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On the Saxl graphs of primitive groups
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Abstract Let G be a transitive permutation group on a finite set Ω and recall that a base for G
is a subset of Ω with trivial pointwise stabiliser. The base size of G, denoted b(G), is the minimal
size of a base. If b(G) = 2 then we can study the Saxl graph Σ(G) of G, which has vertex set
Ω and two vertices are adjacent if and only if they form a base. This is a vertex-transitive
graph, which is conjectured to be connected with diameter at most 2 when G is primitive. In
this paper, we combine probabilistic and computational methods to prove a strong form of this
conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting,
we also establish best possible lower bounds on the clique and independence numbers of Σ(G)
and we determine the groups with a unique regular suborbit, which can be interpreted in terms
of the valency of Σ(G).

1. Introduction
Let G 6 Sym(Ω) be a transitive permutation group on a finite set Ω with point
stabiliser H and recall that a base for G is a subset of Ω with trivial pointwise
stabiliser. In turn, the base size of G, denoted b(G), is the minimal size of a base.
This is a classical concept in permutation group theory, which arises naturally in a
wide range of contexts. There is a long history of studying bases, which stretches
all the way back to the nineteenth century, and there are many applications and
connections to other areas of algebra and combinatorics. We refer the reader to the
survey articles [3, 34] and [8, Section 5] for further details.

Historically, there has been a focus on studying bases for finite primitive permu-
tation groups and there have been several major advances in this direction in recent
years. For example, a number of highly influential conjectures due to Babai, Cameron,
Kantor and Pyber from the 1990s have been resolved, which in turn has opened up
new directions of research. For instance, Seress [39] proved that b(G) 6 4 if G is a
finite soluble primitive group, which established a strong form of Pyber’s base size
conjecture in this setting (in [37], Pyber conjectured that there exists an absolute
constant c such that b(G) is at most c logn |G| for every primitive group G of degree
n and the proof was finally completed in [22]). Seress’ theorem has recently been
extended in [9], where the main result shows that b(G) 6 5 for every finite primitive
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group with soluble point stabilisers (it is worth noting that the bounds in [9] and
[39] are best possible). Moreover, the exact base size is computed in [9] for all almost
simple primitive groups with soluble point stabilisers (recall that G is almost simple
if there exists a non-abelian simple group G0 such that G0 P G 6 Aut(G0); here G0
is the socle of G).

Further motivation stems from an ambitious project initiated by Jan Saxl in the
1990s. Here the main aim is to classify all the base-two finite primitive permutation
groups, where a group G is said to be base-two if b(G) = 2. These groups arise
naturally in many applications of bases to other problems. For example, see [18] on
the classification of extremely primitive groups and [14] for applications concerning the
2-generation properties of almost simple groups. Although a complete classification of
the base-two primitive groups remains out of reach, there has been some significant
progress. For instance, we refer the reader to [25, 24] for work of Fawcett on diagonal-
type groups and twisted wreath products, respectively, and there are various partial
results for affine-type groups (see [26, 27, 29, 30], for example). Similarly, we refer
the reader to [9, 13, 12, 16] for results towards a classification of the base-two almost
simple groups.

Let G 6 Sym(Ω) be a base-two finite transitive permutation group with point
stabiliser H. In [11], Burness and Giudici define the Saxl graph Σ(G) of G as follows:
the vertex set is Ω and two vertices are joined by an edge if and only if they form a base
for G. Clearly, Σ(G) is vertex-transitive and it is easy to see that Σ(G) is connected if
G is primitive (as discussed in [11], if G is imprimitive then Σ(G) can have arbitrarily
many connected components). In addition, Σ(G) is a complete graph if and only if
G is a Frobenius group. Various problems concerning the valency and connectedness
properties of Saxl graphs are investigated in [11] and we refer the reader to [20] for
further results on the valency of Σ(G) when G is primitive.

A number of open problems concerning Saxl graphs are presented in [11] and the
aim of this paper is to address some of these questions for the permutation groups in
the collection denoted G, which is defined as follows:

G = {finite almost simple primitive base-two groups with soluble point stabilisers}.

This is a natural collection to consider in this setting because one of the main results
in [9] provides a complete classification of the groups in G. We will also need to
highlight the following subcollection, where G0 denotes the socle of G and H is a
point stabiliser:

L = {G ∈ G : G0 = L2(q), H is of type GL1(q) o S2 or GL1(q2)}.

In terms of Aschbacher’s subgroup structure theorem [1], the subgroups H in the
definition of L comprise the collections denoted C2 and C3.

Perhaps the most intriguing open problem in this area is [11, Conjecture 4.5], which
asserts that if G is primitive, then any two vertices in Σ(G) have a common neighbour.
In particular, this implies that the diameter of Σ(G) is at most 2 for every base-two
finite primitive group G. Evidence for the conjecture is presented in [11, Sections
4-6], where it is verified in several special cases. Our first main result establishes [11,
Conjecture 4.5] for the groups in G. This extends recent work of Chen and Du [19],
who have shown that Σ(G) has diameter 2 for every base-two almost simple primitive
group with socle L2(q).

Theorem 1.1. Let G 6 Sym(Ω) be a permutation group in G. Then any two vertices
in Σ(G) have a common neighbour. In particular, Σ(G) has diameter 2.
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Remark 1.2. It is straightforward to extend our methods in order to establish [11,
Conjecture 4.5] for all base-two almost simple primitive groups with socle L2(q); we
refer the reader to Theorem 4.22.

Next we turn to the clique number of Σ(G), which is denoted ω(G). Recall that
this is the maximal size of a complete subgraph. By Theorem 1.1 we immediately
deduce that ω(G) > 3 for every group G in G and we can establish a stronger lower
bound.

Theorem 1.3. Let G 6 Sym(Ω) be a permutation group in G with socle G0 and
assume that either G ∈ G r L or G 6 PGL2(q). Then ω(G) > 4, with equality if and
only if G = A5 and Ω is the set of 2-element subsets of {1, . . . , 5}.

Remark 1.4. Let us record a couple of comments on the statement of Theorem 1.3.
(a) First note that if G = A5 and Ω is the set of 2-element subsets of {1, . . . , 5},

then Σ(G) is the complement of the Petersen graph, which also coincides with
the Johnson graph J(5, 2).

(b) We expect that the bound ω(G) > 5 also holds for the groups G ∈ L with
G 66 PGL2(q), but we have not been able to verify this in all cases. Here
the main difficulty involves constructing an explicit clique of size 5 when G
contains field automorphisms, working with a suitable geometric description
of Ω (for example, if H is of type GL1(q) o S2, then we may identify Ω with
the set of pairs of distinct 1-dimensional subspaces of the natural module for
G0). With the aid of Magma [4], we have verified the bound ω(G) > 5 for all
groups in L with 5 < q < 1000, but the general case remains open. We refer
the reader to Remarks 4.11 and 4.21 for further details on the difficulties that
arise.

For our next result, recall that the independence number of Σ(G), denoted α(G),
is the maximal size of a co-clique (in other words, it is the clique number of the
complement of Σ(G)). By applying work of Magaard and Waldecker [35, 36], we will
prove the following result.

Theorem 1.5. Let G 6 Sym(Ω) be a permutation group in G. Then either α(G) > 4,
or G = A5, Ω is the set of 2-element subsets of {1, . . . , 5} and α(G) = 2.

As explained in [11, Remark 2.2], the Saxl graph Σ(G) can be viewed as the gener-
alised orbital graph corresponding to the regular suborbits of G. In particular, Σ(G)
is an orbital graph of G if and only if G has a unique regular suborbit (recall that the
base-two condition implies that G has at least one regular suborbit), which in turn is
equivalent to the property that G acts arc-transitively on Σ(G). The following result
completely determines when a group in G has a unique regular suborbit.

Theorem 1.6. Let G 6 Sym(Ω) be a permutation group in G with point stabiliser H.
Then G has a unique regular suborbit if and only if

(i) G = PGL2(q), H = D2(q−1) and q > 4, q 6= 5; or
(ii) (G,H) is one of the cases listed in Table 1.

Remark 1.7. Some comments on the statement of Theorem 1.6 are in order:
(a) In the second column of Table 1 we record the type of H. If G is a group

of Lie type, then this gives an approximate description of the structure of
H, which is consistent with usage in [28] when G is a classical group. For
example, the notation in the first row indicates that H is the stabiliser in
G of an orthogonal decomposition V = V1 ⊥ V2 of the natural module for
G0, where the Vi are nondegenerate 4-dimensional subspaces of plus-type. In
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G Type of H Comments
PΩ+

8 (3).22 O+
4 (3) o S2 Both groups of this shape

Ω+
8 (2).3 O−2 (2)×GU3(2)

SO7(3) O+
4 (3) ⊥ O3(3)

PSp6(3) Sp2(3) o S3
PGL4(3) O+

4 (3)
U4(3).[4] GU1(3) o S4 G 6= G0.〈δ2, φ〉
U4(3) GU2(3) o S2
L3(4).D12 GL1(43)
L3(4).2 GU3(2) G 6= PΣL3(4)
U3(5).S3 GU1(5) o S3
U3(4) GU1(4) o S3
L2(11).2 21+2

− .O−2 (2)
L2(9).2 GL1(92) G = M10
L2(5) GL1(52)
G2(3).2 SL2(3)2

S7 AGL1(7)
J2.2 52:(4× S3)
M11 2.S4

Table 1. Groups in G with a unique regular suborbit

the final three rows of the table, we present the precise structure of H in the
second column.

(b) In the first row of the table, there are two non-isomorphic groups G of the
form G0.22, up to conjugacy in Aut(G0). In both cases, G has a unique regular
suborbit.

(c) Suppose G = G0.[4], where G0 = U4(3) and H is of type GU1(3) o S4. Note
that there are three groups of this form up to conjugacy in Aut(G0), namely
G0.4 = PGU4(3) and two groups of shape G0.22. As recorded in [5, Table
8.10], H is not maximal when G = G0.〈δ2, φ〉 = G0.22, but in the other two
cases H is maximal and G has a unique regular suborbit (here we are adopting
the notation for automorphisms from [5]).

(d) Suppose G = G0.2, where G0 = L3(4) and H is of type GU3(2). There are
three groups of this form; each contains a maximal subgroup of the given
type, but b(G) = 2 if and only if G = G0.21 or G0.23, and in both cases G
has a unique regular suborbit. Equivalently, G = G0.2 has a unique regular
suborbit if and only if G 6= PΣL3(4).

Probabilistic and computational methods play a key role in the proofs of our main
theorems and we will introduce the relevant results we will need in Section 2. One
of our main tools is Proposition 2.2, which implies that if G 6 Sym(Ω) is a finite
transitive base-two group and Q(G) < 1/4, then ω(G) > 5 and any four vertices in
Σ(G) have a common neighbour. Here Q(G) is the probability that a random pair
of points in Ω do not form a base for G (so the condition b(G) = 2 implies that
Q(G) < 1). In view of Theorems 1.1 and 1.3, this explains why one of our main aims
is to establish the bound Q(G) < 1/4 whenever possible, using upper bounds on fixed
point ratios to do this. This approach turns out to be effective for the groups in GrL.
Indeed, Theorem 3.1 shows that if G is such a group then Q(G) > 1/4 if and only if G
is one of the finitely many groups recorded in Tables 2 and 3 (this is the main content
of Section 3). The latter groups are small enough to be amenable to computational
methods and we refer the reader to Section 2.2 for more details.
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However, the groups in L behave rather differently and this explains why they
need to be handled separately (see Section 4). For example, if G = PGL2(q) and
H = D2(q−1) then G has a unique regular suborbit and we deduce that

Q(G) = 1− 4(q − 1)
q(q + 1) .

In particular, Q(G) tends to 1 as q tends to infinity, whence Proposition 2.2 is not
going to be useful in this situation.

The proof of Theorem 1.1 will be completed in Section 5 and proofs of Theorems
1.3 and 1.5 are presented in Section 6. Finally, the proof of Theorem 1.6 is given in
Section 7.

Notation. Our notation is fairly standard. Given a finite group G and a positive
integer n, we write Cn, or just n, for a cyclic group of order n and Gn for the direct
product of n copies of G. An unspecified extension of G by a group H will be denoted
by G.H; if the extension splits then we sometimes write G:H. We use [n] for an
unspecified soluble group of order n. If X is a subset of G, then in(X) is the number
of elements of order n in X. We adopt the standard notation for simple groups of
Lie type from [28]. In particular, Lεn(q) denotes PSLn(q) (when ε = +) and PSUn(q)
(when ε = −). We write PΩεn(q) for the simple orthogonal groups, which differs from
the notation used in the Atlas [21]. All logarithms are base two.

2. Preliminaries
In this section, we present the main probabilistic and computational methods that
will be used in the proofs of our main theorems.

2.1. Probabilistic methods. Let G 6 Sym(Ω) be a transitive permutation group
on a finite set Ω with point stabiliser H. Here we recall a powerful probabilistic
approach for bounding the base size of G, which was originally introduced by Liebeck
and Shalev [33] in their innovative proof of a conjecture of Cameron and Kantor on
bases for almost simple primitive groups.

Fix a positive integer c and let Q(G, c) be the probability that a randomly chosen
c-tuple of points in Ω does not form a base for G, that is

(1) Q(G, c) =
|{(α1, . . . , αc) ∈ Ωc :

⋂
iGαi 6= 1}|

|Ω|c

and note that b(G) 6 c if and only if Q(G, c) < 1. Clearly, a subset {α1, . . . , αc} ⊆ Ω
is not a base for G if and only if there exists an element x ∈ G of prime order fixing
each αi. Now the probability that x fixes a randomly chosen element of Ω is given by
the fixed point ratio

fpr(x) = |CΩ(x)|
|Ω| = |x

G ∩H|
|xG|

,

where CΩ(x) is the set of fixed points of x on Ω, whence

Q(G, c) 6
∑
x∈P

fpr(x)c =
k∑
i=1
|xGi | · fpr(xi)c =: Q̂(G, c),

where P =
⋃
i x

G
i is the set of elements of prime order in G.

