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Sign insertion and Kazhdan–Lusztig cells of
affine symmetric groups

Dongkwan Kim & Pavlo Pylyavskyy

Abstract Combinatorics of Kazhdan–Lusztig cells in affine type A was originally developed
by Lusztig, Shi, and Xi. Building on their work, Chmutov, Pylyavskyy, and Yudovina in-
troduced the affine matrix-ball construction (abbreviated AMBC) which gives an analog of
Robinson–Schensted correspondence for affine symmetric groups. An alternative approach to
Kazhdan–Lusztig theory in affine type A was developed by Blasiak in his work on catabolism.
He introduced a sign insertion algorithm and conjectured that if one fixes the two-sided cell, the
recording tableau of the sign insertion process determines uniquely and is determined uniquely
by the left cell. In this paper we unite these two approaches by proving Blasiak’s conjecture.
In the process, we show that certain new operations we introduce called partial rotations con-
nect the elements in the intersection of a left cell and a right cell. Lastly, we investigate the
connection between Blasiak’s sign insertion and the standardization map acting on the set of
semi-standard Young tableaux defined by Lascoux and Schützenberger.

1. Introduction
In their groundbreaking paper [8], Kazhdan and Lusztig developed a new approach
to the representation theory of Hecke algebras. This gave birth to a whole area called
Kazhdan–Lusztig theory. Of particular importance in this theory are the objects called
cells. Their definition can be summarized as follows. Each Hecke algebra is associated
with a Coxeter group W . Kazhdan and Lusztig define a pre-order ⩽L on elements of
W . Some pairs v, w of elements of W satisfy both v ⩽L w and w ⩽L v, in which case
they are said to be left-equivalent, denoted v ∼L w. Similarly one can define right
equivalence ∼R. The respective equivalence classes are called the left cells and the
right cells.

In (finite) type A, i.e. when W is the symmetric group, the Kazhdan–Lusztig cell
structure is understood in terms of so-called Robinson–Schensted correspondence.
This is a bijective correspondence between elements of the symmetric group and pairs
(P, Q) of standard Young tableaux of the same shape. It is well known [1, 2, 7, 8]
that two permutations lie in the same left (resp. right) cell if and only if they have
the same recording tableau Q (resp. insertion tableau P ).

In affine type A, i.e. when W is an affine symmetric group, Chmutov, Pylyavskyy,
and Yudovina [6] constructed a bijection W → Ω, where Ω is the set of triples
(P, Q, ρ) such that P and Q are tabloids of the same shape and ρ is an integer
vector satisfying certain inequalities. This bijection is called the affine matrix-ball
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construction, abbreviated AMBC. They show that, parallel to the finite type, fixing
the tabloid Q gives all affine permutations in a left cell, while fixing the tabloid P gives
all affine permutations in a right cell. Further properties of AMBC were developed
by Chmutov–Lewis–Pylyavskyy [5], Chmutov–Frieden–Kim–Lewis–Yudovina [4], and
Kim–Pylyavskyy [9].

In his work on catabolism and Garsia–Procesi modules, Blasiak [3] developed an
alternative algorithm to determine the left cell to which an affine permutation belongs.
He called his algorithm sign insertion. However, some of the key properties of the
algorithm remained open. In particular it was in fact Blasiak’s conjecture that once
one fixes a two-sided cell, recording tableaux of sign insertion algorithm are in one
to one correspondence with left cells. In this paper we prove this conjecture using
AMBC, thus relating the two existing approaches to Kazhdan–Lusztig combinatorics
in affine type A.

Structure of Kazhdan–Lusztig cells can be encoded by W -graphs, introduced in
the original work of Kazhdan and Lusztig [8]. The edges of the W -graphs fall into two
categories: directed and undirected. The undirected edges are the star operations, and
are generally easier to understand than the directed edges. In type A they coincide
with Knuth moves on permutations, and they are known to connect each Kazhdan–
Lusztig cell into a single connected component. In affine type A, however, these star
operations are not sufficient to connect the whole cell. The connected components in
that case were studied in [5].

The main tool we use in the proof of Blasiak’s conjecture is the new operations
called partial rotations and inverse partial rotations. We show that, under certain
assumption, they preserve both the left and the right cell of an affine permutation,
and thus the only piece of data they change is the weight ρ in terms of AMBC. We
also prove that (inverse) partial rotations turn the intersection of a left cell and a right
cell into a single connected component. We believe that this makes partial rotations
to have independent interest for future study of Kazhdan–Lusztig combinatorics in
affine type A.

Lastly, we discuss Blasiak’s sign insertion algorithm with the standardization map
of Lascoux and Schützenberger [12, 11]. The latter is a function which maps a semis-
tandard Young tableau to another tableau of the same shape but of different content.
This function is known to preserve the cocharge statistic of semistandard Young
tableaux. More precisely, the set of semistandard Young tableaux of fixed content is
equipped with a poset structure whose grading is given by cocharge statistic. Then
the function of Lascoux and Schützenberger yields a graded poset embedding between
such posets of different content.

In this paper, we describe how Blasiak’s sign insertion can be understood in terms
of the standardization map of Lascoux and Schützenberger. The validity of Blasiak’s
conjecture states that with each recording tableau of the sign insertion algorithm
one may associate corresponding row-standard Young tableaux which parametrize
corresponding left cells. As these cells are in different two-sided cells, these tableaux
should have different shapes. Then our theorem states that the images of (the reading
words of) such tableaux under RSK correspondence are closely related in terms of the
aforementioned standardization map. (See Theorem 7.1 for the exact statement.)

The paper proceeds as follows. In Section 2 we introduce notation we use when
working with affine symmetric groups. In Section 3 we remind the reader of the key
properties of Kazhdan–Lusztig cells and AMBC. In Section 4 we describe Blasiak’s
sign insertion and state our main theorem. In Section 5 we introduce partial rotations,
and show how they interact with AMBC and sign insertion. In Section 6 we prove
Blasiak’s conjecture. We also prove that partial rotations connect elements in the
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intersection of a left cell and a right cell. Finally in Section 7 we show how Blasiak’s
sign insertion is related to the standardization map of Lascoux and Schützenberger.

2. Notations and definitions
For a set A, we write #A to be its cardinal. For a, b ∈ Z, we set [a, b] = {x ∈
Z | a ⩽ x ⩽ b}. A word is a finite sequence of integers, e.g. w = (w1, w2, . . . , wk) for
k ∈ N = {0, 1, 2, . . .} and w1, . . . , wk ∈ Z. For such a word we also write w = w1 · · · wk.
When k = 0, we also write w = ∅. For two words x and y, we write x ⌢ y to be their
concatenation.

We say that α is a composition of n, denoted α |= n, if α = (a1, . . . , ak) for some
k, a1, . . . , ak ∈ N = {0, 1, 2, . . .} where

∑k
i=1 ai = n. Here k is said to be the length

of α, also denoted by l(α). Unless otherwise specified, the length of α is the largest
integer such that al(α) ̸= 0. However, sometimes we allow it to have a zero tail at
the end. A composition α = (a1, . . . , ak) |= n is called a partition of n, denoted
α ⊢ n, if a1 ⩾ · · · ⩾ ak > 0. For a composition α = (a1, . . . , al(α)) |= n, we set
αrev = {al(α), . . . , a1}, which is also a composition of n.

A tabloid is a sequence T = (T1, . . . , Tk) where each Ti is a sequence of positive in-
tegers. We also use its Young diagram to depict T where the i-th row is equal to Ti. We
define its shape sh(T ) to be the composition given by the lengths of parts of T . When
sh(T ) is a partition we say that T is a tableau. We define the length of the tabloid T
to be that of its shape, usually denoted by l(T ). For a tabloid T , its reading word, de-
noted rw(T ), is defined to be the concatenation of its rows from bottom to top. For ex-
ample, if T = ((3, 6, 7, 9), (4, 8, 10), (1, 5), (2)) then rw(T ) = (2, 1, 5, 4, 8, 10, 3, 6, 7, 9).
The content of a tabloid T is a composition, say α = (a1, a2, . . .), where each ai is the
number of letters in T equal to i.

For a composition α = (a1, . . . , ak) |= n, we write RSYT(α) to be the set of row-
standard Young tabloid of shape α, i.e. the set of tabloids T = (T1, . . . , Tk) where
each element of [1, n] appears exactly once in T and each Ti is an increasing sequence
of length ai. Also we let RSYT(n) =

⊔
λ⊢n RSYT(λ), the set of row-standard Young

tableaux of size n (only of partition shape). For a composition α = (α1, α2, . . .) |= n
and a partition λ ⊢ n, we denote by SSYT(λ, α) the set of semistandard Young
tableaux of shape λ and content α. We also set SSYT(n, α) =

⊔
λ⊢n SSYT(λ, α). When

α = (1n) we write SYT(λ) and SYT(n) instead of SSYT(λ, (1n)) and SSYT(n, (1n)),
called the set of standard Young tableaux.

For n ∈ Z>0, we set S̃n to the extended affine symmetric group defined by

S̃n = {w : Z → Z | w is bijective, w(i + n) = w(i) + n for i ∈ Z}.

For w ∈ S̃n, its window notation is defined to be [w(1), . . . , w(n)]. We often identify
w with its window notation. We define the affine symmetric group Sn to be

Sn = {w ∈ S̃n | w(1) + · · · + w(n) = n(n + 1)/2},

which is a subgroup of S̃n. We set si = [1, . . . , i−1, i+1, i, i+2, . . . , n] for i ∈ [1, n−1]
and s0 = sn = [0, 2, . . . , n − 1, n + 1]. Then (Sn, {s1, . . . , sn−1, sn = s0}) is an affine
Weyl group of type A. Moreover, if we set ω = [2, 3, . . . , n + 1] ∈ S̃n then ⟨ω⟩ is an
infinite cyclic group and S̃n = ⟨ω⟩ ⋉ Sn. Here ω is called the shift element.

For n ∈ Z>0, we say that w is a (affine) partial permutation if there exists X ⊂ [1, n]
such that w is an injection from X + nZ to Z satisfying w(i + n) = w(i) + n for any
i ∈ X +nZ. Note that X = [1, n] if and only if w ∈ S̃n. We identify w with its window
notation [w(1), . . . , w(n)] where we adopt the convention that w(i) = ∅ whenever
i ̸∈ X. We often identify a partial permutation w : X + nZ → Z for X ⊂ [1, n] with
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its graph {(x, w(x)) | x ∈ X + nZ}. Thus for example, for two partial permutations
u : X + nZ → Z and v : X ′ + nZ → Z, we write u ⊂ v if X ⊂ X ′ and u(x) = v(x) for
x ∈ X. In addition, we consider the graphs to be placed on the xy-plane such that
the x-axis directs to the south and the y-axis directs to the east, i.e. it is obtained
from the xy-plane with the conventional direction by rotating 90◦ clockwise.

For n ∈ Z>0, let R : Z → Z be an involution defined by R(x) = n+1−x. This also
induces an involution on the set of partial permutations defined by w 7→ R ◦ w ◦ R,
which we again denote by R. Pictorially, it corresponds to the rotation of the diagram
of w by 180 degrees which preserves the square [1, n] × [1, n].

For a sequence A = (A1, . . . , Ar) and a set X = {x1, . . . , xs} ⊂ [1, r] so that
x1 < x2 < · · · < xs, we set AX = (Ax1 , . . . , Axs). If X = [1, s] (resp. X = [s, r]), we
also write A⩽s (resp. A⩾s) instead of AX . We set A|X = (∅, Ax1 ,∅, . . . ,∅, Axs

,∅)
(i.e replacing Ai with ∅ if i ̸∈ X). When w ∈ S̃n and X ⊂ [1, n] we set w|X =
(w(1), . . . , w(n))|X , i.e. we identify w with its window notation and discard w(i) for
i ̸∈ X. Note that this becomes a window notation of some partial permutation; we
abuse notation and also denote it by w|X .

3. Cells, star operations, and AMBC
Kazhdan and Lusztig [8] introduced (two-sided, left, and right) cells for each Coxeter
group and defined (right and left) star operations. (The notion of cells is extended to
extended affine Weyl groups by Lusztig [13].) Here we focus on the case of (extended)
affine symmetric groups in terms of the affine matrix-ball construction.

For a row-standard Young tableau T and i ∈ [1, l(T ) − 1] suppose that Ti =
(a1, . . . , as) and Ti+1 = (b1, . . . , bt). Then we define lchi(T ), called the local charge in
row i of T , to be the smallest d ∈ N such that al−d < bl for l ∈ [d+1, t].(1) Pictorially,
this corresponds to how much one needs to shift Ti to the right so that (Ti, Ti+1)
becomes standard. For example, if Ti = (3, 5, 7, 8) and Ti+1 = (1, 2, 4, 6) then we have
lchi(T ) = 2 as depicted below.

3 5 7 8
1 2 4 6

⇒
3 5 7 8

1 2 4 6

For P, Q ∈ RSYT(λ) where λ = (λ1, . . . , λl) is a partition, we define #»sP,Q =
(s1, . . . , sl) ∈ Zl, called the symmetrized offset constant of (P, Q), to be as follows.

si =
{

0 if i = 1 or λi−1 > λi,
si−1 + lchi−1(P ) − lchi−1(Q) otherwise.

In other words, we have si − si−1 = lchi−1(P ) − lchi−1(Q) whenever λi−1 = λi. We
say that #»ρ = (ρ1, . . . , ρl) is dominant with respect to (P, Q) if ρi−1 − si−1 ⩽ ρi − si

whenever λi−1 = λi.
The affine matrix-ball construction (abbreviated AMBC), defined in [6], is a sys-

tematic method to understand the combinatorial properties of S̃n and yields two
functions

Φ : S̃n →
⊔
λ⊢n

RSYT(λ) × RSYT(λ) × Zl(λ),

Ψ :
⊔
λ⊢n

RSYT(λ) × RSYT(λ) × Zl(λ) → S̃n.

(1)One can easily show that this definition coincides with [5, Definition 5.3].
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Here, we have im Φ = {(P, Q, #»ρ ) | #»ρ is dominant with respect to (P, Q)} and im Ψ =
S̃n. Moreover, Ψ|im Φ and Φ are inverse to each other. (Their constructions are ex-
plained in Section 5.1 in more detail.)

