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Motohiro Ishii

ABSTRACT We prove that semi-infinite Bruhat order on an affine Weyl group is completely
determined from those on the quotients by affine Weyl subgroups associated with various max-
imal (standard) parabolic subgroups of finite type. Furthermore, for an affine Weyl group of
classical type, we give a complete classification of all cover relations of semi-infinite Bruhat
order (or equivalently, all edges of the quantum Bruhat graphs) on the quotients in terms of
tableaux. Combining these we obtain a tableau criterion for semi-infinite Bruhat order on an
affine Weyl group of classical type. As an application, we give new tableau models for the crys-
tal bases of a level-zero fundamental representation and a level-zero extremal weight module
over a quantum affine algebra of classical untwisted type, which we call quantum Kashiwara—
Nakashima columns and semi-infinite Kashiwara—Nakashima tableaux. We give an explicit
description of the crystal isomorphisms among three different realizations of the crystal basis
of a level-zero fundamental representation by quantum Lakshmibai—Seshadri paths, quantum
Kashiwara—Nakashima columns, and (ordinary) Kashiwara—Nakashima columns.
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1. INTRODUCTION

The aim of this paper is to give an explicit description of semi-infinite Bruhat order in
terms of tableaux and its application to level-zero representation theory of quantum
affine algebras.

Semi-infinite Bruhat order on an affine Weyl group is a variant of Bruhat order on
a Coxeter group, and it is also an important tool to study representation theory of
algebraic groups, quantum groups, and affine Kac—-Moody Lie algebras, quantum and
affine Schubert calculi, and so forth (see [2, 5, 10, 11, 19, 22, 24, 25, 20, 28, 29, 32] and
the references given there). In fact, analogously to (ordinary) Bruhat order, each of
the following structures is closely related (or equivalent) to semi-infinite Bruhat order:
Lusztig’s generic Bruhat order ([28, §1.5]) and Peterson’s stable Bruhat order ([32,
Lecture 12]) on an affine Weyl group, Littelmann’s order on the affine Weyl group
orbit through a level-zero integral weight of an affine Kac-Moody Lie algebra ([27,
§4]), the quantum Bruhat graphs ([5, Definition 6.1] and [24, §4]), homomorphisms
among Wakimoto modules over an affine Kac-Moody Lie algebra ([2, Proposition
4.10]), the containment relation among (opposite) Demazure subcrystals of the crys-
tal basis of a level-zero extremal weight module over a quantum affine algebra ([29,
Corollary 5.2.5]), and the containment relation among semi-infinite Schubert varieties
([19, §4.2]); see also (i)—(ii) below. Also, it is worth pointing out that semi-infinite
Bruhat order has the lifting property (or “diamond lemma”) with respect to the
semi-infinite length function ([11, §4.1]; see also Lemma 2.6); note that Bruhat order
on a Coxeter group is characterized uniquely by the lifting property with respect to
the length function ([8, Theorem 1.1]; see also [4, Exercise 14 in §2]). However there
indeed exist some differences between semi-infinite and ordinary Bruhat orders. For
example, there are no minimal elements in semi-infinite Bruhat order, and this order
depends on not only the Coxeter system but also the root data. Therefore the stan-
dard method to study Bruhat order (see for instance [4]) is not well adapted to the
study of semi-infinite Bruhat order.

In [10], we intended to develop tableau combinatorics on semi-infinite Bruhat order.
We introduced semi-infinite Young tableaux, and showed that these tableaux give a
combinatorial realization of the crystal basis of a level-zero extremal weight module
([14, 16]) over the quantum affine algebra of type A;lzl. Our proof of this result was
based on a tableau criterion for semi-infinite Bruhat order and standard monomial
theory for semi-infinite Lakshmibai-Seshadri paths ([11, §3.1]). Therefore we can think

of these tableaux as a natural generalization of (ordinary) Young tableaux. However
(1)

we restricted the discussion in [10, §4] only to the affine Weyl group of type A,,”;, and
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the tableau criterion in [10, Theorem 4.7] is applicable only to semi-infinite Bruhat
order on the quotient by an affine Weyl subgroup associated with a maximal parabolic
subgroup of finite type.

In this paper, we wish to investigate semi-infinite Bruhat order on an affine Weyl
group of all classical untwisted type via tableaux, and aim to give an application to
level-zero representation theory (see for instance [1, 3, 16, 17]) of a quantum affine
algebra of classical untwisted type. The main results of this paper are the following
(see Theorems 3.1, 4.9, 4.14, 4.22, 4.38, 5.13, 5.16, 5.18, 5.21, and 5.23):

(I) a Deodhar-type criterion for semi-infinite Bruhat order on an affine Weyl
group of arbitrary untwisted type,
(IT) a tableau criterion for semi-infinite Bruhat order on an affine Weyl group of

type Ag_)l, B,(ll), C,(Ll), and DSLI) in full generality,

(III) a tableau model for the crystal basis of a level-zero fundamental representa-
tion (resp. a level-zero extremal weight module) over a quantum affine algebra
of type B,(Ll) and D7(L1) (resp. B,(L1)7C’7(11), and D,(Il)), which we call quantum
Kashiwara—Nakashima columns (resp. semi-infinite Kashiwara-Nakashima
tableaux), and

(IV) an explicit description of the isomorphisms among three different realizations
of the crystal basis of a level-zero fundamental representation by quantum
Lakshmibai—Seshadri paths ([25]), quantum Kashiwara—Nakashima columns,
and (ordinary) Kashiwara—Nakashima columns ([18]).

Let us give more precise explanation of our results. Let U be a quantum affine
algebra of untwisted type, and let U’ be its derived subalgebra. Let Woe = (r; | ¢ € L)
be the affine Weyl group associated with a finite Weyl group W = (r; | i € I), where
Li = {0} U and r;, ¢ € I, is a simple reflection. For J C I, let Wy = (r; |
j € J) C W be a (standard) parabolic subgroup, and let W7 C W be the set of
minimal(-length) coset representatives for W/Wy. Let (Wj)as C Wae be the affine
Weyl subgroup associated with W; (see (19)). Note that (Wjs)as is not a parabolic
subgroup of W¢, but it is generated by reflections. Therefore there exists the subset
(WY)ar C Wyt of minimal coset representatives for Wt /(Wy)ar (see (20)); note that
if J = @, then (W), is trivial and (W7).s = War. Let TI7 : Woe — (WY)u¢ be
the canonical surjection. In this paper, following [11, §2.4] (see also [32, Lecture 12]),
we define semi-infinite Bruhat order < on (W),; by using the semi-infinite length
function £3 : Wy — Z (see (21)). But we mainly use the following two realizations
of semi-infinite Bruhat order (see Lemmas 3.7 (3) and 4.3 for precise formulation):

(i) the containment relation among the path model ]B%?I(/\), x € Wy, of the
(opposite) Demazure subcrystals of the crystal basis of the extremal weight
U-module of level-zero extremal weight A ([29, §5]),

(i) the “affinization” of the (parabolic) quantum Bruhat graph QB” for W ([11,
Appendix A)).

In §3, we prove a Deodhar-type criterion for semi-infinite Bruhat order (see (I)
above), which states that for z,y € (W), we have z < y in (W), if and only if

(1) 0 ) < I () in (WIS g foralli e T~ J

(cf. [4, Theorem 2.6.1]; see also [8, Lemma 3.6]). We prove this for W, of arbitrary un-
twisted type (see Theorem 3.1 and Proposition 3.2). This is shown by investigating the

path model ]B%i(/\), x € Wy, of Demazure subcrystals. More precisely, let @;, ¢ € I,
be a level-zero fundamental weight, and let A = Ziel m;@;, My € Lxo,1 € 1. Set Jy =
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{i € I | m; = 0}. The path model Bfw()\), 2z € Wat, is defined as a subset of the U-
crystal BZ (\) of semi-infinite Lakshmibai-Seshadri paths of shape A\. We prove that

any extremal element in the tensor product @,;c;. ; B (m;w;) (see (46)) is

F i
in the image of Bfm()\) under the isomorphism ¢ : B= (A) = @,/ B? (miw)
of U-crystals (see Lemma 3.3 and Proposition 3.4 (2)). In §3.3, we see that this
immediately yields the Deodhar-type criterion.

In §4, for Wy of type Agllll,
of the cover relations of semi-infinite Bruhat order on (W/>{#}),; i € I, in terms of
tableaux (Propositions 4.19, 4.27, and 4.43; see also [10, Proposition 4.11]). Moreover,
we prove a tableau criterion for semi-infinite Bruhat order on (W™}, i € T
(Definitions 4.7, 4.12, 4.20, and 4.36, and Propositions 4.8, 4.13, 4.21, and 4.37; see also
[10, Theorem 4.7]). Combining this with the Deodhar-type criterion we obtain (IT). We
emphasize that (II) can be thought of as a generalization of the tableau criterion for
Bruhat order on the symmetric group ([4, Theorem 2.6.3 (Tableau Criterion)]). Our
main tool in §4 is the quantum Bruhat graph. In fact, we classify all (quantum) edges
in the quantum Bruhat graph QBI\{Z} for wiNU}t e (Propositions 4.18, 4.26, and
4.42; see also [10, Lemma 4.15]). Combining this with the realization (ii) yields the
classification results above. We should remark that, for W,¢ of type Agllll and C,(f),
Lenart’s criterion ([22, Propositions 3.6 and 5.7]) for the edges of the quantum Bruhat
graph QB? for W is a necessary condition for our classification results. Indeed, the
existence of an edge in QB ™1 implies that in QB? (see Lemma 4.4 for a precise
statement).

We now briefly sketch the tableau criterion for semi-infinite Bruhat order on
(WIS1i) ¢ when Wiy is of type Agll_)l (§4.3 and [10, §4]; see also Example 4.10). First,
we associate each element of W,y with a pair (T, ¢) of a column T of length ¢ and an in-
teger ¢ (see (65)). Let T(u) € {1,2,...,n} denote the u-th entry of T. Let (T, ¢), (T, /)
be such pairs for z,y € Wy, respectively. Then we have II' > (z) < T/~ (y) in
(WINid) ¢ if and only if

B,Sl), C,(f), and Dy(ll), we give a complete classification

(2) (c<d)and (T(u) < T'(u+d —c)forl<u<i—c+c).

In §5, we prove (III)—(IV). For this purpose, we first investigate the subgraph
QB(w;;1/2) (see §5.1-§5.2) of the quantum Bruhat graph QB where the vertex
sets of these graphs are both W/>{%}, We see that QB(w;; 1/2) defines a partial order
< on W™t Moreover, by the classification results in §4, we obtain an explicit
description of the order < in terms of Maya diagrams (see Definitions 5.4 and 5.6).
Then the U’-crystal QLS(w;) of quantum Lakshmibai-Seshadri paths (QLS paths for
short) of shape w; is given by

(3) QLS(w;) = {(v,w) | w,v € W} < v}

It is well-known that W/>{% can be realized as a set of columns (see Lemmas 4.6,
4.11, and 4.35). Thus we can think of each QLS path (v,w) € QLS(w;) as a pair
of columns. We know from [25] that QLS(w;) is isomorphic, as a U’-crystal, to the
crystal basis of the level-zero fundamental representation W(w;) ([16, 17]; see also
§2.4 and §5.1).