The following elementary result is [7, Lemma 2.1] and it provides a useful tool for
estimating Q̂(G, c).
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Lemma 2.1. Suppose x1, . . . , xm represent distinct conjugacy classes in G such that∑
i |xGi ∩H| 6 A and |xGi | > B for all i. Then

m∑
i=1
|xGi | · fpr(xi)c 6 B(A/B)c

for every positive integer c.

In this paper, we are interested in the case c = 2 and we define

(2) Q(G) := Q(G, 2), Q̂(G) := Q̂(G, 2)
so b(G) = 2 if and only if Q(G) < 1. As noted in [11, Section 3.3], we have

(3) Q(G) = 1− r|H|
n

where n = |G : H| = |Ω| and r is the number of regular suborbits of G.
Suppose b(G) = 2 and set

t(G) = max{m ∈ N : Q(G) < 1/m}.
The following key result is [11, Lemma 3.6].

Proposition 2.2. Let G 6 Sym(Ω) be a transitive group on a finite set Ω and assume
t(G) > 2. Then the following hold:

(i) Any t(G) vertices in the Saxl graph Σ(G) have a common neighbour.
(ii) The clique number of Σ(G) is at least t(G) + 1.

In particular, the conclusion to Theorem 1.1 holds if Q(G) < 1/2. Similarly, the
bound ω(G) > 5 in Theorem 1.3 on the clique number of Σ(G) holds if Q(G) < 1/4.
Let us also observe that if Q(G) < 1/4 then G has a unique regular suborbit only if

|H|2 6 |G| < 4
3 |H|

2.

By definition, each group G in the collection G satisfies the bound Q(G) < 1 and
in view of the above observations, one of our main aims is to show that Q(G) < 1/4
in most cases (see Theorem 3.1). This will reduce the proofs of Theorems 1.1 and 1.3
to a small number of specific cases that require closer attention.

It turns out that there are two infinite families in G that will require special atten-
tion. This is the collection denoted L in the introduction, which comprises the groups
with socle G0 = L2(q) and point stabiliser H of type GL1(q) o S2 or GL1(q2). More
precisely, L also contains any groups in G that are permutation isomorphic to one of
these almost simple primitive groups with socle L2(q). In particular, let us observe
that if G ∈ G r L then
(4) G0 6∈ {A5, A6,L3(2),Sp4(2)′, 2G2(3)′} ∪ {L2(q) : q 6 9}.

Remark 2.3. The rationale for isolating the groups in L becomes clear when we
consider the probability Q(G) defined above. For example, by inspecting the relevant
proofs in [9], it is easy to check that if G ∈ G r L then Q(G) → 0 as |G| → ∞
(in particular, there are only finitely many groups of this form with Q(G) > 1/4).
However, the groups in L behave differently and they need to be handled separately.
For example, if G = L2(q) and q is odd, then by inspecting the proofs of [9, Lemmas
4.7 and 4.8] we see that

Q(G) =


1− (q−1)(q+a)

2q(q+1) if H = Dq−1

1− (q+1)(q−b)
2q(q−1) if H = Dq+1
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where (a, b) = (7, 1) if q ≡ 1 (mod 4), otherwise (a, b) = (5, 3). Therefore, in both
cases we get Q(G) → 1/2 as q tends to infinity. Similarly, as noted in Section 1, if
G = PGL2(q) then Q(G) → 1 when q is odd and H = D2(q−1). As a consequence,
we cannot appeal to Proposition 2.2 in these cases and we will need to adopt a
constructive approach to establish our main results (see Sections 4.1 and 4.2).

2.2. Computational methods. We will apply computational methods to establish
our main results when G is a sporadic group, or a small degree symmetric or alter-
nating group, or a low rank group of Lie type defined over a suitably small field.
We mainly use Magma V2.25-7 [4] to do the computations, noting that the GAP
Character Table Library [6] is an important tool for the analysis of sporadic groups.

Let G 6 Sym(Ω) be a base-two almost simple primitive group with socle G0
and soluble point stabiliser H. Our initial aim is to construct G as a permutation
group of an appropriate degree (note that this will not necessarily be the permuta-
tion representation of G on Ω). To do this, we typically use the Magma function
AutomorphismGroupSimpleGroup to obtain A = Aut(G0) as a permutation group
and then we identify G by inspecting the subgroups of A containing G0. We then
construct H as a subgroup of G in this permutation representation via the command
MaximalSubgroups(G:IsSolvable:=true), which returns a set of representatives of
the G-classes of soluble maximal subgroups of G. In a handful of cases (due to the
size of G), this approach is ineffective and a different method is needed in order to
construct H. For example, we may identify H = NG(K) for some specific p-subgroup
K of G (for instance, see [9, Example 2.4]).

The next key step is to estimate Q(G), with the aim of determining the groups with
Q(G) > 1/4 (this is the content of Theorem 3.1). First we focus on Q̂(G), recalling that
Q(G) 6 Q̂(G) (see (2)). It is straightforward to implement an algorithm in Magma to
compute Q̂(G) precisely, using the functions ConjugacyClasses and IsConjugate to
find a set of representatives of the conjugacy classes in H and to test conjugacy in G,
respectively. This allows us to compute |xG∩H| for each x ∈ H of prime order, which
is the main step in calculating the contribution to Q̂(G) from the elements in the G-
class of x. Note that this approach can be implemented without determining a set of
representatives of the conjugacy classes in G, which can be an expensive operation in
terms of time and memory. Let us also observe that Q̂(G) can be computed precisely if
we have access to the character tables of G and H, in addition to the fusion map from
H-classes to G-classes. For example, this approach works well when G is a sporadic
group, using the character table data stored in the GAP Character Table Library [6]
(see the proof of Proposition 3.4).

In some cases, it turns out that we can work effectively with a crude bound

(5) Q̂(G) 6 Q̃(G)

where the contribution to Q̃(G) from all the elements in G of order r (for a fixed
prime r) with |xG| = m is given by

1
m

(∑̀
i=1
|yHi |

)2

and y1, . . . , y` represent the distinct H-classes of elements of order r with |yGi | = m.
Notice that no IsConjugate commands are needed to compute Q̃(G), which can be
a significant saving.

If Q̂(G) > 1/4 then we need to either compute a better upper bound on Q(G), or
we need to determine Q(G) precisely. In view of (3), it suffices to bound (or compute)
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the number r of regular suborbits of G. To do this, we work with double cosets, noting
that if R is a complete set of (H,H) double coset representatives in G, then

(6) r = |{x ∈ R : |HxH| = |H|2}|.

If |G : H| is not prohibitively large (for example, if |G : H| < 107), then we can use the
Magma function DoubleCosetRepresentatives to determine R and then compute r.
If |G : H| is large, then we may be able to use the DoubleCosetCanonical function to
identify sufficiently many distinct double cosets of size |H|2 so that the corresponding
lower bound on r forces Q(G) < 1/4. Similarly, we may be able to find a set S of
distinct (H,H) double coset representatives so that∑

x∈S
|HxH| > |G| − |H|2

and thus r = |{x ∈ S : |HxH| = |H|2}|. It is straightforward to implement all of
these methods in Magma.

3. Random bases
In this section we will prove the following theorem, which will be a key ingredient in
the proofs of Theorems 1.1 and 1.3. We adopt the notation G and L introduced above.
In particular, we recall that the socle G0 of a group in G rL satisfies the restrictions
in (4).

Theorem 3.1. Let G 6 Sym(Ω) be a permutation group in G r L with socle G0 and
point stabiliser H. Then either Q(G) < 1/4, or (G,H) is one of the cases in Tables
2 and 3.

Remark 3.2. We make several comments concerning Theorem 3.1.
(a) In Table 2 we record the relevant cases where G0 is non-classical (as previously

noted, the condition G ∈ G r L implies that G0 6= A5, A6 or 2G2(3)′).
(b) The cases with G0 classical are listed in Table 3. As before, the type of H

provides an approximate description of the group theoretic structure of H
(the precise structure can be read off from [28]).

(c) In both tables, the number of regular suborbits of G is listed in the third
column.

(d) We use the standard Atlas [21] notation for describing the almost simple
groups of the form L4(3).2. In particular, L4(3).22 and L4(3).23 contain in-
volutory graph automorphisms x with CG0(x) = PSp4(3).2 and PSO−4 (3).2,
respectively.

(e) Suppose G = G0.S3, where G0 = L3(4) and H is of type GL1(34). There are
two groups of this form, up to conjugacy in Aut(G0), and we find that r = 6
and Q(G) = 17/80 if G = G0.〈δ, φ〉, whereas r = 3 and Q(G) = 97/160 if
G = G0.〈δ, γ〉. Here we are using the notation for automorphisms in [5], where
δ, φ and γ denote diagonal, field and graph automorphisms, respectively. We
adopt similar notation to describe the relevant groups with G0 = U4(3) or
PΩ+

8 (3) (in the latter case, γ is an involutory graph automorphism).

3.1. Alternating and sporadic groups.

Proposition 3.3. The conclusion to Theorem 3.1 holds if G0 is an alternating group.

Proof. Let G0 = Am be the socle of G. If m 6 12 then the result is easily checked
using Magma [4] (see Section 2.2), so let us assume m > 13. By inspecting [31, Table
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G H r Q(G)
A9 ASL2(3) 2 17/35
S7 AGL1(7) 1 13/20
M11 2.S4 1 39/55
M12 A4 × S3 13 16/55
M12.2 S4 × S3 4 31/55
J1 19:6 9 257/770

D6 ×D10 34 443/1463
J2 52:D12 2 59/84
J2.2 52:(4× S3) 1 59/84
J3.2 32+1+2:8.2 3 886/1615

22+4:(S3 × S3) 10 457/969
HS.2 51+2.[25] 3 106/231
McL.2 22+4:(S3 × S3) 228 9419/28875
He.2 24+4.(S3 × S3).2 5 23011/29155
Suz 32+4:2.(A4 × 22).2 16 7529/25025
Suz.2 32+4:2.(S4 ×D8) 4 16277/25025
HN 51+4:21+4.5.4 47 332152/1066527
HN.2 51+4:21+4.5.4.2 22 34457/96957
2B2(8) 13:4 7 7/20
2B2(8).3 13:12 2 31/70
2F4(2)′ 52:4A4 6 27/52
2F4(2) 52:4S4 3 27/52
G2(3) (SL2(3) ◦ SL2(3)).2 4 563/819
G2(3).2 (SL2(3) ◦ SL2(3)).2.2 1 691/819

Table 2. The groups in G r L with Q(G) > 1/4, part I

14] and [9, Table 4] we deduce that m is a prime and H = AGL1(m) ∩ G, in which
case

|H| 6 m(m− 1) = a, |xG| > m!
((m− 1)/2)!2(m−1)/2 = b

for all x ∈ H of prime order (minimal if x is an involution, noting that x has at most
one fixed point on {1, . . . ,m}). In view of Lemma 2.1, this gives Q̂(G) < a2/b < 1/4
and the result follows. �

Proposition 3.4. The conclusion to Theorem 3.1 holds if G0 is a sporadic group.

Proof. First recall that the maximal subgroups of G have been classified up to conju-
gacy, with the exception of the Monster group M, where the problem of determining
all the almost simple maximal subgroups is still open. In particular, the possibilities
for (G,H) are known and [40] is a convenient reference. In addition, the groups with
b(G) > 3 are listed in [9, Table 4].

First assume G is not the Baby Monster B nor the Monster M. Here we first use
the GAP Character Table Library [6] to identify the relevant groups with Q̂(G) > 1/4.
Indeed, in each case the character table of G is available in [6] and we can use the
Maxes function to access the character table of the maximal subgroupH. Moreover, [6]
also stores the fusion map from H-classes to G-classes and this allows us to compute
precise fixed point ratios and subsequently determine the exact value of Q̂(G).

This reduces the problem to a small number of cases that require further attention.
To handle these groups, we adopt the method described in Section 2.2 to compute
Q(G) precisely. First we use the function AutomorphismGroupSimpleGroup to con-
struct G as a permutation group and we obtain H via the MaximalSubgroups function
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G Type of H r Q(G)
L4(3) O+

4 (3) 6 131/195
L4(3).23 O+

4 (3) 3 131/195
L4(3).22 O+

4 (3) 2 457/585
L4(3).21 = PGL4(3) O+

4 (3) 1 521/585
L3(9).22 GL1(9) o S3 48 4093/12285
L3(5) GL1(5) o S3 30 199/775
L3(5).2 GL1(5) o S3 13 1379/3875

GL1(53) 13 791/2000
L3(4).2 6= PΣL3(4) GU3(2) 1 17/35
L3(4).6 GL1(43) 5 11/32
L3(4).S3 = G0.〈δ, γ〉 GL1(43) 3 97/160
L3(4).D12 GL1(43) 1 59/80
L3(3) GL1(33) 2 11/24

O3(3) 5 19/39
L3(3).2 O3(3) 2 23/39
L2(17) 21+2

− .O−2 (2) 3 5/17
L2(13).2 21+2

− .O−2 (2) 2 43/91
L2(11).2 21+2

− .O−2 (2) 1 31/55
U4(5).22 GU1(5) o S4 409 361747/1421875
U4(4) GU1(4) o S4 80 259/884
U4(4).2 GU1(4) o S4 30 1661/3536
U4(4).4 GU1(4) o S4 15 1661/3536
U4(3) GU2(3) o S2 1 187/315
U4(3).2 = U4(3).〈δ2φ〉 GU1(3) o S4 4 1811/2835
U4(3).22 6= U4(3).〈δ2, φ〉 GU1(3) o S4 1 2323/2835
U4(3).4 GU1(3) o S4 1 2323/2835
U3(9).2 GU1(9) o S3 40 1913/5913
U3(9).4 GU1(9) o S3 20 1913/5913
U3(8).2 GU1(8) o S3 78 1097/4256
U3(8).S3 GU1(8) o S3 19 205/448
U3(8).6 GU1(8) o S3 25 2437/8512
U3(8).(3× S3) GU1(8) o S3 6 2069/4256
U3(7) GU1(7) o S3 27 4381/14749
U3(7).2 GU1(7) o S3 10 7069/14749
U3(5).3 GU1(5) o S3 3 551/875

