set F = 1 + t + t2 + · · · + tk−1. Then,

F = 1− tk

1− t , and thus a simple calculation using the quotient rule shows that
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F ′ = 1 + (k − 1) tk − ktk−1

(1− t)2 . Hence,

F ′

F
= 1 + (k − 1) tk − ktk−1

(1− t) (1− tk) = 1
1− t︸ ︷︷ ︸

=
∑
n∈N

tn

−ktk−1 · 1
1− tk︸ ︷︷ ︸

=
∑
n∈N

(tk)n

=
∑
n∈N

tn − ktk−1 ·
∑
n∈N

(
tk
)n

︸ ︷︷ ︸
=
∑
n∈N;
k|n+1

ktn

=
∑
n∈N

tn −
∑
n∈N;
k|n+1

ktn

=
∑
n∈N

(1− [k|n+ 1] k) tn.

Therefore, γn = 1− [k|n+ 1] k for each n ∈ N.

The next proposition is easily seen to generalize Proposition 2.22:

Proposition 5.18. Let m be a positive integer. Then, 〈pm, GF,m〉 = γm−1.

The proof of this proposition relies on the following property of the k-algebra
homomorphism αF : Λ→ k from Definition 5.9:

Lemma 5.19.We have αF (pm) = γm−1 for each positive integer m.

Proof of Lemma 5.19. Consider the ring Λ [[t]] of formal power series in one indeter-
minate t over Λ. Consider also the analogous ring k [[t]] over k.

The map αF : Λ → k is a k-algebra homomorphism, and therefore induces a
k [[t]]-algebra homomorphism

αF [[t]] : Λ [[t]]→ k [[t]]
that sends each formal power series

∑
n>0

ant
n ∈ Λ [[t]] (with an ∈ Λ) to

∑
n>0

αF (an) tn.

Consider this αF [[t]].
Define the formal power series

(77) H (t) =
∞∏
i=1

(1− xit)−1 ∈ (k [[x1, x2, x3, . . .]]) [[t]] .

Then, from [17, (2.4.1)], we know that

H (t) =
∑
n>0

hn (x)︸ ︷︷ ︸
=hn

tn =
∑
n>0

hnt
n ∈ Λ [[t]] .

It is now easy to see that
(78) (αF [[t]]) (H (t)) = F.

(Indeed, this follows by straightforward computations using the definition of αF [[t]]
from H (t) =

∑
n>0

hnt
n and from Lemma 5.10 (a).)

Also, it is easy to see that the map αF [[t]] respects derivatives: i.e. any power
series u ∈ Λ [[t]] satisfies (αF [[t]]) (u′) = ((αF [[t]]) (u))′. Applying this to u = H (t),
we obtain

(79) (αF [[t]]) (H ′ (t)) =

(αF [[t]]) (H (t))︸ ︷︷ ︸
=F

′ = F ′.

Algebraic Combinatorics, Vol. 5 #5 (2022) 1002



Petrie symmetric functions

From [17, Exercise 2.5.21], we know that

(80)
∑
m>0

pm+1t
m = H ′ (t)

H (t) .

Applying the map αF [[t]] to both sides of this equality, we find

(αF [[t]])

∑
m>0

pm+1t
m

 = (αF [[t]])
(
H ′ (t)
H (t)

)
= (αF [[t]]) (H ′ (t))

(αF [[t]]) (H (t))

(since αF [[t]] is a k-algebra homomorphism)

= F ′

F
(by (78) and (79))

=
∑
n∈N

γnt
n.

Comparing this with

(αF [[t]])

∑
m>0

pm+1t
m

 =
∑
m>0

αF (pm+1) tm (by the definition of αF [[t]]) ,

we obtain ∑
m>0

αF (pm+1) tm =
∑
n∈N

γnt
n.

Comparing tn-coefficients on both sides of this equality, we find

αF (pn+1) = γn for each n ∈ N.