The two-sided cells of S̃n are parametrized by partitions of n and we denote such
cells by cλ for λ ⊢ n. The left/right cells contained in cλ are parametrized by row-
standard Young tableaux of shape λ, and we write ΓT (resp. (ΓT )−1) for T ∈ RSYT(λ)
for such a left (resp. right) cell. Here, we have w ∈ ΓT if and only if Φ(w) = (P, T, #»ρ )
for some P and #»ρ , and similarly w ∈ (ΓT )−1 if and only if Φ(w) = (T, Q, #»ρ ) for some
Q and #»ρ . Also we have cλ =

⊔
T ∈RSYT(λ) ΓT =

⊔
T ∈RSYT(λ)(ΓT )−1.

For w ∈ S̃n and i ∈ [1, n] such that either w(i) < w(i + 2) < w(i + 1), w(i + 1) <
w(i + 2) < w(i), w(i) < w(i − 1) < w(i + 1), or w(i + 1) < w(i − 1) < w(i), we define
the right star operation w 7→ w∗ for ∗ ∼ i to be the one obtained from w by swapping
w(i+kn) and w(i+1+kn) for each k ∈ Z. Similarly, we define the left star operation
w 7→ ∗w for ∗ ∼ i to be the composition w 7→ w−1 7→ (w−1)∗ 7→ ((w−1)∗)−1 when the
corresponding right star operation w−1 7→ (w−1)∗ for ∗ ∼ i is well-defined. Then [9,
Proposition 5.10] states that when Φ(w) = (P, Q, #»ρ ) = (P, Q, #»sP,Q + # »ρ• ) we have

Φ(∗w) =
{

(P ∗, Q, #»sP ∗,Q + # »ρ• ) if ∗ ̸∼ n,

(P ∗, Q, #»sP ∗,Q + # »ρ• − #»

δ (P, 1) + #»

δ (P, n)) if ∗ ∼ n.

Φ(w∗) =
{

(P, Q∗, #»sP,Q∗ + # »ρ• ) if ∗ ̸∼ n,

(P, Q∗, #»sP,Q∗ + # »ρ• + #»

δ (Q, 1) − #»

δ (Q, n)) if ∗ ∼ n,

where P ∗ and Q∗ are Knuth moves for ∗ ∼ i defined in [9, Definition 5.7]. Also, for
T ∈ RSYT(λ), a ∈ [1, l(T )], and s ∈ Ta, we define #»

δ (T, s) = (δ1, . . . , δl(T )) to be

δi =
{

1 if λa−1 > λa = λi (here we set λ0 = ∞), and
0 otherwise.

(In particular, δi = δj whenever λi = λj .)
Multiplication by ω = [2, 3, . . . , n + 1] ∈ S̃n preserves each two-sided cell but

permutes left/right cells. More precisely, when Φ(w) = (P, Q, #»ρ ) = (P, Q, #»sP,Q + # »ρ• )
we have (see [9, Proposition 5.5])

Φ(ω · w) = (ω(P ), Q, #»sω(P ),Q + # »ρ• + #»

δ (P, n)), and

Φ(w · ω−1) = (P, ω(Q), #»sP,ω(Q) + # »ρ• − #»

δ (Q, n)).

Here, ω(T ) is a tableau obtained from T by replacing each entry i with i + 1 for
i ̸= n and n with 1 (and reordering entries in each row if necessary so that the result
becomes row-standard).

Example 3.1. Suppose that w = [1, 6, 8, 14, 17, 5, 0, 19, 3, 22] ∈ S̃10. Then we have

∗w = [1, 6, 8, 14, 17, 5, 0, 19, 2, 23] for ∗ ∼ 2,

w∗ = [12, 6, 8, 14, 17, 5, 0, 19, 3, 11] for ∗ ∼ 10,

ωw = [2, 7, 9, 15, 18, 6, 1, 20, 4, 23],
wω−1 = [12, 1, 6, 8, 14, 17, 5, 0, 19, 3].
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In each case we have (all the symmetrized offset constants are zero as the parts of
(4, 3, 2, 1) are pairwise different)

Φ(w) = (((3, 5, 8, 10), (1, 4, 9), (2, 6), (7)), ((4, 5, 8, 10), (1, 2, 3), (6, 9), (7)), (4, 0, 0, 0)),
Φ(∗w) = (((2, 5, 8, 10), (1, 4, 9), (3, 6), (7)), ((4, 5, 8, 10), (1, 2, 3), (6, 9), (7)), (4, 0, 0, 0)),
Φ(w∗) = (((3, 5, 8, 10), (1, 4, 9), (2, 6), (7)), ((1, 4, 5, 8), (2, 3, 10), (6, 9), (7)), (3, 1, 0, 0)),
Φ(ωw) = (((1, 4, 6, 9), (2, 5, 10), (3, 7), (8)), ((4, 5, 8, 10), (1, 2, 3), (6, 9), (7)), (5, 0, 0, 0)),

Φ(wω−1) = (((3, 5, 8, 10), (1, 4, 9), (2, 6), (7)), ((1, 5, 6, 9), (2, 3, 4), (7, 10), (8)), (3, 0, 0, 0)),

which are as expected from the observation above.

4. Sign insertion and the main theorem
Here we recall the sign insertion algorithm defined in [3] and state the first main
result of this paper (Theorem 4.5). Suppose that we have words P,Q, w such that
w ̸= ∅ and P⌢ w is a window notation of some element in S̃n. (Recall that x ⌢ y
is the concatenation of x and y.) Also we assume that P and Q are both increasing
and of the same length. Let us write w = (a) ⌢ w′′ where a ∈ Z is the first entry of
w and w′′ is the remaining part. For i ∈ Z>0 bigger than any entry in Q, we define
𭟋(i − 1,P,Q, w) = (i,P′,Q′, w′) as follows.

• If a is bigger than any entry of P, then we set P′ = P⌢(a), Q′ = Q⌢(i),
and w′ = w′′.

• Otherwise, let b be the smallest element in P bigger than a. Then we set P′

to be P after replacing b with a. Also we set Q′ = Q and w′ = w′′ ⌢(n + b).
For w ∈ S̃n, we start with the quadruple (0,∅,∅, w) and apply 𭟋 recursively until
the last component becomes the empty word, say (i,P,Q,∅). We write sgnP(w) = P
and sgnQ(w) = Q. The process w 7→ (sgnP(w), sgnQ(w)) is called sign insertion.

Example 4.1. Let w = [17, 13, 4, 20, 9, 24] ∈ S̃6. Each step of the sign insertion applied
to w is described as follows.

i P Q w
0 ∅ ∅ 17, 13, 4, 20, 9, 24
1 17 1 13, 4, 20, 9, 24
2 13 1 4, 20, 9, 24, 23
3 4 1 20, 9, 24, 23, 19
4 4, 20 1, 4 9, 24, 23, 19
5 4, 9 1, 4 24, 23, 19, 26
6 4, 9, 24 1, 4, 6 23, 19, 26
7 4, 9, 23 1, 4, 6 19, 26, 30
8 4, 9, 19 1, 4, 6 26, 30, 29
9 4, 9, 19, 26 1, 4, 6, 9 29
10 4, 9, 19, 26, 30 1, 4, 6, 9, 10 29
11 4, 9, 19, 26, 29 1, 4, 6, 9, 10 36
12 4, 9, 19, 26, 29, 36 1, 4, 6, 9, 10, 12 ∅

Thus we have sgnP(w) = (4, 9, 19, 26, 29, 36) and sgnQ(w) = (1, 4, 6, 9, 10, 12).

Remark 4.2. Note that it is not exactly the same as, but equivalent to, the original
definition of Blasiak [3, Algorithm 9.7]. Indeed, in our convention the window notation
of w ∈ S̃n is [w(1), w(2), . . . , w(n)], whereas in [3] it is defined to be [n+1−w−1(1), n+
1 − w−1(2), . . . , n + 1 − w−1(n)]. Furthermore, our sign insertion algorithm uses the
first element of w in each step, whereas in [3] the last element is used. Therefore,
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Blasiak’s insertion algorithm applied to w is equivalent to our algorithm applied to
R(w−1).

Let us discuss some basic properties of sign insertion.

Lemma 4.3. Suppose that 𭟋(i − 1,P,Q, w) = (i,P′,Q′, w′). Then either P⌢ w =
P′ ⌢ w′ or P′ ⌢ w′ is obtained from P⌢ w by applying a series of right star operations
followed by multiplication by ω on the right. As a result, w and sgnP(w) are in the
same left cell for w ∈ S̃n.

Proof. Suppose that P⌢ w ̸= P′ ⌢ w′. If we let w = (a) ⌢ w′′, then P′ is obtained
from P by the “bumping process”, i.e. regarding P as an one-row tableau and inserting
a to it using the usual Robinson–Schensted insertion algorithm. Thus if we let b be the
element bumped out from P, then it is clear that (b) ⌢ P′ is obtained from P⌢(a)
by a series of right star operations. Now the result follows as ((b) ⌢ P′ ⌢ w′′) · ω =
P′ ⌢ w′′ ⌢(b + n) = P′ ⌢ w′. □

Lemma 4.4. Suppose that w ∈ S̃n.
(1) sgnQ(w) = sgnQ(ωw).
(2) If ∗w is well-defined for some ∗ ∼ i, then sgnQ(∗w) = sgnQ(w).

Proof. This is a reformulation of [3, Proposition 9.9 (h), (i)] with respect to our
convention. In [3] he only considers when ∗ ̸∼ n (see the comment right above [3,
Example 9.3]), however the argument still applies when ∗ ∼ n. □

Now we state the first main result of this paper, originally conjectured by J. Blasiak.

Theorem 4.5. [3, Conjecture 9.17(b)] For λ ⊢ n and Q, the set {w ∈ cλ | sgnQ(w) =
Q} is a single left cell (if nonempty).

Remark 4.6. Since his sgnQ(w) is equal to our sgnQ(R(w−1)), his conjecture is trans-
lated to that {w ∈ cλ | sgnQ(R((w−1)−1)) = sgnQ(R(w)) = Q} is a single left cell.
However, since R : S̃n → S̃n sends a left cell to a left cell (see [4, Theorem 3.1] for
more detail), these two statements are equivalent.

5. AMBC, proper partial rotations, and sign insertion
Here we first review the construction of AMBC in detail. Then we introduce proper
partial rotations which play a central role in our paper and discuss how they are related
to both AMBC and Blasiak’s sign insertion. Eventually we verify the Diamond Lemma
(Lemma 5.15) which is a key step for the proof of Blasiak’s conjecture.

5.1. Notions for AMBC. Here we recap some definitions from [6] that will be used
in this paper. We fix a positive integer n.

For a partial permutation w, we define its Shi poset to be the poset P = Pw on
{x ∈ [1, n] | w(x) ̸= ∅} such that i <P j if either [i > j and w(i) < w(j)] or
[w(j) > w(i) + n]. For such a poset, we define its Greene–Kleitman partition to be
λ = (λ1, λ2, . . .) where

∑k
i=1 λi is the maximum of the number of elements in the

union of k-antichains in Pw. Then by [14], if w ∈ S̃n is an actual permutation then
the Greene–Kleitman partition λ of Pw parametrizes the two-sided cell that contains
w, i.e. we have w ∈ cλ. In such a case we define the width of Pw to be the first row
of λ, which is also equal to the maximum length of an antichain in Pw.

Example 5.1. Let w = [8, 1, 19, 14, 16, 2, 25, 13, 10, 27] ∈ S̃10. Its Shi poset Pw is
described in Figure 1. Direct calculation shows that its Greene–Kleitman partition is
(3, 3, 3, 1), which means that w ∈ c(3,3,3,1).
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2 6 9

1 8

4 5

3 7 10

Figure 1. Hasse diagram of P[8,1,19,14,16,2,25,13,10,27]

We say that a partial permutation S : X + nZ → Z for some X ⊂ [1, n] is a
stream if S is an increasing function. In such a case its density is defined to be #X.
When there exists another partial permutation w such that S ⊂ w, we say that S is a
channel of w if the density of S is equal to the width of Pw. Indeed, a stream S ⊂ w
is a channel if and only if its density is maximum among the streams contained in w.
For a stream S : X + nZ → Z its altitude a(S) is defined to be

∑
x∈X(⌈w(x)/n⌉ − 1)

where ⌈t⌉ is the smallest integer not smaller than t.
For (x, y), (x′, y′) ∈ Z2 we write (x, y) ⩽SW (x′, y′) if x ⩾ x′ and y ⩽ y′ and

say that (x, y) is southwest of (x′, y′) or equivalently (x′, y′) is northeast of (x, y).
Similarly, we write (x, y) ⩽NW (x′, y′) if x ⩽ x′ and y ⩽ y′ and say that (x, y) is
northwest of (x′, y′) or equivalently (x′, y′) is southeast of (x, y). (Note that this is
compatible with our convention of the xy-plane which is the clockwise rotation of
the usual convention by 90 degrees.) For two channels C, C ′ ⊂ w we say that C is
southwest of C ′, denoted C ⩽SW C ′, if for any b ∈ C there exists b′ ∈ C ′ such
that b ⩽SW b′. If neither C ⩽SW C ′ nor C ⩾SW C ′ then we write C ̸∼SW C ′.
By [6, Proposition 3.13], for any partial permutation w there always exist channels
C, C ′ ⊂ w such that C ⩽SW C ′′ ⩽SW C ′ for any channel C ′′ ⊂ w. We call C (resp.
C ′) the southwest (resp. northeast) channel of w.

For a partial permutation w, a sequence ((x1, w(x1)), . . . , (xk, w(xk))) is called a
path in w if x1 < · · · < xk and w(x1) < · · · < w(xk), i.e. it is a chain with respect
to the southeast direction. Or equivalently, if (b1, . . . , bk) is a path in w then we have
b1 ⩽NW · · · ⩽NW bk.(2) A numbering d : w → Z is called monotone if for any path
(b1, b2, . . . , bk) we have d(b1) < d(b2) < · · · < d(bk).