31+2.Sp2(3) 5 67/175
U3(5).S3 GU1(5) o S3 1 659/875

31+2.Sp2(3) 2 443/875
U3(4) GU1(4) o S3 1 133/208
PSp6(3) Sp2(3) o S3 1 853/1365
Sp4(4).4 O−2 (4) o S2 2 103/153
PΩ+

8 (3) O+
4 (3) o S2 12 45041/61425

PΩ+
8 (3).2 = PSO+

8 (3) O+
4 (3) o S2 4 151507/184275

PΩ+
8 (3).2 = PΩ+

8 (3).〈γ〉 O+
4 (3) o S2 3 53233/61425

PΩ+
8 (3).3 O+

4 (3) o S2 3 16379/20475
PΩ+

8 (3).22 O+
4 (3) o S2 1 167891/184275

PΩ+
8 (3).4 O+

4 (3) o S2 2 151507/184275
PΩ+

8 (3).S4 O−2 (3) o S4 823 17810761/44778825
Ω+

8 (2).3 O−2 (2)×GU3(2) 1 2071/2800
Ω7(3) O+

4 (3) ⊥ O3(3) 5 1945/2457
SO7(3) O+

4 (3) ⊥ O3(3) 1 11261/12285

Table 3. The groups in G r L with Q(G) > 1/4, part II
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G0 Type of H
(a) G2(3) SL2(3)2

(b) 3D4(2) 3× SU3(2)
(c) 2F4(2)′ SU3(2)
(d) F4(2) SU3(2)2

(e) 2E6(2) SU3(2)3

(f) E8(2) SU3(2)4

Table 4. The groups in G r L, G0 exceptional, H 6= NG(T )

(for G0 = HN and H ∩G0 = 51+4.21+4.5.4 we construct H using the generators given
in the Web Atlas [41]). Next we use DoubleCosetRepresentatives to construct a
complete set R of (H,H) double coset representatives and this allows us to calculate
Q(G) via (3) and (6) (we thank Eamonn O’Brien for his assistance with this compu-
tation in the special case where G0 = HN and H ∩G0 = 51+4.21+4.5.4). In this way,
we can read off the groups with Q(G) > 1/4 and they are recorded in Table 2.

Finally, suppose G = B or M. If G = B then H = [311].(S4 × 2S4) or 47:23; in
both cases we can use [6] and the Maxes function as above to show that Q̂(G) < 1/4.
Similarly, if G = M then H = 131+2:(3 × 4S4) or 41:40 and once again we can use
[6] to verify the bound Q̂(G) < 1/4 (here we use NamesOfFusionSources in place of
Maxes since the latter is not available for M). �

3.2. Exceptional groups. Next let us turn to the groups in G r L where G0 is
an exceptional group of Lie type over Fq with q = pf for a prime p. As noted in the
proof of [9, Proposition 7.1], the condition b(G) = 2 implies that H is a maximal
rank subgroup (that is, H contains a maximal torus of G). More precisely, either
H = NG(T ) for some maximal torus T of G0 (see [32, Table 5.2]), or (G,H) is one of
the cases recorded in Table 4. Recall that G0 6= 2G2(3)′ ∼= L2(8) since G ∈ G r L.

Lemma 3.5. The conclusion to Theorem 3.1 holds if G0 is an exceptional group of Lie
type and H is the normaliser of a maximal torus.

Proof. The possibilities for H are recorded in [32, Table 5.2] and [18, Proposition 4.2]
states that b(G) = 2 whenever H is the normaliser of a maximal torus (soluble or
otherwise). We proceed by carefully inspecting the proof of [18, Proposition 4.2] in
the relevant cases with H soluble.

If G0 = E8(q) then one checks that the bound on Q̂(G) in the proof of [18, Lemma
4.3] is sufficient and we note that H is insoluble when G0 = E7(q).

Next assume G0 = Eε6(q). Here the proof of [18, Lemma 4.11] yields Q̂(G) < q−1

if q > 5, so we may assume q 6 4 and
NL(H0) = (q2 + εq + 1)3.31+2.SL2(3),

where H0 = H ∩ G0, L = Inndiag(G0) and (q, ε) 6= (2,−). One checks that the
upper bound on Q̂(G) presented in the proof of [18, Lemma 4.11] is sufficient unless
ε = + and q 6 3. If q = 3 then H does not contain any long root elements (see [18,
Corollary 2.13], for example) and by bounding the contribution to Q̂(G) from the
remaining elements of prime order, as in the proof of [18, Lemma 4.11], we deduce
that Q̂(G) < 1/4.

Now suppose (q, ε) = (2,+). As explained in the proof of [18, Lemma 4.11], we
can use Magma to construct H as a subgroup of E7(8) (see [17, Example 1.11] for
the details). Let im(H) denote the number of elements in H of order m. If x ∈ H
has odd prime order then |xG| > 231 = b1 and we calculate that i3(H) = 11438 and

Algebraic Combinatorics, Vol. 5 #5 (2022) 1063



T. C. Burness & H. Y. Huang

i7(H) = 342, so Lemma 2.1 implies that the contribution to Q̂(G) from elements
of odd prime order is less than a2

1/b1, where a1 = 11780. Now assume x ∈ H is
an involution. We find that H0 contains a2 = 441 involutions, so the contribution
from these elements is less than a2

2/b2, where b2 = 221. Similarly, there are a3 = 406
involutions x ∈ H0.2 r H0, each of which acts on G0 as a graph automorphism.
Therefore |xG| > 1

3225 = b3 and we conclude that

(7) Q̂(G) <
3∑
i=1

a2
i /bi <

1
4 .

Next assume G0 = F4(q), so q is even and G contains graph automorphisms (see
[32, Table 5.2]). By applying the bounds on Q̂(G) in the proof of [18, Lemma 4.15]
we immediately reduce to the case q = 2. Here G = F4(2).2 and we may assume
H = 72:(3 × 2.S4) is the normaliser of a Sylow 7-subgroup of G. The upper bound
on Q̂(G) in the proof of [18, Lemma 4.15] is larger than 1/2, but we can use Magma
to construct G and H as permutation groups of degree 139776 (more precisely, we
use AutomorphismGroupSimpleGroup to construct G and we find H by taking the
normaliser of a Sylow 7-subgroup). Then by considering the fusion of H-classes in G
we calculate that

Q̂(G) = 541861
29328998400

and the result follows.
Now suppose G0 = G2(q), so p = 3, q > 9 and G contains graph automorphisms

(see [32, Table 5.2]). By arguing as in the proof of [18, Lemma 4.21] we reduce to
the cases q ∈ {9, 27}. Suppose q = 27 and note that |H0| 6 12(q + 1)2 = a1. Let
x ∈ H be an element of prime order. If x ∈ H0 then |xG| > q3(q3 − 1)(q + 1) = b1
(as noted in the proof of [18, Lemma 4.21]), whereas if x is a field automorphism
then |xG| > q28/3 = b2 and H contains at most a2 = 24(q + 1)2 such elements.
Similarly, if x is an involutory graph automorphism then |xG| = q3(q3−1)(q+1) = b3
and there are at most a3 = 12(q + 1)2 such elements in H. It is straightforward
to check that (7) holds. Finally, suppose q = 9. First we use Magma to construct
G = G2(9).4 = Aut(G0) as a permutation group of degree 132860 and we note that
H = NG(K), where K is either a Sylow `-subgroup of G0 (with ` ∈ {5, 13, 73}) or
K = C8×C8. In each case, it is straightforward to construct H and verify the bound
Q̂(G) < 1/4.

To complete the proof of the lemma, we may assume G0 is one of the twisted
groups 3D4(q), 2F4(q)′, 2G2(q) (q > 27) or 2B2(q). First assume G0 = 3D4(q), in
which case there are three possibilities for H and one checks that the bound on Q̂(G)
in the proof of [18, Lemma 4.24] is sufficient if q > 9. Suppose q = 8 and let x ∈ H
be an element of prime order, which implies that x ∈ H0.3. Then |xG| > 814 = b1
and 3|H0| 6 383688 = a1, whence Q̂(G) < a2

1/b1 < 1/4. The same conclusion holds
when q = 7 since |H| 6 233928 and |xG| > 714 for all x ∈ H of prime order. The
remaining groups with q 6 5 can be handled using Magma. In each case, we can use
AutomorphismGroupSimpleGroup to construct G and we obtain H as the normaliser
in G of an appropriate Sylow `-subgroup of G0. For example, if q = 5 then the
three possibilities for H correspond to the primes ` ∈ {7, 31, 601}. In every case, it is
straightforward to verify the bound Q̂(G) < 1/4.

Next assume G0 = 2F4(q)′. The case q = 2 can be checked using Magma and we
note that Q(G) > 1/4 when H ∩G0 = 52:4A4 (as recorded in Table 2). For q > 8, the
upper bound on Q̂(G) in the proof of [18, Lemma 4.26] is sufficient (note that in the
upper bound on |H| given in the proof of this lemma, the 2 log q factor can be replaced
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by |Out(G0)| = log q). The case G0 = 2G2(q) is very similar. Indeed, if q > 35 then
the upper bound on Q̂(G) in the proof of [15, Lemma 4.37] is good enough, while
the case q = 27 can be handled using Magma, noting that H = NG(K) with K a
Sylow `-subgroup of G0 for ` ∈ {7, 19, 37}. Finally, let us assume G0 = 2B2(q). If
q > 29 then the bounds in the proof of [15, Lemma 4.39] are good enough. If q = 27

and x ∈ H is a field automorphism of order 7 then |xG| > q4 and by arguing as in
the proof of [15, Lemma 4.39] we deduce that Q̂(G) < 1/4. The remaining cases with
q ∈ {8, 32} can be checked using Magma and we find that Q(G) < 1/4 unless q = 8
and H ∩G0 = 13:4. The latter case is recorded in Table 2. �

Proposition 3.6. The conclusion to Theorem 3.1 holds if G0 is an exceptional group
of Lie type.

Proof. In view of the previous lemma, we may assume G is one of the groups listed
in Table 4. In cases (a), (b) and (c) we can use Magma to prove the result (we get
Q(G) < 1/4 in cases (b) and (c), while Q(G) > 1/4 in (a)). In (d), the upper bound on
Q̂(G) in the proof of [18, Lemma 4.16] is insufficient. But as explained in [17, Example
1.4], we can use Magma to construct G and H and then it is straightforward to verify
the bound Q̂(G) < 1/4.

Finally, let us consider cases (e) and (f). In (e) we observe that 2 and 3 are the
only prime divisors of |H| and we deduce that Q̂(G) < 1/4 by applying the relevant
bounds presented in Case 1 in the proof of [18, Lemma 4.12]. Similarly, in case (f) we
note that the only prime divisors of |H| are 2 and 3. If x is a long root element, then

|xG ∩H| = 4|yL| = 36 = a1, |xG| > 258 = b1,

where y is a long root element in L = SU3(2). If not, then |xG| > 292 = b2 and we
note that |H| = 104485552128 = a2. By applying Lemma 2.1 we deduce that

Q̂(G) < a2
1/b1 + a2

2/b2 <
1
4

and the result follows. �

In order to complete the proof of Theorem 3.1, we may assume G0 is a classical
group. It will be convenient to partition the proof into various subsections according
to the socle G0. The cases that we need to consider are recorded in the following
result, which is an immediate consequence of [31] and [9, Theorem 2].

Theorem 3.7. Let G 6 Sym(Ω) be a permutation group in G r L with socle G0
classical and point stabiliser H. Then (G,H) is one of the cases in Table 5.

Note that in the final column of Table 5 we list necessary conditions for the existence
of a group in GrL with the given socle and point stabiliser. In general, these conditions
are not sufficient and we refer the reader to [5, 28] and [9] for a precise description
of the conditions that are needed to ensure that G has a maximal subgroup of the
given type and a base of size 2. We also refer the reader to [10, Chapter 3] for detailed
information on the conjugacy classes of elements of prime order in G.

3.3. Linear groups. In this section we assume G0 = Ln(q). Recall that the condi-
tion G 6∈ L implies that q > 11 if n = 2, and q > 3 if n = 3.

Proposition 3.8. The conclusion to Theorem 3.1 holds if G0 = Ln(q).

Proof. First assume n is a prime and H is of type GL1(qn). By applying the upper
bound on Q̂(G) in the proof of [9, Lemma 6.4] we immediately reduce to the cases
where (n, q) = (7, 2), or n = 5 and q 6 5, or n = 3 and q 6 19. With the aid of
Magma, it is straightforward to compute Q(G) precisely in each of these cases and
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G0 Type of H Conditions
Ln(q) GL1(qn) n > 3 prime, G 6= L3(3).2

GL2(q) o Sn/2 n ∈ {6, 8}, q = 3
GL1(q) o Sn n ∈ {3, 4}, q > 5
O+

4 (q) (n, q) = (4, 3), G 6= Aut(G0)
O3(q) (n, q) = (3, 3)
31+2.Sp2(3) n = 3, p = q ≡ 1 (mod 3)
GL2(3) n = 2, q = 3f , f > 3 prime
21+2
− .O−2 (2) n = 2, q = p > 11

Un(q) GU1(qn) n > 3 prime
GU1(q) o Sn n ∈ {3, 4}, q > 3, (n, q) 6= (3, 3)
GU2(q) o Sn/2 n ∈ {4, 6, 8}, q = 3
GU3(q) o Sn/3 n ∈ {9, 12}, q = 2
31+2.Sp2(3) n = 3, q = p ≡ 2 (mod 3)
GU3(2) n = 3, q = 2f , f > 3 prime

PSpn(q) Sp2(q) o Sn/2 n ∈ {6, 8}, q = 3
Oε

2(q) o S2 (n, p) = (4, 2), q > 4
O−2 (q2) (n, p) = (4, 2), q > 4

PΩ+
n (q) O+

4 (q) o Sn/4 n ∈ {12, 16}, q = 3
O+

4 (q) o S2 (n, q) = (8, 3), |G : G0| < 6
Oε

2(q) o S4 n = 8, q > 3
O−2 (q)×GU3(q) (n, q) = (8, 2), G = G0.3
O−2 (q2)×O−2 (q2) n = 8

Ωn(q) O+
4 (q) ⊥ O3(q) (n, q) = (7, 3)

Table 5. The groups in G r L with G0 classical

the result quickly follows (note that the condition b(G) = 2 implies that G 6= L3(3).2).
In particular, we find that Q(G) > 1/4 only if n = 3 and q 6 5 (the precise exceptions
are recorded in Table 3).