Assume that U is of type Bf«}). In §5.4, we introduce quantum Kashiwara—
Nakashima B,,-columns (QKN B, -columns for short) and a U’-crystal structure on
them. In particular, we define Kashiwara operators e;, f;, j € Ia¢, acting on them. A
QKN B,,-column C of shape w; is consisting of an (ordinary) KashiwaraNakashima
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By,-column (KN Bj,-column for short) C of shape w@;_o,, and a multiset {0,0,...,0}
2m ti
for some integer 0 < m < | 4] = max{k € Z | k <i/2}; we write C=Cu{0,0,...,0}
o Yimes
for brevity. Let QKN (w;) (resp. KNp, (@;)) denote the set of QKN B,-columns
(resp. KN Bj-columns) of shape ;. Let us give an example of a QKN B,,-column.
We have

= Cu{0,0} € QKNp, (w7) and C = € KNp, (ws).

S[=[=[=[]

—
Iy
Nt
(@l
Il
EEEEEED

For each QKN B,,-column C of shape @;, we construct a pair (rC,IC) of columns, and
show that it is a QLS path of shape w;. The construction of (rC, ZC) was motivated
by [34, §4] (see also [21, §3]), and has previously been used by Briggs ([6]; see also
[26, Algorithm 4.1]). For the QKN B,,-column C in (4), we have

—~
ot
Nt
<
lal
Il
’H\|oo\|@|m| 4>|c,o| w‘
[
jm}
o
~
s}
Il
’w\| »b\|0‘!\|©\|00|1\.')| —

by using notation in §5.2, §5.4, and §5.6, we have

(2) J(rC) = J(1C) = ({1,2,3,4,5} < {8,9}) € S, and

(3) M(rC) = ({1}, {8,9}), MC) = ({3,4,5}, {9)) € 201:23:45) x 2591,
Then we prove that the map QKNp (w;) — QLS(w;), C — (rC,1C), is bijective.
The important point to note here is that the inverse of this map can be described
explicitly in terms of Maya diagrams (see Theorem 5.16 (2)); similar results have been
obtained independently by Lenart—Schulze (|26, §4]), where they used the quantum
alcove model ([23]). Thus we obtain the following crystal isomorphisms among the
sets of QLS paths, QKN B,,-columns, and KN B;,-columns (cf. [7, Lemma 2.7]).

15]
QLS(w;) > QKNp (w;) < | | KNp, (@i—2m),
(©) =0
(rC,1C) +» C=CuU{0,0,...,0} « C.
2m times

Consequently, the U’-crystal QKNp (w0;) is isomorphic to the crystal basis of the
level-zero fundamental representation W(zw;). Similar formulation and results also

hold for U of type DY (see §5.5). We should remark that the crystal basis of W (w;) is
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isomorphic to the Kirillov-Reshetikhin crystal B!, and that there is another tableau
model, called Kirillov—Reshetikhin tableaux ([30, 33]), more generally for the Kirillov—
Reshetikhin crystals B™® (see [9, §2.3]), » € I, s > 0, of non-exceptional type. The
advantage of using QKN columns lies in the explicit description of the isomorphisms
(6). Likewise, the Kirillov—Reshetikhin tableaux model is an important ingredient
to describe the rigged configuration bijections (see for instance [31]). It would be
desirable to relate these two tableau models but we will not develop this point here.

Assume that U is of type Br(Ll)7 C’y(Ll)7 or D,(Ll). In §5.3-§5.5, we introduce semi-
infinite Kashiwara—Nakashima tableaux (semi-infinite KN tableaux for short), and
show that the set of these tableaux is isomorphic, as a U-crystal, to the crystal basis
of a level-zero extremal weight U-module. This is achieved by applying standard
monomial theory for semi-infinite Lakshmibai-Seshadri paths ([10, Theorem 3.4]) to
the affinizations of U’-crystals of (Q)KN columns. The definition of semi-infinite KN
tableaux is based on the tableau criterion for semi-infinite Bruhat order obtained in
§4.

This paper is organized as follows. In §2, we set up notation and terminology
on untwisted affine root data, crystals, semi-infinite Bruhat order, extremal weight
modules, and semi-infinite Lakshmibai-Seshadri paths. Also, we have compiled some
basic facts on these. In §3, we prove a Deodhar-type criterion for semi-infinite Bruhat
order on W¢ of arbitrary untwisted type. In §4, we prove a tableau criterion for semi-
infinite Bruhat order on Wyt of type Agll_)h BS), C,gl), and DSE), by classifying all
cover relations of semi-infinite Bruhat order on (W!>{%) ¢ in terms of tableaux. In §5,
we introduce the U’-crystal of QKN columns and the U-crystal of semi-infinite KN
tableaux. We show that these tableaux give combinatorial models for crystal bases
of level-zero fundamental representations and level-zero extremal weight modules.
We give an explicit description of the crystal isomorphisms among QLS paths, QKN
columns, and KN columns.

NOTATION. Let Z~q (resp. Zx) denote the set of positive integers (resp. non-negative
integers). For k € Z, set [k] = {1,2,...,k} if k > 1, and set [k] = @ if £ < 0. For
integers k < I, set [k, ] = {k,k+1,...,1}; we understand that [k,l] = @ if & > [. The
disjoint union of two sets A, B will be denoted by AL B. For a (non-empty) set A, let
S(A) be the permutation group of A. For a finite set A, let #A denote the number
of elements in A.

2. PRELIMINARIES

2.1. UNTWISTED AFFINE ROOT DATA. Let g.s be an untwisted affine Kac-Moody Lie
algebra over C with a Cartan subalgebra ba¢. Let {a; }icr,, C b’ = Homc(bat, C) and
{a) }ier,, C bas be the sets of simple roots and simple coroots, respectively. Here ¢
denotes the vertex set of the (affine) Dynkin diagram of gas. Let (-, -) : has x b — C be
the canonical pairing. We take and fix an integral weight lattice P.s C b}, satisfying
the conditions that a; € Py and « € Homp (P, Z) for all ¢ € I, and for each
i € I¢ there exists A; € P,¢ such that (aJV,Ai> = 0;; for all j € I,. Similarly, let
P} C bar be an integral coweight lattice such that o € P and «; € Homg (P, Z)
for all ¢ € I, and for each i € I there exists AY € Py such that (AY,a;) = &;;
for all j € L. Let § = Zielaf aia; € bl and ¢ = Zielaf aya) € bae be the null
root and the canonical central element, respectively. For A € Py, the integer (c, \)
is called the level of \. We take and fix 0 € I, such that ap = aj = 1. Set I =
L ~ {0}; note that the subset I of I,¢ corresponds to the vertex set of the Dynkin
diagram of a complex finite-dimensional simple Lie subalgebra g of g.¢. Fix a section
L2 Pyg/(Pag N C8) — Pyp (resp. ¢ : P /(P N Cc) — Py) of the canonical surjection
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cl: Py — Paf/( 2 N (C(S) (resp. cl : Py — Py /(P N Cc)) such that (vocl)(ay) =
(resp. (vocl)(ey) =) fori € I. For. each i € g, define w; = (cocl)(A; —( )
and @ = (vocl)(AY — (AY,0)Ay); note that @y = 0, @y = 0, (¢, ;) = (=’ ,(5 =
0, and (af,@;) = (@), ;) = 04 for all 4,5 € I. We call @; the i-th level-z
fundamental weight of g,¢. Set
(7) Q=D Za;, Q'=Za), P =@ Zw;, Pt =>"Zsow;;

iel iel iel ppy
note that @ C P and QY C @,; Zw,’. We think of P (resp. Q) as a weight lattice
(resp. a root lattice) of g.

Let Wae = (r; | © € I.s) be the (affine) Weyl group of g.¢, where r; denotes
the simple reflection with respect to «;. The subgroup W = (r; | i € I) C Wy is the
(finite) Weyl group of g. Let £ : Wy — Z>¢ be the length function. Let e € Wyt be the
unit element. The action of Wy on b (resp. bag) is given by r;(A) = A — (o, Aoy
(vesp. 7i(h) = h — (h,a;)a)) for i € I,s and X\ € b¥; (resp. h € hat). For £ € QY,
we denote by tg € Wy the translation by £ (see [13, §6.5]). We know from [13,
Proposition 6.5] that {t; | £ € @V} forms an abelian normal subgroup of Wy, for
which tete = teye, &, Ce QV, and Wy = W X {t& | ¢ e QV} For w e W and € € QV,
we have wte A = wA — (§, \)0 if A € b, satisfies (c, ) = 0.

Let A (resp. AV) be the root system (resp. the coroot system) of g with a simple
root system II = {«; | i € I} (resp. a simple coroot system IIV = {«) | i € I}). Set

AT =ANY .  Zxoa; and AV = AV N3 Zxoay . For a subset J C I, set

(8) Qs = D Zay, Ay=ANQy, AT =ATNQ,
JjeJ

9) Qy = @ Zaj, Ay =AY NQY, AYT = AV NQY.
JET

Denote by A, the set of real roots of g.¢, and by A ¢ the set of positive real roots of
gar; we know from [13, Proposition 6.3] that

(10) Agp={a+nd|acAneZ}, A=ATu{a+nd|aeAn€eZ}

Let BY € har denote the coroot of 5 € Ayg. Let rg € Wy be the reflection with respect
to B e Au; if f=a+nd, a € Aandn € Z, then rg = rotnav.

2.2. CRYSTALS. In this subsection, we set up notation and terminology on crystals.
For a fuller treatment, we refer the reader to [14, 16].

Let U be the quantized universal enveloping algebra associated with g.¢. Let U’
be the subalgebra of U corresponding to the derived subalgebra [gar, gaf] of gar (see
for instance [3, §2.2]).

A set B together with the maps wt : B — Py¢ (resp. wt : B — Pt/ (Pas N C9)),
ei, fi : B—= BU{0}, and &;,¢; : B— ZU{—00}, i € L, is called a U-crystal (resp. a
U’-crystal) if the following conditions are satisfied:

C1) ¢i(b) = i(b) + (o), wt(b)) for b € B and i € Ly,

C2) Wt(elb) = Wt(b) + oy if e;b € B,

C3) Wt(fzb) = Wt(b) — ay if flb € B,

C4) g;(e;b) = £;(b) — 1 and p;(e;b) = p;(b) + 1 if ;b € B,
C5) &;(fib) = ei(b) + 1 and @;(f;b) = wi(b) — 1 if fib € B,
C6) fib=1"V"if and only if b = e;b’ for b0’ € B and i € I,

(C7) if @;(b) = —oo, then e;b = fib=10

A set B together with the maps wt : B — P and e;, f;,€;,¢; for i € I as above
is called a g-crystal if these maps satisfy (C1)—(C7). We can think of a U’-crystal B
such that wt(B) C P/(PNCJ) = P as a g-crystal by forgetting the maps eq, fo, €0, @o-

(
(
(
(
(
(
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Following [16, §4.2], define the affinization B,s = B x Z of a U’-crystal B to be
the U-crystal such that for b € B, ¢ € Z, and i € L, wt(b,c) = t(wt(b)) — cd € P,
ei(b,c) = (eib,c — di0), fi(b,c) = (fib,c+ dip), €i(b,c) = €i(b), and @;(b, c) = i (b);
we understand that ( ¢)=0.

Let By and By be U—crystals or U'-crystals. A morphism ¥ : B; — By is, by
definition, a map By U {0} — B LI {0} such that
(CM1) ¥(0) = 0,

(CM2) if b € By and ¥(b) € By, then wt(¥(b)) = wt(b), &;(¥(b)) = &;(b), and

©i(T(b)) = @i (b) for all i € Ly,

(CM3) if b,b’ € By, ¥(b), (V) € By and f;b =V, then f;¥U(b) = V() for all i € L.
A morphism U : By — By is called strict if U(f;0) = f;¥(b) and U(e;b) = e;¥(b) for
all b € By and ¢ € I;;. A morphism ¥ : B; — By is called a strict embedding if it is a
strict morphism and the associated map B; LU{0} — B2 {0} is injective. A morphism
U : By — By is called an isomorphism if the associated map By U {0} — Bz U {0} is
bijective. In the same manner we define morphisms of g-crystals.