In other words, αF (pm) = γm−1 for each positive integer m. This proves Lemma
5.19. �

Proof of Proposition 5.18. Proposition 5.5 (c) yields GF,m =
∑

λ∈Par;
|λ|=m

fλmλ. Hence,

(81) 〈pm, GF,m〉 =
∑
λ∈Par;
|λ|=m

fλ 〈pm,mλ〉

(since the Hall inner product is k-bilinear).
Now, recall that the bases (mλ)λ∈Par and (hλ)λ∈Par of Λ are dual to each other

with respect to the Hall inner product 〈·, ·〉. Hence, every a ∈ Λ satisfies

a =
∑
λ∈Par

〈mλ, a〉hλ

(by a general property of dual bases with respect to symmetric bilinear forms). Ap-
plying this to a = pm, we obtain

pm =
∑
λ∈Par

〈mλ, pm〉hλ =
∑
λ∈Par;
|λ|=m

〈mλ, pm〉︸ ︷︷ ︸
=〈pm,mλ〉

(since the Hall inner
product is symmetric)

hλ +
∑
λ∈Par;
|λ|6=m

〈mλ, pm〉︸ ︷︷ ︸
=0

(by (2), since mλ and pm
are homogeneous

of degrees |λ| and m
(and since |λ|6=m))

hλ

=
∑
λ∈Par;
|λ|=m

〈pm,mλ〉hλ.
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Applying the map αF to both sides of this equality (and recalling that this map is
k-linear), we find

αF (pm) =
∑
λ∈Par;
|λ|=m

〈pm,mλ〉 αF (hλ)︸ ︷︷ ︸
=fλ

(by Lemma 5.10 (c))

=
∑
λ∈Par;
|λ|=m

fλ 〈pm,mλ〉 .

Comparing this with (81), we obtain

〈pm, GF,m〉 = αF (pm) = γm−1 (by Lemma 5.19) .

This proves Proposition 5.18. �

We can now generalize Theorem 2.20:

Theorem 5.20.Assume that all the elements γ0, γ1, γ2, . . . are invertible in k. Then,
the family (GF,m)m>1 = (GF,1, GF,2, GF,3, . . .) is an algebraically independent gen-
erating set of the commutative k-algebra Λ. (In other words, the canonical k-algebra
homomorphism

k [u1, u2, u3, . . .]→ Λ,
um 7→ GF,m

is an isomorphism.)

Proof of Theorem 5.20. Analogous to the proof of Theorem 2.20, but using Proposi-
tion 5.18 (and Proposition 5.5) instead of Proposition 2.22 (and Proposition 2.3). �

Remark 5.21. It is not hard to verify that the converse of Theorem 5.20 also holds:
If the family (GF,m)m>1 = (GF,1, GF,2, GF,3, . . .) generates the k-algebra Λ, then all
the elements γ0, γ1, γ2, . . . are invertible in k. We omit the proof of this.

The next theorem generalizes parts of Theorem 2.26 (specifically, it generalizes the
properties of the map Vk stated in Theorem 2.26, even though it defines this map
differently):(31)

Theorem 5.22. The h-universal property of Λ shows that there is a unique k-algebra
homomorphism VF : Λ → Λ that sends hi to GF,i for all positive integers i (since
GF,i ∈ Λ for each positive integer i). Consider this VF .

(a) This map VF is a k-Hopf algebra homomorphism.
(b) We have VF (hm) = GF,m for each m ∈ N.
(c) We have VF (pn) = γn−1pn for each positive integer n. (See Definition 5.16

for the meaning of γn−1.)

Proof of Theorem 5.22. (b) When m is positive, this follows from the very definition
of VF . It remains to prove this for m = 0. However, this boils down to showing that
VF (1) = 1, which is clear (since VF is a k-algebra homomorphism).

(a) Let ∆ and ε be the comultiplication and the counit of the Hopf algebra Λ. Both
∆ and ε are k-algebra homomorphisms. It suffices to show that ∆◦VF = (VF ⊗ VF )◦∆
and ε◦VF = ε. We shall show that ∆◦VF = (VF ⊗ VF )◦∆ only; the proof of ε◦VF = ε
is similar but much simpler (since ε sends any homogeneous symmetric function of
positive degree to 0).