Next assume n ∈ {3, 4}, q > 5 and H is of type GL1(q) o Sn. First assume n = 3.
By inspecting the proof of [9, Lemma 6.5] we deduce that Q̂(G) < 1/4 if q > 43. If
29 6 q 6 41 then G does not contain field automorphisms of order 2 or 3, nor graph-
field automorphisms of order 2, so we may set a8 = a9 = 0 in the bound on Q̂(G)
presented in the proof of [9, Lemma 6.5]. One checks that this modified bound yields
Q̂(G) < 1/4. For 7 6 q 6 27 we can use Magma to show that Q(G) < 1/4 in the
usual manner, with the single exception of the case G = Aut(G0) with q = 9, where
Q(G) = 4093/12285. Finally, for q = 5 we calculate that Q(G) = 199/775 if G = G0,
otherwise Q(G) = 1379/3875; both cases are recorded in Table 3. Similarly, if n = 4
then the result follows by combining explicit Magma computations for q ∈ {5, 7, 8}
with the upper bound on Q̂(G) presented in the proof of [9, Lemma 6.6] for q > 9 (in
every case we get Q(G) < 1/4). The case where n = 3 and H is of type 31+2.Sp2(3)
is entirely similar, working with the bound on Q̂(G) in the proof of [9, Lemma 6.11].

Now let us turn to the relevant groups with G0 = L2(q). If q = 3f with f > 3 a
prime and H is a subfield subgroup of type GL2(3), then the bound on Q̂(G) in the
proof of [9, Lemma 4.9] is sufficient if f > 7, while the cases f ∈ {3, 5} are easily
checked using Magma. Similarly, if q = p > 11 and H is of type 21+2

− .O−2 (2) then
the bound in the proof of [9, Lemma 4.10] is good enough if q > 71 and we can use
Magma to handle the cases with q < 71.
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There are four remaining cases to consider. If G0 = L3(3) with H of type O3(3)
then we compute Q(G) = 19/39 if G = G0, whereas Q(G) = 23/39 for G = G0.2.
Next suppose G0 = L4(3) and H is of type O+

4 (3). Here the condition b(G) = 2
implies that G 6= Aut(G0) and using Magma one checks that Q(G) > 1/4 in each
case (the precise value of Q(G) is recorded in Table 3). The case G0 = L6(3) with
H of type GL2(3) o S3 can be handled using Magma, working with the function
MaximalSubgroups to construct H. Finally, suppose G0 = L8(3) and H is of type
GL2(3) oS4. Here the MaximalSubgroups function is ineffective, but we can construct
H by observing that H = NG(K) with |K| = 211, as noted in the proof of [9,
Proposition 6.3] (also see [9, Example 2.4]). It is straightforward to check that Q̂(G) <
1/4. �

3.4. Unitary groups.

Proposition 3.9. The conclusion to Theorem 3.1 holds if G0 = Un(q) with n > 3.

Proof. First assume n is a prime and H is of type GU1(qn). For n > 5, one checks
that the upper bound on Q̂(G) in the proof of [9, Lemma 6.4] is sufficient unless n = 5
and q 6 5. Suppose n = 5, so q > 3 by the maximality of H. If q = 5 then it is easy to
improve the given bound in [9] in order to show that Q̂(G) < 1/4 (for example, we can
use the fact that |H| 6 10(55 + 1)/6). For q = 4 we observe that H = NG(K), where
K is a Sylow 41-subgroup of G, so it is straightforward to construct H in Magma and
verify the bound Q̂(G) < 1/4 (note that it suffices to check this for G = Aut(G0)). The
case q = 3 can also be checked using Magma (using MaximalSubgroups to construct
H, or noting that H is the normaliser of a Sylow 61-subgroup). Similarly, if n = 3
then q > 4 and the bound in the proof of [9, Lemma 6.4] is sufficient for q > 23 (for
q = 32, we note that |xG| > |G0 : U3(2)| if x is a field automorphism of order 5); the
remaining cases with q 6 19 can be verified using Magma.

Next suppose G0 = U3(q) and H is of type GU1(q) o S3 with q > 4. For q > 43
it is easy to check that the upper bound on Q̂(G) in the proof of [9, Lemma 6.5] is
sufficient. The same estimates are also good enough when 29 6 q 6 41, noting that
in each case G does not contain any field or graph-field automorphisms of order 2
or 3. For 11 6 q 6 27 we can use Magma to verify the bound Q̂(G) < 1/4. We
find that there are examples with Q(G) > 1/4 when q 6 9; they are easily identified
using Magma and they are recorded in Table 3. The case where G0 = U4(q) and H
is of type GU1(q) o S4 is similar. Here q > 3 and the bound on Q̂(G) in the proof
of [9, Lemma 6.5] is good enough for q > 9. If q ∈ {7, 8} then one can check that
Q(G) < 1/4 using Magma. In the same way, we find that there are exceptions to this
bound when q ∈ {3, 4, 5} and each of these cases is listed in Table 3.

Next assume n ∈ {4, 6, 8}, q = 3 and H is of type GU2(q) o Sn/2. If n = 4 then
G = G0 is the only group with b(G) = 2 (see [9, Table 7]) and with the aid of Magma
we calculate that Q(G) = 187/315. Next assume n = 6. Here H = NG(K) for some
subgroup K of G0 of order 210 and it is straightforward to check that Q̂(G) < 1/4
(see [9, Example 2.4] and the proof of [9, Proposition 6.3]). Similarly, if n = 8 then
H = NG(K) with |K| = 213 and once again one checks that Q̂(G) < 1/4. (Note that
in both cases, it suffices to check the bound for G = Aut(G0).)

Now assume n ∈ {9, 12}, q = 2 and H is of type GU3(q) o Sn/3. As noted in the
proof of [9, Proposition 6.3], if n = 9 then H = NG(K) with |K| = 38 and we can use
Magma to verify the bound Q̂(G) < 1/4.

For n = 12 we find that the bound presented in the proof of [9, Proposition 6.3]
does not give Q̂(G) < 1/4 and a more accurate estimate is required. To do this, it
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suffices to improve the upper bound on the contribution to Q̂(G) from elements of
order 3.

As in the proof of [9, Proposition 6.3], we may view H as the stabiliser in G of an
orthogonal decomposition

V = V1 ⊥ V2 ⊥ V3 ⊥ V4

of the natural module, where each Vi is a nondegenerate 3-space. Suppose x ∈ H
has order 3. If some conjugate of x induces a nontrivial permutation of the Vi, then
|xG| > 289 = b1 and we note that |H| < 242 = a1. Following the argument in [9], the
contribution from the remaining elements of order 3 in H with |xG| > 269 = b2 is
less than a2

2/b2, where a2 = 231. As explained in the proof of [9, Proposition 6.3], the
contribution from the elements with |xG| 6 3.262 is less than 2

∑7
i=3 a

2
i /bi, where the

integers ai and bi are defined as in the proof in [9]. Finally, if 3.262 < |xG| 6 269 then
one can check that x is of the form [I8, ωI4], where ω ∈ F4 is a primitive cube root of
unity. Here we calculate

|xG ∩H| 6 2
(

4
2

)
m+

(
4
2

)
m2 + 2

(
4
2

)
m3 +m4 = 42480 = a0

where m = 1
3 |GU3(2) : GU2(2)| = 12. Therefore, the contribution to Q̂(G) from

elements of order 3 is less than

a2
1/b1 + a2

2/b2 + 2
(
a2

0/b0 +
7∑
i=3

a2
i /bi

)
<

1
20

where b0 = 3.262. Finally, the estimates in the proof of [9, Proposition 6.3] imply that
the contribution to Q̂(G) from involutions is also less than 1/20 and the result follows.

To complete the proof of the proposition, we may assume n = 3 and either q = p ≡ 2
(mod 3) and H is of type 31+2.Sp2(3), or q = 2f with f > 3 a prime and H is a
subfield subgroup of type GU3(2). Suppose H is of type 31+2.Sp2(3). Here the proof
of [9, Lemma 6.11] gives the result for q > 29 and we can use Magma to handle the
cases with q 6 29, noting that there are exceptions to the bound Q(G) < 1/4 when
q = 5 (as recorded in Table 3). Finally, let us assume H is of type GU3(2), so q = 2f
with f > 3 odd. If f > 7 then the bound on Q̂(G) in the proof of [9, Lemma 6.10] is
sufficient, while the cases with f ∈ {3, 5} can be handled using Magma. �

3.5. Symplectic groups. Next assume G0 = PSpn(q) with n > 4. Recall that
(n, q) 6= (4, 2) since G 6∈ L.

Proposition 3.10. The conclusion to Theorem 3.1 holds if G0 = PSpn(q) with n > 4.

Proof. First assume n ∈ {6, 8}, q = 3 and H is of type Sp2(q) o Sn/2. If n = 6
then the condition b(G) = 2 implies that G = G0 and using Magma we calculate
that Q(G) = 853/1365, so this case is listed in Table 3. For n = 8 we use the
functions AutomorphismGroupSimpleGroup and MaximalSubgroups to construct G
and H, and we apply DoubleCosetCanonical to establish the existence of sufficiently
many regular H-orbits in order to force Q(G) < 1/4 (see (3)). Indeed, for G = G0 we
get r > 3113, while r > 1557 for G = G0.2.

Finally let us assume G0 = Sp4(q) with q > 4 even and H of type Oε
2(q) o S2 or

O−2 (q2). Here H is maximal only if G contains graph automorphisms and with the aid
of Magma one checks that if q 6 25 then either Q̂(G) < 1/4 or q = 4, G = Aut(G0)
and H is of type O−2 (q) o S2. In the latter case we have Q(G) = 103/153 as recorded
in Table 3. For the remainder, we may assume q > 26.

Suppose H is of type Oε
2(q) o S2, so H0 = (Cq−ε)2:D8. By applying the upper

bound in the proof of [9, Lemma 6.9], we deduce that Q̂(G) < 1/4 if q 6= 27. So
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let us assume q = 27 and write Q̂(G) = α1 + α2, where α1 is the contribution from
involutory graph automorphisms. The proof of [9, Lemma 6.9] gives α2 < 2−6, so it
remains for us to estimate α1. If ε = − then H 6 (C129)2:(SD16 ×C7) and it follows
that every involution in H is contained in H ∩G0 = (C129)2:D8, whence α1 = 0 and
the result follows. Now assume ε = +, so H 6 (C127)2:(D16 × C7). Since there are
exactly 4 involutions in D16 r D8, we deduce that α1 6 d2/b with d = 4.1272 and
b = |G0 : 2B2(q)| = 34626060288. One checks that the resulting bound on Q̂(G) is
good enough.

To complete the proof, let us assume q > 26 and H is of type O−2 (q2), so

H0 = O−2 (q2).2 = Cq2+1:C4

and we will estimate the contribution to Q̂(G) from the various elements of prime
order (the details in this case were omitted in the proof of [9, Lemma 6.9]). First let
x ∈ H be a unipotent involution. Then x embeds in G as an involution of type c2 (in
the notation of Aschbacher and Seitz [2]), whence

|xG ∩H| = i2(H0) = q2 + 1 = a1, |xG| = (q2 − 1)(q4 − 1) = b1.

If x is semisimple, then |xG| > |Sp4(q) : GU1(q2)| = q4(q2 − 1)2 = b2 and we note
that there are at most a2 = q2 + 1 such elements in H. Next suppose x is a field
automorphism of odd order. Then |xG| > q20/3 = b3 and H contains fewer than
4(q2 + 1) log q = a3 such elements. Finally, suppose x is an involutory field or graph
automorphism (note that G cannot contain elements of both types). If log q is even
then every involution in H is contained in H0, so we may assume log q is odd and
x is a graph automorphism. Then |xG| = q2(q + 1)(q2 − 1) = b4 and we note that
|xG ∩H| 6 |H0| = 4(q2 + 1) = a4. Therefore, by applying Lemma 2.1 we deduce that

Q̂(G) <
3∑
i=1

a2
i /bi + αa2

4/b4,

where α = 1 if log q is odd, otherwise α = 0, and we conclude that Q̂(G) < 1/4. �

3.6. Orthogonal groups. In order to complete the proof of Theorem 3.1, we may
assume G0 = PΩεn(q) with n > 7.

Proposition 3.11. The conclusion to Theorem 3.1 holds if G0 = PΩεn(q) with n > 7.

Proof. By inspecting Table 5 we observe that either n is even and ε = +, or (n, q) =
(7, 3). First assume n ∈ {12, 16}, q = 3 and H is of type O+

4 (q) o Sn/4. For n = 16,
the upper bound in the proof of [9, Proposition 6.3] gives Q̂(G) < 1/4. On the other
hand, if n = 12 then we can construct G and H in Magma (see [9, Example 2.4]) and
it is straightforward to check that Q̂(G) < 1/4. The relevant cases with G0 = Ω7(3)
or Ω+

8 (2) can also be handled using Magma and the exceptions with Q(G) > 1/4 are
recorded in Table 3.

To complete the proof, we may assume G0 = PΩ+
8 (q) with q > 3. Suppose q = 3

and H is of type O+
4 (3) o S2, noting that |G : G0| < 6 since b(G) = 2. Even though

|G : H| = 14926275 is large, we can still analyse this case in the usual way using
Magma, working with a set of (H,H) double coset representatives to compute r
(and hence Q(G)) via (6). The results are presented in Table 3.