The tensor product By ® By of crystals By and By is defined to be the set {b; ® bs |
by € By, by € By} whose crystal structure is as follows:

(Tl) Wt(bl X bg) = Wt(bl) + Wt(b2),
Si(bl X b2) max{sl(bl) 5z(b2) <C¥;/ Wt(bl)>},

(12) ,
(T3) @i(b1 @ b2) = max{p;(b2), pi(b1) + (o, wt(b2))},
~J(eib) @ba if pi(b1) = €i(b2),
(T4) ei(bl ® b2) - bl ® (elbg) if @z(bl) < 5i(b2)7
) (fib1) @by if @i(b1) > €i(b2),
(T5) fi(bl ®b2) - {bl ®< ) lf (Pz(bl) < El(bQ)-

Here, we understand that by ® 0 = 0 ® by = 0.
Let B be a regular U-crystal in the sense of [16, §2.2]. It follows that

(11) @i(b) = max{k € Zxo | fFb # 0},  &;(b) = max{k € Z>¢ | €¥b # 0}

for b € B and i € s Define fmaxp = f7* ®p ¢ B and erexh = ef’ )beBforbeB
and ¢ € L. By [14, §7], we have a Wys-action S : Woe — S(B), © — S;, on (the
underlying set) B given by

fi<a;/th(b)>b lf <O[-
B RO

9

(12) Spb =

for b € B and i € I,s. Note that wt(S,b) = xwt(b) holds for all z € W,¢ and b € B.
An element b € B of weight wt(b) = A € Py is called an extremal element if there
exist b, € B, © € Wyt, such that

(E1) b, = b,
(E2) if (a),z\) > 0, then e;b, = 0 and £ "N, = fmaxp, = b, .
(E3) if (o, zA) <0, then f;b, =0 and e, —fad N = eMaxp, = byz.
Then b, = S, b holds for all x € W,¢, and each b, is an extremal element of weight

zA. The proof of the next lemma is straightforward.

LEMMA 2.1. (1) Let B be a regular U-crystal, and let b € B be an extremal ele-
ment. If there exist i1,i2,...,in € Iz such that

(13) <O‘;/n77"in4 e, Wt(D)) = 0 for all n € [N],
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then

(14) max . fdefdeb rl b.

N TigTiy
(2) Let By,Bs,.. .,BM be regular U-crystals, and let b, € B,, v € [M], be ex-

tremal elements such that, for every 8 € Au, (BY,wt(b,)), v € [M], are all
nonnegative or all nonpositive. Then the equalities

(15) [P0 @b @ -+ @bar) = f* b1 @ f* by @ -+ @ [ b,
(16) Se(b1 @by ® -+ ®bps) = Sb1 @ Spba @ -+ @ Spbys
hold and (15)—(16) are extremal elements for all i € Ly and x € Wy.

2.3. SEMI-INFINITE BRUHAT ORDER. In this subsection, we collect some basic facts
on semi-infinite Bruhat order on an affine Weyl group (see [11, 20, 32] for more details).
Throughout this subsection, we take and fix J C I.

Let Wy = (r; | j € J), and let W be the set of minimal(-length) coset represen-
tatives for W/W. For w € W, we denote by |w| = [w]|/ € WY the minimal coset
representative for the coset wW; € W/W . Define

(17) (Aj)at ={a+nd|a€ Aj,neZ} C Ay,

(18) (ANLE=(ANsNAL=ATU{a+nd|acAsne Lo},
(19) (Wi)at = Wy x {te | €€ Qy} = (rs | B€ (An)),

(20) (W )at = {z € Wae | 2B € Af; for all B € (A)) L}

note that (Wg)ar = {e} and (W), = Wys.

We see from [32] (see also [20, Lemma 10.5]) that, for each x € W,s, there exist
a unique x1 € (W7),t and a unique x5 € (Wy)at such that z = z1z5. Define I17 :
Wat — (W)ar by I (z) = 21 if © = 2120 with 21 € (W), and @5 € (Wy)ar. It
follows immediately from (17)-(20) that I = 117 o I¥ if K C J.

Set py =(1/2)>",, eat @; we abbreviate p; to p if J = I. Define the semi-infinite

length function £% : Wy — Z by
(21) (% (2) = l(w) +2(¢, p)
for © = wte € Wy with w € W and € € QY.
Define the (parabolic) semi-infinite Bruhat graph SiB” to be the Afi-colored di-

rected graph with vertex set (W7),; and edges of the form NEIN rax for x € (W)t
and B € A}, where rgz € (W7)u and €% (rgz) = €% () + 1. We know from

[11, Appendix A] that the existence of the edge x AN 17 (rgx) in SiB7 implies
rgx = II7(rgz) € (W7)as. The semi-infinite Bruhat order is a partial order > on
(W)t defined as follows: for z,y € (W), write x = y if there exists a directed
path from y to z in SiB7. Write z = y if 2 = y and = # y.

LEMMA 2.2. Let A € P be such that J = {i € I | (o), \) = 0}. We have x\ =TI/ (z)A
for all x € Wys.

Proof. The assertion follows from (3Y,\) = 0 for all 8 € (A;)%. O

LEMMA 2.3 ([32]; see also [20, Lemma 10.7 and Proposition 10.10]).

(1) 7 (w) = |w]’ forwe W.
(2) T (zte) = 7 ()17 (t) for o € Wae and € € QV.
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For simplicity of notation, we let Té] stand for II7(t¢) € (W), for € € QV. By
Lemma 2.3, we have

(22) W )ae = {wTd |lweW’, ¢€QV}.
Let
(23) [ ]I\J : QV = Q\j D Q\I/\J — Q}/\J

be the projection. For &,& € QV, write §; = & if &1 — & € X0y Zxooy .

LEMMA 2.4 ([11, Lemmas 6.1.1 and 6.2.1]).
(1) Let K C J and v,y € (WE)up. If & = y in (WE)y¢, then TV (x) = I (y) in
(WJ)af-
(2) Leté&y,& € QY. We have I (te,) = 117 (t¢,) if and only if [&1]1s = [&2rwu- In
particular, we have 117 (t¢,) = 17 (t¢,) if and only if T (te,) = TIIEd (1)
forallie I~ J.

LEMMA 2.5 ([11, Remark 4.1.3]). Let x € (W )ag, i € L, and let X € PT be such
that J = {j € I | (o}, \) = 0}.

(1) rx =17 (r;z) € (WY )ar if and only if (), z\) # 0.

(2) =117 (r;x) if and only if (), x\) = 0.

(3) riw < x (resp. x <= ryx) if and only if (), x)\) > 0 (resp. (@), xz)\) < 0).

The next lemma is a reformulation of the “diamond lemma” for semi-infinite Bruhat
order obtained in [11, §4.1].

LEMMA 2.6. Let z,y € (WY)ap and i € Ly be such that 117 (r;x) = x and 1 (r;y) = y.
(1) If I (r2) =y, then x =y and I17 (r;z) = 117 (r;y).
(2) @ =y if and only if 117 (r;z) = 117 (r;y).

LEMMA 2.7. Let w,v € W and &,¢ € QY. If 7 (wte) = 117 (wt(), then IV (vte) =
HJ(Utg).

Proof. 1t suffices to prove that I/ (wt¢) = II7(wt¢) if and only if I17(¢¢) = I17(4¢).
The proof is by induction on £(w). If £(w) = 0, then the assertion is obvious. Assume
that ¢(w) > 0. Let ¢ € I be such that £(r;w) < £(w). By induction hypothesis,
7 (rywte) = I (rywt,) if and only if I17(¢¢) = II7(t¢). The proof is completed by
showing that IT/ (r;wt¢) = 17 (r;wt¢) if and only if 117 (wtg) = I/ (wt¢). Let A € PF
be such that J = {j € I | (a},A) = 0}; note that 0 > (o, wA) = (o, 117 (wte)A) =
(o) ,TI7 (wt;)A). We see from Lemma 2.5 (2)—(3) that II7(wte) = II7(r;wte) and
7 (wte) = M7 (rjwte). By Lemma 2.6 (2), II7(rjwte) = II7(rywte) if and only if
IT7 (wt) = 7 (wtc). O

2.4. EXTREMAL WEIGHT MODULES AND THEIR CRYSTAL BASES. In this subsection,
following [3, 14, 16], we review some of the standard facts on extremal weight modules
and their crystal bases.

For A € P, let V(\) be the extremal weight U-module generated by an extremal
weight vector uy of extremal weight A, and let B(\) be the crystal basis of V())
([14, Proposition 8.2.2]; see also [16, §3.2]). Note that B()) is a regular U-crystal in
the sense of [16, §2.2] (see §2.2). Let z;, ¢ € I, be the U’-linear automorphism of
V(w;) of weight § introduced in [16, §5.2]; z; sends a (unique) global basis element
of weight w; to a (unique) global basis element of weight w; + J. Then z; induces an
automorphism of B(c;) as a U’-crystal; by abuse of notation, we use the same letter
z; for the automorphism of B(w;). The U’-module W (w;) = V(w;)/(z; — 1)V (w;)
is called a level-zero fundamental representation. We know from [16, Theorem 5.17]
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that W(co;) is a finite-dimensional irreducible U’-module and has a (simple) crystal
basis.

For X\ =), ., myw; € PT, with m; € Zxq, i € I, set B(\) = Qe Blw;)®™i. For
each i € I and v € [my], let z;,, be the automorphism of the U’-crystal B()\) obtained
by the action of z; on the v-th factor B(w;) of B(w;)®™ in B()). Set

(24) Par(\) = {p = (pM)ier | p? is a partition of length less than m; for i € I} ;

we understand that a partition of length less than 1 is an empty partition @. Let
p = (p)ier € Par()\) and p() = (pgz) > pg) > > pg,?i_l > 0), i € I. Define the
automorphism z~” of the U’-crystal E;’()\) by

() () —p®

-p _ I | PPy Pmit

(25) z 5= 21 %2 Zimi—1 -
i€l

Let S, be the (PBW-type) basis element of weight

m;—1
(26) wi(p) =~ 30 3" o8
i€l v=1

of the negative imaginary part of U constructed in [3, the element Sg in §3.1; see
also Remark 4.1]. We know from [3, §4.2] that

B(A) = {g192 - “g1S, U

27

@7) | gx € {ei, fi | i € I}, k €[l], L € Zso, p € Par(\)} ~ {0}.

Define

(28) @y :B(\) — B(N), g192- - 1Sy ux — 9192 g1z P (@} ug’") ;
1€

where g, € {e;, fi | i € Ly}, k € [l], | € Z>o, and p € Par(\). We know from [10,
Lemma 3.1] that the map @I/(lj;zo is a strict embedding of U-crystals.
The next theorem will be needed in § 5.

THEOREM 2.8 ([3, Remark 4.17]; see also [16, Conjecture 13.1 (iii)]). Let A =
> iermiwi € PY. We have an isomorphism B(\) = @, c; B(miw;) of U-crystals.

2.5. PATH MODEL FOR DEMAZURE CRYSTALS. In this subsection, we give a brief
exposition of the path model for the crystal bases of level-zero extremal weight U-
modules and their Demazure submodules. For a fuller treatment we refer the reader
to [3, 11, 14, 16, 17, 29].

For A=}, miw; € PT, set

(29) Ty={j el {ay,)) =0}, J$ = I~ Jy.