Recall that the family (hn)n>1 generates Λ as a k-algebra. Thus, in order to
prove that ∆ ◦ VF = (VF ⊗ VF ) ◦∆, it suffices to prove the equality (∆ ◦ VF ) (hn) =

(31)We recall the “h-universal property of Λ”, which we stated in Subsection 3.4.
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((VF ⊗ VF ) ◦∆) (hn) for each n > 1 (since both ∆ ◦ VF and (VF ⊗ VF ) ◦ ∆ are k-
algebra homomorphisms). In view of Theorem 5.22 (b), this equality rewrites as
∆ (GF,n) =

n∑
i=0

GF,i ⊗GF,n−i. But this follows directly from Theorem 5.15.

(c) This is best proved using the notion of a logarithmic derivative. Let us first
define it in full generality, without any assumptions on k.

If R is a commutative ring, and if F ∈ R [[t]] is any formal power series whose
constant term is 1 (or, more generally, any formal power series that has a multiplicative
inverse), then the logarithmic derivative of F is defined to be the formal power series
F ′

F
∈ R [[t]] (this is well-defined, since F is invertible). This logarithmic derivative is

denoted by lderF .
The following properties of logarithmic derivatives are easy to prove(32):
(1) Let R be a commutative ring. Let u, v ∈ R [[t]] be two formal power series

whose constant terms are 1. Then, lder (uv) = lderu+ lder v.
(Proof: Just recall the definition of logarithmic derivatives and the Leibniz

law (uv)′ = u′v + uv′.)
(2) Let R be a commutative topological ring. Let (un)n∈N = (u0, u1, u2, . . .) ∈

R [[t]]N be a sequence of formal power series whose constant terms are 1. Let
u ∈ R [[t]] be a formal power series whose constant term is 1. Assume that
lim
n→∞

un = u (with respect to the standard topology on R [[t]] induced by
the topology on R). Then, lim

n→∞
(lderun) = lderu (with respect to the same

topology on R [[t]]).
(Proof: Let R [[t]]1 be the set of power series in R [[t]] whose constant term

is 1. Argue that lim
n→∞

(u′n) = u′ first; then argue that the map

R [[t]]×R [[t]]1 → R [[t]] ,

(v, w) 7→ v

w

is continuous.)
(3) Let R be a commutative ring. Let u1, u2, . . . , un ∈ R [[t]] be finitely many

formal power series whose constant terms are 1. Then,

lder
(

n∏
i=1

ui

)
=

n∑
i=1

lderui.

(Proof: Induction on n, using Property 1 in the induction step.)
(4) Let R be a commutative topological ring. Let u1, u2, u3, . . . ∈ R [[t]] be in-

finitely many formal power series whose constant terms are 1. Assume that
the infinite product

∞∏
i=1

ui converges (with respect to the standard topology

on R [[t]] induced by the topology on R). Then, the infinite sum
∞∑
i=1

lderui
converges as well, and we have

lder
( ∞∏
i=1

ui

)
=
∞∑
i=1

lderui.

(32)If R is a commutative Q-algebra, then the logarithmic derivative lderF of a power series
F ∈ R [[t]] equals the derivative of logF . This trivializes many of the properties stated below; but
this shortcut is not available when R is merely an arbitrary commutative ring.
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(Proof: This is the “n → ∞” limit of Property 3. Use Property 2 to pass
to this limit.)

(5) Let R be a commutative ring. Let u ∈ R [[t]] be a formal power series whose
constant term is 1. Let λ ∈ R. Then,

lder (u (λt)) = λ · (lderu) (λt) .

(Proof: This follows from the equality (u (λt))′ = λ · u′ (λt), which is an
easy consequence of the chain rule but also easy to check directly.)

(6) Let R and S be two commutative k-algebras. Let α : R → S be a k-algebra
homomorphism. As we know, α induces a k [[t]]-algebra homomorphism

α [[t]] : R [[t]]→ S [[t]]

that sends each power series
∑
n>0

ant
n ∈ R [[t]] (with an ∈ R) to

∑
n>0

α (an) tn ∈

S [[t]].
Let u ∈ R [[t]] be a formal power series whose constant term is 1. Then,

the constant term of the power series (α [[t]]) (u) is 1, and we have

lder ((α [[t]]) (u)) = (α [[t]]) (lderu) .