Next assume H is of type Oε′

2 (q) o S4. If q ∈ {3, 4} then ε′ = − and using Magma
one can check that either Q(G) < 1/4, or q = 3, G = Aut(G0), r = 823 and

Q(G) = 17810761
44778825 .
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For example, if q = 3 and G = G0.A4 then using DoubleCosetCanonical we can
verify the bound r > 3075, which forces Q(G) < 1/4. We thank Eamonn O’Brien for
his assistance with the precise calculation of r when G = Aut(G0). For q > 5, we seek
to apply the upper bound on Q̂(G) presented in the proof of [9, Lemma 6.7]. If q > 9
then

Q̂(G) < 2q−1 + q−2 + q−3 + q−7 <
1
4

and the result follows. One can check that the bounds in the proof of [9, Lemma
6.7] are also sufficient when q ∈ {7, 8}, so we may assume q = 5. Here we have
H = NG(K), where K < G0 has order 29 if ε′ = +, otherwise |K| = 34. We now
construct H as in [9, Example 2.4] and one checks that Q̂(G) < 1/4.

Finally, let us assume H is of type O−2 (q2) × O−2 (q2) with q > 3. If q > 11 then
the upper bound on Q̂(G) in the proof of [9, Lemma 6.8] is sufficient. On the other
hand, if q 6 9 then we can construct H in Magma, noting that H = NG(K) with
K a Sylow `-subgroup of G0 and ` an odd prime divisor of q2 + 1. In this way, it is
straightforward to check that Q̂(G) < 1/4 and the result follows. �

This completes the proof of Theorem 3.1.

4. Two-dimensional linear groups
In this section we turn to the groups in L, so G0 = L2(q), q > 4 and H is of type
GL1(q) oS2 or GL1(q2). Note that these special cases coincide with the C2-actions and
C3-actions of G, respectively, where a point stabiliser H is a maximal subgroup of
G in the collection labelled Ci in Aschbacher’s subgroup structure theorem [1]. The
goal of this section is to establish our main theorems in these cases (we will handle
Theorem 1.5 in Section 6.2).

Recall that Σ(G) denotes the Saxl graph of G. A key ingredient in our proof of
Theorem 1.1 for the groups in L is the following recent result of Chen and Du [19].

Theorem 4.1 (Chen & Du, [19]). Let G 6 Sym(Ω) be a finite almost simple primitive
group with socle G0 = L2(q) and b(G) = 2. Then Σ(G) has diameter 2.

This establishes a special case of a conjecture in [11], which asserts that Σ(G) has
diameter at most 2 for every finite primitive permutation group G with b(G) = 2.
In fact, [11, Conjecture 4.5] states that the following even stronger property holds in
this general setting:

(?) Any two vertices in Σ(G) have a common neighbour.

In view of Theorem 4.1, in order to establish this for the groups we are considering in
this section, it suffices to show that if {α, β} is a base for G, then there exists γ ∈ Ω
such that {α, γ} and {β, γ} are bases.

Let us fix some notation. Let V be the natural module for G0 and write q = pf ,
where p is a prime. Fix a basis {e1, e2} for V and write F×q = 〈µ〉. Let δ ∈ PGL2(q) be
the image (modulo scalars) of the diagonal matrix diag(µ, 1) ∈ GL2(q), which induces
a diagonal automorphism on G0. Similarly, let φ be a field automorphism of order f
such that (ae1 + be2)φ = ape1 + bpe2 for all a, b ∈ Fq and note that

Aut(G0) = 〈G0, δ, φ〉

and PΣL2(q) = 〈G0, φ〉. For g ∈ Aut(G0), if we write g̈ for the coset G0g, then

Out(G0) = {g̈ : g ∈ Aut(G0)} = 〈δ̈〉 × 〈φ̈〉 = C(2,q−1) × Cf .

As before, if H is a subgroup of G, then we set H0 = H ∩G0.
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It is convenient to use computational methods to handle the cases where q is small.
To this end, we present the following result. Note that L2(9).2 = M10 in part (ii)(b).
Also recall that we write ω(G) for the clique number of Σ(G).

Proposition 4.2. Let G 6 Sym(Ω) be a finite almost simple primitive group with
socle G0 = L2(q) and point stabiliser H of type GL1(q) o S2 or GL1(q2). If b(G) = 2
and q 6 27, then the following hold:

(i) Property (?) holds.
(ii) G has a unique regular suborbit if and only if one of the following holds:

(a) G = PGL2(q), q > 4, q 6= 5 and H = D2(q−1); or
(b) (G,H) = (L2(5), D6) or (L2(9).2, 5:4).

(iii) ω(G) > 4, with equality if and only if G = L2(4) ∼= L2(5) and H = D6.

Proof. To verify (?), we proceed as in Section 5, working with the Magma functions
AutomorphismGroupSimpleGroup and MaximalSubgroups to construct G and H. We
then use DoubleCosetRepresentatives to determine a set R of (H,H) double coset
representatives and for each x ∈ R we find an element y ∈ G such that H ∩ Hy =
Hx ∩ Hy = 1, which establishes (?). In the same way, we can count the number of
elements x ∈ R with |HxH| = |H|2, which coincides with the number of regular
suborbits of G (the existence of a unique regular suborbit in (ii)(a) was noted in [11,
Example 2.5]). Finally, we can use the Magma code presented in Section 6.1 to verify
the bound on ω(G) in part (iii). �

4.1. C2-actions. HereH is of type GL1(q)oS2, soH0 = D2(q−1)/h and |Ω| = 1
2q(q+1),

where h = (2, q − 1). We may identify Ω = G/H with the set of unordered pairs of
distinct 1-dimensional subspaces of the natural module V for G0. The maximality
of H implies that q > 4 and q 6= 5 (see [5, Table 8.1], for example); in view of
Proposition 4.2, we may assume that q > 27. By [9, Lemma 4.7] we have b(G,H) 6 3,
with equality if and only if PGL2(q) < G.

As noted in [11, Example 2.5], if G = PGL2(q) then Σ(G) is isomorphic to the
Johnson graph J(q + 1, 2); the vertices of this graph correspond to the 2-element
subsets of a set of size q+1, with two vertices joined by an edge if they have nonempty
intersection. This observation immediately implies that (?) holds, G has a unique
regular suborbit and Σ(G) has clique number q. Therefore, for the remainder of this
section we will assume that q is odd and G ∩ PGL2(q) = G0. Then as noted in the
proof of [9, Lemma 4.7], this implies that one of the following holds:

(a) G = 〈G0, φ
j〉 for some j in the range 0 6 j < f ; or

(b) G = 〈G0, δφ
j〉 with 0 < j < f and f/(f, j) even.

Set α, β ∈ Ω, where α = {〈e1〉, 〈e2〉} and β = {〈u〉, 〈v〉}. Let us assume q is odd
and suppose G = PΣL2(q) = 〈G0, φ〉. Notice that if u = e1 and v = be1 + e2, then α
and β are fixed by the image in G of an element(

a 0
0 a−1

)
φ ∈ 〈SL2(q), φ〉

with a2 = bp−1. Similarly, the pointwise stabiliser of {α, β} is nontrivial if u = e2.
Therefore, {α, β} is a base for G only if 〈u〉 = 〈e1 + be2〉 and 〈v〉 = 〈e1 + ce2〉 for
distinct nonzero scalars b, c ∈ Fq.

In Lemma 4.4 below we present necessary and sufficient conditions on the scalars
b and c to ensure that {α, β} is a base for PΣL2(q). To do this, we need the following
more general result. Note that the condition in part (iii) is equivalent to the non-
containment of bc−1 in a proper subfield of Fq.
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Lemma 4.3. Suppose G ∩ PGL2(q) = G0 with q odd and set
α = {〈e1〉, 〈e2〉}, β = {〈e1 + be2〉, 〈e1 + ce2〉}

with b 6= c. Then {α, β} is a base for G if the following conditions are satisfied:
(i) bc 6= 0;
(ii) −bc−1 is a non-square in Fq; and
(iii) bpk−1 6= cp

k−1 for all 0 < k < f .

Proof. Suppose b and c satisfy the three given conditions and let us assume
x = ABiφj ∈ 〈GL2(q), φ〉

fixes α and β, where A ∈ SL2(q), B = diag(µ, 1), 0 6 i < q − 1 and 0 6 j < f , with
j > 0 if i > 0. It suffices to show that x = ±I2. Since x fixes α, the matrix of A with
respect to the basis {e1, e2} is either diagonal or anti-diagonal.

First assume x fixes the two 1-spaces comprising α, so A = diag(a, a−1) is diagonal.
If x also fixes the two spaces in β, then

(e1 + be2)x = aµie1 + a−1bp
j

e2 = η1(e1 + be2)

(e1 + ce2)x = aµie1 + a−1cp
j

e2 = η2(e1 + ce2)

for some η1, η2 ∈ F×q . Therefore

(8) a2µi = bp
j−1 = cp

j−1

and thus (iii) implies that j = 0, so i = 0 and a2 = 1, which gives x = ±I2 as required.
Similarly, if x interchanges the spaces in β, then

(9) a2µi = bp
j

c−1 = cp
j

b−1.

Here bp2j−1 = cp
2j−1, so (iii) implies that 2j = 0 or f . Suppose 2j = 0, so i = 0 and

a2 = bc−1 = cb−1 and thus bc−1 = ±1. But b 6= c, so bc−1 = −1, which is incompatible
with (ii). Now assume 2j = f , so q ≡ 1 (mod 4) and −1 is a square in Fq. In addition,
(9) gives (bc−1)pf/2+1 = 1, so bc−1 ∈ 〈µpf/2−1〉 and thus bc−1 is a square. Therefore,
−bc−1 is a square, which once again is incompatible with (ii).

Now assume A =
(

0 a
−a−1 0

)
is anti-diagonal. If x fixes both spaces in β then

(e1 + be2)x = abp
j

e1 − a−1µie2 = η1(e1 + be2)

(e1 + ce2)x = acp
j

e1 − a−1µie2 = η2(e1 + ce2)

for some η1, η2 ∈ F×q . This gives

(10) − a2µ−i = b−p
j−1 = c−p

j−1.

Here bp2j−1 = cp
2j−1 and thus 2j = 0 or f by (iii). If 2j = 0 then i = 0 and

−a2 = b−2 = c−2, which implies that bc−1 = ±1. As noted above, this is incompatible
with (ii). Now assume 2j = f , so q ≡ 1 (mod 4) and −1 is a square in Fq once again.
Then (10) gives (bc−1)pf/2+1 = 1 and as above we deduce that bc−1 is a square. Hence,
−bc−1 is also a square, which contradicts (ii).

Finally, suppose A is anti-diagonal as above and assume x interchanges the 1-spaces
in β. Here we get

(11) − a2µ−i = b−p
j

c−1 = c−p
j

b−1,

so bpj−1 = cp
j−1 and the condition in (iii) implies that j = 0 and i = 0. Therefore

−bc−1 = (ab)2, which is incompatible with (ii).
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We conclude that if the scalars b and c satisfy the conditions in (i), (ii) and (iii),
then {α, β} is a base. �

Lemma 4.4. Let G = PΣL2(q) with q odd and set α and β as in Lemma 4.3. Then
{α, β} is a base for G if and only if the scalars b and c satisfy the conditions (i)–(iii)
in Lemma 4.3.

Proof. By Lemma 4.3, it suffices to show that if any of the conditions in (i), (ii) or (iii)
fail to hold, then there exists an element x 6= ±I2 in ΣL2(q) = 〈SL2(q), φ〉 that fixes
α and β. We proceed by inspecting the proof of Lemma 4.3, noting that i = 0 in each
of the equations (8)–(11).

As explained in the discussion preceding Lemma 4.3, if bc = 0 then {α, β} is not a
base. Next assume −bc−1 is a square in Fq, say d2 = −bc−1. Then setting a = db−1

gives −a2 = b−1c−1 and we get a solution to (11) with j = 0. Finally, suppose
bp

k−1 = cp
k−1 for some 0 < k < f and choose a ∈ Fq with a2 = bp

k−1. Then (8) is
satisfied and we conclude that x = diag(a, a−1)φk fixes α and β. �

Let us record three corollaries of Lemma 4.4. The first result allows us to reduce
our main problems to the special case G = PΣL2(q).

Corollary 4.5. Suppose G∩PGL2(q) = G0 and q is odd. Then the Saxl graph Σ(G)
contains Σ(PΣL2(q)) as a subgraph.

Proof. Let {α, β} be a base for PΣL2(q) with α = {〈e1〉, 〈e2〉} as usual. As explained
in the discussion preceding Lemma 4.3, we have β = {〈e1+be2〉, 〈e1+ce2〉} for nonzero
scalars b and c, which must satisfy the conditions in (i), (ii), and (iii) of Lemma 4.3
(see Lemma 4.4). Then Lemma 4.3 implies that {α, β} is a base for G and the result
follows. �

Corollary 4.6. Let G = PΣL2(q) with q odd and set

β = {〈e1 + be2〉, 〈e1 + ce2〉}, γ = {〈e1 + b′e2〉, 〈e1 + c′e2〉}

where b, c, b′, c′ are nonzero scalars with b 6= c and b′ 6= c′. Then {β, γ} is a base for
G if and only if

{b′, c′} =
{
b(c− b) + dc

c− b+ d
,
b(c− b) + ec

c− b+ e

}
for scalars d, e ∈ Fq with d, e 6= b− c satisfying conditions (i)–(iii) in Lemma 4.3.

Proof. Since G acts primitively on Ω, it follows that the normal subgroup G0 is
transitive. Therefore, β = αg for some g ∈ G0 and we note that g maps the set of
neighbours of α in Σ(G) to the set of neighbours of β. More precisely, we can take g
to be the image of the matrix(

1 (c− b)−1

b c(c− b)−1

)
∈ SL2(q).

Suppose {β, γ} is a base, so γ = δg for some neighbour δ of α. By Lemma 4.4,
we have δ = {〈e1 + de2〉, 〈e1 + ee2〉} for scalars d, e ∈ Fq satisfying the conditions
in (i), (ii), and (iii) of Lemma 4.3 and by applying g we get

γ = {〈(1+d(c−b)−1)e1 +(b+dc(c−b)−1)e2〉, 〈(1+e(c−b)−1)e1 +(b+ec(c−b)−1)e2〉}.