For a rational number 0 < a < 1, define SiB(); @) to be the subgraph of SiB”* with
the same vertex set but having only the edges of the form

(30) PN y with a(8Y,z)\) € Z;

note that SiB(\;1) = SiB”*. A semi-infinite Lakshmibai-Seshadri path of shape X is,
by definition, a pair (x; a) of a decreasing sequence @ : x1 = x9 = -+ - = x; of elements
in (WJ/\)af and an increasing sequence a : 0 = ag < a1 < --- < a; = 1 of rational
numbers such that there exists a directed path from x,.; to z, in SiB(};a,,) for each
u € [l — 1]. Let B% ()\) denote the set of semi-infinite Lakshmibai-Seshadri paths of
shape A.
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Following [11, §3.1], we equip the set BZ (\) with a U-crystal structure. For n =
(w1,..., 21500, ..,a;) € BF(X), define themap 7: {t ER |0 <t < 1} = R®z Pas
by

(31) nt) = “21(% — ap_1)TpA + (t — ay—1)z, A for ay,—1 <t < a, and u € [1].
p=1
Define wt : B% (\) — P, by wt(n) = 77(1) € Pat. Set
(32) R (t) = (o), 7(t)) for 0 <t <1, m; =min{h](t) | 0 <t < 1}.
We define e;n, ¢ € I s, as follows: if m; = 0, then we set e;n = 0. If m < —1, then
we set
(33) {tl =min{t |0 <t <1, Wl (t) =m]},
to =max{t | 0 <t <ty, hl(t) =m] +1}.

Let 1 < p < ¢ <! be such that a,_1 <ty < ap and t; = a,. Then we define

ein = (T1,...,Tp,Tip, ..., Tilqs Tqtis---,LL;

(34)
@0y Ap—1,t0,Apy ..., Qg =t1,...,07);

if to = ap—1, then we drop z, and a,—1, and if rjz4 = 441, then we drop z441 and
Qg = tl-

Next, we define f;n, i € L, as follows: if m] = h](1), then we set fin = 0. If
h1(1) —m] > 1, then we set

to=max{t|0<t<
(35)
t; = min{t | tg <t <

1, h(t) =m{},
1, hl(t) =m] + 1}.

Let 1 <p < ¢ <!—1besuch that {) = a, and ay < t; < ag+1. Then we define

fin=(x1,...,Tp,riTps1, -, TiTqr1; Tqt1s - - -, LL;

(36)
ag, ..., 0ap :th'"7aq7t17aq+1,~~';al);

if t1 = aq41, then we drop z441 and agy1, and if z, = r;zp41, then we drop z, and

ap = to.
For n € B% (\) and i € I, define
& = —m?,
37) { (n) n n
@i(n) = k(1) —m].

For n = (x1,72,...,2;;a) € BZ ()\), set x(n) = 2;. Following [29, Equation (4.2.1)],
for each z € (W), set

(38) BZ,(\) = {n € BT (\) [ n(n) = 2}

Following [11, Equation (7.2.2)], we define an extremal element 7, € ]B%ﬁ( ) of
weight X + wt(p) for each p = (pV),_, € Par()), with p(*) = PP > = ol =0).
Let s be the least common multiple of {m; | i € J{}. Let ¢;(€) € Z denote the
coefficient of o in & € QV. For £, € QV, write £ »= ( if £ = ¢ and & # (. Let
(1,...,(s € QY be such that

s(u—1) su

(i) cz(Ct)—pi)lfzeJ/\ and o <t<ﬁz and

(ii) ¢;(¢) =0forall j € Jy and ¢ € [s];
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note that ¢; = --- = (s and (s = 0. Assume that

(39) Clz.'.:<51>_C81+1:.”:C82>_ """ >_<Sk:—1+1:...:<5k7
where 1 < 81 < -+ < 81 < S = S. Set

. Ixn Jx .n S1 852 Sk—1 )
(40) np_(T@l,TCW,...,TCSH@,07 L2 )

THEOREM 2.9 ([11, Theorem 3.2.1 and Proposition 7.2.1]). Let A\ € PT.

(1) For each connected component C of (the crystal graph of) B% (\), there exists
a unique p € Par(X\) such that n, € C.

(2) There exists a unique isomorphism oy : B(A) — B% ()\) of U-crystals sending
S, uy tonp for every p € Par(N).

REMARK 2.10. Let A\ € PT.

(1) Since B()\) is a regular U-crystal, it follows from Theorem 2.9 (2) that B= ())
is also a regular U-crystal. Hence W, acts on BZ ()\) as (12). By (40) and
29, Remark 3.5.2 (2)],

(41)  Sump = (Hh (xTéi) LT (xTiz_l) 1 (2); 0, %%T_ll)

for p € Par()\) and x € Wy.
(2) Let B, (A\) be the (opposite) Demazure subcrystal of B(A) associated with
r € (W) (29, §4.1]; see also [17, §2.8]). We know from [29, Theorem

4.2.1] that x(B5 (\)) = B2, (\). However, we will not use this fact in any
essential way in the remainder of this paper.

3. DEODHAR-TYPE CRITERION FOR SEMI-INFINITE BRUHAT ORDER
This section is devoted to the proof of the next theorem.

THEOREM 3.1. Let J, K1, Ks,...,Ks; C I be such that J = ﬂi:l K,, and let x,y €
(W )ag. We have x =y in (W7)at if and only if IXv (z) = 115 (y) in (WEv).¢ for
all v € [s].

This theorem is an analogue of Deodhar’s criterion for Bruhat order on Coxeter
groups ([4, Theorem 2.6.1]; see also [8, Lemma 3.6]). It is easily seen that Theorem
3.1 is equivalent to the next proposition.

PROPOSITION 3.2. Let J C I and z,y € (W7 )ar. We have x = y in (W)t if and
only if I () = TN (y) an (WIS ¢ for alli € T~ J.

We give a proof of Proposition 3.2 in §3.3. For this purpose, we first introduce an
isomorphism ¢y : B% (\) — ®ie]§ B % (m;w;) of U-crystals in §3.1. Next, in Propo-
sition 3.4, we give a partial characterization of the image of sz (A), & € (W),
under the map ). Finally, we show that Proposition 3.4 (2) implies Proposition 3.2.

3.1. THE MAP 1, AND DEMAZURE CRYSTALS. In this subsection, we give a par-
tial characterization of the image of IEB;,()\) under the isomorphism ¥ : B (\) —
®i€(,; B (m;cw;) of U-crystals obtained in the next lemma.

LEMMA 3.3 (cf. Theorem 2.8). Let X\ = Y., ,myw; € P*. There exists a unique
isomorphism ¥y : BZ (\) — ®i€(,§ B (m;w;) of U-crystals such that

(42) Ua(np) = @ nyw forall p= (p(i)) € Par()),

i€
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where, for each i € J5, n,m € BT (myw;) denotes the element (40) associated with
p\) € Par(m;w;).

Proof. We first claim that there exists a unique strict embedding ¥y : B¥ (\) —
Qe ye BT (w;)®™ of U-crystals such that
A

(43) W)= @ & (T’(;“i;o, 1)
iEJ; v=1 v Oy

for all p = (pgi) > pgi) =2 p(i) 1= pg,? = O)ieI € Par()); the uniqueness follows

m; —

from Theorem 2.9 (1). Indeed, we see from (28) and [10, Lemma 3.8 (1)] that the map
(44) oai= | ® w2 | oK poprt BTN - @ BE (w,)*™
ieJe ieJe

is a strict embedding satisfying (43). We can now construct the map 1, as follows.
By (43) and Theorem 2.9 (1), the image of ) equals that of ®Z-€J§ Ym,w,; - Hence the
map

-1
(45) P = <® ﬁmiwi) oy : BT (A) = @ BF (miwm;)
i€Jg i€
is well-defined and satisfies (42); the uniqueness follows from Theorem 2.9 (1). O

For A\=)",.;m;w; € PT and z € (W) ¢, set

(46)
= { ® e @ BT (myw;)

i€JS i€Jg

k(@) = I () for all i e J§} .

PROPOSITION 3.4. Let A=, m;w; € Pt and x € (W7*),.
(1) vx (BLO) € ®ies Bli oy (mimi).
(2) Ifr e ®i€]§ Bgnl\{i}(gﬂ)(miwi) is of the form

(47) = @& Syn,m forsomeye Wy and (pV) € Par()\),
ieJe

then T € 1y (fo()\)).

REMARK 3.5. It follows from (43), [1, Lemma 1.6 (2)] and [16, Proposition 5.4 (i)]
that an element 7 € B% ()\) is extremal if and only if 7 is of the form (47).

3.2. PROOF OF PROPOSITION 3.4. This subsection is devoted to the proof of Propo-
sition 3.4. We begin by recalling some fundamental properties of B ()).

LEMMA 3.6. Let A € PT and p € Par()\).
(1) K(Sznp) = 77 (z) for x € W.
(2) (WJA)af ={z € Wa | Senp = np}-

Proof. (1) follows from (41).
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By (40)—(41), Sznp = 1, if and only if I/ (xTCJk) = TCJA for p € [k]. By Lemma
Sp Sp
2.3 (2),

e (xTé; ) — (xHJ* (tcsp)) — (xtgsp)
_ 11/ J ) J
— I @I (1, ) = T @)

for p € [k]. This implies that S;7, = 7, if and only if II/>(z) = e, or equivalently,
T € (ij)af. O
LEMMA 3. 7 ([29, §5]). Let A € P and z,y € (W)

(1) B ( ) U {0} is stable under the action of f; for all j € Ins.

(2) B ( )U{0} is stable under the action of e for j € Lyt such that (o ,xzA) > 0.
(3) = >- y if and only Zf]B>_x( ) C Btyo‘)'

(4)

4) For everymn € B>z()\)7 we have f"**n € B (A) for all j € L.

=
=I17A (rj)
The next lemma is a slight refinement of [29, Lemma 5.4.1].

LEMMA 3.8. For n € B ()\) (resp. nE ®i€=}§ ]B%%(miwi)), x € Wyt and w € W,
there exist i1,i9,...,iN € I.s such that

(1) (e ,7i,_, - riyri,xA) = 0 for all n € [N], and

(11) Z_Ifl\,ax f‘max max — Swtgnp (T@Sp. ;jlvax . fmax max,r] _ ®ieJ§\‘ Swtgﬁpﬁ))

for some £ € QV and p = (P(i))iEJi € Par(\).

Proof. By Lemma 3.3, it suffices to prove the assertion only for B= ()\). By [29, Lemma
5.4.1], there exist ji, jo, ..., Jp € Iar such that

(1) (@) sy i @A) = 0 for all m € [p], and
(if) fiex... fuax fmaxy = Sy n, for some € € QY and p € Par()).

We see from (the proof of) [29, Lemma 5.4.1] that
T, T, A=A mod Co.
For a reduced expression w = g, Tk, _, ***Tkys K1, k2,...,kq € I, we have
<04>c/ma7“km71 TRy TR T, T T TA) = <0<Xm77“km71 T Tl A) 2 0

for all m € [g]. It follows from wt(S¢.n,) = A mod Co and Lemma 2.1 (1) that

kr:zax .. f]?’;a.x Iz[;a)( jl_';laX . fmaX maxn — S St£ ,’7p — Swt£ np
:St£ Mp
This completes the proof. O

We are now in a position to prove Proposition 3.4. In what follows, we write

(48) By, =B

|Ym‘8

(A and By, = @ B2
i€Js

ZIE ) () (myw;) for z € (WJ’\)af
Proof of Proposition 3.4 (1). To see Yx(Byz) C IEVBEE, let n € By, and show that
() € I@>x By Lemma 3.8, there exist i1,ia,...,in € T4 such that

(i) (o, rln \Tin_s Ty, xA) =2 0 for all n € [N], and

(ii) frax... fuax fmaxy — G, n, for some & € Q¥ and p € Par(X).

iN
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The proof is by induction on N.
If N =0, then n = S n, and

Ya(n) = Ua(Secnp) = Steva(Mp) = Ste @ Mp0 = @ Sty
i€l i€ s
by Lemmas 2.1 (2) and 3.3. By Lemma 3.6 (1), £(S, 1, ) = I/ (¢,) for all i € J5.
Since I17* (t¢) = k(n) = , it follows from Lemma 2.4 (1) that

(49) U (1) = T (T2 (t)) = T (2) for all i € JF.

