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Radicals of Sn-invariant positive
semidefinite hermitian forms

Clara Franchi, Alexander A. Ivanov & Mario Mainardis

Abstract Let G be a finite group, V a complex permutation module for G over a finite G-set
X , and f : V ×V → C a G-invariant positive semidefinite hermitian form on V . In this paper we
show how to compute the radical V ⊥ of f , by extending to nontransitive actions the classical
combinatorial methods from the theory of association schemes. We apply this machinery to
obtain a result for standard Majorana representations of the symmetric groups.

1. Introduction
A major difficulty in studying linear representations of certain finite groups, such as
the large sporadic simple groups, arises when the degrees of these representations
become so large that applying the general methods from linear algebra gets hard,
if not practically impossible, even by machine computation. In this paper we cope
with a frequent problem when dealing with the usual representation of the Monster
(and many if its simple subgroups) on the Norton–Conway–Griess algebra, or, more
generally, with Majorana representations of finite groups (see [7]), and can be stated
as follows: given a finite group G, a complex permutation module V on a finite G-set
X , and a G-invariant positive semidefinite hermitian form f , determine the radical
V ⊥ of f from the Gram matrix Γ associated to f with respect to X . In this context,
the G-invariance of the form f implies strong restrictions on the Gram matrix Γ that
can be exploited, via the theory of association schemes, to get a significantly more
manageable situation. In fact, by [5, p. 11] or [15, §2.6 and §2.7], Γ is equivalent to a
block diagonal matrix Γ′, whose blocks have sizes corresponding to the multiplicities
of the irreducible C[G]-submodules of V , so that the decomposition of V ⊥ into irre-
ducible C[G]-submodules can be recovered from the ranks of the diagonal blocks of
Γ′. The key step to compute the diagonal blocks of Γ′ is to determine a generalised
first eigenmatrix (see [3]) of the association scheme related to the action of G on X .
If this action is multiplicity-free (or, better, if the graph associated to this action is
distance transitive), there are well established combinatorial methods (see [1] or [4])
to compute this matrix. On the other hand, if the action is not multiplicity-free, this
strategy becomes much more awkward, though still possible in some cases: in [3], for
example, this machinery has been extended to the case where at most one irreducible
C[G]-submodule of the complex permutation module on X has multiplicity 2 and all
the others have multiplicity 1 (a more detailed description on how to deal with this
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(x, y)Sn f(x, y)
((1, 2)(3, 4), (1, 2)(3, 4))Sn 1 n > 4
((1, 2)(3, 4), (1, 3)(2, 4))Sn 1/8 n > 4
((1, 2)(3, 4), (1, 2)(3, 5))Sn 13/28 n > 5
((1, 2)(3, 4), (1, 3)(2, 5))Sn 3/27 n > 5
((1, 2)(3, 4), (1, 2)(5, 6))Sn 1/8 n > 6
((1, 2)(3, 4), (1, 3)(5, 6))Sn 1/26 n > 6
((1, 2)(3, 4), (1, 5)(2, 6))Sn 1/26 n > 6
((1, 2)(3, 4), (1, 5)(3, 6))Sn 13/28 n > 6
((1, 2)(3, 4), (1, 5)(6, 7))Sn 5/28 n > 7
((1, 2)(3, 4), (5, 6)(7, 8))Sn 0 n > 8

({1, 2, 3}, {1, 2, 3})Sn 23/5 n > 3
({1, 2, 3}, {1, 2, 4})Sn 23 · 17/(34 · 5) n > 4
({1, 2, 3}, {1, 4, 5})Sn 24/(34 · 5) n > 5
({1, 2, 3}, {4, 5, 6})Sn 0 n > 6

({1, 2, 3}, (1, 2)(3, 4))Sn 1/32 n > 4
({1, 2, 5}, (1, 2)(3, 4))Sn 1/4 n > 5
({1, 3, 5}, (1, 2)(3, 4))Sn 1/(2 · 32) n > 5
({1, 5, 6}, (1, 2)(3, 4))Sn 1/(22 · 32) n > 6
({5, 6, 7}, (1, 2)(3, 4))Sn 0 n > 7

Table 1. The relevant values of the form f

case will be given in Section 3). We’ll show in the sequel how, in the case of nontran-
sitive actions (which are definitely not multiplicity-free), V ⊥ can be determined from
the generalised first eigenmatrices of the association schemes related to the actions
induced by G on the G-orbits of X . As an application, we prove the following result:

Theorem 1.1. Let n be a positive integer with 4 6 n, Sn the symmetric group on
{1, . . . , n}, T the set of the permutations of Sn of type (2, 2), on which Sn acts via
conjugation, U the set of 3-subsets of {1, . . . , n}, on which Sn acts in the natural way,
X the union (as Sn-sets) of T with U , V the complex permutation module of Sn on
X , and f the Sn-invariant hermitian form on V defined as in Table 1. Then, denoting
by Sλ the Specht module associated to a partition λ of {1, . . . , n}, we have

(1) f is positive semidefinite if and only if n 6 12;
(2) if n = 12, then V ⊥ ∼= 1⊕ S(11,1) ⊕ 2S(10,2) ⊕ S(9,3) ⊕ S(9,2,1);
(3) if n = 11, then V ⊥ ∼= S(2,9);
(4) if 10 > n > 8, then V ⊥ = {0}.