For a stream S we say that d̃ : S → Z is a proper numbering if d̃(x, S(x)) <
d̃(y, S(y)) whenever x < y and d̃(x + n, S(x + n)) − d̃(x, S(x)) equals the density
of S for any x. Note that a proper numbering is unique up to shift. When C is a
channel of w and d̃ : C → Z is a proper numbering, we define the channel numbering
dC

w = dC : w → Z to be
dC(b) = max{d̃(b′)+k | there exists a path (b′ = b0, b1, . . . , bk = b) in w where b′ ∈ C}.

Again dC is uniquely determined up to shift. When C is the southwest channel of w
we also write d = dC (or dw = dC

w), called the southwest channel numbering of w.
For two channels C, C ′ ⊂ w, let us fix shifts of dC and dC′ so that they coincide

on some/any element in C. (These two conditions are equivalent since the restriction
of a proper numbering to a channel is also proper, see [6, Lemma 3.15].) Then the
distance between C and C ′ is defined to be h(C, C ′) = |dC′(b) − dC(b)| for some/any
b ∈ C ′. This is indeed well-defined and satisfies that h(C, C ′) + h(C ′, C ′′) ⩾ h(C, C ′′)

(2)This is called a reverse path in [6] and a path is defined to be of the opposite direction. Here
we stick to our definition in order to avoid confusion to which way a path is directed.
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for any channels C, C ′, C ′′ ⊂ w. Furthermore, if C ̸∼SW C ′ then h(C, C ′) = 0 by [6,
Lemma 11.12]. (The converse is not true in general.) We say that R is a river of w if
it is of the form R = {C ′ ⊂ w | C ′ is a channel of w, h(C, C ′) = 0} for some channel
C ⊂ w. (Later by Lemma 5.4, such C can be chosen to be any channel in R.)

Example 5.2. Let w = [8, 1, 19, 14, 16, 2, 25, 13, 10, 27] ∈ S̃10 as in Example 5.1. There
are three channels of w as follows:

C1 = [∅, 1,∅,∅,∅, 2,∅,∅, 10,∅],
C2 = [8,∅,∅, 14, 16,∅,∅,∅,∅,∅],
C3 = [∅,∅, 19,∅,∅,∅, 25,∅,∅, 27].

Here C1 is the southwest channel of w and C3 is the northeast channel of w. Let us
fix the proper numbering d̃ of C1 such that d̃(2, 1) = 0. Then the southwest channel
numbering d = dC1 : w → Z is defined to be

(1, 8), (2, 1) 7→ 0, (4, 14), (6, 2) 7→ 1, (3, 19), (5, 16), (8, 13), (9, 10) 7→ 2,
(7, 25) 7→ 3, (10, 27) 7→ 4.

Similarly, dC2 : w → Z is defined to be
(2, 1) 7→ 0, (1, 8), (6, 2) 7→ 1, (4, 14), (8, 13), (9, 10) 7→ 2,
(5, 16), (3, 19) 7→ 3, (7, 25) 7→ 4, (10, 27) 7→ 5,

and dC3 : w → Z is defined to be
(2, 1) 7→ 0, (1, 8), (6, 2) 7→ 1, (4, 14), (8, 13), (9, 10) 7→ 2, (5, 16) 7→ 3,
(3, 19) 7→ 4, (7, 25) 7→ 5, (10, 27) 7→ 6.

Therefore we see that h(C1, C2) = 1, h(C2, C3) = 1, and h(C1, C3) = 2.

For a partial permutation w and its channel C ⊂ w, we define fwC(w) and stC(w)
as follows. Let d = dC

w : w → Z be the channel numbering defined above. For each
m ∈ Z, we take x1, . . . , xk ∈ Z such that x1 > · · · > xk and d(xi, w(xi)) = m for
i ∈ [1, k]. Then we have w(x1) < · · · < w(xk). (It follows from the monotone property
of d.) Set Zm = Z ′

m ⊔ Z ′′
m ⊔ Z ′′′

m where
Z ′

m = {(xi, w(xi)) | i ∈ [1, k]},

Z ′′
m = {(xi, w(xi+1)) | i ∈ [1, k − 1]},

Z ′′′
m = {(xk, w(x1))}.

The set Zm is called the zigzag labeled m. Then w ∩ Zm = Z ′
m. We set fwC(w) =⊔

m∈Z Z ′′
m and st(w) =

⊔
m∈Z Z ′′′

m . Then fwC(w) is a partial permutation and stC(w) is
a stream whose density is equal to the width of Pw. When C is the southwest channel
of w we simply write fw(w) and st(w) instead of fwC(w) and stC(w).

Example 5.3. Let w = [8, 1, 19, 14, 16, 2, 25, 13, 10, 27] ∈ S̃10 as in Example 5.1 and
5.2. Then with respect to d = dC1 we have
Z ′

0 = {(2, 1), (1, 8), (−3, 15)}, Z ′′
0 = {(2, 8), (1, 15)}, Z ′′′

0 = {(−3, 1)},
Z ′

1 = {(6, 2), (4, 14), (0, 17)}, Z ′′
1 = {(6, 14), (4, 17)}, Z ′′′

1 = {(0, 2)},
Z ′

2 = {(9, 10), (8, 13), (5, 16), (3, 19)}, Z ′′
2 = {(9, 13), (8, 16), (5, 19)}, Z ′′′

2 = {(3, 10)}.

Also we have fw(w) = (Z ′′
0 ⊔Z ′′

1 ⊔Z ′′
2 )+(n, n)Z and st(w) = (Z ′′′

0 ⊔Z ′′′
1 ⊔Z ′′′

2 )+(n, n)Z.

The map Φ : S̃n →
⊔

λ⊢n RSYT(λ)×RSYT(λ)×Zl(λ) is defined as follows. Starting
with w0 = w ∈ S̃n, we successively calculate wi+1 = fw(wi) and Si+1 = st(wi) until
we have an empty partial permutation. For each Si we set Pi, Qi ⊂ [1, n] such that
Si : Qi + nZ → Pi + nZ is a bijection. Then we have Φ(w) = (P, Q, #»ρ ) where
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P = (P1, P2, . . .), Q = (Q1, Q2, . . .), and #»ρ = (a(S1), a(S2), . . .). Moreover, #»ρ is
always dominant with respect to (P, Q).

A stream S is said to be compatible with a partial permutation w if S∩w = ∅, S∪w
is still a partial permutation, and the density of S is not (strictly) smaller than the
width of Pw. In such a case we define the backward numbering dbk,S

w = dbk,S : w → Z
as follows. First we fix a proper numbering d̃ : S → Z, and for (x, w(x)) ∈ w we let
d(x, w(x)) = max{d̃(y, S(y)) ∈ S | y < x, S(y) < w(x)}. Now we repeat the following
process:

• If d(x, w(x)) < d(y, w(y)) for any x, y such that x < y and w(x) < w(y), then
we terminate the process.

• Otherwise, choose (x, w(x)) such that:
- there exists y such that d(x, w(x)) ⩾ d(y, w(y)), x < y, and w(x) < w(y),

and
- for any z such that z < x and w(z) < w(x) we have d(z, w(z)) <

d(x, w(x)).
• For each i ∈ Z we lower the value of d(x + in, w(x) + in) by 1.

After this process is finished we set dbk,S
w = d. This numbering is always well-defined.

For a partial permutation w and a compatible stream S, we define bkS(w) as
follows. Let d̃ be the proper numbering on S and d = dbk,S

w be the induced backward
numbering on w. Then for each m ∈ Z, we take y, x1, . . . , xk ∈ Z such that x1 >
· · · > xk and d̃(y, S(y)) = d(xi, w(xi)) = m for i ∈ [1, k]. Then we have w(x1) < · · · <
w(xk). (It follows from the monotone property of d.) Set Zm = Z ′

m ⊔ Z ′′
m ⊔ Z ′′′

m where
Z ′

m = {(xi+1, w(xi)) | i ∈ [1, k − 1]} ⊔ {(x1, S(y))} ⊔ {(y, w(xk))},

Z ′′
m = {(xi, w(xi)) | i ∈ [1, k]}, Z ′′′

m = {(y, S(y))}.

The set Zm is called the zigzag labeled m. Then w ∩Zm = Z ′′
m and S ∩Zm = Z ′′′

m . We
set bkS(w) =

⊔
m∈Z Z ′

m. Then bkS(w) is a partial permutation the width of whose
Shi poset is equal to the density of S.

The map Ψ :
⊔

λ⊢n RSYT(λ) × RSYT(λ) × Zl(λ) → S̃n is defined as follows. For
P = (P1, . . . , Pl), Q = (Q1, . . . , Ql), and #»ρ = (ρ1, . . . , ρl), we define Si to be the
unique stream which maps Qi + nZ to Pi + nZ and which satisfies a(Si) = ρi. Now
starting with the empty partial permutation wl we successively define wi−1 = bkSi

(wi)
for i ∈ [1, l]. This process is well-defined and we set Ψ(P, Q, #»ρ ) = w0. (Here the
dominance of #»ρ is not required.)

5.2. Channels and rivers. Let us describe some properties of channels and rivers.
We start with observing the following lemma which strengthens [6, Proposition 3.17].

Lemma 5.4. Suppose that C1, C2, C3 are three (not necessarily disjoint) channels of a
partial permutation w. Then we have h(C1, C3) ⩽ h(C1, C2)+h(C2, C3). Furthermore,
if h(C1, C2) = 0, h(C2, C3) = 0, or C1 ⩽SW C2 ⩽SW C3, then we have h(C1, C2) +
h(C2, C3) = h(C1, C3).

Proof. It is indeed shown in the proof of [6, Proposition 3.17]. □

For a partial permutation of w whose Shi poset is of width r, we successively
choose Ci to be the southwest channel of w − ⊔i−1

j=1Cj until we fail to find a stream
of density r and let {C1, . . . , Cm} be its result. (This is always possible due to [6,
Proposition 3.13].) Then (C1, . . . , Cm) is a disjoint collection of channels of w where
C1 ⩽SW · · · ⩽SW Cm. By [6, Definition 3.7] and the argument thereafter, we see that
m equals the multiplicity of r (the width of Pw) in the Greene–Kleitman partition of
Pw. This argument (and its reflection along the anti-diagonal of the xy-plane) shows
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the existence, but not uniqueness, of the following sequence. (Throughout this paper
only the existence of such a sequence is needed.)

Definition 5.5. For a partial permutation w, we denote by Cw = (C1, . . . , Cm) a
sequence of the channels of w such that

(1) m is the multiplicity of λ1 in the Greene–Kleitman partition λ of Pw,
(2) C1 ⩽SW C2 ⩽SW · · · ⩽SW Cm,
(3) Ci’s are pairwise disjoint, and
(4) this sequence contains all the northeast channels of rivers of w.

Similarly, we denote by C′
w = (C ′

1, . . . , C ′
m) a similar sequence which satisfies (1), (2),

(3), and
(4′) it contains all the southwest channels of rivers of w.

Remark 5.6. By Lemma 5.4, for a given w and two sequences Cw = (C1, . . . , Cm)
and C′

w = (C ′
1, . . . , C ′

m) as above, there exist 0 = m0, m1, m2, . . . , ml = m where
0 < m1 < m2 < . . . < ml−1 < m such that h(Ci, Cj) = h(C ′

i, C ′
j) = 0 if and

only if i, j ∈ [1 + mk−1, mk] for some k ∈ [0, l − 1]. In other words, there are l
rivers R1, . . . , Rl ⊂ w such that Ci, C ′

i ∈ Rk for k ∈ [1, l] and i ∈ [1 + mk−1, mk].
Then by maximality of Cw (resp. C′

w), the intersection of C1+mk−1 and the southwest
channel of Rk (resp. the intersection of C ′

mk
and the northeast channel of Rk) is

nonempty. In particular, the channel numbering corresponding to the southwest (resp.
northeast) channel of Rk is the same as that of C1+mk−1 (resp. C ′

mk
). In addition,

when mk−1 + 1 < mk it is possible to assume that both Cw and C′
w contain both the

southwest and northeast channel of Rk. (When mk−1 +1 = mk, the northeast and the
southwest channel of Rk have nonempty intersection but they may differ in general.)

Example 5.7. Suppose that w = [6, 1, 18, 3, 19, 24, 12, 15, 17, 10]. Then there are four
channels

C1 = [∅, 1,∅, 3,∅,∅,∅,∅,∅, 10],
C ′

2 = [6,∅,∅,∅,∅,∅, 12, 15,∅,∅],
C2 = [∅,∅,∅,∅,∅,∅, 12, 15, 17,∅],
C3 = [∅,∅, 18,∅, 19, 24,∅,∅,∅,∅].

Here {C1, C2, C ′
2} and {C3} are rivers of w. Also the sequence (C1, C2, C3) satisfies

the properties of both Cw and C′
w.

Suppose that m = #Cw ⩾ 2. Then by [6, Corollary 14.11], there exists a sequence
Cfw(w) = (D1, . . . , Dm−1) as in Definition 5.5 such that each Di is between Ci and
Ci+1. (When #Cw = 1, the width of Pfw(w) is strictly smaller than that of Pw.) If we
let Φ(w) = (P, Q, #»ρ ) = (P, Q, #»sP,Q + # »ρ• ) where #»ρ = (ρ1, ρ2, . . .), #»sP,Q = (s1, s2, . . .),
and # »ρ• = ( ρ• 1, ρ• 2, . . .), then [6, Theorem 8.1] shows that h(C1, C2) = ρ2 − ρ1 − s2 =
ρ• 2 − ρ• 1 and h(Ci, Ci+1) = h(Di−1, Di) for i ∈ [2, m − 1].

The distances between channels can be obtained from AMBC due to the following
lemma.

Lemma 5.8. Suppose that Φ(w) = (P, Q, #»sP,Q + # »ρ• ) where # »ρ• = ( ρ• 1, ρ• 2, . . .) and
Cw = (C1, . . . , Cm). Then for i ∈ [1, m − 1] we have h(Ci, Ci+1) = ρ• i+1 − ρ• i.