(Proof: This is essentially saying that the logarithmic derivative is functo-
rial with respect to the base ring. The proof is straightforward.)

Now, let us resume proving Theorem 5.22 (c):
Consider the ring (k [[x1, x2, x3, . . .]]) [[t]] of formal power series in one indetermi-

nate t over k [[x1, x2, x3, . . .]]. This ring is a topological ring, where the topology is the
standard one induced by the standard topology on k [[x1, x2, x3, . . .]] (not the discrete
topology!). This topological ring (k [[x1, x2, x3, . . .]]) [[t]] is, of course, isomorphic to
k [[x1, x2, x3, . . . , t]]. The ring Λ [[t]] is a subring of (k [[x1, x2, x3, . . .]]) [[t]].

Now, for each m ∈ N, we know that GF,m is homogeneous of degree m (by Propo-
sition 5.5 (a)), and therefore satisfies

(82) GF,m (tx1, tx2, tx3, . . .) = tm ·GF,m
(since any formal power series u ∈ k [[x1, x2, x3, . . .]] that is homogeneous of degree
m satisfies u (tx1, tx2, tx3, . . .) = tm · u).

On the other hand, from (75), we obtain
∞∏
i=1

F (xi) =
∑
k∈N

GF,k (x) =
∑
m∈N

GF,m (x) .

Substituting tx1, tx2, tx3, . . . for x1, x2, x3, . . . on both sides of this equality, we obtain
∞∏
i=1

F (txi) =
∑
m∈N

GF,m (tx1, tx2, tx3, . . .)︸ ︷︷ ︸
=tm·GF,m
(by (82))

=
∑
m∈N

tm ·GF,m.(83)

The map VF : Λ → Λ is a k-algebra homomorphism. Hence, it induces a k [[t]]-
algebra homomorphism

VF [[t]] : Λ [[t]]→ Λ [[t]]
that sends each formal power series

∑
n>0

ant
n ∈ Λ [[t]] (with an ∈ Λ) to

∑
n>0

VF (an) tn.

Consider this VF [[t]].

Algebraic Combinatorics, Vol. 5 #5 (2022) 1006



Petrie symmetric functions

Define the formal power series H (t) as in (77). Then, from [17, (2.4.1)], we know
that

H (t) =
∑
n>0

hn (x)︸ ︷︷ ︸
=hn

tn =
∑
n>0

hnt
n ∈ Λ [[t]] .

Moreover, H (t) =
∑
n>0

hnt
n shows that the constant term of H (t) is h0 = 1. Thus,

lder (H (t)) is well-defined.
Applying the map VF [[t]] to both sides of the equality H (t) =

∑
n>0

hnt
n, we obtain

(VF [[t]]) (H (t)) = (VF [[t]])

∑
n>0

hnt
n

 =
∑
n>0︸︷︷︸
=
∑
n∈N

VF (hn)︸ ︷︷ ︸
=GF,n

(by Theorem 5.22 (b))

tn

(by the definition of VF [[t]])

=
∑
n∈N

GF,nt
n =

∑
n∈N

tn ·GF,n =
∑
m∈N

tm ·GF,m.

Comparing this with (83), we find

(84) (VF [[t]]) (H (t)) =
∞∏
i=1

F (txi) =
∞∏
i=1

F (xit) .

Now, the definition of lder (H (t)) yields

lder (H (t)) = H ′ (t)
H (t) =

∑
m>0

pm+1t
m (by (80))

=
∑
n>0

pn+1t
n.

Applying the map VF [[t]] to both sides of this equality, we find

(VF [[t]]) (lder (H (t))) = (VF [[t]])

∑
n>0

pn+1t
n

 =
∑
n>0

VF (pn+1) tn

(by the definition of VF [[t]])

=
∑
n∈N

VF (pn+1) tn.(85)

Now is the time to use our above-listed properties of logarithmic derivatives. Recall
that the constant term ofH (t) is 1. Hence, Property 6 of logarithmic derivatives shows
that the constant term of the power series (VF [[t]]) (H (t)) is 1, and that we have

(86) lder ((VF [[t]]) (H (t))) = (VF [[t]]) (lder (H (t))) .