We remark that under the hypothesis of Theorem 1.1, S(n−2,2) has multiplicity 3
in V and the homogeneous component V (S(n−2,2)) splits into the orthogonal direct
sum of its intersections with the linear spans T and U of T and U , respectively.
In U the module S(n−2,2) has multiplicity 1 and, as we shall see, V (S(n−2,2)) ∩ T
splits as the direct sum of an irreducible submodule, canonically associated to the
Johnson scheme J(n, 4), and its orthogonal complement with respect to a natural Sn-
invariant hermitian form κ defined in Section 3. The choices of X and f in Theorem 1.1
arise from the theory of Majorana representations; in particular, the form f is the
one induced on V by a standard Majorana representation of Sn and Theorem 1.1 is
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needed to determine the subalgebra generated by the Majorana axes associated to this
representation. When n < 8, this subalgebra has been determined by Ivanov, Seress,
Pasechnik, and Shpectorov in [8], [9], [10]. Since the Specht modules are defined over
Q and they are absolutely irreducible [11, Theorem 4.12], restricting the scalars to
R, we obtain immediately from Theorem 1.1 the following result about Majorana
representations of the symmetric groups:

Theorem 1.2. Let n be an integer greater than 7 and Sn the symmetric group on
{1, . . . , n}. Let (Sn, T ,W, φ, ψ) be a standard Majorana representation of Sn, Y and Z
be the subspaces of W generated by the axial vectors associated to the bitranspositions
and the 3-cycles of Sn respectively. Then

(1) n 6 12;
(2) if n = 12, then Z 6 Y , and Y decomposes into irreducible R[Sn]-submodules

as follows

1⊕ S(11,1) ⊕ S(10,2) ⊕ S(9,3) ⊕ S(8,4) ⊕ S(8,2,2);

(3) if n = 11, then Y ∩Z ∼= S(9,2), and Y +Z decomposes into irreducible R[Sn]-
submodules as follows

1⊕ 1⊕ 2S(10,1) ⊕ 2S(9,2) ⊕ 2S(8,3) ⊕ S(7,4) ⊕ S(8,2,1) ⊕ S(7,2,2);

(4) if n ∈ {8, 9, 10}, Y ∩ Z = {0} and Y + Z decomposes into irreducible R[Sn]-
submodules as follows

1⊕ 1⊕ 2S(n−1,1) ⊕ 3S(n−2,2) ⊕ 2S(n−3,3) ⊕ S(n−4,4) ⊕ S(n−3,2,1) ⊕ S(n−4,2,2).

Note that, for n = 12, the inclusion Z 6 Y in Theorem 1.2 was proved, with
different methos, by Castillo-Ramirez and Ivanov in [2].

2. Strategy
Let G be a finite group acting on a finite set X := {x1, . . . , xm}, V the complex
permutation module of G on X , and f a G-invariant hermitian form on V . Let Γ be
the Gram matrix associated to f with respect to the basis (x1, . . . , xm). As stated
in the introduction, for each irreducible C[G]-submodule of V , we want to determine
its multiplicity in V ⊥ in terms of the matrix Γ. For the remainder of this paper all
modules are C[G]-modules. For an irreducible submodule S of a module N , denote
by N(S) the S-homogeneous component of N (i.e. the submodule of N generated by
all submodules of N isomorphic to S) and by mN (S) the multiplicity of S in N . By
Maschke’s Theorem, V is a completely reducible module, so that V is the direct sum
of its homogeneous components.

Lemma 2.1. Each two distinct homogeneous components of V are orthogonal to each
other.

Proof. Since f is positive semidefinite and G-invariant, each submodule of V has a
G-invariant orthogonal complement. So V decomposes as an orthogonal direct sum
of irreducible submodules and the result follows by Schur’s Lemma. �

Corollary 2.2. Let S be an irreducible submodule of V and assume V (S) is contained
in the linear span W of a G-orbit O of G in X . Then the multiplicity of S in V ⊥ is
equal to the multiplicity of S in W ∩W⊥.

Proof. By Lemma 2.1, V (S) is orthogonal to the linear span of every G-orbit different
from O, whence V (S) ∩ V ⊥ = V (S) ∩W⊥. �
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Lemma 2.3. Let N and S be finite dimensional modules with S irreducible. Then, for
every subgroup H of G, we have

dimC(CN(S)(H)) = mN (S) · dimC(CS(H))
(where, as usual, CN(S)(H) denotes the centraliser of H in N(S), i.e. the set of the
vectors in N(S) fixed by H).

Proof. This is an immediate consequence of the complete reducibility of the involved
modules. �

Corollary 2.4. Assume f is positive semidefinite. Let S be an irreducible C[G]-
submodule of V , let H be a subgroup of G, let C be the centraliser of H in V (S), and
let Γ(S,H) be the Gram matrix associated to f |C×C with respect to a basis of C. Then,

mV ⊥(S) · dimC(CS(H)) = corank(Γ(S,H)).

Proof. The corank of Γ(S,H) is equal to the dimension of (C ∩ C⊥) and, since f is
positive semidefinite, (C ∩ V ⊥) = (C ∩ C⊥), so the result follows from Lemma 2.3,
with N = V ⊥. �

The idea is now to chooseH in such a way that dimC(CS(H)) is as small as possible.
In particular, if, as in the case we are interested in, dimC(CS(H)) = 1 then, for every
decomposition

V (S) =
mV (S)⊕
i=1

Si

into irreducible submodules Si, each one isomorphic with S, we can get a basis
CS := (s1, . . . , smV (S))

for C by choosing, for every i ∈ {1, . . . ,mV (S)}, a nontrivial vector si in CSi(H). A
way to obtain the vectors si is to take the images tπi

i of suitable H-invariant vectors
ti of V via the projection πi of V onto Si associated to a decomposition of V into
irreducible submodules that involves Si. The expression of the si’s as linear combi-
nations of the vectors in X , can be obtained from any generalised first eigenmatrix
of the association scheme related to the action of G on X (see [5, § 3]). As already
mentioned, if the action of G on X is not multiplicity-free, there are no standard
methods to compute a generalised first eigenmatrix. If the action is not transitive,
one might hope to get to a simpler situation by restricting the action to each orbit
and decomposing V (S) into the direct sum of its intersections with the linear spans
of the G-orbits in X . Let

X1, . . . ,Xr
be the distinct G-orbits of X and let R1, . . . , Rp be representatives of the isomorphism
classes of the irreducible submodules of V . For j ∈ {1, . . . , r} let Vj be the linear span
of Xj and, for S ∈ {R1, . . . , Rp}, let Vj(S) := V (S) ∩ Vj , so that V decomposes as
follows:

(1)

V = V1(R1) ⊕ V2(R1) ⊕ · · · ⊕ Vr(R1) ⊕
V1(R2) ⊕ V2(R2) ⊕ · · · ⊕ Vr(R2) ⊕

...
...