Proof. When i = 1 we already observed that h(C1, C2) = ρ• 2− ρ• 1 which follows from
[6, Theorem 8.1]. However, the second part of the aforementioned theorem states that
h(Ci, Ci+1) = h(Di−1, Di) where Ci, Dj are as above, and thus the result follows from
induction on i and the fact that Φ(fw(w)) = (P⩾2, Q⩾2, ( #»sP,Q + # »ρ• )⩾2). □
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In particular, the indices 0 = m0, m1, m2, . . . , ml = m in the above remark are
chosen in a way that ρ• i = ρ• j if and only if i, j ∈ [1 + mk−1, mk] for some k ∈ [1, l],
i.e. each river of w corresponds to a subset of [1, m] having the same values of # »ρ• .

For a partial permutation w and a compatible stream S, the indexing river of
bkS(w) corresponding to (w, S) is defined to be the collection of channels C ∈ bkS(w)
such that (if we fix a shift of dC

bkS(w) properly then) dC
bkS(w)(b) = m for any b ∈ bkS(w)

if and only if b ∈ Z ′
m where Z ′

m is as in 5.1 (the set of elements labeled m). Then the
collection is indeed a river. Moreover, when (w, S) = (fw(v), st(v)) for some partial
permutation v then the southwest channel of v is contained in the indexing river of
(w, S) since the forward numbering (i.e. the southwest channel numbering) and the
backward numberings are compatible in this case.

For a partial permutation w and a compatible stream S with the proper numbering
d̃ : S → Z and d = dbk,S

w : w → Z, we say that (x, w(x)) ∈ w is N -terminal (resp.
W -terminal) with respect to S if there exists (y, S(y)) ∈ S such that d̃(y, S(y)) =
d(x, w(x))+1 and x < y (resp. w(x) < w(y)). Also we say that b ∈ w is N -terminating
(resp. W -terminating) with respect to S if there exists a path b = b0, . . . , bk ∈ w such
that bk is N -terminal (resp. W -terminal) and d(bi−1) + 1 = d(bi) for i ∈ [1, k].

By [6, Lemma 14.22] and [6, Lemma 16.15], if S is a stream compatible with w and
R is a river of w then either every b ∈

⋃
C∈R C is N -terminating or every b ∈

⋃
C∈R C

is W -terminating, thus we may say that the river R is either N -terminating or W -
terminating. Furthermore, by [6, Corollary 16.17] at most one river of w is both N -
and W -terminating. These notions are related to the indexing river of bkS(w) as
described in the lemma below. (Also see Figure 2.)

Lemma 5.9. Suppose that v is a partial permutation, S is a stream compatible with v,
and w = bkS(v). Then (x, w(x)) ∈ w is in the indexing river corresponding to (v, S)
if and only if in the zigzag Z containing (x, w(x)) (in the backward step of AMBC )
the elements (y, v(y)) ∈ Z ∩ v such that x < y (resp. w(x) < v(y)) are W -terminating
(resp. N -terminating.)

Proof. The if part follows directly from [6, Remark 16.7]. For the converse, suppose
that (x, w(x)) is in the indexing river, say R. Let (c, w(c)), (c′, w(c′)) ∈ w be such
that c is the minimum among the elements in

⋃
C∈R C ∩ Z and c′ is the maximum.

Then we have (c′, w(c′)) ⩽SW (x, w(x)) ⩽SW (c, w(c)). By [6, Lemma 16.5, 16.8]
and their “reflection statements along the anti-diagonal” (or equivalently considering
w−1 instead), if we let (y, v(y)) ∈ v (resp. (y′, v(y′)) ∈ v) be the most northeast W -
terminating element (resp. the most southwest N -terminating element) of Z ∩ v then
c < y and w(c) = v(y) (resp. c′ = y′ and w(c′) < v(y′)). (If no such (y, v(y)) exists
then (c, w(c)) = (c′, w(c′)) = (x, w(x)) is the most southwest element of Z, and if no
such (y′, v(y′)) exists then (c, w(c)) = (c′, w(c′)) = (x, w(x)) is the most northeast
element of Z.) Thus the result follows. □

As a result, elements of v which are northeast of the indexing river of bkS(v) corre-
sponding to (v, S) are N -terminating but not W -terminating, and a similar statement
holds for balls southwest of the indexing river.

Example 5.10. Figure 2 describes a zigzag which appears in the backward step of
AMBC. Here, the striped ball is an element of S, the white ones are the elements
of v, and the shaded ones are the elements of w = bkS(v). The curvy lines denote
channels in the indexing river. The elements C = (c, w(c)), C ′ = (c′, w(c′)) in Lemma
5.9 are depicted as in the diagram, and the white balls labeled N (resp. W , resp.
NW ) are N -terminating but not W -terminating (resp. W -terminating but not N -
terminating, resp. both N - and W -terminating).
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x

w(x)

c

w(c)

c′

w(c′)

W

W

C ′ NW

X NW

C N

N

Figure 2. Indexing river and N/W -terminating elements

5.3. Proper partial rotation and AMBC. Here we define (proper) partial ro-
tations and study their interactions with AMBC.

Definition 5.11. For a partial permutation w and a stream S ⊂ w, let us set xi for
i ∈ Z so that S = {(xi, w(xi)) | i ∈ Z} and i < j if and only if xi < xj. We define the
partial rotation on w with respect to S, denoted prS(w), as follows.

prS(w)(a) =
{

w(xi+1) if a = xi,
w(a) otherwise.

Likewise, we also define the inverse partial rotation pr−1
S (w) as follows.

pr−1
S (w)(a) =

{
w(xi−1) if a = xi,
w(a) otherwise.

We often abbreviate the partial rotation (resp. inverse partial rotation) to PR (resp.
IPR). We say that the partial rotation prS (resp. the inverse partial rotation pr−1

S )
applied to w is proper if S is the northeast (resp. southwest) channel of some river
of w.

In [6], the term shift is used in order to denote the PR/IPRs. Moreover, the nota-
tions w⟨1⟩S , w⟨−1⟩S , S⟨1⟩, and S⟨−1⟩ in [6] are translated to prS(w), pr−1

S (w), prS(S),
and pr−1

S (S) in our language. When R is a river of w and C (resp. C ′) is the northeast
(resp. southwest) channel of R, then w⟨1⟩R and w⟨−1⟩R in [6] are equal to prC(w)
(resp. pr−1

C′ (w)) which is by definition a proper partial rotation (resp. a proper inverse
partial rotation). We stick to our notations in this paper, but allow ourselves to use
S⟨1⟩ and S⟨−1⟩ instead of prS(S) and pr−1

S (S).
Let us describe the relation between proper PR/IPRs and AMBC.
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Theorem 5.12. For a partial permutation w with a sequence Cw = (C1, . . . , Cm)
(resp. C′

w = (C ′
1, . . . , C ′

m)) as in Definition 5.5, assume that R is a river of w whose
northeast (resp. southwest) channel is Cr for some r (resp. C ′

r′ for some r′). Note
that both prCr

and pr−1
C′

r′
are proper with respect to w. Suppose that Φ(w) = (P, Q, #»ρ ).

Then we have

Φ(prCr
(w)) = (P, Q, #»ρ + #»er) and Φ(pr−1

C′
r′

(w)) = (P, Q, #»ρ − #»er′).

Here, #»ei is a vector whose i-th coordinate is 1 and 0 elsewhere.

Proof. We first prove Φ(prCr
(w)) = (P, Q, #»ρ + #»er). Assume that r = 1. Let us

write (v, S) = (fw(w), st(w)) so that w = bkS(v), Φ(v) = (P⩾2, Q⩾2, #»ρ ⩾2), and
a(S) = ρ1. Since C1 has a nontrivial intersection with the southwest channel of w,
R is the indexing river of w corresponding to (v, S). Thus by [6, Theorem 16.9] we
have prC1(w) = bkS⟨1⟩(v). Since h(C1, C2) > 0 by assumption, we have ρ• 1 < ρ• 2
by Lemma 5.8, which implies that #»ρ + #»e1 is still dominant with respect to the pair
(P, Q). Thus from the definition of backward algorithm we see that Φ(prC1(w)) =
Φ(bkS⟨1⟩(v)) = (P, Q, #»ρ + #»e1) (note that a(S⟨1⟩) = ρ1 + 1) as desired.

In general, we successively define (v1, S1) = (fw(w), st(w)) and (vi, Si) =
(fw(vi−1), st(vi−1)) for i ∈ [2, r]. Let Cr = D0 ⊂ w, D1 ⊂ v1, . . . , Dr ⊂ vr be
the (m + 1 − r)-th northeast channel in Cw,Cv1 , . . . ,Cvr

, respectively. Note that each
of them is the northeast channel of some river, say Di ∈ Ri, by Lemma 5.8 since so
is Cr = D0 ∈ R0 = R.

The above argument for r = 1 case shows that prDr−1(vr−1) = bkSr⟨1⟩(vr) and thus
Φ(prDr−1(vr−1)) = (P⩾r, Q⩾r, ( #»ρ + #»er)⩾r). Now recall that the southwest channel of
vr−2 is in the indexing river corresponding to (vr−1, Sr−1). In particular, any ball in
vr−1 is N -terminating by Lemma 5.9. Thus (the reflection statement along the anti-
diagonal of) [6, Proposition 16.39] shows that bkSr−1(prDr−1(vr−1)) = prDr−2(vr−2).
(Here, Dr−2 is the northeast channel of Rr−2, and Rr−2 contains the most southwest
channel among the ones of vr−2 that are northeast of Dr−1.) Thus it follows that
Φ(prDr−2(vr−2)) = Φ(bkSr−1(prDr−1(vr−1))) = (P⩾r−1, Q⩾r−1, ( #»ρ + #»er)⩾r−1).

Now we iterate this process and eventually reach the conclusion that prCr
(w) =

bkS1(prD1(v1)) = (bkS1 ◦ bkS2)(prD2(v2)) = · · · = (bkS1 ◦ · · · ◦ bkSr−1 ◦ bkSr⟨1⟩)(vr).
Therefore from the definition of backward algorithm we see that Φ(prCr (w)) =
Φ((bkS1 ◦ · · · ◦ bkSr−1 ◦ bkSr⟨1⟩)(vr)) = (P, Q, #»ρ + #»er) as desired. (Here we use the
fact that #»ρ + #»er is dominant with respect to (P, Q).)

To prove the second claim Φ(pr−1
C′

r′
(w)) = (P, Q, #»ρ − #»er′) one may similarly argue

as above. The case when r′ = 1 is almost the same as the above, and for the inductive
argument one needs to use (the reflection statement along the anti-diagonal of) [6,
Proposition 16.38] instead of [6, Proposition 16.39]. We omit the details. □

Example 5.13. Suppose that w = [6, 1, 18, 3, 19, 24, 12, 15, 17, 10] ∈ S̃10 as in Example
5.7. Then we have

Φ(w) = (P, Q, #»ρ )
= (((1, 3, 10), (2, 5, 6), (4, 7, 9), (8)), ((3, 5, 6), (7, 8, 9), (1, 4, 10), (2)), (2, 3, 2, 0))

and #»sP,Q = (0, 1, 1, 0) − (0, 0, 2, 0) = (0, 1, −1, 0). Thus # »ρ• = #»ρ − #»sP,Q = (2, 2, 3, 0).
(This again shows that there are two rivers R1 ∋ C1, C2 and R2 ∋ C3.) If we calculate
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prC(w) and pr−1
C (w) for each C ∈ Cw when the operations are proper then

pr−1
C1 (w) = [6, 0, 18, 1, 19, 24, 12, 15, 17, 3]

Φ7−→ (((1, 3, 10), (2, 5, 6), (4, 7, 9), (8)), ((3, 5, 6), (7, 8, 9), (1, 4, 10), (2)), (1, 3, 2, 0)),
prC2 (w) = [6, 1, 18, 3, 19, 24, 15, 17, 22, 10]

Φ7−→ (((1, 3, 10), (2, 5, 6), (4, 7, 9), (8)), ((3, 5, 6), (7, 8, 9), (1, 4, 10), (2)), (2, 4, 2, 0)),
prC3 (w) = [6, 1, 14, 3, 18, 19, 12, 15, 17, 10]

Φ7−→ (((1, 3, 6, 0), (2, 5, 9), (4, 7), (8)), ((3, 5, 6, 9), (4, 7, 8), (1, 10), (2)), (2, 3, 1, 0)),

pr−1
C3 (w) = [6, 1, 19, 3, 24, 28, 12, 15, 17, 10]

Φ7−→ (((1, 3, 6, 0), (2, 5, 9), (4, 7), (8)), ((3, 5, 6, 9), (4, 7, 8), (1, 10), (2)), (2, 3, 3, 0)),

as expected.

5.4. Proper partial rotation and sign insertion. Here we show that the proper
PR/IPRs do not affect the result of sign insertion as the following theorem states.

Theorem 5.14. Suppose that prC and pr−1
C′ are proper with respect to w ∈ S̃n for

some C, C ′ ⊂ w. Then we have sgnQ(w) = sgnQ(prC(w)) = sgnQ(pr−1
C′ (w)).

The main tool to prove this theorem is the following Diamond Lemma discussing
interactions between right star operations and proper PR/IPRs.

Lemma 5.15 (Diamond lemma). Suppose that we are given a partial permutation w
with Cw = (C1, . . . , Cm), p ∈ [1, n], and q ∈ [1, m]. Assume that:

• Either w(p − 1) is between w(p) and w(p + 1) so that a right star operation
w 7→ w∗ that switches w(p) and w(p+1) is well-defined, or w(p+1) is between
w(p−1) and w(p) so that a right star operation w 7→ w∗ that switches w(p−1)
and w(p) is well-defined. Let us call it “the right star operation centered at
p”.

• Cq is a northeast channel of a river of w.
Then, we have:

• The q-th southwest channel C∗
q of Cw∗ = (C∗

1 , . . . , C∗
m), where Cw∗ is as in

Definition 5.5, is a northeast channel of a river of w∗.
• The right star operation centered at p is well-defined for prCq

(w), say
prCq

(w)∗.
Furthermore, we have prCq

(w)∗ = prC∗
q
(w∗). In other words, we may “canonically

complete the commutative diagram” when we are given w 7→ w∗ and w 7→ prCq
(w).