Hence #(S¢.m,0)) = >4 () for all i € J§, which implies 1 (1) € By,
If N >0, then f?**n € By, (y, o) by Lemma 3.7 (4). By induction hypothesis,
UA(fi*n) € IE%EHJA(T”I). We claim that i (f{1**n) € I@tz. Indeed, since (o, 2\) >

0 (see (i) above), Lemma 2.5 (2)—(3) gives I1’*(r;, x) = z. By Lemma 2.4 (1),
(50) 0 (g ) = TOEHI (1)) = U (2) for all i € JS.

Lemma 3.7 (3) now shows that BEHJA(”I:L,) C By, and hence Ua(fn) € By .
Since ¥y is an isomorphism of U-crystals, there exists k € Zx( such that ¥5(n) =
ef Yx(faxn). We see from 4 (g, ) = T (1) and Lemma 2.5 (2)-(3) that
(51) (o), TIE (2)ymyw;) = malay , T (@) wy) > 0 for all i € J§.

i1 717

1

B, ,. O

]:%y Lemma 3.7 (2) and tensor product rule, we conclude that 1y (n) = efl A(fexn) e

Proof of Proposition 3.4 (2). Assume that 7 = ®ieJ; Synpu) S Iﬁitx, y € Wy and
p = (p) € Par()\). By Lemmas 2.1 (2) and 3.3,
(52) T= Q& SyNp@ = Sy ® Npti) = Syba(np) = Pa(Synp)-
ieJe icJS

Let wg € W be the longest element. By Lemma 3.8, there exist i1,%9,...,in € It
such that

(1) (o i, \Tip_y---riyxA) = 0 for all n € [N], and

(i) fmax... pmax fmaxy — ®ieJ§ Swote Ny for some € € QV.
We show by induction on N that 7 € ¢»(Bx,), or equivalently, x(Syn,) = z; note
that x(Syn,) = [I'>(y) by Lemma 3.6 (1).

We first assume that N = 0. In the same manner as in (52) we see that # =
YA (SwoteMp)- Since ¥y is an isomorphism of U-crystals, we have Syn, = Swt,1p, and
hence 117> (y) = 17> (wot¢) by Lemma 3.6 (1). Write z = wt;, w € W, ¢ € Q¥. We
proceed by induction on £(wg) — £(w).

If 4(wg) — ¢(w) = 0, then w = wp. By Lemma 3.6 (1),

(53) I (wote) = U (y) = k(Sym,00) for all i € J.
Since 7 € Hétx, we have
(54)  K(Syn,m) = I (z) = T (wie ) = T (wot) for all 4 € J§.

ence ' (wot > S (wot or all ¢+ € J§. By Lemma 2.7, we have
H T (wote I (wgt) for all J. By L 2.7 h
T (te) = T (te) for all i € J5, which implies TI'A(t¢) = TI/x(t¢), by
Lemma 2.4 (2). Again, by Lemma 2.7, we have ITI/>(wot¢) = II*(wotc). Since
Kk(Synp) = I (y) = /> (wote) and = = 17> (wot¢), we conclude that k(Syn,) = z.

If ¢(wo) — ¢(w) > 0, then w # wq. There exists j € I such that rjz > z; note that
rix = rjwte, ryw € W, and £(wg) — £(rjw) < £(we) — £(w). Since (ajV,HJ*(y)/\> =
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woteA) < 0 by Lemma 2.2, we have I/ (y) = II7*(r;y) by Lemma 2.5. By Lemma

(55) 0 () = U (2) and T (y) = T () for all i € JS.

Since 7 € By, we have I/ (y) = K(Syn,m ) = I () for all § € JS. It follows
from Lemma 2.6 (1) that I/~ (y) = TN (rz) for all i € J§. By induction
hypothesis, we have I/ (y) = II/>(r;z ) We see from I/ (ryz) = TN (), 0 €
J5, Lemmas 2.2 and 2.5 (2)—(3) that (o}, zw;) = (af, > (2)w;) > 0 for all i € JS,
which gives (af,z)) = ), e i ,a:wl> > 0. Again, by Lemma 2.5 (2)—(3), we
have I17*(r;z) = 2. Thus H(Syﬁp) 7 (y) = =

We next assume that N > 0. It follows from Lemmas 2.1 and 3.7 (4) that

(56) oo = ® Syl = ® Jiy ™ Synpw € Bopnr, o)
Ze )\ le %/_/
STilynp(i)

is of the form (47). By induction hypothesis, there exists 7 € By s, (ri, 2) such that

% = 4ha(n). Since ¢ is an isomorphism of U-crystals, there exists k € Zx( such
that 7 = 1hx(eF n). We see from (o), zA) > 0 (see (i) above) and Lemma 2.5 (2)—(3)
that I/ (r;,x) = x, which gives B, s, (riy0) C Bra, by Lemma 3.7 (3). It follows

from (a “>!E>\> 0 (see (i) above) and Lemma 3.7 (2) that
e € {eﬁn’ :13:)} < {0}
(57)
c {efn' | €Bry} N {0} C By,
Thus m = ¢a(ef 1) € Ya(Bys). 0

3.3. PROOF OF PROPOSITION 3.2.

Proof of Proposition 3.2. The “only if” part follows immediately from Lemma 2.4
(1). Let us show the “if” part. Let A = >, ., m;w; € Pt be such that Jy = J.
Let p = (p) € Par(\). Since £(Syn,m) = I/} (2), by Lemma 3.6 (1), and
() = U (y) for all i € T~ J = J§, it follows that ®i€]§ Sanyi €

®i€Jc B 2HI\{ }(y)(mlwi). Similarly to (52), we have ®i€]§ Senpr = ¥a(Sznp)- By
Proposition 3.4 (2), Sy, € ny(/\), which implies k(Sz7,) = y. Since x = K(Sz1,),
by Lemma 3.6 (1), we conclude that z > y. O

4. TABLEAU CRITERION FOR SEMI-INFINITE BRUHAT ORDER

Proposition 3.2 shows that the study of semi-infinite Bruhat order on W,y is reduced
to those on the sets (W!>{i);, i € I, of “semi-infinite Grassmannian elements.” In
this section, we proceed With the study of semi-infinite Bruhat order on (W7 \{i})af,

i € I, for Wy of type An 1 ,(11), C,(Ll)7 and D,(ll). The main results of this section
are Theorems 4.9, 4.14, 4.22, and 4.38 (see also Definitions 4.7, 4.12, 4.20, and 4.36),
which give combinatorial criteria for semi-infinite Bruhat order in terms of tableaux. In
order to get these results, we give a complete classification of the edges in the quantum
Bruhat graph QBI\{i}, i € I (see §4.2 and Propositions 4.18, 4.26, and 4.42). For
combinatorial descriptions of Bruhat order on finite Weyl groups of classical type, we
refer the reader to [4, §8].
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4.1. EXPLICIT DESCRIPTION OF (WY),. In this subsection, following [24, §3], we
give an explicit description of (W), for later use.

We take and fix J = |_|:1:1 I, C I, where Iy, I, ..., I} are the sets of vertices of

the connected components of the Dynkin diagram of A ;; note that A; = |_|]:n:1 Aj
Set (Im)at = {0} U I, C Ing, m € [k]. Set

(58) QY7 ={ceQV (¢ a) e {~1,0} forall a € AF}.

LEMMA 4.1 ([24, Equation (3.6)]). For each & € QV there exist a unique ¢;(§) € QY
and a unique (j1,jo, .-, Jx) € anzl(lm)af such that

m*

K
(59) E+0s)+ ) w € @ Zw.
m=1

ieINJ

In particular, £+ ¢;(€) € QY7 for any € € QV, and hence Q7 is a complete system
of coset representatives for QV/QY.

For a subset K C I, let wé( be the longest element of W . For j,,, € (L)as, set

(60) vim = wirwen e wy, c Wy
note that vj™ = e. For & € QV, define
(61) 2e =2 = vjlvj; v €W,

where (j1,72,...,Jk) € H’:nzl(.[m)af, satisfying (59) for &, is determined uniquely by
Lemma 4.1; note that z¢ = z¢ if £ = ¢ mod QY.
LEMMA 4.2 ([24, Lemma 3.7]). We have Ty = 117 (t¢) = zeteyg,(¢) for every £ € QY.
Therefore, by Lemma 2.3, 117 (wt¢) = |w] Zeteyg,(e) for everyw € Woand § € Q, and
we have a bijection W7 x QV-7 — (W7)at, (w, &) — wly. In particular,
(62) (W )ar = {wTe = waete [we W, £€QV7}.
4.2. QUANTUM BRUHAT GRAPHS. Following [24, §4] (see also [5]), define the (par-
abolic) quantum Bruhat graph QB’ to be the (AT N Aj)—colored directed graph
with vertex set W7/ and edges of the form w —— |wr,| for w € W7 and v €
AT AT, where ((|wry]) — f(w) =1 —2x(yY,p— py) and x € {0,1}. We say that
an edge w —— |wr,| in QB” is Bruhat (resp. quantum) if £(|wr,|) — f(w) = 1
(resp. £(|wry|) —l(w) =1 —=2(yY, p—py)). We see that if there exists a Bruhat edge
w — |wr,] in QB’, then wr, = |wr,] € W”’. Note that QB” does not define a
partial order on W".
LEMMA 4.3 ([11, Proposition A.1.2]). Let w € W7, € € QY and B € Af,. Write
B = wy+ x6 withy € A and x € Zzo. Then rgwTy € (W”)ar and there exists an
edge wl BN rgwle in SiB” if and only if v € AT < A'}' and one of the following
conditions holds:

(1) x =0 and w —= wr,, is a Bruhat edge in QB”’,

(2) x =1 and w — |wr, | is a quantum edge in QB”;
in these cases, we have rgwTy = [wry |Tepyyv = Lwr.yJng+X7vt5+XWv+¢J(€+XWV) and
€+ x7Y + s+ x7Y)) = ci(€) + xei(yY) foralli e I J.
LEMMA 4.4 ([20, Proof of Theorem 10.16]). Let w € W7 and v € AT ~ AT There
exists a quantum edge w —— |wr., | in QB if and only if £(wr.,) —(w) = 1—-2(y", p)
and wroty € (WY )ae; note that wroyt,y € (W')ar and Lemma 4.2 imply vV €
QY N(AVH AV and |wr, | = wry 2}

=
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LEMMA 4.5. Leti € I and~" € QV’I\{i}ﬂ(AV*\A}/’f{i}). We have (Y, p—pr(iy) =
(V) p—prgiy) = (V) (1 = (o, prqaiy))-

Proof. The assertion follows from (£, p — py_(;3) = 0 for § € Qy\{i}, YV =c(vV)a
mod Qy\{i}, and (o), p) = 1. O

4.3. TYPE Agll_)l. Fix an integer n > 2. Set I = [n — 1]. We assume that the labeling

of the vertices of the Dynkin diagram of type A, _; is as follows.