. . .
...

V1(Rp) ⊕ V2(Rp) ⊕ · · · ⊕ Vr(Rp)
Clearly, for h ∈ {1, . . . , p}, the row sums are the homogeneous components V (Rh) and,
for j ∈ {1, . . . , r}, the column sums are the submodules Vj ’s. For j ∈ {1, . . . , r} let
Oj1, . . . ,Ojsj be the orbitals of G on Xj and let PXj be a generalised first eigenmatrix
associated to the action of G on Xj (see [3, §2]). Recall that the rows (resp. the
columns) of PXj are in one to one correspondence with isomorphism classes of the
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irreducible submodules of Vj (resp. the orbitals of G on Xj) and the entries of PXj

are square matrices. If P jhk is the hk-entry of PXj corresponding to the irreducible
submodule Rk and the orbital Ojh, the il-entry of P jhk will be denoted by (P jhk)il. For
each such entry define

qilkh(Xj) :=
(P jhk)il
|Ojh|

dimC(Rk),

where P jhk is the complex conjugate of the matrix P jhk. Let Q
j
kh be the matrix whose

il-entry is qilkh(Xj) and let QXj be the matrix whose kh-entry is Qjkh. We shall call
QXj a generalised second eigenmatrix associated to the action of G on Xj .

Lemma 2.5. With the above notation, there exists a decomposition of Vj(Rk) as a
direct sum of irreducible submodules S1, . . . , Sl (isomorphic to Rk) such that, for every
x ∈ Xj, the projection map πi : V → Si maps

(2) x 7→
sj∑
h=1

qiikh(Xj)
∑

y∈∆jh(x)

y,

where ∆jh(x) := {y ∈ Xj | (x, y) ∈ Ojh}.

Proof. Since the action of G on Xj is transitive, the result follows from [3, Equa-
tion (13) and Lemma 1(i)]. �

Note that in case of a multiplicity-free action PXj and QXj are, respectively, the
usual first and second eigenmatrices (see [1, p. 60]) and are uniquely determined for
fixed orders of the orbitals and of the isomorphism classes of the irreducible submod-
ules. On the other hand, if the action is not multiplicity free, the generalised first
eigenmatrix PXj depends on the chosen decomposition into irreducibles of Vj(Ri), for
each i ∈ {1, . . . , p}.

3. Transitive non multiplicity-free actions
In this section, we briefly describe how the relevant information on a generalised first
eigenmatrix PXj (i.e. the diagonal entries (P jhk)ii of each block P jhk) can be obtained
in the case where G acts transitively on Xj and all irreducible submodules of the linear
span Vj of Xj have multiplicity less or equal 2 and only one, which we can assume
to be Rp, has multiplicity 2. The entries of P relative to an irreducible submodule of
multiplicity 1 can be computed inside the submodule itself using Lemma 3 in [3]. To
compute the diagonal entries of the 2× 2 blocks corresponding to Rp, we proceed as
follows. Let

κ : Vj × Vj → C

be the unique nondegenerate hermitian form on Vj such that the elements of Xj are
mutually orthogonal vectors of norm 1. Find a G-set Y and a surjective homomor-
phism of G-sets

θ : Xj → Y,

such that, if M is the complex permutation module for G on Y and θ̄ : Vj →M is the
C[G]-homomorphism induced by θ, the following conditions hold:

(1) M is multiplicity-free;
(2) the first eigenmatrix associated to the action of G on Y is known;
(3) M contains a submodule isomorphic to Rp
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(e.g. in [3], as in Section 4 of this paper, Xj is the set T , Y is the set of 4-subsets of
{1, . . . , n}, θ is the map that sends a permutation of type (2, 2) to its support, and
M is the Young module M (n−4,4), corresponding to the Johnson scheme J(n, 4)). Let
I be the orthogonal complement to ker(θ̄) in Vj with respect to the form κ. Since
V θj contains a submodule isomorphic to Rp, and M is multiplicity-free, both I and
ker(θ) contain a copy of Rp. Denote by RI and RK the copies of Rp contained in I
and ker(θ) respectively. Then Vj(Rp) decomposes as the orthogonal (with respect to
κ) direct sum of the submodules RI and RK and we get one of the diagonal entries
(which we may assume to be the (1, 1) entry), given by the following formula (which
is an obvious generalisation of Lemma 7 in [3] and is proved in the same way):

(P jkp)11 = clp
|Ojk||Y|
|Ol||Xj |

where Ol is the orbital of G on Y containing Oθjk and clp is the entry of the first
eigenmatrix of G on Y corresponding to the irreducible module Rp and to the orbital
Ol. Finally, for each column of P , the last missing “diagonal” entry (P jkp)22 can be
computed using the Second Generalised Orthogonality Relation [3, Lemma 1(iii)].

4. Proof of Theorem 1.1
From now on let n, G, T , U , X , V , and f be as in Theorem 1.1. Let T be the linear
span of T and U the linear span of U , so that V = T ⊕ U .

Lemma 4.1. With the above notation, f is positive semidefinite if and only if n 6 12.