The same result also holds when one replaces proper partial rotations with proper
inverse partial rotations and/or replaces right star operations with multiplication by
ω on the right.

Since star operations and multiplication by ω preserve each two-sided cell, or equiv-
alently the Greene–Kleitman partition of a Shi poset, it makes sense to take the q-th
southwest channel in Cw∗ and Cw·ω in the lemma above. Also note that the statement
for multiplication by ω on the right is straightforward because the channels of w · ω
are simply the shifts of those of w.

Example 5.16. Let w = [6, 1, 18, 3, 19, 24, 12, 15, 17, 10] as in Example 5.7 and
5.13. Then the star operation w 7→ w∗ centered at 7 is well defined and w∗ =
[6, 1, 18, 3, 19, 12, 24, 15, 17, 10]. Let us consider

prC2(w) = [6, 1, 18, 3, 19, 24, 15, 17, 22, 10].
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Then prC2(w) 7→ prC2(w)∗ centered at 7 is well defined and
prC2(w)∗ = [6, 1, 18, 3, 19, 15, 24, 17, 22, 10].

Moreover, w∗ 7→ prC2(w)∗ is the proper partial rotation with respect to the channel
[∅,∅,∅,∅,∅, 12,∅, 15, 17,∅].

First let us discuss how to use Lemma 5.15 to prove Theorem 5.14.

Proof of Theorem 5.14, assuming Lemma 5.15. It suffices only to prove for the
proper partial rotation, i.e. sgnQ(w) = sgnQ(prC(w)). Let us set w0 = w,
P0 = Q0 = ∅ and sequentially define (i,Pi,Qi, wi) = 𭟋(i − 1,Pi−1,Qi−1, wi−1)
for i ∈ [1, N ] where wN = ∅. Thus in particular we have sgnP(w) = PN and
sgnQ(w) = QN . Let us set vi = Pi

⌢ wi for i ∈ [0, N ]. Note that either vi = vi−1 or
vi is obtained from vi−1 by applying right star operations followed by multiplication
by ω on the right (cf. the proof of Lemma 4.3).

Let w̃ = prC(w) where prC applied to w is proper. Then by Lemma 5.15, we may
(uniquely) find w̃ = ṽ0, ṽ1, . . . , ṽN such that vi 7→ ṽi is a proper partial rotation,
vi = vi−1 if and only if ṽi = ṽi−1, and if ṽi ̸= ṽi−1 then ṽi is obtained from ṽi−1
by a series of right star operations followed by multiplication by ω on the right. We
claim that there exist P̃i, w̃i for i ∈ [0, N ] such that ṽi = P̃i

⌢ w̃i for i ∈ [0, N ] and
(i, P̃i,Qi, w̃i) = 𭟋(i − 1, P̃i−1,Qi−1, w̃i−1) for i ∈ [1, N ]. (In particular the lengths of
P̃i,Pi, and Qi are all equal.)

We prove by induction on i. It is obvious when i = 0 by setting P0 = ∅ and
w̃0 = w̃, so suppose that it is true up to i − 1. Let p be the length of Pi−1. Then we
have vi−1(1) < · · · < vi−1(p) and ṽi−1(1) < · · · < ṽi−1(p). If vi−1(p) < vi−1(p + 1),
then it means that vi−1 = vi, i.e. vi−1 7→ vi is a trivial step, which implies ṽi−1 = ṽi

by assumption. We claim that ṽi−1(p) < ṽi−1(p + 1) so that we may set P̃i and w̃i

similar to Pi and wi. Indeed, if ṽi−1(p) > ṽi−1(p + 1) then it is possible to apply the
right star operation centered at p on ṽi−1. However, by Lemma 5.15, it means that
the same star operation can be applied to vi−1, which is a contradiction.

It remains to consider the case when vi−1(p) > vi−1(p + 1). Then vi is obtained
from vi−1 by applying the right star operations centered at p, p−1, . . . , 2, respectively,
followed by multiplication by ω on the right. By Lemma 5.15, the same process applies
to ṽi−1 to get ṽi. However, as ṽi−1(1) < · · · < ṽi−1(p) and ṽi−1(p) > ṽi−1(p + 1) by
assumption, one can easily show that this is the usual “bumping process” (which
inserts ṽi−1(p + 1) to P̃i−1) followed by multiplication by ω on the right. This is
clearly a valid step of the sign insertion algorithm. Thus, if we set P̃i to be the first
p-th characters of ṽi and w̃i to be the remainder then the induction step is also valid
in this case. It suffices for the proof. □

Example 5.17. We compare the sign insertion of w = [6, 1, 18, 3, 19, 24, 12, 15, 17, 10]
and prC2(w) = [6, 1, 18, 3, 19, 24, 15, 17, 22, 10]. The underlined numbers are where the
proper partial rotation is applied. It is clear that the sign insertion processes for w
and prC2(w) are parallel.

i P Q w

0 ∅ ∅ 6 1 18 3 19 24 12 15 17 10
1 6 1 1 18 3 19 24 12 15 17 10
2 1 1 18 3 19 24 12 15 17 10 16
3 1 18 1 3 3 19 24 12 15 17 10 16
4 1 3 1 3 19 24 12 15 17 10 16 28
5 1 3 19 1 3 5 24 12 15 17 10 16 28
6 1 3 19 24 1 3 5 6 12 15 17 10 16 28
7 1 3 12 24 1 3 5 6 15 17 10 16 28 29
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8 1 3 12 15 1 3 5 6 17 10 16 28 29 34
9 1 3 12 15 17 1 3 5 6 7 10 16 28 29 34
10 1 3 10 15 17 1 3 5 6 7 16 28 29 34 22
11 1 3 10 15 16 1 3 5 6 7 28 29 34 22 27
12 1 3 10 15 16 28 1 3 5 6 7 12 29 34 22 27
13 1 3 10 15 16 28 29 1 3 5 6 7 12 13 34 22 27
14 1 3 10 15 16 28 29 34 1 3 5 6 7 12 13 14 22 27
15 1 3 10 15 16 22 29 34 1 3 5 6 7 12 13 14 27 38
16 1 3 10 15 16 22 27 34 1 3 5 6 7 12 13 14 38 39
17 1 3 10 15 16 22 27 34 38 1 3 5 6 7 12 13 14 17 39
18 1 3 10 15 16 22 27 34 38 39 1 3 5 6 7 12 13 14 18 ∅

i P Q w

0 ∅ ∅ 6 1 18 3 19 24 15 17 22 10
1 6 1 1 18 3 19 24 15 17 22 10
2 1 1 18 3 19 24 15 17 22 10 16
3 1 18 1 3 3 19 24 15 17 22 10 16
4 1 3 1 3 19 24 15 17 22 10 16 28
5 1 3 19 1 3 5 24 15 17 22 10 16 28
6 1 3 19 24 1 3 5 6 15 17 22 10 16 28
7 1 3 15 24 1 3 5 6 17 22 10 16 28 29
8 1 3 15 17 1 3 5 6 22 10 16 28 29 34
9 1 3 15 17 22 1 3 5 6 7 10 16 28 29 34
10 1 3 10 17 22 1 3 5 6 7 16 28 29 34 25
11 1 3 10 16 22 1 3 5 6 7 28 29 34 25 27
12 1 3 10 16 22 28 1 3 5 6 7 12 29 34 25 27
13 1 3 10 16 22 28 29 1 3 5 6 7 12 13 34 25 27
14 1 3 10 16 22 28 29 34 1 3 5 6 7 12 13 14 25 27
15 1 3 10 16 22 25 29 34 1 3 5 6 7 12 13 14 27 38
16 1 3 10 16 22 25 27 34 1 3 5 6 7 12 13 14 38 39
17 1 3 10 16 22 25 27 34 38 1 3 5 6 7 12 13 14 17 39
18 1 3 10 16 22 25 27 34 38 39 1 3 5 6 7 12 13 14 18 ∅

5.5. Proof of Diamond Lemma. It remains to prove Lemma 5.15. Recall the def-
inition of Cw given in Definition 5.5.

Lemma 5.18. For a partial permutation w, right star operations and multiplication by
ω on the right do not change the distances between channels in Cw.

Proof. This follows from Lemma 5.8 together with the last part of Section 3. (Here,
it is crucial that #»

δ (T, s) = (δ1, . . . , δl) satisfies that δi = δj whenever λi = λj .) □

The following lemma describes the reason why the proper PR/IPRs are useful.

Lemma 5.19. If C ⊂ w ∈ S̃n is a channel then prC(w) (resp. pr−1
C (w)) and w are in

the same two-sided cell if and only if S is the northeast (resp. southwest) channel of
a river of w. (In this case such an element is in the same left and right cell of w by
Theorem 5.12.)

Proof. Here we prove only for partial rotations; the inverse case can be proved simi-
larly. The if part follows from Theorem 5.12 and it remains to prove the only if part.
Assume that C ⊂ w is a channel which is not the northeast in its river, but its partial
rotation yields a permutation in the same two-sided cell. By assumption there exists
a channel C ′ ̸= C such that C ⩽SW C ′ and h(C, C ′) = 0, i.e. dC and dC′ are equal
up to shift by [6, Definition 3.16]. We fix shifts of dC and dC′ such that they coincide,
and let ci ∈ C and bi ∈ C ′ be balls such that dC(ci) = dC′(ci) = dC(bi) = dC′(bi) = i
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for i ∈ Z. Note that by assumption either bi = ci or ci ⩽SW bi, and there exists i ∈ Z
such that bi ̸= ci.

We claim that there exists j ∈ Z such that bj = (y, w(y)) ∈ C ′−C (thus cj ⩽SW bj)
and cj−1 = (x, w(x)) ∈ C satisfies x < y and w(x) < w(y). If cj−1 = bj−1 then the
claim is obvious, thus it suffices to consider the case when C ∩C ′ = ∅. However, if the
assumption is false for any j ∈ Z then we may lower the labels of the balls in C ′ by
1 and the numbering still satisfies the monotone property, which is a contradiction.
Thus such j always exists.

Now for i ∈ Z let di be a ball in the partial rotation of C so that ci and di share
the same x-coordinate, or equivalently the y-coordinate of di is the same as that of
ci+1. Let bj ∈ C ′ − C be as above. Then it follows that x-coordinate of bj is between
those of cj−1 and cj and the y-coordinate of bj is bigger than that of cj , which in turn
means that dj−1 is northeast of bj . In addition, similar argument shows that there
exists k ∈ Z such that bk is northeast of dk.

By adjusting the shift of dC and dC′ necessary, we may assume that 1 ⩽ j ⩽ k ⩽ r
where r is the density of C. Then the conditions above imply that ({bi | j ⩽ i ⩽
k} ∪ {di | 1 ⩽ i ⩽ j − 1 or k ⩽ i ⩽ r}) + Z(n, n) ⊂ w is a stream of density r + 1,
which contradicts the assumption that prC(w) is in the same two-sided cell of w (cf.
[6, Corollary 11.5]). Thus the result follows. □

Example 5.20. Suppose that w = [6, 1, 18, 3, 19, 24, 12, 15, 17, 10] as in Example 5.13
and 5.7. We already calculated pr−1

C1
(w), prC2(w), prC3(w), and pr−1

C3
(w), and their

images under Φ. Let us calculate the remaining possibilities.

prC1 (w) = [6, 3, 18, 10, 19, 24, 12, 15, 17, 11]
Φ7−→ (((1, 3, 6, 10), (2, 5, 9), (4, 7), (8)), ((3, 5, 6, 9), (4, 7, 8), (1, 10), (2)), (3, 4, 1, 0)),

pr−1
C2 (w) = [6, 1, 18, 3, 19, 24, 7, 12, 15, 10]

Φ7−→ (((1, 3, 7, 10), (2, 5, 6), (4, 8, 9)), ((1, 3, 5, 6), (7, 8, 9), (2, 4, 10)), (1, 3, 2)),
prC′

2
(w) = [12, 1, 18, 3, 19, 24, 15, 16, 17, 10]

Φ7−→ (((1, 3, 7, 10), (2, 5, 6), (4, 8, 9)), ((1, 3, 5, 6), (7, 8, 9), (2, 4, 10)), (3, 3, 2)),

pr−1
C′

2
(w) = [5, 1, 18, 3, 19, 24, 6, 12, 17, 10]

Φ7−→ (((1, 3, 6, 10), (2, 5, 9), (4, 7), (8)), ((3, 5, 6, 9), (4, 7, 8), (1, 10), (2)), (1, 4, 1, 0)).

Note that w ∈ c(3,3,3,1) but these elements are not contained in this two-sided cell.

We are ready to prove Lemma 5.15. To recap, we assume that to an affine permu-
tation w one can apply two operations: (1) a right star operation centered at p for
p ∈ [1, n]; (2) a proper PR/IPR applied to the q-th southwest channel C in Cw. Let
us denote by w∗ the outcome of the right star operation and by w̃ the outcome of
such a proper PR/IPR. First we claim the following.

Lemma 5.21. Suppose that there exists w̃∗ ∈ S̃n such that w̃ 7→ w̃∗ is again the right
star operation centered at p and w∗ 7→ w̃∗ is a PR/IPR. Then the latter operation is
proper and applied to the q-th southwest channel of w∗.

Proof. By Theorem 5.12, Φ(w) and Φ(w̃) differ by a single value of #»ρ on the top
block. Since w, w̃, w∗, w̃∗ all lie within the same two-sided cell by assumption, Lemma
5.19 tells us that the PR/IPR w∗ 7→ w̃∗ should be proper. Since the distances between
channels of w∗ (resp. w̃∗) are the same as those of w (resp. w̃) by Lemma 5.18, we
see that the PR/IPR w∗ 7→ w̃∗ should be applied to the q-th channel of w∗. □
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Thus, it is enough to show that the commutative diagram can be completed by a
PR/IPR (without checking properness) applied to a channel of w∗ (without checking
that it is the q-th southwest channel). Meanwhile, without loss of generality we may
assume that p ∈ [2, n − 1]; if p ∈ {1, n}, then we may multiply ω on the right so
that the right star operation is centered in [2, n − 1]; this process also respects proper
PR/IPRs. (See the comment after Lemma 5.15. Also, here n ⩾ 3 since the right star
operation is not well-defined for n ⩽ 2.) Moreover, it suffices only to consider partial
rotations because the inverse case can be deduced by considering w−1.