[ ) [ ] e [ ] [ )
1 2 n—2 n-—1
Let €1,€9,...,€, be an orthonormal basis of an n-dimensional Euclidean space R".

Let A = {£(es — &) | s,t € [n], s < t} be a root system of type A,_1, and let
ITI={as=¢s—¢cs11| s €I} be a simple root system of A.

Let W be the Weyl group of A; note that W can be described by W = &([n]) as
the permutation group of {e; | s € [n]} C R™. The longest element of W is given by
u—n—u+1,u € [n]. Let CST4, _,(w;) be the family of i-element subsets of [n].
We identify T = {T(1) < T(2) < --- < T(i)} € CST4,_, (w;) with the column-strict
tableau

(63)

For w e W, let T € CST,4 (w;) be such that

n—1
(6) TV ={TO1) <TVE) < <TYO } = {w(1), w(@),..., w()}.
The proof of the next lemma is standard (cf. [4, §2.4]).
LEMMA 4.6. Let © € I. We have
Wi —fw e W | w1) <w(2) < - <w(i), and
wi+1) <wi@+2) < - <wn)}

The map WIS — CSTy, | (wy), w— TO, is bijective.

We see from Lemmas 4.1-4.2 and 4.6 that the map
(65) VI Wap = CSTa, (@) X Z, wte > (TW,i(6)
induces a bijection from the subset (WI\{i})af C Wag to CSTy4,_, (w;) X Z.

DEFINITION 4.7 ([10, Definition 4.2 (1)]). Define a partial order < on CST 4, _, (w;) X Z
as follows: for (T,c),(T',¢) € CSTa, _,(wi) X Z, set (T,c) 2 (T',¢) if

(66) (c<d) and (T(u) < T (u+d —c¢) forueli—cd +d).

PROPOSITION 4.8. Let i € I.
(1) yiAn—l o HI\{i} — y;‘lnfl.
(2) For z,y € Wat, we have T () < TN () dn (WIS ¢ if and only if

Vi @) 2 YT ) in CSTa, L (@3) X 2.
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(3) Let (T,c),(T',¢') € CSTa, _,(w;) X Z. If ¢ — ¢ > min{i,n — i}, then (T,c) =<
(T, ).

Proof. (1): Let @ = wtg € Wy and y = > (2) = vte, where w,v € W and
£,¢ € QY. We see from Lemma 2.3 that |w|/> = o)/~ and ¢(€) = ¢(Q).
Sipce {1,2, ..., i} is stable under the action of Wy_g;y, [w]™>{ = v/ implies
T =70 Thus Y (2) = Y ().

(2): The assertion follows from (1) and [10, Theorem 4.7 and Equation (67)].

(3): We first assume that ¢/ — ¢ > i. Obviously, ¢ < ¢ holds. Since i — ¢/ + ¢ < 0,
the latter condition in (66) is trivial. Thus (T,c) < (T',¢).

We next assume that ¢ > ¢’ — ¢ > n — 4. Obviously, ¢ < ¢ holds. Since T(u) €
[u,u + n — 7] holds for all u € [i], we have
(67) Tu)<u+n—i<u+cd —c<T (u+d —c)forueli—c+].
This implies (T,c) < (T',¢). O

By combining Propositions 3.2 and 4.8 (2), we obtain the following tableau criterion
for the semi-infinite Bruhat order on Wyt of type Agllll.
THEOREM 4.9. Let J C I and x,y € (W7 )ar. We have x <y in (W)t if and only if
VA @) 2 YA (y) in CSTa, (@) X Z for alli € I~ J.

For w € W, the notation w = 414y - -4, means that w(u) = 4, for u € [n]. A
column-strict tableau (of skew shape) is called semi-standard if its entries are weakly
increasing from right to left in each row.

EXAMPLE 4.10. Assume that n = 6. Let w = 564213, v = 412635 € W, and
E=a) —af +a) +2aY, ( =2a) +3ay + a3 +2a) + 507 € Q.

Let us compare ¢ = wte and y = vt¢ in semi-infinite Bruhat order on W,s. We have

[5]5]4]2]1
6542
TS)TS)TS)ng)Tg) = 6|54
6|5
6]
and
[4[1]1]1]1
4(2]2]2
TOTEOTETWTE) = 41413].
6|4
6]

(1) y{‘"H(x) = y{‘"*l(y) since ¢1(¢)—¢1(¢) =1 = min{1,6—1} (see Proposition
4.8 (3)).

(2) Y57 (@) 2 V3 (y) since e2(C) — ea(§) = 3
Proposition 4.8 (3)).

WV

2 = min{2,6 — 2} (see

(3) yg“”*l () = yg“"*l (y) since ¢3(¢) —c3(€) =2 and is semi-standard (see

EEE

(66)), where T =[5]and T =
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(4) ny () = yf"’l(y) since ¢4(¢) —c4(§) = 1 and is semi-standard (see

@%MH‘

’UJOTH;I\D

(66)), where TS =

(5) y?"’l(x) = y?"’l(y) since ¢5(¢) —¢5(§) = 3 2 1 = min{5,6 — 5} (see
Proposition 4.8 (3)).

By Theorem 4.9, we conclude that z < y.

4.4. TYPE C,gl). Fix an integer n > 2. Set I = [n]. We assume that the labeling of
the vertices of the Dynkin diagram of type C), is as follows.

[ ] L] e o ——=—"20
1 2 n—1 n
Let €1,é9,...,€, be an orthonormal basis of an n-dimensional Euclidean space R".

Let A = {£(es + &) | s,t € [n], s <t} U{x2e, | s € [n]} be a root system of type
Cp,and let IT = {as =5 — €541 | s € [n — 1]} U{a, = 2, } be a simple root system
of A.

Let W be the Weyl group of A. Note that W acts faithfully on {£e; | s € [n]} C R™.
Define a totally ordered set C,, by

(68) Ch={1<2<--<n—-1<n<m<n—-1<---<2<1}.

Let o : C,, — C,, be the bijection defined by s +» 3 for s € [n]. If we identify C,, with
{fes | s€[n]} by s =¢e5s and § = —¢; for s € [n], then W can be described as follows:

(69) W ={w e &(C,) | w(o(s)) = a(w(s)) for s € [n]}.
Let (s1 s2 -+ 8;) € &(C,,) denote the cyclic permutation s1 — sg — -+ = 5 > 87,
where I > 1 and s1,89,...,8 € C, are all distinct. For s,t € [n], s < t, we have

Ti(e—er) = (8 1)(5 1), rroe, = (55), and rie 4o = (s 1)(5 t) in &(Cp).
For w € &(C,,) and s € [n], set

(70) Ajw)={tels+1,n] | w(s) = w(t)in C,}, as(w)=#As(w),

(71) Bs(w)={t€[s+1,n] |w(s) = o(w(t)) in C,}, bs(w)=#Bs(w),
)0 ifw(s)

(72) es(w) = {1 if w(s)

note that a,(w) = b,(w) = 0 for w € &(C,,). The length function ¢ : W — Zx, is
given by

)
b

=
=

n

(73) w) = (as(w) + by(w) + es(w))

s=1

for w € W. The longest element of W is given by u — @, u € [n].

Let || - || : €, — [n] be the map defined by ||s| = s and ||5|| = s for s € [n].
We identify an i-element subset T = {T(1) < T(2) < --- < T(¢)} C C,, with the
column-strict tableau of the form (63). Set

(714) CST¢, (w;) ={T|T CCp, #T =14, and ||T(u)||, u € [i], are all distinct}.
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For we W, let T € CST¢, (w;) be such that
(75) T ={TWW) < THE) < < TV | = {w(1),w@),...,w(D)}.

The proof of the next lemma is standard (cf. [4, §8.1]).

LEMMA 4.11. Let i € I. We have
Wi = L e W | w(1) < w(2) < - < w(i), and
w(i+1) <w(@+2) < <w(n) In}.

If we WIS then ((w) = ZS 1(as(w) + bs(w) + es(w)) and As(w) C [i + 1,n] for
s € [i]. The map WY 5 CSTe, (@), w— T, s bijective.

We see from Lemmas 4.1-4.2 and 4.11 that the map
(76) VO Wag — CSTe, (w1) X Z, wte — (ng%ci(g)) :
induces a bijection from the subset (W >{), € Wit to CST¢, (w;) X Z.

DEFINITION 4.12. Define a partial order < on CST¢, (w;) X Z as follows: for
(T,0),(T',¢) € CST¢, (w;) X Z, set (T,c) = (T',¢) if

(77) (c<c)and (T(u) X T (u+c —c)inC, forueli—c +c).

PROPOSITION 4.13. Let i € 1.
(1) Yy om™ i =y
(2) For xz,y € Wy, we have U () < T (y) in (WIS ¢ if and only if
YO (a) < YEn(y) in CSTe, (1) x .
(3) Let (T,c),(T',¢') € CST¢, (w;) X Z. If ¢ — ¢ > i, then (T,c) = (T',¢).

By combining Propositions 3.2 and 4.13(2), we obtain the following tableau crite-
rion for the semi-infinite Bruhat order on Wy of type C’,gl).

THEOREM 4.14. Let J C I. For z,y € (W7)at, we have z <y in (W) if and only
if YO (2) = Y (y) in CSTe, (wi) x Z for alli € I~ J.

The remainder of this subsection is devoted to the proof of Proposition 4.13.
The proofs of Lemmas 4.15-4.16 below are straightforward.

LEMMA 4.15. Let i € I and v € AT A . We have vV € QV-">U} if and only if
one of the following conditions holds:

1) vV = =a +oz2+1+ 4 ay

(2)’7 = &j— 1+51*04 1+20¢ + +20&7\1/
LEMMA 4.16. Let i € 1. We have 2(oy}', p — prqiy) = 2n —i + 1.

PROPOSITION 4.17 (cf. [4, §8.1]). Let i € I, w € W™ and vy € A, There exists a

Bruhat edge w —— |wr., | = wr., in QB if and only if v € AT~ AT\{i} and one

of the following statements holds.

(b-C1) i € [n—1], ¢;(vY) = 1, and there exists s € [i] such that wry(u) = w(u) for
uwe i\ {s}, 1 2w(s) <n, and wry(s) = min([w(s) + 1,n] \ {|Jw(w)| | v €
[i], w(u) = 7}); in this case, we have v =es —er = ) +af + -+ )
for somet € [i+1,n].

(b-C2) i € [n—1], ¢;(vY) = 1, and there exists s € [i] such that wry(u) = w(u) for
ue i~ {s}, m 2w(s) <1, and wry(s) = o (max([[|w(s)| — 1] ~ {w(u) |u €
[i], w(u) 2 n})); in this case, we have v =¢e5 — ey = af + ay + -+
for somet € [i +1,n].
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(b-C3) i € [2,n], ¢;(vY) =2, and there exist s,t € [i] such that s < t, wr,(u) =
foru € [i]\{s,t}, and wry(s) = w(s) +1=0c(w(t)) = o(wr,y(t)) +1 =
this case, we have v =es+er =a) + -+ oy + 20 + -+ + 207
(b-C4) ¢;(vY) =1, and there exists s € [i] such that wr,(u) = w(u) for u € [i] \ {s}
and o(wr(s)) = w(s) = n; in this case, we have v =e4 = o) +af  +- -+
ay.
Moreover, for w,v € W™ we have w < v if and only if w(u) < v(u) in C, for
u € [i].
PROPOSITION 4.18. Let i € I, w € W™ and v € AT, There exists a quantum edge
w —s lwr, ] in QB ™ if and only if v € AT\ A}'\{i} and the following statement
holds:
(a-C) ¢;(vY) =1, [wry|(1) =1, [wry|(u) = w(u — 1) for u € [2,i], and w(i) = 1;
in this case, we have v =¢; = o) + o/ 1 + -+ ).
Before starting the proof of Proposition 4.18, we mention a consequence of Lemma
4.3 and Propositions 4.17-4.18.