Here the coefficients 1 + d(c− b)−1 and 1 + e(c− b)−1 are nonzero, so d, e 6= b− c and
we deduce that γ has the required form.

Conversely, if γ has the given form then γ = δg for some δ ∈ Ω with {α, δ} a base
and it follows that {β, γ} is a base. �
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Corollary 4.7. Let G = PΣL2(q) with q odd and let m be the number of non-
squares in Fq that are not contained in any proper subfield of Fq. Then Σ(G) has
valency m(q − 1)/2 and thus G has exactly m/2f regular suborbits on Ω.

Proof. We consider the neighbours of α = {〈e1〉, 〈e2〉}.
Suppose β = {〈e1 + b0e2〉, 〈e1 + e2〉}. By Lemma 4.4, {α, β} is a base if and only

if −b0 is a non-square that is not contained in any proper subfield of Fq. Therefore,
there are m choices for β. More generally, if β = {〈e1 + be2〉, 〈e1 + ce2〉} with c 6= 0,
then {α, β} is a base if and only if b = cb0 for some b0 as above. Since there are q− 1
choices for c and we can interchange the two spaces comprising β, we conclude that
Σ(G) has valency m(q − 1)/2. Since |H| = (q − 1)f , it follows that G has precisely
m/2f regular suborbits on Ω. �

We are now in a position to prove our first main result for the C2-actions of groups
with socle G0 = L2(q). The following proposition extends Theorem 4.1 by establishing
the main conjecture of [11] for these groups.

Proposition 4.8. Property (?) holds if G0 = L2(q) and H is of type GL1(q) o S2.

Proof. We may assume q > 27. Recall that b(G) = 2 if and only if G does not contain
PGL2(q) as a proper subgroup. If G = PGL2(q), then Σ(G) is isomorphic to the
Johnson graph J(q+ 1, 2) and we immediately deduce that (?) holds (as noted in [11,
Example 3.9]).

For the remainder, we may assume that G∩PGL2(q) = G0 and q is odd. In view of
Corollary 4.5, we only need to consider the group G = PΣL2(q). Fix α = {〈e1〉, 〈e2〉}
as before. By Theorem 4.1, it suffices to show that if {α, β} is a base, then there exists
γ ∈ Ω such that both {α, γ} and {β, γ} are bases.

By Lemma 4.4 we have β = {〈e1 + be2〉, 〈e1 + ce2〉}, where b, c ∈ Fq are nonzero
scalars such that −bc−1 is a non-square and is not contained in any proper subfield of
Fq. Set γ = {〈e1− be2〉, 〈e1− ce2〉} ∈ Ω and note that {α, γ} is a base by Lemma 4.3.
By Corollary 4.6, {β, γ} is a base if and only if there exists d, e ∈ Fq with d, e 6= b− c
such that

(12) {−b,−c} =
{
b(c− b) + dc

c− b+ d
,
b(c− b) + ec

c− b+ e

}
and d, e satisfy the conditions in (i), (ii), and (iii) of Lemma 4.3.

Set d = 2b(b−c)
b+c and e = b2−c2

2c . Then d, e 6= b−c, (12) holds and de 6= 0. In addition,

−de−1 = −bc−1
(

2c
b+ c

)2
= −4(bc−1 + cb−1 + 2)−1

and we immediately deduce that −de−1 is a non-square in Fq.
Finally, we claim that de−1 is not contained in a proper subfield of Fq. To do this,

it suffices to show that η = bc−1 + cb−1 is not contained in such a subfield. With this
aim in mind, it will be useful to observe that

ηp
k

− η = (bc−1)p
k

+ (bc−1)−p
k

− bc−1 − (bc−1)−1

= (bc−1)−p
k

((bc−1)p
k+1 − 1)((bc−1)p

k−1 − 1)

for 1 6 k < f , so η is contained in the subfield Fpk of Fq if and only if this expression
is 0. Now since b and c satisfy the condition in part (iii) of Lemma 4.3, it follows that
(bc−1)pk−1−1 6= 0, whence η ∈ Fpk if and only if (bc−1)pk+1 = 1. If the latter equality
holds, then bc−1 ∈ Fp2k and thus 2k = f . In particular, this implies that both −1 and
bc−1 are squares, which contradicts (ii) in Lemma 4.3.
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This justifies the claim and we conclude that d and e satisfy the conditions in
parts (i), (ii), and (iii) of Lemma 4.3. In particular, {β, γ} is a base and the result
follows. �

Next we turn to the problem of determining when G has a unique regular suborbit
on Ω. We will need the following number-theoretic result, where φ and γ = 0.57721...
denote Euler’s totient function and Euler’s constant, respectively.

Lemma 4.9. For every integer n > 3,

φ(n) > n

eγ log logn+ 3
log logn

.

Proof. See [38, Theorem 15]. �

Proposition 4.10. Suppose G0 = L2(q) and H is of type GL1(q) o S2. Then G has a
unique regular suborbit if and only if G = PGL2(q) and q > 4, q 6= 5.

Proof. In view of Proposition 4.2, we may assume q > 27 and we recall that G =
PGL2(q) has a unique regular suborbit. For the remainder we may assume q is odd
and G∩PGL2(q) = G0; our aim is to show that G has at least two regular suborbits.
By Corollary 4.5, we may assume that G = PΣL2(q), in which case G has m/2f
regular suborbits by Corollary 4.7, where m is the number of non-squares in Fq that
are not contained in any proper subfield of Fq. Any primitive element of Fq has this
property and there are φ(q− 1) such elements in Fq. By applying the lower bound in
Lemma 4.9 we deduce that φ(q − 1) > 4f for all q > 27 and the result follows. �

Finally, we turn to the clique number of Σ(G). If G = PGL2(q) then ω(G) = q
since Σ(G) is isomorphic to the Johnson graph J(q + 1, 2), whence ω(G) > q if G 6
PGL2(q) and the conclusion to Theorem 1.3 holds. For 5 < q < 1000 we have used the
computational approach described in Section 6.1 to verify the bound ω(PΣL2(q)) > 5
(in view of Corollary 4.5, this implies that ω(G) > 5 whenever 5 < q < 1000 is odd
and G ∩ PGL2(q) = G0). We expect ω(G) > 5 for all q > 5, but we have not been
able to prove this.

Remark 4.11. Let us say more about the difficulties that arise when trying to con-
struct a clique of size 5 when G = PΣL2(q). By Proposition 4.8 we see that ω(G) > 3.
More precisely, {α, β, γ} is a clique of size 3, where

α = {〈e1〉, 〈e2〉}, β = {〈e1 + be2〉, 〈e1 + ce2〉}, γ = {〈e1 − be2〉, 〈e1 − ce2〉}
and b, c ∈ F×q satisfy the conditions in parts (i), (ii), and (iii) of Lemma 4.3. Simi-
larly, if we choose different scalars b′, c′ ∈ F×q then we can construct another clique
{α, β′, γ′}, where β′ = {〈e1 + b′e2〉, 〈e1 + c′e2〉} and γ′ = {〈e1 − b′e2〉, 〈e1 − c′e2〉}.
Then {α, β, β′, γ, γ′} is a clique of size 5 if {β, β′} and {β, γ′} are bases. So in view
of Corollary 4.6, we need to find scalars d, e 6= b − c satisfying conditions (i)–(iii) in
Lemma 4.3 such that

{b′, c′} =
{
b(c− b) + dc

c− b+ d
,
b(c− b) + ec

c− b+ e

}
,

together with another pair of scalars d′, e′ 6= b− c satisfying the same conditions with

{−b′,−c′} =
{
b(c− b) + d′c

c− b+ d′
,
b(c− b) + e′c

c− b+ e′

}
.

Here the main difficulty arises in verifying the required conditions in Lemma 4.3. For
example, if we fix b′ and c′, then we need to show that de−1 is not contained in a
proper subfield of Fq, which is not an easy condition to check. At the same time,
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we also need to verify the corresponding condition for d′e′−1, which is an additional
complication.

4.2. C3-actions. In this section we assume H is of type GL1(q2), so H0 = D2(q+1)/h
and |Ω| = 1

2q(q−1), where h = (2, q−1). By Proposition 4.2 we may assume q > 27 and
we note that [9, Lemma 4.8] gives b(G) 6 3, with equality if and only if PGL2(q) 6 G.
Therefore, we may assume q is odd and G ∩ PGL2(q) = G0, so either

(a) G = 〈G0, φ
j〉 for some j in the range 0 6 j < f ; or

(b) G = 〈G0, δφ
j〉 with 0 < j < f and f/(f, j) even.

Following [9], it will be helpful to identify G0 with the unitary group X0 = U2(q)
and H with a maximal subgroup of type GU1(q) o S2. We may then identify Ω with
the set of orthogonal pairs of nondegenerate 1-dimensional subspaces of the natural
module U for X0, which is defined over Fq2 . As in the proof of [9, Lemma 4.8], fix an
orthonormal basis {u, v} for U and set α = {〈u〉, 〈v〉} ∈ Ω. For each nonzero scalar
b ∈ Fq2 with bq+1 6= −1 we define

ωb = {〈u+ bv〉, 〈u− b−qv〉} ∈ Ω.

Then
Ω = {α} ∪ {ωb : b ∈ F×q2 , b

q+1 6= −1}
and we note that ωb = ω−b−q . We will abuse notation by writing φ for the field
automorphism of X0 that corresponds to the map η 7→ ηp on Fq2 and we will assume
that

(au+ bv)φ = apu+ bpv

for all a, b ∈ Fq2 . We define ΣU2(q) = 〈SU2(q), φ〉 and PΣU2(q) = 〈X0, φ〉 = X0.f ,
noting that X0 ∩ 〈φ〉 = 〈φf 〉. In this setting, the two cases we need to consider are
as described in (a) and (b) above, with G0 replaced by X0. Note that in (b), the
diagonal automorphism δ is the image of a diagonal matrix diag(λq−1, 1) ∈ GU2(q)
with respect to the basis {u, v} for U , where F×q2 = 〈λ〉.

We begin with the following result, which is the analogue of Lemma 4.3 for the
C3-actions we are considering here. Note that the sufficient condition in the lemma is
equivalent to the non-containment of b 1

2 (q+1) in a proper subfield of Fq2 .

Lemma 4.12. Suppose G ∩PGL2(q) = G0 with q odd. Then {α, ωb} is a base for G if

(13) b
1
2 (q+1)(pk−1) 6= 1

for all 0 < k < 2f .

Proof. Suppose b satisfies the condition in (13) for all 0 < k < 2f and let us assume

x = ABiφj ∈ 〈GU2(q), φ〉

fixes α and ωb, where A ∈ SU2(q), B = diag(λq−1, 1), 0 6 i < q + 1, 0 6 j < 2f with
j 6= f , and j > 0 if i > 0. In order to prove that {α, ωb} is a base for G, it suffices to
show that if x fixes α and ωb, then i = j = 0 and A = ±I2. So let us assume x fixes
α and ωb, which means that A is either diagonal or anti-diagonal with respect to the
basis {u, v} for the natural SU2(q)-module U .

First assume A = diag(a, a−1) is diagonal, so aq+1 = 1. If x fixes the two spaces in
ωb, then

(u+ bv)x = aλi(q−1)u+ a−1bp
j

v = η1(u+ bv)

(u− b−qv)x = aλi(q−1)u− a−1b−qp
j

v = η2(u− b−qv)
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for some η1, η2 ∈ F×q2 , whence

(14) a2λi(q−1) = bp
j−1 = bq(1−p

j).

Since aq+1 = 1 we get (bq+1)(pj−1) = 1, which implies that (bq+1) 1
2 (p2j−1) = 1 and

thus 2j = 0 or 2f are the only possibilities. But we are assuming j 6= f , hence j = 0
and thus i = 0. Therefore, (14) gives a2 = 1 and we conclude that x = ±I2.

Similarly, if x interchanges the spaces in ωb, then

(u+ bv)x = aλi(q−1)u+ a−1bp
j

v = η1(u− b−qv)

(u− b−qv)x = aλi(q−1)u− a−1b−qp
j

v = η2(u+ bv)

for some η1, η2 ∈ F×q2 and we deduce that

(15) − a2λi(q−1) = bp
j+q = b−qp

j−1.

In particular, since aq+1 = 1, it follows that

(bq+1) 1
2 (pj+f +1) = (−1) 1

2 (q+1)λ
1
2 i(q

2−1) = (−λi(q−1)) 1
2 (q+1)

and thus
(bq+1) 1

2 (p2j−1) = (bq+1) 1
2 (p2(j+f)−1) = (−λi(q−1)) 1

2 (q+1)(pj+f−1) = 1.
Since (13) holds and j 6= f we deduce that j = 0 is the only possibility, implying
i = 0. Then (15) gives bq+1 = b−q−1 and thus bq+1 = ±1. By construction we have
bq+1 6= −1 (since ωb ∈ Ω), while (13) implies that bq+1 6= 1. Therefore, we have
reached a contradiction and this case does not arise.

Now let us assume x interchanges the two spaces in α, so

A =
(

0 a
−a−1 0

)
is anti-diagonal and aq+1 = 1. If x fixes the spaces in ωb, then

(u+ bv)x = abp
j

u− a−1λi(q−1)v = η1(u+ bv)

(u− b−qv)x = −ab−qp
j

u− a−1λi(q−1)v = η2(u− b−qv)

for some η1, η2 ∈ F×q2 and we get

(16) − a2λ−i(q−1) = b−p
j−1 = bq+qp

j

.

This implies that (bq+1) 1
2 (p2j−1) = 1, which leads to a contradiction as above. Finally,

suppose x interchanges the two spaces in ωb. Here we get

(17) a2λi(q−1) = bq−p
j

= bqp
j−1

and thus (bq+1) 1
2 (pf+j−1) = λ

1
2 i(q

2−1) = ±1 and so (bq+1) 1
2 (p2(f+j)−1) = 1. It follows

that j = 0 and i = 0, so (bq+1) 1
2 (pf−1) = 1 and this is incompatible with (13). �

Lemma 4.13. Let G = PΣL2(q) with q odd. Then {α, ωb} is a base for G if and only
if (13) holds for all 0 < k < 2f .