Now, (85) yields∑
n∈N

VF (pn+1) tn = (VF [[t]]) (lder (H (t)))

= lder ((VF [[t]]) (H (t))) (by (86))

= lder
( ∞∏
i=1

F (xit)
)

(by (84)) .(87)
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Now, the infinite product
∞∏
i=1

F (xit) converges (as we know from (84)). Hence,

Property 4 of logarithmic derivatives yields that the infinite sum
∞∑
i=1

lder (F (xit))

converges as well, and that we have

(88) lder
( ∞∏
i=1

F (xit)
)

=
∞∑
i=1

lder (F (xit)) .

The definition of lderF yields

lderF = F ′

F
=
∑
n∈N

γnt
n.

Hence, for each i ∈ {1, 2, 3, . . .}, we have

(89) (lderF ) (xit) =
∑
n∈N

γn (xit)n︸ ︷︷ ︸
=xn

i
tn

=
∑
n∈N

γnx
n
i t
n.

Now, (87) becomes∑
n∈N

VF (pn+1) tn = lder
( ∞∏
i=1

F (xit)
)

=
∞∑
i=1

lder (F (xit))︸ ︷︷ ︸
=xi·(lderF )(xit)
(by Property 5 of

logarithmic derivatives)

(by (88))

=
∞∑
i=1

xi · (lderF ) (xit)︸ ︷︷ ︸
=
∑
n∈N

γnx
n
i t
n

(by (89))

=
∞∑
i=1

xi ·
∑
n∈N

γnx
n
i t
n =

∞∑
i=1

∑
n∈N

γnx
n+1
i tn

=
∑
n∈N

γn

( ∞∑
i=1

xn+1
i

)
︸ ︷︷ ︸

=pn+1

tn =
∑
n∈N

γnpn+1t
n.

Comparing coefficients before tn in this equality, we conclude that

VF (pn+1) = γnpn+1 for each n ∈ N.

In other words, VF (pn) = γn−1pn for each positive integer n. This proves Theorem
5.22 (c). �

Our next (and last) few results are not generalizations of any properties of Petrie
functions. To state them, we take a somewhat more high-level point of view. We
forget that we fixed the power series F . Instead, for every power series F ∈ k [[t]]
whose constant term is 1, we define a power series GF according to Definition 5.3 (d).
Moreover, for every power series F ∈ k [[t]] whose constant term is 1, and for every
m ∈ N, we define a power series GF,m according to Definition 5.3 (e). We then have
the following:

Proposition 5.23. Let A and B be two power series in k [[t]] whose constant terms
are 1. Then:

(a) We have GAB = GAGB.
(b) Let n ∈ N. We have GAB,n =

n∑
i=0

GA,iGB,n−i.
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Proof of Proposition 5.23. The power series AB has constant term 1 (since A and B
have constant term 1). Thus, GAB is well-defined, as is GAB,n for each n ∈ N.

(a) Proposition 5.5 (b) yields that GF =
∞∏
i=1

F (xi) for any power series F ∈ k [[t]]

whose constant term is 1. Applying this to F = A and to F = B and to F = AB

yields GA =
∞∏
i=1

A (xi) and GB =
∞∏
i=1

B (xi) and

GAB =
∞∏
i=1

(AB) (xi)︸ ︷︷ ︸
=A(xi)B(xi)

=
∞∏
i=1

(A (xi)B (xi)) =
( ∞∏
i=1

A (xi)
)

︸ ︷︷ ︸
=GA

( ∞∏
i=1

B (xi)
)

︸ ︷︷ ︸
=GB

= GAGB .

This proves Proposition 5.23 (a).
(b) Proposition 5.23 (a) yields GAB = GAGB . Thus, the n-th degree homogeneous

components of GAB and of GAGB are equal. But this means precisely that GAB,n =
n∑
i=0

GA,iGB,n−i (by Proposition 5.5 (a)). This proves Proposition 5.23 (b). �

Finally, we can express the image of the symmetric function GF,n under the an-
tipode of Λ (a result suggested by Sasha Postnikov):

Theorem 5.24. Let S be the antipode of the Hopf algebra Λ. Let F ∈ k [[t]] be a formal
power series whose constant term is 1. Then, for each n ∈ N, we have
(90) S (GF,n) = GF−1,n.