We write w̃ = prC(w) where C ⊂ w is a northeast channel of a river. We set a, b, c ∈
Z to the y-coordinates of some elements in C such that w−1(a) < w−1(b) < w−1(c).
(Recall that the y-axis directs to the east in our convention.) We assume that no other
elements in C are between them, i.e. if (y, w(y)) ∈ C and a < w(y) < c then b = w(y).
(If the density of C is 2 (resp. 1) then we have c = a + n (resp. c = b + n = a + 2n).)

We argue case-by-case based on the size of [p − 1, p + 1] ∩ X where X is a subset of
[1, n] such that X + nZ is the domain of C. Here we will verify that (1) the right star
operation centered at p is well-defined for w̃, and (2) there exists a channel C ′ ⊂ w∗

such that its corresponding partial rotation coincide with w̃∗.

Case 0. Suppose that #([p − 1, p + 1] ∩ X) = 0. In this case the two operations
simply commute, and the commutative diagram can be trivially completed.

Case 1. Suppose that #([p − 1, p + 1] ∩ X) = 1.
(1) The right star operation looks like (here either side can be w):

· · · xby · · · c · · ·↭ · · · bxy · · · c · · · .

(a) Suppose that x < y < b. Since x < y < c, after the partial rotation we
get a valid right star operation

· · · b · · · xcy · · ·↭ · · · b · · · cxy · · · ,

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(b) Suppose that b < y < x. If c > y then y and its translates can be
inserted to C to yield a longer stream in w, which is a contradiction.
Thus c < y < x and after the partial rotation we get a valid right star
operation

· · · b · · · xcy · · ·↭ · · · b · · · cxy · · · ,

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(2) The right star operation looks like (here either side can be w):
· · · yxb · · · c · · ·↭ · · · ybx · · · c · · · .

(a) Suppose that x < y < b. Since x < y < c, after the partial rotation we
get a valid right star operation

· · · b · · · yxc · · ·↭ · · · b · · · ycx · · · ,

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(b) Suppose that b < y < x. If c > y then y and its translates can be
inserted to C⟨1⟩ to yield a longer stream in w̃, which is a contradiction.
Thus c < y < x and after the partial rotation we get a valid right star
operation

· · · b · · · yxc · · ·↭ · · · b · · · ycx · · · ,
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and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(3) The right star operation looks like (here either side can be w):

· · · yxb · · · c · · ·↭ · · · xyb · · · c · · · .

Without loss of generality we may assume that x < y, i.e. x < b < y. If c > y
then y and its translates can be inserted to C⟨1⟩ to yield a longer stream in
w̃, which is a contradiction. Thus x < c < y and after the partial rotation we
get a valid right star operation

· · · b · · · yxc · · ·↭ · · · b · · · xyc · · · ,

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so that
the commutative diagram can be completed.

(4) The right star operation looks like (here either side can be w):

· · · byx · · · c · · ·↭ · · · bxy · · · c · · · .

Without loss of generality we may assume that x < y, i.e. x < b < y. If c > y
then y and its translates can be inserted to C to yield a longer stream in w,
which is a contradiction. Thus x < c < y and after the partial rotation we get
a valid right star operation

· · · b · · · cyx · · ·↭ · · · b · · · cxy · · · ,

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so that
the commutative diagram can be completed.

Case 2. Suppose that #([p − 1, p + 1] ∩ X) = 2.
(1) The right star operation looks like:

w = · · · azb · · · c · · ·⇝ w∗ = · · · zab · · · c · · · .

Here we should have a < b < z. If z < c, then z and its translates can be
inserted to C⟨1⟩ to yield a longer stream in w̃, which is a contradiction. Thus
b < c < z and after the partial rotation we get a valid right star operation

w̃ = · · · a · · · bzc · · ·⇝ w̃∗ = · · · a · · · zbc · · ·

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so that
the commutative diagram can be completed.

(2) The right star operation looks like:

w = · · · zab · · · c · · ·⇝ w∗ = · · · azb · · · c · · · .

Here we should have a < b < z.
(a) If c < z, then after the partial rotation we get a valid right star operation

w̃ = · · · a · · · zbc · · ·⇝ w̃∗ = · · · a · · · bzc · · ·

and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(b) If c > z, then after the partial rotation we get a valid right star operation

w̃ = · · · a · · · zbc · · ·⇝ w̃∗ = · · · a · · · zcb · · ·

and a valid channel C ′ = . . . , a, z, c, . . . ⊂ w∗ (i.e. replacing b with z in
C) so that the commutative diagram can be completed.
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(3) The right star operation looks like (here either side can be w):
· · · axb · · · c · · ·↭ · · · abx · · · c · · · .

Here we should have x < a < b < c. After the partial rotation we get a valid
right star operation

· · · a · · · bxc · · ·↭ · · · a · · · bcx · · ·
and a valid channel C ′ ⊂ w∗ whose y-coordinates are identical to C so that
the commutative diagram can be completed.

(4) The right star operation looks like:
w = · · · aby · · · c · · ·⇝ w∗ = · · · bay · · · c · · · .

Here we should have a < y < b < c. After the partial rotation we get a valid
right star operation

w̃ = · · · a · · · bcy · · ·⇝ w̃∗ = · · · a · · · byc · · ·
and a valid channel C ′ = . . . , a, y, c, . . . ⊂ w∗ (i.e. replacing b with y in C) so
that the commutative diagram can be completed.

(5) The right star operation looks like:
w = · · · yab · · · c · · ·⇝ w∗ = · · · yba · · · c · · · .

Here we should have a < y < b < c. However, it is impossible since y and its
translates can be inserted to C⟨1⟩ to yield a longer stream in w̃.

Case 3. Suppose that #([p − 1, p + 1] ∩ X) = 3. However, this is impossible since
it means that w(p − 1) < w(p) < w(p + 1) and the right star operation cannot be
applied.

We exhausted all the possibilities and this finishes the proof of the Diamond
Lemma.

6. Proof of Blasiak’s conjecture
6.1. Same left cell implies same Q. We are ready to prove half of Theorem 4.5,
i.e. {w ∈ cλ | sgnQ(w) = Q} is a union of left cells. To this end the following lemma
is essential.

Lemma 6.1. For v, w ∈ S̃n, let us write v(i, j) = in + v(j) and w(i, j) = in + w(j)
where i, j ∈ Z. For X ⊂ [1, n], suppose that

(a) the relative orders of {v(i, x)}i∈[0,n−1],x∈X and {w(i, x)}i∈[0,n−1],x∈X are the
same, i.e. for any i, i′ ∈ [0, n − 1], j, j′ ∈ X we have v(i, j) ⩽ v(i′, j′) if and
only if w(i, j) ⩽ w(i′, j′).

(b) v(y) + n2 < v(x) and w(y) + n2 < w(x) for x ∈ X and y ∈ [1, n] − X, and
(c) sgnQ(v[1,n]−X) = sgnQ(w[1,n]−X).

Then sgnQ(v) = sgnQ(w).

Proof. First suppose that X = [1, n], so that the conditions (b) and (c) are vacuous.
In this case, the statement directly follows from the definition of the sign insertion
algorithm. More precisely, first note that the entries which appear in one of Pi or
vi (resp. wi) in the sign insertion algorithm are contained in {v(i, j)}i∈[0,n−1],j∈[1,n]
(resp. {w(i, j)}i∈[0,n−1],j∈[1,n]) since an entry cannot be bumped more than n times
during the process. Thus, one can show by induction on the steps of sign insertion
that indeed Qi are the same for v and w, using the assumption that the relative orders
of {v(i, j)}i∈[0,n−1],j∈[1,n] and {w(i, j)}i∈[0,n−1],j∈[1,n] are the same.

In general, condition (b) implies that v(i, y) < v(i′, x) and w(i, y) < w(i′, x) for
any i, i′ ∈ [0, n − 1], x ∈ X, and y ∈ [1, n] − X. In other words, v(i′, x) and w(i′, x)
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for i′ ∈ [0, n − 1] and x ∈ X behave as if they are very large compared to v(i, y) and
w(i, y) for i ∈ [0, n − 1] and y ∈ [1, n] − X. Since condition (c) gives the equality of
two Q’s when the sign insertion algorithm is applied to the “smaller part” of v and
w, respectively, similarly to above one can use induction on the steps of sign insertion
to conclude the claim. □

Let us prove that sgnQ(v) = sgnQ(w) when v and w are in the same left cell indexed
by Q ∈ RSYT(λ). Let m be the multiplicity of λ1 in λ and let Cw = (C1, . . . , Cm)
be a sequence in Definition 5.5. Let Xi = {x ∈ [1, n] | (x, w(x)) ∈ Ci}. If we let
Xi = {a1, . . . , ak} where a1 < · · · < ak then by definition of the channel we have
w(a1) < · · · < w(ak) < w(a1) + n. Moreover, since proper PR/IPR do not affect
sgnQ(w) and the left cell of w, by applying them repeatedly we may assume that
0 ≪ ρ1 ≪ · · · ≪ ρm, which results in w(y) ≪ w(x1) ≪ · · · ≪ w(xm) for any
y ∈ [1, n] −

⊔m
i=1 Xi, x1 ∈ X1, . . ., xm ∈ Xm.

Let us recall the description of AMBC in terms of asymptotic realization, i.e. [6,
Section 7]. We observe the following statement.

Lemma 6.2. For w ∈ S̃n and X ⊂ [1, n], suppose that {(x, w(x)) | x ∈ X + nZ} is
a channel of w. Also assume that w(y) ≪ w(x) for any x ∈ X and y ∈ [1, n] − X.
Then Φ(w) = (P, Q, #»ρ ) for some P and #»ρ if and only if Q1 = X (as sets) and
Φ(w|[1,n]−X) = (P ′, Q⩾2, #»ρ ′) for some P ′ and #»ρ ′.

Proof. Here we prove the only if part, but its converse is proved similarly. Note that
Q is equal to the recording tableau modulo n where the usual Robinson–Schensted
algorithm is applied to an infinite sequence (w(1), w(2), . . .). (This is implicit in [6,
Section 7] and shown in the proof of [10, Theorem 10.3].) The condition implies that
w(in+x) > w(y) for any i ∈ Z, x ∈ X, and y ∈ [1, in+x−1]. Thus when w(in+x) is
inserted to the infinite insertion tableau it is always located at the end of the first row.
Thus it follows that the first row of Q should contain all the elements in X. However,
since #X is equal to the length of the first row of Q1 because {(x, w(x)) | x ∈ X +nZ}
is a channel, it follows that Q1 = X.

On the other hand, the bumping process of w(in+y) for i ∈ N and y ∈ [1, n]−X is
almost the same as considering the partial permutation w|[1,n]−X , except that at the
end of each step it bumps some element of the form w(jn + x) for j ∈ N and x ∈ X.
It means that the recording tableau of the infinite word corresponding to w|[1,n]−X is
the same as that corresponding to w after the first row is removed. Thus by taking
residues modulo n we obtain the second claim. □

In our situation, by iterating the above lemma we see that Xi = Qm+1−i for
i ∈ [1, m]. The most important part of this observation is that X1, . . . , Xm only
depend on Q whenever 0 ≪ ρ1 ≪ · · · ≪ ρm. More precisely, if we set #»ρ such that
ρi + N < ρi+1 for i ∈ [1, m − 1] and ρ1 > N for a sufficiently large N , then the set
of x-coordinates of each disjoint channel C1, . . . , Cm stabilizes as N grows. Moreover,
if we set X =

⊔m
i=1 Xi, then w(y) + n2 < w(x) for x ∈ X and y ∈ [1, n] − X, and

[w(i, j) ⩽ w(i′, j′) for i, i′ ∈ [0, n − 1] and j, j′ ∈ X] if and only if either [j, j′ ∈ Xk

and j ⩽ j′ for some k ∈ [1, m]] or [j ∈ Xk and j′ ∈ Xk′ for some 1 ⩽ k < k′ ⩽ m].
Now assume that both #»ρ and #»

ϕ satisfy 0 ≪ ρ1 ≪ · · · ≪ ρm and 0 ≪ ϕ1 ≪ · · · ≪
ϕm, which is again possible. By the argument above and Lemma 6.1, in order to
prove sgnQ(v) = sgnQ(w) it suffices to show sgnQ(v[1,n]−X) = sgnQ(w[1,n]−X) where
X =

⊔m
i=1 Xi =

⊔m
i=1 Qi. However, Lemma 6.2 implies that the partial permutations

v|[1,n]−X and w|[1,n]−X have the same Q tableau under AMBC. Therefore, the result
follows from induction on n.
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6.2. Same Q and same two-sided cell implies same left cell. Let us continue
with the other half of Theorem 4.5, i.e. here we prove that sgnQ(w) ̸= sgnQ(v) if w and
v are in the same two-sided cell but in different left cells. Suppose that a partition λ ⊢ n

of length l = l(λ) and a tableau T ∈ RSYT(λ) is given. Let us write Li =
∑l

j=i+1 λj

for i ∈ [0, l] so that Li−1 − Li = λi. Recall that we set AX = (Ax1 , . . . , Axs
) for a

sequence A = (A1, . . . , Ar) and a set X = {x1, . . . , xs} ⊂ [1, r] such that x1 < x2 <

· · · < xs. For N ∈ Z, we consider an element wT,N ∈ S̃n where
(wT,N )Ti

= (Nn(l − i) + Li + 1, Nn(l − i) + Li + 2, . . . , Nn(l − i) + Li−1) .