Proof. By Lemma 4.12, it suffices to show that if the condition in (13) fails to hold,
then {α, ωb} is not a base for G. So let us assume k is an integer such that 0 < k < 2f
and

b
1
2 (q+1)(pk−1) = 1.

If k 6= f then by setting j = k we deduce that (14) holds with a = b(p
k−1)/2 and i = 0,

otherwise (17) holds with a = b(q−1)/2 and i = j = 0. In both cases we conclude that
{α, ωb} is not a base and the result follows. �
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Remark 4.14. By inspecting the proofs of Lemmas 4.12 and 4.13, we deduce that if
G = G0 and q is odd, then {α, ωb} is a base for G if and only if b is a non-square in
Fq2 . The same criterion was established in the proof of [14, Theorem 10] for q ≡ 3
(mod 4) and we note that a very similar argument can be used to reach the same
conclusion when q ≡ 1 (mod 4). In addition, we refer the reader to [14, Lemma 7.9]
for a complete list of the subdegrees of G = G0 when q > 11 is odd.

We can now reduce our main problems to the special case G = PΣL2(q).

Corollary 4.15. Suppose G∩PGL2(q) = G0 and q is odd. Then the Saxl graph Σ(G)
contains Σ(PΣL2(q)) as a subgraph.

Proof. If {α, ωb} is a base for PΣL2(q), then Lemma 4.13 implies that (13) holds and
thus {α, ωb} is a base for G by Lemma 4.12. �

The following technical result is a key observation.

Corollary 4.16. Let G = PΣL2(q) with q odd and let b, c ∈ F×q2 be scalars such that
bq+1, cq+1 6= −1 and c 6∈ {b,−b−q}. Then {ωb, ωc} is a base for G if and only if

ba−2
1 (b+ b−q) + b−qd

a−2
1 (b+ b−q)− d

∈ {c,−c−q}

for scalars a1, d ∈ Fq2 satisfying all of the following conditions:
(i) aq+1

1 = 1 + bq+1;
(ii) dq+1 6= −1 and d 6∈ {a−2

1 (b+ b−q),−bq+1a−2
1 (b+ b−q)};

(iii) d 1
2 (q+1)(pk−1) 6= 1 for all 0 < k < 2f .

Proof. Choose a1 ∈ Fq2 such that aq+1
1 = 1 + bq+1 and set a2 = −(b+ b−q)a−1

1 (note
that a1 exists since 1 + bq+1 ∈ Fq). Then aq+1

2 = 1 + b−(q+1) and we deduce that both
a−1

1 (u+ bv) and a−1
2 (u− b−qv) are unit vectors. Let g ∈ X0 = U2(q) be the image of

the matrix
A =

(
a−1

1 a−1
2

ba−1
1 −b−qa−1

2

)
∈ SU2(q),

which is expressed in terms of the basis {u, v} for U . Note that αg = ωb.
First assume {ωb, ωc} is a base for G, so ωc = ωgd for some neighbour ωd of α in

Σ(G). Then dq+1 6= −1 and Lemma 4.13 implies that d satisfies the condition in (iii).
By applying g we get

(u+ dv)g = (a−1
1 + a−1

2 d)u+ (ba−1
1 − b−qa

−1
2 d)v.

Since ωc 6= α, the coefficients of u and v in this expression are nonzero and we deduce
that d satisfies the remaining conditions in (ii). In particular,

〈u+ dv〉g =
〈
u+ ba−1

1 a2 − b−qd
a−1

1 a2 + d
v

〉
=
〈
u+ ba−2

1 (b+ b−q) + b−qd

a−2
1 (b+ b−q)− d

v

〉
〈u− d−qv〉g =

〈
u+ ba−2

1 (b+ b−q)− b−qd−q

a−2
1 (b+ b−q) + d−q

v

〉
and we conclude that if {ωb, ωc} is a base for G then all of the required conditions
are satisfied.

Conversely, if c has the given form for scalars a1 and d satisfying all of the given
conditions, then {α, ωd} is a base for G (via the condition in (iii)) and ωc = ωgd for
some g ∈ G0 with ωb = αg. Therefore, {ωb, ωc} is also a base for G. �

We are now in a position to extend Theorem 4.1 by establishing (?) for the C3-
actions of groups with socle L2(q).
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Proposition 4.17. Property (?) holds if G0 = L2(q) and H is of type GL1(q2).

Proof. We may assume q > 27 (see Proposition 4.2) and we recall that b(G) = 2 if
and only if q is odd and G∩PGL2(q) = G0. In view of Corollary 4.15, we may assume
that G = PΣL2(q). By Theorem 4.1, it suffices to show that if {α, ωb} is a base for G,
then there exists c ∈ F×q2 with cq+1 6= −1 such that both {α, ωc} and {ωb, ωc} are also
bases. Note that bq+1 6= −1 and b satisfies the condition in (13) for all 0 < k < 2f
(see Lemma 4.13).

We claim that all of the above properties hold with c = −b. Clearly, we have
cq+1 = bq+1 6= −1 and c 1

2 (q+1)(pk−1) 6= 1 for all 0 < k < 2f , so {α, ωc} is a base. It
remains to prove that {ωb, ωc} is a base.

As in Corollary 4.16, fix a scalar a1 ∈ F×q2 such that aq+1
1 = 1 + bq+1 and set

d = 2ba−2
1 (b+ b−q)
b− b−q

∈ F×q2 .

Then

c = ba−2
1 (b+ b−q) + b−qd

a−2
1 (b+ b−q)− d

and it remains to show that d satisfies all the conditions in parts (ii) and (iii) of
Corollary 4.16.

If d ∈ {a−2
1 (b+ b−q),−bq+1a−2

1 (b+ b−q)} then bq+1 = −1, which is a contradiction.
In addition, if we write αg = ωb as in the proof of Corollary 4.16, then 〈u + dv〉 =
〈u+cv〉g−1 and 〈u−d−qv〉 = 〈u−c−qv〉g−1 . Since cq+1 6= −1, we have u+cv 6= u−c−qv
and thus u + dv 6= u − d−qv. Therefore, dq+1 6= −1 and we conclude that d satisfies
all of the conditions in part (ii) of Corollary 4.16.

Finally, we need to show that

d
1
2 (q+1) = ±2

(
b

1
2 (q+1) − b− 1

2 (q+1)
)−1

is not contained in a proper subfield of Fq2 . Set e = b
1
2 (q+1), which is not in a proper

subfield by Lemma 4.13, and note that it suffices to show that e − e−1 is also not
contained in a proper subfield. Fix an integer 0 < k < 2f and observe that

(e− e−1)p
k

− (e− e−1) = e−p
k

(ep
k+1 + 1)(ep

k−1 − 1),
so e− e−1 ∈ Fpk if and only if this expression is 0. In view of (13), this holds if and
only if epk+1 = −1. So let us assume this relation holds. Then ep2k−1 = (−1)pk−1 = 1
and thus 2k = 0 or 2f . If 2k = 2f then k = f and so eq+1 = ep

k+1 = −1. This implies
that

−1 = eq+1 = b
1
2 (q+1)2

= b
1
2 (q2+1)bq = −bq+1

and so b is a square, which is incompatible with (13). Therefore k = 0, so e2 = −1
and e − e−1 = −2e−1. The result now follows since Lemma 4.13 implies that e−1 is
not contained in a proper subfield of Fq2 . �

Proposition 4.18. Suppose G0 = L2(q) and H is of type GL1(q2). Then G has a
unique regular suborbit if and only if G = L2(5) or L2(9).2 = M10.

Proof. In view of Proposition 4.2 and Corollary 4.15, we may assume q > 27 is odd
and G = PΣL2(q). Let r be the number of regular suborbits of G. If q is a prime then
G = G0 and [14, Lemma 7.9] gives r = (q− `)/4, where q ≡ ` (mod 4) with ` ∈ {1, 3}.
For the remainder, we may assume q > p.

Let λ be a primitive element of Fq2 . Then by Lemma 4.12, we see that {α, ωλ} is a
base for G. Therefore, the valency of Σ(G) is at least φ(q2 − 1)/2, where φ is Euler’s
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function and thus r > φ(q2−1)/2f(q+1) since |H| = f(q+1). By applying the lower
bound in Lemma 4.9 we deduce that

φ(q2 − 1)
2f(q + 1) > 2

for q > 27 and the desired result follows. �

Finally, we consider the clique number ω(G) of Σ(G). Our main result is the fol-
lowing, which establishes a strong form of Theorem 1.3 when G = G0 is simple.

Proposition 4.19. Suppose G = L2(q) and H is of type GL1(q2), where q is odd.
Then ω(G) > 1

2 (q − 1).

Proof. Let b be a non-square in Fq2 with bq+1 6= −1. Then bx is a non-square for all
x ∈ Fq and thus {α, ωbx} is a base for G if and only if (bx)q+1 6= −1 (see Remark
4.14). We claim that

C = {α} ∪ {ωbx : x ∈ F×q , (bx)q+1 6= −1}

is a clique in Σ(G) with |C| > 1
2 (q − 1).

To see this, first note that if x ∈ F×q and (bx)q+1 = −1, then bq+1 = −x−2 and
there are at most two possibilities for x. Let us also observe that if y = −b−(q+1)x−1

then by = −(bx)−q and thus ωbx = ωby. This shows that |C| > 1+ 1
2 (q−3) = 1

2 (q−1).
To complete the proof of the proposition, it suffices to show that {ωbx, ωby} is a

base for all distinct points ωbx, ωby in C. To this end, set c = bx and note that c is
a non-square such that cq+1 6= −1 and by = cyx−1 ∈ cF×q . In this way, the problem
is reduced to showing that {ωb, ωby} is a base for all y ∈ F×q with (by)q+1 6= −1 and
by 6= −b−q (the latter condition forces ωb 6= ωby).

By Corollary 4.16, it suffices to show that there exist scalars a1, d ∈ F×q2 such that

(18) by = ba−2
1 (b+ b−q) + b−qd

a−2
1 (b+ b−q)− d

,

where aq+1
1 = 1 + bq+1 and d satisfies the conditions in parts (ii) and (iii) of the

corollary. In fact, in view of Remark 4.14, we can replace the condition in (iii) by the
property that d is a non-square.

Let a1 ∈ F×q2 be any scalar such that aq+1
1 = 1 + bq+1, noting that a1 exists since

bq+1 ∈ Fq. Since by 6= −b−q, it follows that b−(q+1) + y 6= 0 and we may define

d = ba−2
1 (1 + b−(q+1))(y − 1)

b−(q+1) + y
.

Since bq+1 6= −1 we see that d 6= a−2
1 (b + b−q) and by rearranging we deduce that

(18) holds. In particular, since by 6= 0 we have d 6= −bq+1a−2
1 (b+ b−q). If dq+1 = −1,

then (y − 1)2 = −bq+1(b−(q+1) + y)2, which forces (bq+1y2 + 1)(bq+1 + 1) = 0. But
this is false because bq+1y2 = (by)q+1 6= −1 and bq+1 6= −1, whence dq+1 6= −1 and
d satisfies all of the conditions in part (ii) of Corollary 4.16. Finally, let us observe
that a−2

1 is a square and (1+b−(q+1))(y−1)
b−(q+1)+y ∈ Fq, which is also a square. Therefore, d is

a non-square since b is a non-square. We conclude that {ωb, ωby} is a base for G and
this completes the proof of the proposition. �

Corollary 4.20. If G = G0 = L2(q) and H is of type GL1(q2), then either ω(G) > 5,
or q = 5 and ω(G) = 4.

Proof. By Proposition 4.2 we may assume q > 27. Now apply Proposition 4.19. �
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Remark 4.21. As for the C2-actions from the previous section, we have been unable
to extend Corollary 4.20 to the base-two groups with G 6= G0. Using a computational
approach (see Section 6.1), it is straightforward to show that ω(PΣL2(q)) > 5 when
5 < q < 1000 and we expect ω(G) > 5 for all q > 5.

In order to illustrate some of the difficulties that arise, let us assume G = PΣL2(q).
As explained in the proof of Proposition 4.17, if b ∈ Fq2 is a scalar such that bq+1 6= −1
and (13) holds for all 0 < k < 2f , then {α, ωb, ω−b} a clique of size 3. Similarly, we
can choose a different scalar c such that {α, ωc, ω−c} is a clique and we can seek
to combine these sets to construct a clique {α, ωb, ω−b, ωc, ω−c} of size 5. For this
approach to work, we need {ωb, ωc} and {ωb, ω−c} to be bases, which imposes various
conditions on c. For example, we need the scalars

d = (c− b)a−2
1 (b+ b−q)

b−q + c
, e = −(b+ c)a−2

1 (b+ b−q)
b−q − c

to satisfy all the conditions in parts (ii) and (iii) of Corollary 4.16, where a1 ∈ Fq2 is
chosen so that aq+1

1 = 1 + bq+1. These conditions are difficult to check and we have
been unable to establish the existence of scalars b and c with the desired properties
in full generality.

4.3. An extension. In this section we take the opportunity to establish [11, Con-
jecture 4.5] for all base-two almost simple primitive groups G with socle G0 = L2(q).
This extends the main theorem of [19], which shows that Σ(G) has diameter 2.

Theorem 4.22. Let G 6 Sym(Ω) be a base-two almost simple primitive permuta-
tion group with socle G0 = L2(q). Then any two vertices in Σ(G) have a common
neighbour.

Proof. The groups with q 6 11 can be handled using Magma [4] (see Section 5
below), so let us assume q > 11. By combining Proposition 2.2 with Theorem 3.1,
we may assume that either G ∈ L or a point stabiliser H is insoluble. So in view of
Propositions 4.8 and 4.17, we may assume H is insoluble. By inspecting [5, Tables 8.1
and 8.2], one of the following holds:

(a) H = S5 or A5, q ∈ {p, p2} and p ≡ ±1,±3 (mod 10);
(b) H is a subfield subgroup of type GL2(q0), where q = qk0 , k is a prime and

q0 > 4.
First consider case (a) and recall that we write im(H) for the number of elements

of order m in H. In view of Proposition 2.2, it suffices to show that Q̂(G) < 1/2 (see
Section 2.1). We refer the reader to [10, Section 3.2] for detailed information on the
conjugacy classes of elements of prime order in G.