Proof. By [3, Table 13], T has an irreducible submodule isomorphic with S(n−3,2,2)

that contains a nonzero vector v such that

f(v, v) = 15
128(12− n),

which is clearly negative for n > 12. Conversely, if n 6 12, by [13], we may assume Sn
to be a subgroup of the Monster such that the bitranspositions of Sn are involutions
of type 2A in the Monster. Moreover, by [14], there is an Sn-invariant subset Y of the
(complex) Conway–Norton–Griess algebra G, such that Y is Sn-isomorphic to X and
the Gram matrix of the hermitian form ( · , · )G of G with respect to Y is the same as
Γ. Since ( · , · )G is positive definite, it follows that f is positive semidefinite on V . �

4.1. The actions of Sn on T and U . Denote the 10 orbitals

OT1 , . . . ,OT10

of Sn on T and the 4 orbitals
OU1 , . . . ,OU4

of Sn on U as in Table 2. For R ∈ {T ,U} and x ∈ X ∩R, let

∆Rk (x) := {y ∈ X ∩R | (x, y) ∈ ORk },

where k ranges from 1 to 10, if R = T , and from 1 to 4, if R = U .

Lemma 4.2. Let T be as above, then
(1) T decomposes into irreducible submodules as follows:

T = T1,1 ⊕ T2,1 ⊕ T3,1 ⊕ T4,1 ⊕ T4,2 ⊕ T5,1 ⊕ T6,1 ⊕ T7,1

where T1,1 is the trivial module, T2,1 ∼= S(n−1,1), T3,1 ∼= S(n−3,3), T4,1 ∼=
T4,2 ∼= S(n−2,2), T5,1 ∼= S(n−4,4), T6,1 ∼= S(n−3,2,1), and T7,1 ∼= S(n−4,2,2).
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OT1 := ((1, 2)(3, 4), (1, 2)(3, 4))Sn

OT2 := ((1, 2)(3, 4), (1, 3)(2, 4))Sn

OT3 := ((1, 2)(3, 4), (1, 2)(3, 5))Sn

OT4 := ((1, 2)(3, 4), (1, 3)(2, 5))Sn

OT5 := ((1, 2)(3, 4), (1, 2)(5, 6))Sn

OT6 := ((1, 2)(3, 4), (1, 3)(5, 6))Sn

OT7 := ((1, 2)(3, 4), (1, 5)(2, 6))Sn

OT8 := ((1, 2)(3, 4), (1, 5)(3, 6))Sn

OT9 := ((1, 2)(3, 4), (1, 5)(6, 7))Sn

OT10 := ((1, 2)(3, 4), (5, 6)(7, 8))Sn

OU1 := ({1, 2, 3}, {1, 2, 3})Sn

OU2 := ({1, 2, 3}, {1, 2, 4})Sn

OU3 := ({1, 2, 3}, {1, 4, 5})Sn

OU4 := ({1, 2, 3}, {4, 5, 6})Sn

Table 2. Orbitals of Sn on T and on U

(2) We can choose the Th,i’s in such a way that the images of the vectors of the
basis X under the projection maps πThi : T → Th,i are given by the following
formula:

xπ
T
hi =

10∑
k=1

qiihk(T )
∑

y∈∆T
k

(x)

y.

(3) For h ∈ {1, . . . , 4}, qiihk(T ) is the entry of Table 3 corresponding to the pair
(OTk , Th,i).

Proof. The decomposition into irreducible submodules follows from [3, Lemma 6] and
the remaining assertions follow from Lemma 2.5 and [3, Tables 8 and 9]. �

Lemma 4.3. The first eigenmatrix associated to the action of Sn on the set U is
displayed in Table 4.

Proof. This follows by routine computation using, e.g., the formulas in [1, Corollary
to Theorem 2.9, pp. 219-220]. �

Lemma 4.4. Let U be as above, then
(1) U decomposes into irreducible submodules as follows:

U = U1 ⊕ U2 ⊕ U3 ⊕ U4,

where U1 is the trivial module, U2 ∼= S(n−1,1), U3 ∼= S(n−3,3), and U4 ∼=
S(n−2,2).

(2) We can choose the Ui’s in such a way that the images of the vectors of the
basis X under the projection maps πUi : U → Ui are given by the following
formula:

(3) xπ
U
i =

4∑
k=1

q11
ik (U)

∑
y∈∆U

k
(x)

y.

(3) For i ∈ {1, . . . , 4}, q11
ik (U) is the entry of Table 5 corresponding to the pair

(OUk , Ui).

Proof. The decomposition into irreducible submodules follows by a standard argu-
ment in representation theory of the symmetric group (see [11]). The remaining as-
sertions follow by Lemma 2.5 and Lemma 4.3. �
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T1,1 T2,1 T3,1 T4,1 T4,2

OT1 1 n− 1 n(n−1)(n−5)
6

n(n−3)
2

n(n−3)
2

OT2 1 n− 1 n(n−1)(n−5)
6

−n(n−3)
4

n(n−3)
2

OT3 1 (3n−16)(n−1)
4(n−4)

n(n−1)(n−5)(n−10)
24(n−4)

n(n−3)
4

n(n−3)(n−7)
4(n−4)

OT4 1 (3n−16)(n−1)
4(n−4)

n(n−1)(n−5)(n−10)
24(n−4)

−n(n−3)
8

n(n−3)(n−7)
4(n−4)

OT5 1 (n−1)(n−8)
2(n−4)

−n(n−1)(n−8)
6(n−4)

n(n−3)
6

n(n−3)(n2−21n+92)
12(n−4)(n−5)

OT6 1 (n−1)(n−8)
2(n−4)

−n(n−1)(n−8)
6(n−4)

−n(n−3)
12

n(n−3)(n2−21n+92)
12(n−4)(n−5)

OT7 1 (n−1)(n−8)
2(n−4)

−n(n−1)(n−8)
6(n−4)

−n(n−3)
12

n(n−3)(n2−21n+92)
12(n−4)(n−5)

OT8 1 (n−1)(n−8)
2(n−4)

−n(n−1)(n−8)
6(n−4)

n(n−3)
24

n(n−3)(n2−21n+92)
12(n−4)(n−5)

OT9 1 (n−1)(n−16)
4(n−4)

n(n−1)(3n−22)
4(n−4)(n−6) 0 −3n(n−3)(n−9)