PROPOSITION 4.19. Let i € I, z,y € (WIS, Y (2) = (T,¢), and Y (y) =

(T, ). There exists an edge x BN y in SiIBID for some g € Al if and only if one

of the following conditions holds:

(5-Cl) i € [n—1], ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for
ue il ~{s}, 1 X T(s) <n, and T'(s) = min([T(s) + L,n] N {||T@)|| | v €
[i], T(u) = n}).

($-C2) i € [n—1], ¢ = ¢, and there exvists s € [i] such that T'(u) = T(u) for
u e il ~{s}, m X T(s) <1, and T'(s) = o (max([[|T(s)|]| = 1] ~ {T(u) |u €
[i], T(u) =n})).

(5-C3) i € [2,n], ¢ = ¢, and there exist s,t € [i] such that s < t, T'(u) = T(u) for
uweli]~{s,t}, and T'(s) =T(s) + 1 =0(T(t)) = o(T'(t)) + 1 < n.

(5-C4) ¢ = c, and there exists s € [i] such that T'(u) = T(u) for u € [i| \ {s} and
a(T'(s)) =T(s) =n.

(5-C5) ¢ =c+1, T(1) =1, T'(u) = T(u—1) foru € [2,i], and T(i) = L.

Forie I, we Wt and v € AT A}r\{i}, let Q(i,w,~) denote the following
statement.
Q(i,w,~): There exists a quantum edge w —— |wr, ] in QB

LAl

Proof of Proposition 4.18. By Lemmas 4.4 and 4.15, we may assume that 7V €
QI wr, | = wrv(szi{i})_l and ¢;(vV) € {1,2}. Let I ~ {i} = I U I3, where
I, = [i — 1] is of type A;—1 and Ir = [i + 1,n] is of type C,_;. The proof will be
divided into three steps.

Step 1. We show that ¢;(vY) = 1 and Q(i, w,~y) imply (q-C). It follows from Lemmas
4.5 and 4.16 that ¢;(v¥) = 1 and Q(4,w, ) are equivalent to £(|wry]) —(w) = i—2n.
By Lemma 4.15, vV = &; and r, = (i i). We see that (i — 1,0) € (I1)at X (I2)af
satisfies the condition for vV € QY in Lemma 4.1; note that I; ~ {i — 1} = [i — 2]
is of type A;_2. Hence zii{i} = wélwél\{ifl} =12 )12 %) and |wry] =
w( i) - 21)@G -+ 2
u € [2,4], and |wry](u) =

I). We have |wry (1) = w(i), |wry](u) = w(u — 1) for
w(u) for u € [i + 1,n]. It follows from Lemma 4.11 that

(78) w(t) <w(l) <w(2) <--- <w(—1) < w().
et iy

It remains to prove that w(i) = 1. If we prove that
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(1) er(lwry]) =0,

(2) ar(lwry]) +bi(lwry]) = w(i) — 1,

(3) aj(w)=n—14, bj(w)=n—i— (w ( )—1), e;(w) =1,

(4) es(|lwry]) = es—1(w) for s € [2,1],

(5) as(lwry]) = as—1(w) and bs(|wry]) = bs_1(w) — 1 for s € [2,4],

then the assertion follows. Indeed, by Lemma 4.11, we have

((lwry]) = €(w) = ar(lwry]) + bi([wry]) +er([wry])
=w(i)—1 =0
— (ai(w) + bi(w) +&i(w))

=1+2(n—i)—(w(i)—1)

i

+ Z(aS(l_wr’YD - as—l(w))

s=2

=0
+ 3 (bo(Lwr, ) = by (w))

s=2

+ Z(eS(\_wer) - esfl(w))

s=2

=0
=i—2n+2(w(i) —1).

Since £(|wry]) — €(w) =i — 2n, we get w(i) = 1 and w(i) = 1.

We prove (1)—(5) as follows.

(1) follows from |wr., |(1) = w(i) and (78).

(2): We see from |wr, (1) = w(i), [wry |(u) = w(u — 1) for u € [2,d], [wry](u) =
w(u) for u € [i + 1,n], and (78) (see also Lemma 4.11) that A, (|wr,]),B1(lwry]) C
[i +1,n] and

Ar(lwry]) = {t € [i + 1,n] | w(i) = w(B)},
By ([wry ) = {t € [i +1n] | w(i) < w(t)}
Hence A;(|wry]) N By (lwry]|) = @ and
Ar(lwry ) UB([wry |) = {t € [n] | [lw(®)]| <w(@)},
which implies a1 ([wry]) + by ([wry|) = w(i) —

(3): Since m = w(i), we have e;(w) = 1, A;(w ) [i+1,n], and hence a;(w) =n—1
We see from w(i) < w(1) that B;(w) = [i + w(i),n] and b;(w) =n —i — (w(i) — )

(4) follows from |wr,](s) = w(s — 1) for s € [2,4].

(5): Let s € [2,7]. We see from Lemma 4.11 that

As(lwry ) ={t € i+ 1,n] | [wry](s) = [wry ] (1)} = As—1(w),
=w(s—1) =w(t)
which implies as(|wry|) = as—1(w) for s € [2,4]. Similarly, we deduce from i €
Bs—_1(w) that the map

t—1 iftels+1,4,
t iftei+1,n],

Bs(lwry]) = Bs—1(w) N {i}, t — {
is bijective, which implies bs(|wr,]) = bs_1(w) — 1 for s € [2,1]. O
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Step 2. We show that ¢;(v¥) = 2 and Q(i,w,7) lead to a contradiction; the com-
putation below will be used again in the proofs of Lemmas 4.32-4.33 in §4.5. It
follows from Lemmas 4.5 and 4.16 that c;(v" ) = 2 and Q(i,w,~) are equivalent to
{(lwry])—t(w) = 2i—4n—1. By Lemma 4.15, vV = ¢;_1+¢; and r7 (i—14)(7 — 14).
We see that (:—2,0) € (I1)ar X (I2)ar satisfies the condition for vV € @V in Lemma 4.1;
note that I \{i—2} = [i—3]U{i—1} is of type A;_3x A;. Hence zl\{ = it
is given by u — u+2foru e [i —2],¢i—1+ 1, and i — 2. We have lwr., (1) = w(i),
lwry](2) = w(@ — 1), |wry|(u) = w(u —2) for u € [3,4], and |wry|(u) = w(u) for
€ [i + 1,n]. It follows from Lemma 4.11 that

(79) w(@i) <w(i@—1) <w(l) <w2) < <w(i—2) <w(—1) < w();
—_—

=< ~
note that w(i) — 1 > 0 and w(i — 1) — 2 > 0. If we prove that
(1) el((Ll)le) = ex(lwry]) =0, (Lwer) = es—2(w) for s € [3,i], e;a(w) =
ei(w) =
(2) anlwr]) = wi) 1, as(lwr, ) = wE=T) =2, 3 1 (w) = aufw) =n 1,
(3) bi([wr vg)(f) (%wm) =0, big(w) =n—i—(wi—1)=2)+1, bi(w) =
(4) as(|lwry]) = as—2(w) and bs(lwr,]) = bs_2(w) — 2 for s € [3,1],

then the assertion follows. Indeed, (1)—(4) and Lemma 4.11 imply
(|wry]) = l(w) =2i —4dn+ 142 (w(i) — 1) +2 (w(i — 1) — 2)
~—_—— | S —
>0 >0
> 2% —4n -1,
contrary to £(|wr,]) — l(w) = 2i —4n — 1.
We prove (1)—(4) as follows.
(1) follows from (79).
(2): We see from Lemma 4.11 and (79) that
Ai(lwry]) =4t € i+ 1,n] | [wry|(1) = [wry |(6)} = [i + 1,0+ w(z) — 1],
—_—————  ——
=w(i) =w(t)
which implies a; (|wr,]) = w(i) — 1. Similarly, we have
As(lwry])=li+ 1 i+w(@—1)—2],
Ai_l(w) = A,(w) = [Z + l,n],

which imply as(|wr,y|) = w(i —1) — 2 and a;_1(w) = a;(w) = n — i.

(3): We claim that By(|wr,]) = @. Suppose that 2 € By(|wr,]). Then w(i) =
lwry (1) = o(lwry](2)) = w(i — 1), contrary to (79). Suppose that ¢t € By(|wr,]) N
[3,4]. Then w(i) = |wr, (1) = o(|wr,|(t)) = o(w(t — 2)) and hence w(i) < w(t — 2),
contrary to (79). Suppose that ¢ € By(|wr,]|) N [i + 1,n]. Then w(i) = |wr,|(1) >
o(lwry](t)) = o(w(t)) and hence @ < w(i) < w(t), contrary to Lemma 4.11. Conse-
quently, we have By (|wry]) = @ and by(|wr,]) = 0 as claimed. Similarly, we have
Ba(lwry]) = @ and by (|wr,]) = 0. We next claim that B;(w) = [i+1,n] Ay (lwry]).
Indeed,

Bi(w) ={t € [i +1,n] [ w(i) - o(w(t))}
={teli+Ln]|w@) <w(t)}
=[i+1,n] N Ar(lwr,y)).
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This implies b; (w) = n—i— (w(i) —1). Similarly, we have B;_1(w) = [i,n] \Az(|wr,])
and b;_j(w)=n—i—(wi—1)—2)+ 1.
(4): Let s € [3,14]. We see from Lemma 4.11 that
As(lwry]) = {t € [i+ Ln] | [wry](s) = [wry (1)} = As—o(w),
~———

——
=w(s—2) =w(t)

which implies as(|wry|) = as—2(w) for s € [3,4]. Similarly, we deduce from i — 1,7 €
Bs—_2(w) that the map

t—2 iftels+1,i,

Bs([wry ) = Bs—z(w) N {i — L,d}, t = {t if t € [i +1,m],

is bijective, which implies bs(|wr,]) = bs_2(w) — 2 for s € [3,1]. O

Step 3. We show that (q-C) implies Q(é,w,v). Assume that (q-C) is true. Since
¢(vY) =1, Q(i,w,v) is equivalent to £(|wr,]) — {(w) = i — 2n, by Lemmas 4.5
and 4.16. We see from (g-C) that w and |wr, | satisfy (1)—(5) in Step 1. As in Step 1,
this gives £(|wry|) — €(w) =i —2n+ (w(i) — 1). Since w(i) = 1 by (q-C), we conclude
that £(|wry|) — £(w) =1 — 2n. O

The proof of Proposition 4.18 is complete. O

Proof of Proposition 4.13. (1) and (3) follow by the same method as in the proof of
Proposition 4.8.

We prove (2). Let z,y € (W) ¢ Y9 (2) = (T,¢), and Y (y) = (T',¢). By
Proposition 4.19, we may assume that d := ¢’ — ¢ > 0. The proof is by induction on
d.

If d = 0, the assertion follows from Propositions 4.17 and 4.19.