Let x ∈ H be an element of prime order m and note that m ∈ {2, 3, 5}. If m = 2
then |xG| > 1

2q
1/2(q+ 1) = b1 (minimal if x is an involutory field automorphism) and

we note that i2(H) 6 25 = a1. Similarly, if m ∈ {3, 5} then |xG| > q(q − 1) = b2 and
i3(H) + i5(H) = 44 = a2. Therefore, Lemma 2.1 implies that

(19) Q̂(G) 6 a2
1/b1 + a2

2/b2

and we deduce that Q̂(G) < 1/2 if q > 197. The remaining cases with q < 197 can be
verified using Magma.

Finally, let us consider the subfield subgroups in (b). First assume k = 2. We claim
that b(G) > 3. If p is odd then

|Ω| = |G0 : PGL2(q0)| = 1
2q0(q2

0 + 1)
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and the claim follows since b(G) > log|Ω| |G| > 2. Similarly, if p = 2 and G 6= G0 then
|Ω| = q0(q2

0 + 1) and

b(G) > log |G|
log |Ω| >

log 2q2
0(q4

0 − 1)
log q0(q2

0 + 1) > 2.

Finally, suppose p = 2 and G = G0. Here log|Ω| |G| < 2 and the subdegrees of G are
recorded in [23, p.354]. By inspection, we see that G does not have a regular suborbit
and thus b(G) > 3.

Next assume k > 5 and let x ∈ H be an element of prime order. If x is an involutory
field automorphism of G0, then |xG| > 1

2q
1/2(q + 1) = b1 and we note that there are

at most a1 = q
1/2
0 (q0 +1) such elements in H. In each of the remaining cases, we have

|xG| > 1
2q(q − 1) = b2 and we observe that |H| 6 q0(q2

0 − 1) log q = a2. By applying
Lemma 2.1 we deduce that (19) holds and this gives Q̂(G) < 1/2 as required.

To complete the proof, we may assume k = 3. This case requires a more refined
treatment. First let x ∈ H∩PGL2(q) be an element of prime orderm. If x is unipotent
(so m = p) then |xG| > 1

2 (q2− 1) = b1 and we note that there are exactly a1 = q0− 1
such elements inH. Similarly, if x is a semisimple involution then |xG| > 1

2q(q−1) = b2
and we have i2(PGL2(q0)) = q2

0 = a2. Next suppose m 6= p and m > 3, so m divides
q2
0−1 and there are 1

2 (m−1) distinct G0-classes of such elements in G (and the same
number of L2(q0)-classes in H ∩ PGL2(q)). If {x1, . . . , xt} is a set of representatives
of the distinct G-classes of these elements, then there exist positive integers ki such
that

∑
i ki = 1

2 (m− 1) and

|xGi ∩H| = kiq0(q0 + ε), |xGi | = kiq
3
0(q3

0 + ε),

where ε = 1 if m divides q0−1, otherwise ε = −1 (here |xG0
i | = |x

PGL2(q)
i | = q3

0(q3
0 +ε)

and ki denotes the number of distinct G0-classes that are fused under the action of
field automorphisms in G). Therefore, the contribution to Q̂(G) from elements of
order m is equal to

t∑
i=1

(kiq0(q0 + ε))2

kiq3
0(q3

0 + ε) = 1
2(m− 1) · (q0 + ε)2

q0(q3
0 + ε) .

If m divides q0 + 1 then m− 1 6 q0 and there are at most log(q0 + 1) possibilities for
m, so the total contribution to Q̂(G) from these elements is at most

f1(q0) = log(q0 + 1) · 1
2q0 ·

(q0 − 1)2

q0(q3
0 − 1) .

Similarly, the contribution from the elements with m dividing q0 − 1 is no more than

f2(q0) = log(q0 − 1) · 1
2(q0 − 2) · (q0 + 1)2

q0(q3
0 + 1) .

Finally, let us assume x ∈ G is a field automorphism of order m. As above, if
m = 2 then |xG| > 1

2q
1/2(q+ 1) = b3 and there are at most a3 = q

1/2
0 (q0 + 1) of these

elements in H. Next suppose m = 3. Here |xG| > q2
0(q4

0 + q2
0 + 1) = b4 and we may

assume H = CG(x), which implies that H contains at most

2 (1 + i3(L2(q0))) 6 2
(

1 + |GL2(q0)|
(q0 − 1)2

)
= 2q0(q0 + 1) + 2 = a4

such elements. If m = 5 then |xG| > q
36/5
0 = b5 and there are at most 8q12/5

0 = a5 of
these elements in H. Finally, if m > 7 then |xG| > q

54/7
0 = b6 and we observe that

|H| 6 q0(q2
0 − 1) log q = a6.
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Set α = 1 if q0 = q2
1 for some q1, otherwise α = 0. Similarly, let β = 1 if q0 = q5

1
and γ = 1 if q0 = qm1 for some prime m > 7 (otherwise β = 0 and γ = 0, respectively).
Then by bringing all of the above estimates together, we conclude that

Q̂(G) < f1(q0) + f2(q0) +
(
a2

1/b1 + a2
2/b2 + a2

4/b4
)

+ αa2
3/b3 + βa2

5/b5 + γa2
6/b6

and one checks that this upper bound is less than 1/2 for all q0 > 7. Finally, the cases
with q0 ∈ {4, 5} can be checked using Magma. �

5. Proof of Theorem 1.1
In this section we complete the proof of Theorem 1.1. Let G 6 Sym(Ω) be a permuta-
tion group in G with socle G0 and point stabiliser H. Recall that our goal is to show
that the Saxl graph Σ(G) has the following property:

(?) Any two vertices in Σ(G) have a common neighbour

which immediately implies that Σ(G) has diameter 2. In view of Propositions 2.2, 4.8
and 4.17, we may assume G ∈ G r L and Q(G) > 1/2, so the relevant groups can
be determined by inspecting Tables 2 and 3 (see Theorem 3.1). In every one of these
cases, we can verify property (?) using Magma.

To do this, we first construct G and H using the functions

AutomorphismGroupSimpleGroup and MaximalSubgroups.

Next we identify a setR of (H,H) double coset representatives and then for each x ∈ R
we seek an element y ∈ G (by random search) such thatH∩Hy = Hx∩Hy = 1. Notice
that (?) holds if and only if such an element y exists for each x ∈ R. As demonstrated
by the following example, it is easy to implement this approach in Magma.

Example 5.1. Suppose G0 = Ω+
8 (2), G = G0.3 and H is of type O−2 (2) × GU3(2).

Here Q(G) = 2071/2800 > 1/2 and so this is one of the cases we need to consider. We
proceed as follows, noting that G has a unique conjugacy class of maximal subgroups
of order 11664:

G:=AutomorphismGroupSimpleGroup("O+",8,2);
S:=LowIndexSubgroups(G,2);
G:=S[1];
M:=MaximalSubgroups(G:OrderEqual:=11664);
H:=M[1]‘subgroup;
R,T:=DoubleCosetRepresentatives(G,H,H);
z:=0;
for x in R do

if exists(y){y : y in G | #(H meet H^y) eq 1 and #(H^x meet H^y) eq 1}
then z:=z+1;

end if;
end for;
z eq #R;

This returns true and we conclude that (?) holds. An entirely similar approach is
effective for all of the relevant groups in Tables 2 and 3.

6. Proof of Theorems 1.3 and 1.5
Let G 6 Sym(Ω) be a permutation group in G with socle G0 and point stabiliser H.
Let ω(G) and α(G) denote the clique and independence numbers of Σ(G), respectively.
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6.1. Clique number. In view of Proposition 2.2 and Theorem 3.1, together with our
work in Sections 4.1 and 4.2, it remains to verify the bound ω(G) > 5 for the groups
appearing in Tables 2 and 3. With the aid of Magma, this is a straightforward exercise,
working with a suitable permutation representation of G and H. For example, the
following function for checking the bound ω(G) > 5 can be used effectively in every
case. This uses the fact that ω(G) > 5 if and only if there exist elements x2, . . . , x5
in G such that Hxi ∩Hxj = 1 for all distinct i, j ∈ {1, . . . , 5}, where x1 = 1.

clique:=function(G,H);
exists(x2){y : y in G | #(H meet H^y) eq 1};
exists(x3){y : y in G | #(H meet H^y) eq 1 and #(H^x2 meet H^y) eq 1};
exists(x4){y : y in G | #(H meet H^y) eq 1 and #(H^x2 meet H^y) eq 1

and #(H^x3 meet H^y) eq 1};
exists(x5){y : y in G | #(H meet H^y) eq 1 and #(H^x2 meet H^y) eq 1

and #(H^x3 meet H^y) eq 1 and #(H^x4 meet H^y) eq 1};
return "omega(G) is at least 5";
end function;

6.2. Independence number. Now let us turn to the independence number α(G) of
Σ(G). Here we apply work of Magaard and Waldecker [35, 36] and we begin with the
following trivial observation.
Lemma 6.1. Let G 6 Sym(Ω) be a permutation group and let c be a positive integer.
Then α(G) 6 c only if every (c+ 1)-point stabiliser in G is trivial.
Proposition 6.2. Let G 6 Sym(Ω) be a group in G with socle G0 and point stabiliser
H. Then α(G) = 2 if and only if G = A5 and Ω is the set of 2-element subsets of
{1, . . . , 5}.
Proof. First assume G = G0 is simple. We apply [35, Theorem 3.20], which gives a
complete list of all the finite simple transitive groups with the property that every
3-point stabiliser is trivial. The theorem implies that G = L2(q), 2B2(q) or L3(4),
and by inspection (using [9, Theorem 2]) we deduce that G = L2(4) with H = D6 is
the only example with G primitive and b(G) = 2. Here Σ(G) is the Johnson graph
J(5, 2) and α(G) = 2 (note that G is permutation isomorphic to A5 acting on the set
of 2-element subsets of {1, . . . , 5}).

Now assume G 6= G0. Then G0 6 Sym(Ω) is a transitive group and every 3-point
stabiliser is trivial, so as above the possibilities for G0 and Ω are described in [35,
Theorem 3.20] and by appealing to [35, Theorem 1.3] we see that G0 = L2(q) with
q = pf . More precisely, either p is odd and G = PGL2(q) or G0.2 = 〈G0, δφ

f/2〉 (in
the notation of Section 4), or p = 2, f is a prime and G = Aut(G0). The cases with
q ∈ {4, 5} can be checked using Magma [4] and we find that there are no groups
G 6= G0 with α(G) = 2. Finally, let us assume q > 7, in which case the relevant
possibilities are labelled (a)–(d) in [35, Theorem 3.20(1)]. In (a) and (d), it is easy
to check that b(G0) > 2, while the groups in (b) and (c) are imprimitive. Therefore,
none of these cases arise and the proof is complete. �

Proposition 6.3. Let G 6 Sym(Ω) be a group in G with socle G0 and point stabiliser
H. Then α(G) 6= 3.
Proof. Seeking a contradiction, suppose α(G) = 3, in which case every 4-point sta-
biliser is trivial. We may also assume that there exists a nontrivial 3-point stabiliser.
If G = G0 then the possibilities for G are described in [36, Theorem 1.1(i)], but we
find that there are no compatible examples with G primitive, H soluble and b(G) = 2.
The cases with G 6= G0 are recorded in [36, Theorem 1.2] and once again we see that
there are no valid examples. �
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This completes the proof of Theorems 1.3 and 1.5.

7. Proof of Theorem 1.6
In this final section we prove Theorem 1.6 on the groups G ∈ G with a unique regular
suborbit. If G ∈ L then we refer the reader to Propositions 4.10 and 4.18, so we may
assume G ∈ G rL. If Q(G) > 1/4 then we can simply read off the relevant groups in
Tables 2 and 3, so we may assume Q(G) < 1/4. Then in view of (3), it follows that
G has a unique regular suborbit only if

|H|2 > 3
4 |G|,

where H is a point stabiliser. The following result reveals that there are no such
groups and this completes the proof of Theorem 1.6.

Proposition 7.1. Let G be a group in G r L with point stabiliser H. If Q(G) < 1/4
then |H|2 6 3

4 |G|.

Proof. First assume G0 = Am is an alternating group. If m 6 12 then it is easy
to verify the desired bound with the aid of Magma. On the other hand, if m > 12
then by inspecting [31, Table 14] and [9, Table 4] we deduce that m is a prime,
H = AGL1(m) ∩G and we have

|H|2

|G|
6
m(m− 1)
(m− 2)! <

3
4

as required. Similarly, if G0 is a sporadic group then the possibilities for G and H
can be determined by combining the information in Table 2 and [9, Table 4] with the
tables of maximal subgroups in [40]. In each case, it is a straightforward exercise to
show that |H|2 6 3

4 |G|.
Next suppose G0 is an exceptional group of Lie type. Then either H = NG(T ) for

some maximal torus T of G0 (see [32, Table 5.2]), or (G,H) is recorded in Table 4. One
can now verify the bound |H|2 6 3

4 |G| by inspection. For example, if G0 = 2B2(q)
with q = 2f and f > 3 odd, then |G| > q2(q2 + 1)(q − 1) and by inspecting [32,
Table 5.2] we deduce that |H| 6 4(q+

√
2q+1) log q. A routine calculation shows that

|H|2 6 3
4 |G|.

Finally, let us assume G0 is a classical group. Then (G,H) is one of the cases
recorded in Table 5 and once again the result follows by inspection (recall that in
each case, the precise structure of H is given in [28]). For instance, if G0 = Lε4(q)
and H is of type GLε1(q) o S4 with q > 3, then |H| 6 48(q + 1)3 log q and the result
follows since |G| > 1

8q
15. In fact, one can check that the only case in Table 5 with

|H|2 > 3
4 |G| is where G = PGSp6(3) and H is of type Sp2(3) o S3. But b(G) = 3 in

this case (see [9, Table 7]), so this is not a group in G. �
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