4(n−4)(n−5)

OT10 1 −4(n−1)
(n−4)

−4n(n−1)
(n−4)(n−6) 0 6n(n−3)

(n−4)(n−5)

Table 3. The coefficients qiihk(T )

1 3(n− 3) 3
2 (n− 3)(n− 4) (n−3)(n−4)(n−5)

6

1 2n− 9 (n−4)(n−9)
2 − 1

2 (n− 4)(n− 5)
1 n− 7 −2n+ 11 n− 5
1 −3 3 −1

Table 4. The first eigenmatrix PU

U1 U2 U3 U4

OU1 1 n− 1 n(n−3)
2

n(n−1)(n−5)
6

OU2 1 (2n−9)(n−1)
3(n−3)

n(n−7)
6

−n(n−1)(n−5)
6(n−3)

OU3 1 (n−1)(n−9)
3(n−3)

n(−2n+11)
3(n−4)

n(n−1)(n−5)
3(n−3)(n−4)

OU4 1 −3(n−1)
n−3

3n
n−4

−n(n−1)
(n−3)(n−4)

Table 5. The second eigenmatrix QU

Corollary 4.5. A set of representatives for the irreducible C[Sn]-submodules of V is
given by

S := {1, S(n−1,1), S(n−2,2), S(n−3,3), S(n−4,4), S(n−3,2,1), S(n−4,2,2)}.

Moreover
(1) S(n−2,2) has multiplicity 3 in V ,
(2) the trivial module, S(n−1,1), and S(n−3,3) have multiplicity 2,
(3) S(n−4,4), S(n−3,2,1), S(n−4,2,2) have multiplicity 1 and appear only as submod-

ules of T .

Proof. This follows from Lemma 4.2(1) and Lemma 4.4(1). �

4.2. Submodules of multiplicity 3. In this subsection we assume S = S(n−2,2).
We apply the method described in Section 2: let

H1 be the stabiliser in Sn of the set {1, 2, 3, 4},
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and denote the H1-orbits of the bitranspositions as follows:

(4)
P1 := ((1, 2)(3, 4))H1 , P2 := ((1, 2)(3, 5))H1 , P3 := ((1, 2)(5, 6))H1 ,

P4 := ((1, 5)(2, 6))H1 , P5 := ((1, 5)(6, 7))H1 , P6 := ((5, 6)(7, 8))H1 .

Lemma 4.6. The complex permutation module Z of Sn on the set of its 4-subsets
decomposes into irreducible submodules as follows

Z = 1⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−3,3) ⊕ S(n−4,4).

Proof. This follows by standard representation theory of the symmetric groups
(see [11]). �

Lemma 4.7. CS(H1) has dimension 1 over C.

Proof. The result follows from Lemma 4.6, since, by Frobenius Reciprocity [6,
Lemma 5.2], dimC CS(H1) is equal to the multiplicity of S in the permutation
module of Sn on the set of 4-subsets of {1, . . . , n}. �

Let
u := {1, 2, 3}+ {1, 2, 4}+ {1, 3, 4}+ {2, 3, 4}

and
s :=

∑
v∈P3

v.

Clearly both u and s are H1-invariant. We determine the projections sπT
41 , sπT

42 , and
uπ

U
4 on T4,1, T4,2, and U4, respectively, and show that

(sπ
T
41 , sπ

T
42 , uπ

U
4 )

is the basis CS for CV (S(n−2,2))(H1) as in Section 2.

Lemma 4.8. For (h, i) ∈ {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2)}, we have sπT
hi ∈ CTh,i

(H1),
and

(5) sπ
T
hi =

6∑
l=1

slhi
∑
v∈Pl

v

where

s1
hi := (n− 4)(n− 5)(qiih5(T ) + 2qiih7(T )),

s2
hi := 1

2(n− 5)
[
2qiih3(T ) + 4qiih4(T ) + (n− 6)qiih5(T )

+2qiih6(T ) + 2(n− 6)qiih7(T ) + 4qiih8(T ) + 3(n− 6)qiih9(T )
]
,

s3
hi := qii1h(T ) + 2(n− 4)qiih3(T ) + (n− 6)(n− 7) + 2

2 qiih5(T ) + 8(n− 6)qiih8(T )

+ 2(n− 6)2qiih9(T ) + (n− 6)(n− 7)
2 qiih10(T ),

s4
hi := qiih2(T ) + 2(n− 4)qiih4(T ) + 4(n− 6)qiih6(T ) + (n− 6)(n− 7) + 2

2 qiih7(T )

+ 4(n− 6)qiih8(T ) + 2(n− 6)2qiih9(T ) + (n− 6)(n− 7)
2 qiih10(T ),

s5
hi := 3

[
qiih3(T ) + 2qiih4(T ) + qiih5(T ) + (n− 7)qiih6(T ) + 2qiih7(T ) + 2(n− 7)qiih8(T )

]
+ 3

[
(n− 7)(n− 2)

2 qiih9(T + (n− 7)(n− 8)
2 qiih10(T )

]
,
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s6
hi := 6

[
2qiih5(T ) + 4qiih7(T ) + 4(n− 8)qiih9(T ) + (n− 8)(n− 9)

2 qiih10(T )
]
.

Proof. Since s ∈ CT (H1) and πThi is a homomorphism of C[Sn]-modules, sπT
hi ∈

CTk
(H1). The formula follows from Lemma 4.4, since, for (x, z) ∈ OTk , the set ∆Tk (x)

is the orbit of z under the action of the stabiliser in Sn of x. �

Denote the H1-orbits of U as follows:
(6) Q1 := {1, 2, 3}H1 ,Q2 := {1, 2, 4}H1 ,Q3 := {1, 5, 6}H1 ,Q4 := {5, 6, 7}H1 .