Proof of Theorem 5.24. Let ∆ and ε be the comultiplication and the counit of the
Hopf algebra Λ. Let η : k → Λ be the map that sends each u ∈ k to u · 1Λ ∈ Λ. It is
easy to see that each positive integer n satisfies
(91) ε (GF,n) = 0.
(Indeed, ε sends each homogeneous symmetric function of positive degree to 0; but
GF,n is a homogeneous symmetric function of degree n.) Also, Proposition 5.5 (e)
yields GF,0 = 1 and thus ε (GF,0) = 1.

We shall use the convolution ? introduced in Definition 2.25. The antipode S of Λ
is the ?-inverse of the map idΛ : Λ → Λ (by the definition of the antipode of a Hopf
algebra). In other words,

S ? idΛ = idΛ ? S = η ◦ ε
(since η ◦ ε : Λ→ Λ is the neutral element with respect to ?). We also have S (1) = 1
(by one of the fundamental properties of the antipode of a Hopf algebra).

Now, for each n ∈ N, we have

∆ (GF,n) =
n∑
i=0

GF,i ⊗GF,n−i

(by Theorem 5.15) and therefore

(S ? idΛ) (GF,n) =
n∑
i=0

S (GF,i) ·GF,n−i (by the definition of convolution) ,

so that
n∑
i=0

S (GF,i) ·GF,n−i = (S ? idΛ)︸ ︷︷ ︸
=η◦ε

(GF,n) = (η ◦ ε) (GF,n)

= [n = 0](92)
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(the last equality sign here follows easily from (91) and from ε (GF,0) = 1).
On the other hand, the constant term of the power series F−1 is 1 (since the

constant term of F is 1). Hence, GF−1,n is well-defined for each n ∈ N.
For each n ∈ N, we have

GF−1F,n =
n∑
i=0

GF−1,iGF,n−i

(by Proposition 5.23 (b), applied to A = F−1 and B = F ) and thus

(93)
n∑
i=0

GF−1,iGF,n−i = GF−1F,n = G1,n = [n = 0]

(the last equality sign here has been shown in Example 5.4 (b)).
Recall that GF,0 = 1. Hence, the equalities (93) (for all n ∈ N) can be recursively

solved for GF−1,0, GF−1,1, GF−1,2, . . . (starting with GF,0, GF,1, GF,2, . . .); we obtain

GF−1,n = [n = 0]−
n−1∑
i=0

GF−1,iGF,n−i for each n ∈ N.

The same argument, but using the equalities (92) instead of (93), yields

S (GF,n) = [n = 0]−
n−1∑
i=0

S (GF,i) ·GF,n−i for each n ∈ N.

Comparing these two recursive formulas for GF−1,n and S (GF,n), we see that they
are the same. Thus, by strong induction on n, we conclude that

S (GF,n) = GF−1,n for each n ∈ N.

This completes the proof of Theorem 5.24. �

As a consequence of Theorem 5.24, we obtain a formula for the antipode of a Petrie
symmetric function:

Corollary 5.25. Let k be a positive integer such that k > 1. A weak composition α
will be called k-friendly if each i ∈ {1, 2, 3, . . .} satisfies αi ≡ 0 mod k or αi ≡ 1 mod k.
If α is a weak composition, then w (α) shall denote the number of all i ∈ {1, 2, 3, . . .}
satisfying αi ≡ 1 mod k.

Let S be the antipode of the Hopf algebra Λ. Then, for each n ∈ N, we have

S (G (k, n)) =
∑

α∈WC;
|α|=n;

α is k-friendly

(−1)w(α) xα =
∑
λ∈Par;
|λ|=n;

λ is k-friendly

(−1)w(λ)
mλ.