Usually N will be a sufficiently large natural number.
When N ≫ n > 0, it is not hard to show that (sgnP(wT,N ))[Li+1,Li−1] is obtained

from (wT,N )Ti
by applying partial rotations, i.e. there exists mi ∈ [0, n − 1] such that

(sgnP(wT,N ))[Li+1,Li−1] = (prmi

Ti
(wT,N ))Ti

. (This can be proved using induction on
the steps of sign insertion.) On the other hand, let Ci = {(jn + x, jn + wT,N (x)) |
x ∈ Ti, j ∈ Z} be a stream of wT,N . Similarly, we regard sgnP(wT,N ) as an affine
permutation and set C ′

i = {(jn + x, jn + sgnP(wT,N )(x)) | x ∈ [Li + 1, Li−1], j ∈ Z}
which becomes a stream of sgnP(wT,N ). Then it is easy to show that when 0 < k ≪ N

we have prk
C′

i
(sgnP(wT,N )) = sgnP(prk

Ci
(wT,N )), i.e. the partial rotation “commutes

with” sgnP. (This follows from a similar argument to the proof of Lemma 6.1 when
X = [1, n].) Therefore, if we set ki = nλi − mi > 0 for i ∈ [1, l] and define w̃T,N =
(prk1

C1
◦ · · · prkl

Cl
)(wT,N ) then it satisfies

(sgnP(w̃T,N ))[Li+1,Li−1] =
(
Nn(l − i) + n2 + Li−1 + 1, . . . , Nn(l − i) + n2 + Li

)
=(wT,N )Ti

+ (n2, n2, . . . , n2).

(Note that sgnP(w̃T,N ) only depends on λ and N but not T .)
In general prki

Ci
are not proper because Ci’s do not need to be channels. However,

as N ≫ 0, using inductive argument based on Lemma 6.2, one can easily show in this
case that w̃T,N is contained in the left cell parametrized by T , i.e. Φ(w̃T,N ) = (P, T, #»ρ )
for some P and #»ρ .

Example 6.3. Let T = ((3, 6, 7, 9), (4, 8, 10), (1, 5), (2)) ∈ RSYT(4, 3, 2, 1). Then we
have

wT,10 = [102, 1, 307, 204, 103, 308, 309, 205, 310, 206].
(Here, N = 10 is sufficiently large for our purpose.) Direct calculation shows that

sgnP(wT,10) = (1, 103, 112, 206, 214, 215, 318, 319, 320, 327).

Here m1 = 5, m2 = 2, m3 = 1, m4 = 0. Thus if we set w̃T,10 = (pr35
T1

◦ pr28
T2

◦ pr19
T3

◦
pr10

Tl
)(wT,10) = [193, 101, 390, 295, 202, 397, 398, 296, 399, 304] then we have

sgnP(w̃T,10) = [101, 202, 203, 304, 305, 306, 407, 408, 409, 410]
as desired. Furthermore, we have

Φ(w̃T,10) =


1 3 6 10
2 5 9
4 8
7

,

3 6 7 9
4 8 10
1 5
2

,


155
88
39
10


 ,

i.e. w̃T,10 is contained in the left cell parametrized by T .

We are ready to prove the other half of Theorem 4.5. For w, v ∈ S̃n, suppose that
w ∈ ΓT and v ∈ ΓS where S, T ∈ RSYT(λ) for some λ ⊢ n but S ̸= T . Here we
prove that sgnQ(w) ̸= sgnQ(v). Since we already showed that the elements in the

Algebraic Combinatorics, Vol. 6 #1 (2023) 235



D. Kim & P. Pylyavskyy

same left cell have the same image under sgnQ, it suffices to assume that w = w̃T,N

and v = w̃S,N for sufficiently large N .
By the argument above, we have sgnP(w̃T,N ) = sgnP(w̃S,N ), i.e. sgnP(w̃T,N )

does not depend on T but only on λ once N ≫ 0 is fixed. However, the map
w 7→ (sgnP(w), sgnQ(w)) is injective by the argument in [3, p.2333]. It follows that
sgnQ(w̃T,N ) = sgnQ(w̃S,N ) if and only if w̃T,N = w̃S,N if and only if T = S. Therefore,
we have sgnQ(w̃T,N ) ̸= sgnQ(w̃S,N ) as desired.

6.3. Partial rotations and left cells. As a by-product of our argument, we
may connect the elements in the intersection of a right cell and a left cell by (inverse)
partial rotation. To this end first we observe the following lemma.
Lemma 6.4. For a partial permutation w and X ⊂ [1, n], suppose that wX is a channel
of w and w(y) ≪ w(x) for x ∈ X and y ∈ [1, n] − X. Let X ′ = {n + 1 − x | x ∈
im wX ∩ [1, n]}. If we let Φ(w) = (P, Q, −) and Φ(w[1,n]−X) = (P ′, Q′, −), then we
have P = evac((X ′) ⌢ evac(P ′)) and Q = (X) ⌢ Q′ where evac is the affine evacuation
defined in [4].
Proof. By Lemma 6.2 we have X = Q1. Moreover, if we consider R(w−1) and
X ′ instead then the conditions of Lemma 6.2 is still valid and X ′ is equal
to the first row of evac(P ) because Φ(R(w−1)) = (evac(Q), evac(P ), −). Since
R(w−1)[1,n]−X′ = R((w[1,n]−X)−1), it follows that evac(P ) = (X ′) ⌢ evac(P ′), i.e.
P = evac((X ′) ⌢ evac(P ′)) as desired. □

The main statement of this section is as follows.
Theorem 6.5. Suppose that P, Q ∈ RSYT(λ) and w, w̃ ∈ (ΓP )−1 ∩ ΓQ. Then there
exists a sequence w = w0, w1, . . . , wk = w̃, which all lie in (ΓP )−1 ∩ ΓQ, such that for
i ∈ [1, k] either wi = prSi−1(wi−1) or wi = pr−1

Si−1
(wi−1) where Si−1 is a stream (not

necessarily a channel) of wi−1.
Proof. Let Φ(w) = (P, Q, #»ρ ) and Φ(w̃) = (P, Q, #»φ) for some #»ρ = (ρ1, ρ2, . . .) and
#»φ = (φ1, φ2, . . .). By applying the proper partial rotations to the northeast channels
of w and w̃, respectively, we may assume that ρ1, φ1 ≫ 0. Then by Lemma 6.2, we
see that wQ1 and w̃Q1 are channels of w and w̃, respectively. Moreover, Lemma 6.4
implies that im wQ1 = im w̃Q1 = {n + 1 − x | x ∈ evac(P )1} + nZ. Therefore, by
applying proper partial rotation we may assume that wQ1 = w̃Q1 while w(y) ≪ w(x)
and w̃(y) ≪ w̃(x) for x ∈ X and y ∈ [1, n] − X. Now again by Lemma 6.4, it suffices
to show that w[1,n]−X and w̃[1,n]−X are connected by a similar sequence described in
the statement. Thus the claim follows from induction on the length of P and Q. □

7. Sign insertion and Lascoux–Schützenberger standardization
Let us set ΥQ = {T ∈ RSYT(n) | sgnQ(w) = Q for some w ∈ ΓT }. Then Theorem
4.5 implies that ΥQ ∩ RSYT(λ) is a singleton if nonempty. Our goal in this section is
to provide a relation between elements in ΥQ, necessarily in different shapes.

7.1. Tableaux, crystal operators, and Robinson–Schensted algorithm.
For α |= n and a row-standard Young tabloid T ∈ RSYT(α) we consider its associated
two-row array A(T ) whose first row records (length of α) + 1 − (row number) and
whose second row is rw(T ). For example, if T = ((2),∅, (3, 5, 6), (1, 4)) then A(T ) =(

1 1 2 2 2 4
1 4 3 5 6 2

)
. Then we may apply the usual Robinson–Schensted–Knuth algorithm

(see [17, Chapter 7] for more detail) to A(T ). Let us denote this map by RSK :
RSYT(α) →

⊔
λ⊢n SYT(λ) × SSYT(λ, αrev); it sends T 7→ (RSKP (T ), RSKQ(T )).

This is indeed a bijection.
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Let S∞ be the set of permutations of Z>0 of finite support. (In other words, S∞ =⋃
n⩾1 Sn.) Let si ∈ S∞ be the transposition swapping i and i + 1. For a composition

α |= n, we may regard it as an infinite sequence all of whose entries but finite are zero,
say α = (α1, α2, . . .). Then si ·α = (α1, α2, . . . , αi−1, αi+1, αi, αi+2, . . .) is well-defined
and there exists a bijection si : SSYT(n, α) → SSYT(n, si · α) such that rw(T ) 7→
rw(si(T )) is a crystal reflection operator defined by Lascoux and Schützenberger [12]
(see also [16, 3.2]). These operations are involutions and satisfy the braid relation,
and thus these yield an action of S∞ on

⊔
α|=n SSYT(n, α).

Moreover, there exists a bijection Ri : RSYT(α) → RSYT(si · α), called a combi-
natorial R-matrix, which comes from an isomorphism of tensor products of one-row
Kirillov–Reshetikhin crystals. (See [15, 4.8] or [4, Definition 3.11].) These operations
are also involutions and satisfy the braid relation, and thus these yield an action of S∞
on

⊔
α|=n RSYT(α), denoted by Rσ for σ ∈ S∞. Then by [15, Proposition 5.1] (see also

[4, Proposition 3.21] and the footnote thereafter), we have RSKP (Ri(T )) = RSKP (T )
and RSKQ(Ri(T )) = sl(T )−i RSKQ(T ). Therefore, if σ ∈ Sl(T ) then RSKP (Rσ(T )) =
RSKP (T ) and RSKQ(Rσ(T )) = (w0σw0) RSKQ(T ) where w0 is the longest element
of Sl(T ).

7.2. Lascoux–Schützenberger standardization. We recall the standardization
map of Lascoux and Schützenberger. Here we mainly follow the argument and nota-
tions from [16]. Suppose that we are given two compositions α, β |= n whose rearrange-
ments are partitions α+, β+ ⊢ n, respectively. Assume that α+ ⩾ β+ with respect to
dominance order. Then there exists an injective map θβ

α : SSYT(n, α) → SSYT(n, β)
defined as follows.

• If α+ = β+ then choose any permutation σ ∈ S∞ so that σ · α = β and let
θβ

α = σ.
• If βi = αi for i ⩾ 3 and β1 + 1 = α1 > β2 = α2 + 1, then θβ

α acts on a tableau
by changing the rightmost letter 1 to 2 (which is always possible).

• In general, there exists a sequence α = α0, α1, . . . , αk = β where each αi →
αi+1 is either in the first or the second case. Then we define θβ

α = θαk
αk−1

◦ · · · ◦
θα1

α0
.

Then by [11] this map is well-defined (i.e. it does not depend on the choice of α =
α0, α1, . . . , αk = β on the last part) and also satisfies θγ

β ◦ θβ
α = θγ

α.
For α |= n, note that SSYT(n, α) is endowed with a graded poset structure by

cyclage where the grading is given by cocharge. By [12] and [11], the map θβ
α :

SSYT(n, α) → SSYT(n, β) is indeed a grade-preserving poset embedding (see also
[16, Theorem 44, 45]).

7.3. Investigation of ΥQ. The main result of this section is the following theorem.

Theorem 7.1. Suppose that ΥQ = {T ∈ RSYT(n) | sgnQ(w) = Q for some w ∈ ΓT }
is nonempty. Then,

• RSKP (ΥQ) consists of a single element.
• If S, T ∈ ΥQ and sh(S) ⩾ sh(T ) then θ

sh(T )rev

sh(S)rev (RSKQ(S)) = RSKQ(T ).
Moreover, if T ∈ ΥQ and sh(T ) ⩾ λ for some partition λ ⊢ n then
θλrev

sh(T )rev(RSKQ(T )) ∈ RSKQ(ΥQ). In other words, RSKQ(ΥQ) is “stable
under θ”.

As a corollary we obtain the following.

Corollary 7.2. For each n ∈ Z>0, {sgnQ(w) | w ∈ S̃n} is canonically bijective with
RSYT(1n).
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Proof. If we define RSYT(1n) → {sgnQ(w) | w ∈ S̃n} : T 7→ sgnQ(vT ) where vT is any
element in ΓT , then this map is well-defined and injective by Theorem 4.5. We claim
that this is also surjective. Indeed, suppose that ΥQ ̸= ∅ and T ∈ ΥQ. Then Theorem
7.1 implies that RSKP (ΥQ) = {RSKP (T )} and RSKQ(ΥQ) ∋ θ

(1n)
sh(T )rev(RSKQ(T )).

Now if we let S ∈ RSYT(1n) be the preimage of (RSKP (T ), θ
(1n)
sh(T )rev(RSKQ(T )))

under RSK then we see that ΥQ ∋ S as desired. □

Example 7.3. When n = 4, the sets ΥQ are as follows.