Lemma 4.9. For k ∈ {1, . . . , 4}, uπU
k ∈ CUk

(H1) and

uπ
U
k = (q11

k1(U) + 3q11
k2(U))

∑
v∈Q1

v + (2q11
k2(U) + 2q11

k3(U))
∑
v∈Q2

v

+ (3q11
k3(U) + q11

k4(U))
∑
v∈Q3

v + 4q11
k4(U)

∑
v∈Q4

v.

Proof. The proof is the same as in the previous lemma. �

Corollary 4.10. The multiplicity of S(n−2,2) in V ⊥ is equal to the corank of the
matrix

Γ4 :=

f(sπT
41 , sπ

T
41) f(sπT

41 , sπ
T
42) f(sπT

41 , uπ
U
4 )

f(sπT
42 , sπ

T
41) f(sπT

42 , sπ
T
42) f(sπT

42 , uπ
U
4 )

f(uπU
4 , sπ

T
41) f(uπU

4 , sπ
T
42) f(uπU

4 , uπ
U
4 )


Proof. An easy, though tedious, computation shows that none of sπT

41 , sπT
42 , and uπU

4 is
the zero vector. Therefore, since they belong to distinct irreducible components of V ,
(sπT

41 , sπ
T
42 , uπ

U
4 ) is a basis of CV (S(n−2,2))(H1). The result then follows by Corollary 2.4

and Lemma 4.7. �

4.3. Submodules of multiplicity 2. In this subsection assume
S ∈ {1, S(n−1,1), S(n−3,3)}.

In this case, we still have dimC CS(H1) = 1, but the elements sπT
k1 are equal to 0 if

k ∈ {1, 2, 3} and n = 8. Not to treat separately these cases we replace the subgroup
H1 and the element s by more suitable ones. Let

t := (1, 2)(3, 4), and H2 be the centraliser in Sn of t.
Obviously t is H2-invariant and, in the same way as in Lemma 4.7 using [3, Lemma 6]
in place of Lemma 4.6, one proves that

dimC CS(H2) = 1.
Denote the H2-orbits of T as follows:

(7)

R1 := ((1, 2)(3, 4))H2 , R2 := ((1, 3)(2, 4))H2 , R3 := ((1, 2)(3, 5))H2 ,

R4 := ((1, 3)(2, 5))H2 , R5 := ((1, 2)(5, 6))H2 , R6 := ((1, 3)(5, 6))H2 ,

R7 := ((1, 5)(2, 6))H2 , R8 := ((1, 5)(3, 6))H2 , R9 := ((1, 5)(6, 7))H2 ,

R10 := ((5, 6)(7, 8))H2 .

Lemma 4.11. For k ∈ {1, . . . , 3}, tπT
k1 ∈ CTk,1(H2), and

(8) tπ
T
k,1 =

10∑
h=1

q11
kh(T )

∑
v∈Rh

v
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Proof. Clearly t ∈ CT (H2) and so tπT
k1 ∈ CTk,1(H2), since πTk1 is a homomorphism of

C[Sn]-modules. The formula follows from Lemma 4.2, since, for (x, z) ∈ OTk , ∆Tk (x) =
zCSn (x). �

Let u be as in Subsection 4.2. Since H2 6 H1, u and its projections uπU
1 , uπU

2 , and
uπ

U
3 are H2-invariant. As above, for k ∈ {1, 2, 3}, (tπT

k1 , uπ
U
k ) is a basis of CV (Uk)(H2),

whence the following result holds.

Corollary 4.12. For S ∈ {1, S(n−1,1), S(n−3,3)}, the multiplicity of S in V ⊥ is equal
to the corank of the matrix

Γk :=
(
f(tπT

k1 , tπ
T
k1) f(tπT

k1 , uπ
U
k )

f(tπT
k1 , uπ

U
k ) f(uπU

k , uπ
U
k )

)
for k = 1, 2, 3 respectively.

4.4. Submodules of multiplicity 1. Finally, assume

S ∈ {S(n−4,4), S(n−3,2,1), S(n−4,2,2)}.
By Corollary 4.5 and Corollary 2.2, we may restrict to the action of Sn on T and
apply the results in [3].

Lemma 4.13.
(1) For 8 6 n < 12, V ⊥ has no C[Sn]-submodules isomorphic to S(n−4,4),

S(n−3,2,1), or S(n−4,2,2),
(2) for n = 12, V ⊥ has no C[Sn]-submodules isomorphic to S(n−4,4) or S(n−4,2,2),

and has exactly one C[Sn]-submodule isomorphic to S(n−3,2,1).

Proof. Let S ∈ {S(n−4,4), S(n−3,2,1), S(n−4,2,2)}. By Corollary 2.2, the multiplicity of
S in V ⊥ is equal to the multiplicity of S in T ∩ T⊥. The result then follows from [3,
Table 13]. �

4.5. The matrices Γk. In this subsection we show how to compute the entries of
the matrices Γ1, . . . ,Γ4. Note first that the values f(tπT

ki , tπ
T
ki) and f(sπT

ki , sπ
T
ki) (resp.

f(uπU
k , uπ

U
k )) can be computed inside the module T , (resp. U), so we can avoid a

direct computation by applying the results from [3] (resp. Table 6).