Proof of Corollary 5.25. Let F = 1 + t+ t2 + · · ·+ tk−1 ∈ k [[t]]. Then, F is a power
series whose constant term is 1. Hence, its reciprocal F−1 is well-defined and again
has constant term 1. Let us denote this reciprocal F−1 by Q; thus, Q = F−1.

Let q0, q1, q2, . . . be the coefficients of the formal power series Q, so that Q =∑
n∈N

qnt
n. Thus, q0 = 1 (since the constant term of Q is 1).
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On the other hand,

Q = F−1 =
(

1− tk

1− t

)−1 (
since F = 1 + t+ t2 + · · ·+ tk−1 = 1− tk

1− t

)
= 1− t

1− tk = (1− t) ·
(
1− tk

)−1︸ ︷︷ ︸
=t0+tk+t2k+t3k+···

= (1− t) ·
(
t0 + tk + t2k + t3k + · · ·

)
= t0 − t1 + tk − tk+1 + t2k − t2k+1 ± · · ·

=
∑
n∈N

([n ≡ 0 mod k]− [n ≡ 1 mod k]) tn.

Comparing coefficients on both sides of this equality, we find
(94) qn = [n ≡ 0 mod k]− [n ≡ 1 mod k] for each n ∈ N.

For any weak composition α, we define an element qα ∈ k by
qα = qα1qα2qα3 · · · .

(This infinite product is well-defined, since every sufficiently high positive integer i
satisfies αi = 0 and thus qαi = q0 = 1.)

It is now easy to see (using (94)) that

(95) qα = [α is k-friendly] · (−1)w(α)

for any weak composition α.
Now, let n ∈ N. Recall that our scalars qi and qα were defined in the exact same

way as the scalars fi and fα were defined in Definition 5.3, but using the power series
Q instead of F . Hence, Proposition 5.5 (c) (applied to Q, qi, qα and n instead of F ,
fi, fα and m) yields that

GQ,n =
∑

α∈WC;
|α|=n

qαxα =
∑
λ∈Par;
|λ|=n

qλmλ ∈ Λ.

Hence,

GQ,n =
∑

α∈WC;
|α|=n

qα︸︷︷︸
=[α is k-friendly]·(−1)w(α)

(by (95))

xα =
∑

α∈WC;
|α|=n

[α is k-friendly] · (−1)w(α) xα

=
∑

α∈WC;
|α|=n;

α is k-friendly

(−1)w(α) xα

and
GQ,n =

∑
λ∈Par;
|λ|=n

qλ︸︷︷︸
=[λ is k-friendly]·(−1)w(λ)

(by (95),
applied to λ instead of α)

mλ =
∑
λ∈Par;
|λ|=n

[λ is k-friendly] · (−1)w(λ)
mλ

=
∑
λ∈Par;
|λ|=n;

λ is k-friendly

(−1)w(λ)
mλ.

Combining these two equalities, we find

(96) GQ,n =
∑

α∈WC;
|α|=n;

α is k-friendly

(−1)w(α) xα =
∑
λ∈Par;
|λ|=n;

λ is k-friendly

(−1)w(λ)
mλ.
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This will immediately yield the claim of Corollary 5.25 if we can show that
S (G (k, n)) = GQ,n. But this is easy: In Example 5.4 (c), we have seen that
GF,m = G (k,m) for each m ∈ N. Applying this to m = n, we obtain GF,n = G (k, n).
On the other hand, Theorem 5.24 yields S (GF,n) = GF−1,n = GQ,n (since F−1 = Q).
In view of GF,n = G (k, n), this rewrites as S (G (k, n)) = GQ,n. This completes our
proof of Corollary 5.25. �

One last property shall be noted in passing:

Proposition 5.26. For any power series F ∈ k [[t]] whose constant term is 1, we
define a k-algebra homomorphism VF : Λ→ Λ as in Theorem 5.22. Then:

(a) If A and B are two power series in k [[t]] whose constant terms are 1, then
VAB = VA ? VB.

(b) We have V1 = η ◦ ε.
(c) For any power series F ∈ k [[t]] whose constant term is 1, we have VF−1 =

VF ◦ S, where S is the antipode of Λ.

This follows easily from Proposition 5.23; we leave the details to the reader.
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