Υ(1,2,3,4) = (((1, 2, 3, 4)), ((2, 3, 4), (1)), ((3, 4), (1, 2)), ((3, 4), (2), (1)), ((4), (3), (2), (1)))
Υ(1,2,3,5) = (((1, 2, 3), (4)), ((2, 3), (1, 4)), ((2, 3), (4), (1)), ((3), (4), (2), (1)))
Υ(1,2,4,5) = (((1, 2, 4), (3)), ((2, 4), (1, 3)), ((2, 4), (3), (1)), ((2), (4), (3), (1)))
Υ(1,3,4,5) = (((1, 3, 4), (2)), ((1, 4), (2, 3)), ((1, 4), (3), (2)), ((1), (4), (3), (2)))
Υ(1,3,5,6) = (((1, 3), (2, 4)), ((1, 3), (4), (2)), ((3), (1), (4), (2)))
Υ(1,2,5,6) = (((1, 2), (3, 4)), ((1, 2), (4), (3)), ((2), (1), (4), (3)))
Υ(1,4,5,7) = (((1, 4), (2), (3)), ((1), (2), (4), (3)))
Υ(1,3,5,7) = (((1, 3), (2), (4)), ((1), (3), (4), (2)))
Υ(1,2,5,7) = (((1, 2), (3), (4)), ((2), (3), (4), (1)))
Υ(1,2,3,6) = (((2, 3), (1), (4)), ((3), (2), (4), (1)))
Υ(1,2,4,6) = (((2, 4), (1), (3)), ((4), (2), (3), (1)))
Υ(1,3,4,6) = (((3, 4), (1), (2)), ((4), (1), (3), (2)))
Υ(1,4,7,9) = (((4), (1), (2), (3))) Υ(1,3,7,9) = (((3), (1), (2), (4)))
Υ(1,2,7,9) = (((2), (1), (3), (4))) Υ(1,2,3,7) = (((3), (2), (1), (4)))
Υ(1,2,4,7) = (((4), (2), (1), (3))) Υ(1,3,4,7) = (((4), (3), (1), (2)))
Υ(1,3,6,8) = (((3), (4), (1), (2))) Υ(1,2,6,8) = (((2), (4), (1), (3)))
Υ(1,4,5,8) = (((1), (4), (2), (3))) Υ(1,5,8,10) = (((1), (2), (3), (4)))
Υ(1,3,5,8) = (((1), (3), (2), (4))) Υ(1,2,5,8) = (((2), (3), (1), (4)))

If we apply the RSK to the elements in each set, then we get the following.
RSKP (Υ(1,2,3,4)) = {((1, 2, 3, 4))} RSKP (Υ(1,2,3,5)) = {((1, 2, 3), (4))}
RSKP (Υ(1,2,4,5)) = {((1, 2, 4), (3))} RSKP (Υ(1,3,4,5)) = {((1, 3, 4), (2))}
RSKP (Υ(1,3,5,6)) = {((1, 3), (2, 4))} RSKP (Υ(1,2,5,6)) = {((1, 2), (3, 4))}
RSKP (Υ(1,4,5,7)) = {((1, 4), (2), (3))} RSKP (Υ(1,3,5,7)) = {((1, 3), (2), (4))}
RSKP (Υ(1,2,5,7)) = {((1, 2), (3), (4))} RSKP (Υ(1,2,3,6)) = {((1, 2, 3), (4))}
RSKP (Υ(1,2,4,6)) = {((1, 2, 4), (3))} RSKP (Υ(1,3,4,6)) = {((1, 3, 4), (2))}
RSKP (Υ(1,4,7,9)) = {((1, 4), (2), (3))} RSKP (Υ(1,3,7,9)) = {((1, 3), (2), (4))}
RSKP (Υ(1,2,7,9)) = {((1, 2), (3), (4))} RSKP (Υ(1,2,3,7)) = {((1, 2, 3), (4))}
RSKP (Υ(1,2,4,7)) = {((1, 2, 4), (3))} RSKP (Υ(1,3,4,7)) = {((1, 3, 4), (2))}
RSKP (Υ(1,3,6,8)) = {((1, 3), (2, 4))} RSKP (Υ(1,2,6,8)) = {((1, 2), (3, 4))}
RSKP (Υ(1,4,5,8)) = {((1, 4), (2), (3))} RSKP (Υ(1,5,8,10)) = {((1), (2), (3), (4))}
RSKP (Υ(1,3,5,8)) = {((1, 3), (2), (4))} RSKP (Υ(1,2,5,8)) = {((1, 2), (3), (4))}

RSKQ(Υ(1,2,3,4)) = {((1, 1, 1, 1)), ((1, 2, 2, 2)), ((1, 1, 2, 2)), ((1, 2, 3, 3)), ((1, 2, 3, 4))}
RSKQ(Υ(1,2,3,5)) = {((1, 2, 2), (2)), ((1, 1, 2), (2)), ((1, 2, 3), (3)), ((1, 2, 3), (4))}
RSKQ(Υ(1,2,4,5)) = {((1, 2, 2), (2)), ((1, 1, 2), (2)), ((1, 2, 3), (3)), ((1, 2, 3), (4))}
RSKQ(Υ(1,3,4,5)) = {((1, 2, 2), (2)), ((1, 1, 2), (2)), ((1, 2, 3), (3)), ((1, 2, 3), (4))}
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RSKQ(Υ(1,3,5,6)) = {((1, 1), (2, 2)), ((1, 2), (3, 3)), ((1, 2), (3, 4))}
RSKQ(Υ(1,2,5,6)) = {((1, 1), (2, 2)), ((1, 2), (3, 3)), ((1, 2), (3, 4))}
RSKQ(Υ(1,4,5,7)) = {((1, 3), (2), (3)), ((1, 2), (3), (4))}
RSKQ(Υ(1,3,5,7)) = {((1, 3), (2), (3)), ((1, 2), (3), (4))}
RSKQ(Υ(1,2,5,7)) = {((1, 3), (2), (3)), ((1, 2), (3), (4))}
RSKQ(Υ(1,2,3,6)) = {((1, 3, 3), (2)), ((1, 2, 4), (3))}
RSKQ(Υ(1,2,4,6)) = {((1, 3, 3), (2)), ((1, 2, 4), (3))}
RSKQ(Υ(1,3,4,6)) = {((1, 3, 3), (2)), ((1, 2, 4), (3))}
RSKQ(Υ(1,4,7,9)) = {((1, 4), (2), (3))} RSKQ(Υ(1,3,7,9)) = {((1, 4), (2), (3))}
RSKQ(Υ(1,2,7,9)) = {((1, 4), (2), (3))} RSKQ(Υ(1,2,3,7)) = {((1, 3, 4), (2))}
RSKQ(Υ(1,2,4,7)) = {((1, 3, 4), (2))} RSKQ(Υ(1,3,4,7)) = {((1, 3, 4), (2))}
RSKQ(Υ(1,3,6,8)) = {((1, 3), (2, 4))} RSKQ(Υ(1,2,6,8)) = {((1, 3), (2, 4))}
RSKQ(Υ(1,4,5,8)) = {((1, 3), (2), (4))} RSKQ(Υ(1,5,8,10)) = {((1), (2), (3), (4))}
RSKQ(Υ(1,3,5,8)) = {((1, 3), (2), (4))} RSKQ(Υ(1,2,5,8)) = {((1, 3), (2), (4))}

Here RSKP (ΥQ) is a singleton and the elements in each RSKQ(ΥQ) are connected
by the standardization map θ. For example, for RSKQ(Υ(1,2,3,6)) we have

1 3 3
2

θ
(2,0,1,1)
(1,1,2)7−−−−−→ 1 1 4

3
θ

(1,1,1,1)
(2,1,1)7−−−−−→ 1 2 4

3 .

For the proof of Theorem 7.1, we generalize the definition of wT,N to the case when
T is a row-standard Young tabloid that is not necessarily a tableau. The formula is
identical; for a composition α = sh(T ) of length l = l(α) let us write Li =

∑l
j=i+1 αj

for i ∈ [0, l] so that Li−1 − Li = αi. Then for N ∈ Z we set wT,N ∈ S̃n so that

(wT,N )Ti
= (Nn(l − i) + Li + 1, Nn(l − i) + Li + 2, . . . , Nn(l − i) + Li−1) .

We claim the following.

Lemma 7.4. Suppose that S and T are row-standard Young tabloids such that S =
Rt(T ) for some combinatorial R-matrix Rt. If N ≫ 0 then wS,N and wT,N are in the
same left cell.

Proof. We first claim that wS,N and wT,N are contained in the same two-sided cell
parametrized by the rearrangement of sh(S). By the construction of wS,N , for i, j ∈
[1, n] we have i < j in the Shi poset of wS,N if and only if j is in the upper row of
S than i. In this case, it is easy to show that the corresponding Greene–Kleitman
partition is given by the rearrangement of sh(S) as desired. Since the same result
holds for wT,N , we see that wS,N and wT,N are in the same two-sided cell.

Thus, by Theorem 4.5 it suffices to show that sgnQ(wS,N ) = sgnQ(wT,N ). Since
Si = Ti for 1 ⩽ i < t, from Lemma 6.1 it suffices to assume that t = 1. Moreover,
if we again apply Lemma 6.1 to R(wS,N ) and R(wT,N ), respectively, then indeed it
suffices to assume that S and T are two-row tabloids.

Without loss of generality we may assume that S1 is longer than S2. Then wS,N ∈
ΓS as before. It is also clear that R(wT,N ) ∈ ΓT c where T c is the tableau satisfying
T c

1 = {n + 1 − x | x ∈ T2} and T c
2 = {n + 1 − x | x ∈ T1} as sets. By [4, Theorem

3.18], it follows that wT,N is contained in the cell parametrized by R1(T ) = S (i.e.
the image of T c under the affine evacuation) as desired. □

The lemma below is another ingredient for the proof of Theorem 7.1.
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Lemma 7.5. Let S = (S1, . . . , Sl) ∈ RSYT(α) where α = (α1, . . . , αl) is a composition
of n of length l, Sl = (x1, . . . , xal

), and αl−1 = 0. Let T be a row-standard Young
tabloid where Ti = Si for i ̸∈ {l − 1, l}, Tl−1 = (xal

), and Tl = (x1, . . . , xal−1). If
N ≫ 0 then we have sgnQ(wS,N ) = sgnQ(wT,N ).
Proof. We set U = (U1, . . . , Ul) to be the row-standard Young tabloid such that
Ui = Ti = Si for i ̸∈ {l − 1, l}, Ul−1 = (x2, . . . , xal

), and Ul = (x1). Note that
Rl−1(U) = T which means that wT,N and wU,N have an identical image under sgnQ

by Theorem 7.4. Direct calculation shows that

wU,N = wS,N +
al∑

i=2
Nn #»ei = wS,N +

al∑
i=1

Nn #»ei − Nn #»e1

where #»ei is the standard vector with 1 on the i-th coordinate.
It follows from Lemma 6.1 that sgnQ(wS,N ) = sgnQ(wS,N +

∑al

i=1 Nn #»ei) if we
set X = [1, n] − Sl. Now the element wU,N is obtained from wS,N +

∑al

i=1 Nn #»ei by
replacing 1 + Nn on the first coordinate with 1. However, as 1 + Nn was already
the smallest element of wS,N +

∑al

i=1 Nn #»ei, lowering this entry does not affect the
sign insertion process as it is inserted at the first step and not bumped by any other
elements, which implies that sgnQ(wU,N ) = sgnQ(wS,N +

∑al

i=1 Nn #»ei). Thus the result
follows. □

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. Suppose that T ∈ ΥQ ∩ RSYT(λ) for some λ ⊢ n and assume
that (P, Q) = (RSKP (T ), RSKQ(T )). We regard λ as a composition of length n (with
n − l(λ) zeroes at the end) and let Q′ = θ

(1n)
λrev (Q). Then there exists a path λ =

α0, α1, . . . , αk = (1n) where each αi is a composition of n and αi 7→ αi+1 is either
rearrangement of parts or of the form (0, . . . , 0, a, 0, . . .) 7→ (0, . . . , 0, 1, a−1, . . .). (Here
we allow rearrangement which permutes nonzero parts with zero parts but this does
not cause any problem.) Then we may write Q′ = (θ(1n)

αrev
k−1

◦θ
αrev

k−1
αrev

k−2
◦· · ·◦θ

αrev
2

αrev
1

◦θ
αrev

1
λrev )(Q).

Let us write T = T0, T1, . . . , Tk where (RSKP (Ti), RSKQ(Ti)) = (P, (θαrev
i

αrev
i−1

◦ · · · ◦

θ
αrev

2
αrev

1
◦ θ

αrev
1

λrev )(Q)). We claim that Tk ∈ ΥQ by successively showing sgnQ(wTi,N ) = Q

for N ≫ 0. The i = 0 case is trivial. Now if αi+1 = σ · αi for some σ ∈ Sn, then
as we observed above we have Ti+1 = w0σw0 · Ti where w0 is the longest element
of Sn, thus the claim follows from Lemma 7.4. In the other case, first note that the
shapes of Ti+1 and Ti are (. . . , 1, a−1, 0, . . . , 0) and (. . . , 0, a, 0, . . . , 0) for some a > 0,
respectively. Now direct calculation shows that Ti+1 is obtained from Ti by the similar
process to Lemma 7.5, i.e. changing Ti = (. . . ,∅, (x1, . . . , xk),∅, . . . ,∅) to Ti+1 =
(. . . , (xk), (x1, . . . , xk−1),∅, . . . ,∅). Thus, by Lemma 7.5 the claim also follows.

As a result, for any T ∈ ΥQ such that (P, Q) = (RSKP (T ), RSKQ(T )) there
exists T ′ ∈ ΥQ ∩ RSYT(1n) such that (P, θ

(1n)
sh(T )rev(Q)) = (RSKP (T ′), RSKQ(T ′)).

Now suppose that S ∈ ΥQ and set S′ ∈ ΥQ ∩ RSYT(1n) similarly. As ΥQ ∩
RSYT(1n) is a singleton by Theorem 4.5, we should have S′ = T ′ which implies
that RSKP (T ) = RSKP (T ′) = RSKP (S′) = RSKP (S) and θ

(1n)
sh(T )rev(RSKQ(T )) =

RSKQ(T ′) = RSKQ(S′) = θ
(1n)
sh(S)rev(RSKQ(S)). Now if sh(S) ⩾ sh(T ) with respect

to dominance order then (θ(1n)
sh(T )rev ◦ θ

sh(T )rev

sh(S)rev )(RSKQ(S)) = θ
(1n)
sh(S)rev(RSKQ(S)) =

θ
(1n)
sh(T )rev(RSKQ(T )) which implies that θ

sh(T )rev

sh(S)rev (RSKQ(S)) = RSKQ(T ) as θ
sh(T )rev

sh(S)rev

is an injection (it is an embedding of a poset).
Finally, suppose we are given T ∈ ΥQ such that (P, Q) = (RSKP (T ), RSKQ(T ))

and sh(T ) ⩾ λ for some partition λ ⊢ n. Let S ∈ RSYT(n, λrev) be such that
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(RSKP (S), RSKQ(S)) = (P, θλrev

sh(T )rev(Q)) and suppose that S ∈ ΥQ̃ for some Q̃.
We set T ′ ∈ ΥQ ∩ RSYT(1n) and S′ ∈ ΥQ̃ ∩ RSYT(1n) as above. Then RSKP (T ′) =
RSKP (T ) = RSKP (S) = RSKP (S′) and RSKQ(T ′) = θ

(1n)
sh(T )rev(RSKQ(T )) = (θ(1n)

λrev ◦
θλrev

sh(T )rev)(RSKQ(T )) = θ
(1n)
λrev (RSKQ(S)) = RSKQ(S′). Since the RSK algorithm is

injective it follows that S′ = T ′ which implies that Q = Q̃. Thus we have S ∈ ΥQ. It
suffices for the proof. □
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