Lemma 4.14. Let κ : V × V → C be the hermitian form on V with respect to which
X is an orthonormal basis. Then, for every v ∈ Tk,i and w ∈ Ul„ where (k, i) ∈
{(1, 1), (2, 1), (3, 1), (4, 1), (4, 2)} and l ∈ {1, . . . , 4}, we have

f(v, v) = κ(v, v)δki and f(w,w) = κ(w,w)εl,
where the δki’s and the εl’s are listed in Table 6.

k δk1 δk2 εl

1 5
128n

3 − 25
128n

2 − 15
64n+ 45

16
8

135n
2 + 16

27n−
32
45

2 5
512n

3 − 35
512n

2 − 15
64n+ 45

16
8

405n
2 + 56

135n−
32
45

3 15
128 (18− n) 752

675

4 5
768 (n− 32)(n− 13) 37

768n
2 − 97

256n+ 311
192

8
2025 (31n+ 158)

Table 6. Values of δki and εl
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Proof. Since Tk,i (resp Uk) is an irreducible C[Sn]-module, by [12, p. 534], any two
Sn-invariant hermitian forms on Tk (resp. Uk) differ only by a scalar. The result for
Tk then follows from [3, Table 13], of which Table 6 is an extract. The same argument
gives the values εk from the first eigenmatrix associated to the action of Sn on U
(Table 4). �

The remaining entries of the matrices Γi have been computed, using the formulae
in Section A.

k f(uπU
k , uπ

U
k )

1 64
405n(n− 1)(n− 2)(n2 + 10n− 12)

2 16
405

n(n−1)2(n−2)(n−4)(n2+21−36)
(n−3)

3 64
405

n2(n−1)2(n−2)(n−5)(n−6)
(n−3)

4 208
1215n

2(n− 1)(n− 2)(n− 5)(n− 16
13 )

Table 7. Values of f(uπU
k , uπ

U
k )

i det(Γi)
1 − 1

108n
2(n− 1)2(n− 2)2(n− 3)(n− 12)(n2 − 2n+ 6)

2 − 1
288n

2(n− 1)4(n− 2)2(n− 4)(n− 12)(n2 − 3n+ 12)
3 − 1

2592n
4(n− 1)4(n− 2)2(n− 5)2(n− 6)(n− 12)

4
− 1

221·32n
6(n− 1)4(n− 2)4(n− 3)4(n− 4)(n− 5)2(n− 7)2

(n− 11)(n− 12)2(n− 14)2(n2 − 3n+ 12)

Table 8. Determinants of matrices Γi

4.6. Proof of Theorem 1.1. The first assertion follows from Lemma 4.1. Assume
S ∈ {S(n−4,4), S(n−4,2,2), S(n−3,2,1)},

then the multiplicities of S in V ⊥ are given in Lemma 4.13. Assume
S ∈ {1, S(n−1,1), S(n−3,3)}.

By Tables 7 and 8, for i ∈ {1, 2, 3}, the corank of Γi is 0, if n 6= 12, and 1, if n = 12.
The result then follows from Corollary 4.12. Finally assume

S = S(n−2,2).

If n 6 10, by Table 8, det(Γ4) 6= 0, so the result follows from Corollary 4.10. If n = 11,
then det(Γ4) = 0 and, since, by Lemma 4.1, T ∩T⊥ = {0}, it follows that Γ4 has rank
2. The result then follows from Corollary 4.10. If n = 12, det(Γ4) = 0, hence, Γ4 has
rank at most 2. Let β, δ be the submatrices of Γ4 defined as follows

β :=
(
f(sπV

5 , sπ
V
5 ) f(sπV

5 , uπ
U
4 )

f(uπU
4 , sπ

V
5 ) f(uπU

4 , uπ
U
4 )

)
, δ :=

(
f(sπV

4 , sπ
V
4 ) f(sπV

4 , sπ
V
5 )

f(sπV
5 , sπ

V
4 ) f(sπV

5 , sπ
V
5 )

)
Using the formulae in Section A, we get that the determinant of β is equal to

− 1
29 · 34 · 5n

4(n− 1)3(n− 2)3(n− 3)2(n− 4)(n− 5)2(n− 12)(n2 + 117n− 148)
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that vanishes when n = 12. By Lemma 4.14 and [3, Table 13 and Equation 25], the
determinant of δ is a multiple of

15
216 (n− 12)(n3 − 56n2 + 411n− 1596)

that also vanishes when n = 12. Since the maximum rank of the 2 × 2 submatrices
of Γ4 is equal to the maximum rank of the two matrices β and δ, we get that Γ4 has
rank 1, so, again, the claim follows from Corollary 4.10.

Appendix A.
We give here some formulae we used to compute the entries of matrices Γi. They have
been obtained by straightforward computation using Lemma 1 and the following easy
observation.

Lemma A.1. Let L 6 Sn and let O1 and O2 be two L-orbits on X . Then, for every
x ∈ O1, we have

f(
∑
v∈O1

v,
∑
w∈O2

w) = |O1|
∑
y∈O2

f(x, y).

Let a, b ∈ CT (H2), d ∈ CT (H1), and c ∈ CU (H2) and suppose that

a =
6∑

h=1
ah
∑
v∈Ph

v, b =
6∑

h=1
bh
∑
v∈Ph

v, c =
4∑

h=1
ch
∑
v∈Qh

v, d =
10∑
h=1

dh
∑
v∈Rh

v

with ai, bi, ci, di ∈ C. Then

f(a, b) = a1b1
15
4 + (a1b2 + a2b1)75

64(n− 4) + (a1b3 + a3b1)15
32(n− 4)(n− 5)

+ (a1b4 + a4b1)45
64(n− 4)(n− 5) + (a1b5 + a5b1) 15

128(n− 4)(n− 5)(n− 6)

+ (a1b6 + a6b1)0 + a2b2
15
64(n− 4)(25n− 46)

+ (a2b3 + a3b2)3 55
128(n− 4)2(n− 5)

+ (a2b4 + a4b2)45
64(n− 4)(n− 5)(3n− 10)

+ (a2b5 + a5b2) 15
128(n− 4)(n− 5)(n− 6)(3n+ 2)

+ (a2b6 + a6b2) 15
128(n− 4)(n− 5)(n− 6)(n− 7)

+ 3a3b3(n− 4)(n− 5)( 13
128n

2 − 99
128n+ 37

16)

+ (a3b4 + a4b3) 9
64(n− 4)(n− 5)(2n2 − 11n+ 4)

+ (a3b5 + a5b3) 15
256(n− 4)(n− 5)(n− 6)(n2 + 3n− 44)

+ (a3b6 + a6b3) 15
256(n− 4)2(n− 5)(n− 6)(n− 7)

+ a4b4
9

128(n− 4)(n− 5)(11n2 − 53n+ 52)

+ (a4b5 + a5b4) 15
128(n− 4)(n− 5)(n− 6)(n2 + 5n− 62)

+ (a4b6 + a6b4) 15
128(n− 4)(n− 5)2(n− 6)(n− 7)
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+ a5b5
1

256(n− 4)(n− 5)(n− 6)(5n3 + 115n2 − 1820n+ 6180)

+ (a5b6 + a6b5) 5
256(n− 4)(n− 5)(n− 6)(n− 7)(3n2 − 31n+ 66)

+ a6b6
(n− 4)(n− 5)(n− 6)(n− 7)

8

(
5

128n
3 − 85

128n
2 + 205

64 n−
15
8

)
,

f(a, c) = (c1 + 3c2)
[
a1

4
3 + a2(n− 4)17

3 + a3(n− 4)(n− 5)5
3

+ a4(n− 4)(n− 5) + a5(n− 4)(n− 5)(n− 6)1
6

]
+ 2(c2 + c3)

[
a1(n− 4)13

6 + a2(n− 4)(16n− 55)
3

+ a3(n− 4)2(n− 5)13
12 + a4(n− 4)(n− 5)(n+ 3)

+ a5(n− 4)(n− 5)(n− 6)(n+ 9)1
6

+ a6(n− 4)(n− 5)(n− 6)(n− 7) 1
12

]
+ (3c3 + c4)

[
a1(n− 4)(n− 5)1

6 + a2(n− 4)(n− 5)(3n+ 10)1
6

+ a3(n− 4)(n− 5)
(

13
6 + (n− 6) + (n− 6)(n− 7) 1

12

)
+ a4(n− 4)(n− 5)

(
2 + (n− 6)13

3 + (n− 6)(n− 7)1
6

)
+ a5(n− 4)(n− 5)(n− 6)

(
17
6 + 11

9 (n− 7)

+ 1
36(n− 7)(n− 8)

)
+ a6(n− 4)(n− 5)(n− 6)(n− 7)

(
13
36 + 1

18(n− 8)
)]

+ 4c4
[
a2(n− 4)(n− 5)(n− 6)1

6

+ a3(n− 4)(n− 5)(n− 6)
(

1
12(n− 7) + 3

4

)
+ a4(n− 4)(n− 5)(n− 6)

(
1
6(n− 7) + 1

3

)
+ a5(n− 4)(n− 5)(n− 6)

(
2
9 + 13

18(n− 7)

+ 1
12(n− 8)(n− 7)

)
+ a6

1
8(n− 4)(n− 5)(n− 6)(n− 7)

(
4
9 + 13

18(n− 8)

+ 1
18(n− 8)(n− 9)

)]
,
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and

f(d, c) = (c1 + 3c2)
[

4
9d1 + 8

9d2 + 4(n− 4)17
36d3 + 4(n− 4)17

18d4

+ 2(n− 4)(n− 5) 5
18d5 + 4(n− 4)(n− 5) 5

18d6

+ (n− 4)(n− 5)
3 d7 + 2(n− 4)(n− 5)

3 d8

+ (n− 4)(n− 5)(n− 6)
6 d9)

]
+ 2(c2 + c3)

[
13
18(d1 + 2d2)(n− 4) + d3(n− 4)

(
16
9 n−

55
9

)
+ 2d4(n− 4)

(
16
9 n−

55
9

)
+ d5(n− 4)(n− 5)13

36(n− 4)

+ d6(n− 4)13
18(n− 5)(n− 4)

+ d7(n− 4)(n− 5)(n+ 3)1
3 + d8(n− 4)(n− 5)(n+ 3)2

3
+ d9(n− 4)(n− 5)(n− 6)(n+ 9)1

6

+ d10(n− 4)(n− 5)(n− 6)(n− 7) 1
12

]
+ (3c3 + c4)

{
d1(n− 4)(n− 5) 1

18 + d2(n− 4)(n− 5)1
9

+ d3(n− 4)(n− 5)(3n+ 10) 1
18

+ d4(n− 4)(n− 5)(3n+ 10)1
9

+ d5(n− 4)(n− 5)
[

13
18 + (n− 6)1

3 + (n− 6)(n− 7) 1
36

]
+ d6(n− 4)(n− 5)

[
13
9 + 2

3(n− 6) + (n− 6)(n− 7) 1
18

]
+ d7(n− 4)(n− 5)

[
2
3 + 13

9 (n− 6) + (n− 6)(n− 7) 1
18

]
+ 2d8(n− 4)(n− 5)

[
2
3 + 13

9 (n− 6) + (n− 6)(n− 7) 1
18

]
+ d9(n− 4)(n− 5)(n− 6)

[
17
6 + 11

9 (n− 7)

+ 1
36(n− 7)(n− 8)

]
+ d10(n− 4)(n− 5)(n− 6)(n− 7)

[
13
36 + (n− 8) 1

18

]}
4c4
{
d3(n− 4)(n− 5)(n− 6) 1

18 + d4(n− 4)(n− 5)(n− 6)1
9

+ d5(n− 4)(n− 5)(n− 6)
[

1
36(n− 7) + 1

4

]
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+ d6(n− 4)(n− 5)(n− 6)
[

1
18(n− 7) + 1

2

]
+ d7(n− 4)(n− 5)(n− 6)

[
1
18(n− 7) + 1

9

]
+ d8(n− 4)(n− 5)(n− 6)

[
1
9(n− 7) + 2

9

]
+ d9(n− 4)(n− 5)(n− 6)

[
2
9 + 13

18(n− 7) + 1
12(n− 8)(n− 7)

]
+ d10

(n− 4)(n− 5)(n− 6)(n− 7)
8

[
4
9 + 13

18(n− 8)

+ 1
18(n− 8)(n− 9)

]}
.
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