Assume that d > 0. It follows immediately from Proposition 4.19 that x < y implies
(T,e) < (T',¢). Conversely, we prove that (T,¢) < (T’, ) implies z < y; assume that
T(u) = T'(u+d) for u € [i — d]. To this end, we construct z1,z, € (W 1),
and Ty, Ty € CST¢, (w;) such that yf"(xl) = (T, ), yf"(xz) = (Ta,c — 1),
and z =< 22 < x1 <X y as follows. Let s € [0,i] be such that T'(u) = i —u+1 for
u € [s+1,4], and T'(s) <7 — s+ 1if s # 0. Define Ty, T € CST¢, (w;) by

1 ifu=1,
Ti(u) = ¢ T'(u) if u € [2,9],
t—u+2 ifu€ [max{2,s+1},1,

no= ey greion

To see that T is well-defined, it suffices to show that || Ty (u)]|, v € [4], are all distinct.
This follows from | T1(1)]| =1 < ||T1(u)|| < i—s+1 < ||T1(v)]| for u € [max{2, s+1},1]
and v € [2,s]. Let 21, 2o € (W) ¢ be such that Y (z1) = (T1,¢) and Y (22) =
(Ta,¢ —1). Since T1(u) = T'(u) for u € [i], we see from the assertion for d = 0 that
x1 = y. By Proposition 4.19(5-C5), we have x5 < x;. By induction hypothesis, it
remains to prove that T(u) X To(u+d—1)foruei—d+1]. Letu e i —d+1]. If
ut+d—1€i—1]N[l,s—1], then To(u+d—1) =Ti(u+d) = T'(u+d) = T(u).
fu+d—1¢€[i—1]Nmax{2,s+ 1} — 1,4 —1], then To(u+d—1) = T1(u+d) =
i—(u+d)+2=T(u+d—1)=T(u). We have To(i) =1 = T(i —d + 1). O
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4.5. Type B{". Fix an integer n > 3. Set I = [n]. We assume that the labeling of
the vertices of the Dynkin diagram of type B, is as follows.

[ ] [} e o —=——@0
1 2 n—1 n
Let €1,€9,...,&, be an orthonormal basis of an n-dimensional Euclidean space R™.

Let A = {*(es Ler) | s,t € [n], s <t}U{zxes | s € [n]} be a root system of type B,

and let II = {as = €5 — €541 | s € [n — 1]} U{a@, = &, } be a simple root system of A.
Let W be the Weyl group of A; we see from §4.4 that

(80) W ={w e &(C,) | w(o(s)) = a(w(s)) for s € [n]}.

Note that ry(.,—c,) = (s t)(5 ), r+c, = (5 5), and r4(c_4c,) = (s 1)(5 t) for 5,1 € [n],
s < t. Write CSTp, (w;) = CST¢, (w;). We know from Lemmas 4.1-4.2 and 4.11 that
the map

(81) VP War = ST, (i) x Z, wie v (TW,i(6) ),
induces a bijection from the subset (WI\{i})af C Wat to CSTp, (w;) X Z.
DEFINITION 4.20. Let i € I, (T,¢),(T',¢') € CSTp, (w;) X Z, and d := ¢ — c. Define
a partial order < on CSTp, (w;) X Z as follows.
(1) Assume that i =1. Set (T,c) = (T',¢) if either of the following holds:
(d>2), (d=1, T(1) = 1, and T/(]-) #1),
(d=1and T(1) #1), or (d=0 and T(1) X T'(1) in Cy).
(2) Assume that i € [2,n —1]. Set (T,c) = (T',¢) if
(83) (d=0), (T(u) < T (utd) inCn foruel[i—d),
and one of the following conditions holds:
(i) d is even.
(ii) d is odd. If d € [i — 1], then T(i —d) < n. Ifd € [i], Tt —d+ 1) = 7,
{a1 <ag <+ <ap—jrat =P|~{T(w) |uei—d]}, and T(i—d+1) =
a4, then 1 < ag < T'(aq); note that aq € [d,i] since a, € [u,u + i — d]
foru € n—i+d).
(3) Assume that i =n. Set (T,c) = (T',¢) if
(84) (d>0) and (T(u) 2T (u+2d) in C,, foru € [n—2d]).

PROPOSITION 4.21. Let i € 1.
(1) YProm~ =y P
(2) Forz,y € Waf, we hcwe o~ (z) <
VB (x) < P (y) in CSTp, (wi) x Z.
(3) Let i € [n—1] and (T,c),(T',c) €

(82)

o () in (W ¢ if and only if

CSTp, (w;) X Z. If ¢ — ¢ > i, then

(T, e) 2 (T, ).
(4) Leti=mn and (T,c),(T',c') € CSTp, (wn) X Z. If 2(¢' — ¢) > i, then (T,c) =<
(T, ¢).

By combining Propositions 3.2 and 4.21 (2), we obtain the following tableau crite-

rion for the semi-infinite Bruhat order on Wy of type B,(ll).

THEOREM 4.22. Let J C I. For x,y € (W7 )at, we have z <y in (W) if and only
if VP (x) < Y2 (y) in CSTp, (wi) x Z for all i € I~ J.

The remainder of this subsection is devoted to the proof of Proposition 4.21.
The proofs of Lemmas 4.23-4.24 below are straightforward.
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LEMMA 4.23. Leti € I and v € AT ~ AT We have vV € QYUY if and only if

I~N{i}
one of the following conditions holds:
(1) i=1andyY =61 —e2 =0y .
(2) ie2,n—1] and v =¢; — €41 = ).
B)ie2,n—1and vy =¢eic1+ei =)  +2a) +- -+ 20, 1 + .
(4) i=n and vV —5n,1+5n—a71+ax
LEMMA 4.24. Let i € I. We have
2n—i ifi € [n—1]
85 20{\/’ — {i}) = ’
(55) (00— preie) {2n e

PROPOSITION 4.25 (cf. [4, §8.1]). Let i € I, w € W™ and vy € AT, There exists a

Bruhat edge w —— |wr., | = wr., in QB if and only if v € AT~ AT\{Z,} and one

of the following statements holds.

(b-B1) i € [n—1], ¢;(vY) =1, and there exists s € [i] such that wry(u) = w(u) for
uwe i)\ {s}, 1 2w(s) <n, and wry(s) = min([w(s) + 1,n] ~ {|Jlw(u)| | v €
[i], w(u) = 7}); in this case, we have v =3 — ey = af +af + -+ )
for some t € [i + 1,n].

(b-B2) i € [n—1], ¢;(vY) = 1, and there exists s € [i] such that wry(u) = w(u) for
ue il ~{s}, m2w(s) <1, and wr,(s) = o(max([w(s)| — 1] ~ {w(u) | u €
[i], w(u) X n})); in this case, we have v =¢e5 — ey = af + ay, + -+
for somet € [i + 1,n].

(b-B3) i € [2,n—1], ¢;(vY) = 2, and there exist s,t € [i] such that s < t, wry(u) =

w(u) foru € [~ {s, t} and wr(s) = w(s)+1 =o(w(t)) = o(wry(t))+1 2 n;

in this case, we have 7Y =es+er = af +--+ay_ | +20) +- - +2a)_ | +a.

(b-B4) i = n, ¢, (vY) = 1, and there exist s,t € [i] such that s < t, wry(u) = w(u)
foru € [i] N {s,t} and wry(s) = w(s) + 1 =o(w(t)) = o(wry(t)) +1 2 n; in
this case, we have v =es+ep =af + -+ +2a) + -+ 20 _1 + ).

(b-B5) i € [n—1], ¢;(vY) = 2, and there exists s € [i] such that wry(u) = w(u) for
u € [i| \ {s} and o(wry(s)) = w(s) = n; in this case, we have v¥ = g5 =
200 + 200+ 4+ 20 + oy

(b-B6) i = n, ¢,(vY) = 1, and there exists s € [i] such that wr(u) = w(u) for
u € [i] N {s} and o(wry(s)) = w(s) = n; in this case, we have vV = &
20 + 200 1+ 420+

Moreover, for w,v € W™ we have w < v if and only if w(u) < v(u) for u € [i].

Forie I, we Wt and v € AT AT\{i}, let Q(i,w,7) denote the following
statement.
Q(i,w,~): There exists a quantum edge w —— |wr, | in QB>

PROPOSITION 4.26. Let i € I, w € W™ and y € AT AT

true if and only if one of the following statements holds.

(a-B1) i=1,c1(vY) =1, and (w(1), lwry](1)) € {(1,2),(2,1)}; in this case, we have
fyv:€1—52:a}/.

(-B2) i € [2,n—1], ¢;(vY) =1, and 1 < w(i) < i+ 1. If we set k = w(i), then
w(u) =u+1 foruek—2], k <w(u) Xn foruelk—1,i— ] lwr,](1) =1,

I~{i}- Then Q(i,w,7y) is

and |wr. | (u) = w(u—1) for u € [2,4]; in this case, we have v =&; —€;41 =
ay.

(@-B3) i€ 2,n—1], c;(vY) =2, |wry](1) = w(i) =1, |wry](2) = w(i —1)=2, and
lwry ] (u) = w(u —2) for u € [3,4]; in this case, we have v" = g;_1 +¢&; =
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i=mn, c,(7Y) =1, lwry|(1) = w@) =1, lwry|(2) = wn—1) = 2, and
lwry ] (u) = w(u —2) for u € [3,n]; in this case, we have v" = e,_1 + &, =
«

Before starting the proof of Proposition 4.26, we mention a consequence of Lemma
4.3 and Propositions 4.25-4.26.

PROPOSITION 4.27. Let i € 1, :c sy € (WINEY . VB () = (T, e), and Y2 (y) =

(T, ). There exists an edge x SN y in SiIBIMD for some 8 € Al if and only if one

of the following conditions holds:

($-Bl) i € [n—1], ¢ = ¢, and there erists s € [i] such that T'(u) = T(u) for

€[] ~{s}, 1 XT(s) < n, and T'(s) = min([T(s) + L,n] ~ {||T(w)|| | v €

[i], T(u) = n}).

($-B2) i € [n—1], ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for

€]~ {s}, m 2 T(s) < 1, and T'(s) = o(max([||[T(s)|| = 1] ~ {T(u) | u €

[i], T(u) 2n})).

(5-B3) i € [2,n], ¢ = ¢, and there exist s,t € [i] such that s < t, T'(u) = T(u) for
u€ i ~{s,t}, and T'(s) =T(s)+1=0(T(t)) =o(T'(t)) +1 =2 n.

(5-B4) ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for u € [i] \ {s} and
o(T'(s)) =T(s) =n. B

($-B5) i=1,¢ =ct 1, and (T(1), T (1)) € {(1,2),(2,1)}.

(2-B6) i€2,n—1], =c+1, and 1 < o(T(i)) i+ 1. If we set k = o(T(i)), then
Tu)=u+1foruelk—2], k<T(u) 2n foruelk—1,i—1], T'(1) =

and T'(u) = T(u — 1) foru € [2,1i].

($-B7)ic2,n—1],d =c+2, T(1)=0(T@) =1, T(2) =0(T(i — 1)) =2, and
T (u) = T(u—2) foru € [3,1].

(B8 i=mn,cd =c+1, T(1) =0(T(n) =1, T(?2) = o(T(n — 1)) = 2, and
T (u) = T(u—2) for u € [3,n].

We have divided the proof of Proposition 4.26 into a sequence of lemmas.
LEMMA 4.28. Q(1,w, ) implies (¢-B1).

Proof. Assume that Q(1,w, ) is true. By Lemmas 4.4 and 4.23, we have v = g1 —¢5 €
QYN = (12)(T2), and |wr,| = wrv(zl\{l}) L Set J=I~{1} = [Z,n]; note
that J is of type B,_1. We see that 2 € J,¢ satisfies the condition for vV € QV in
Lemma 4.1; note that J~ {2} = [3,n] is of type B, _2. Hence z:y’v = w(‘)]wJ\{Q} (22)
and |wry] = w(1 2)(1 2)(2 2) = w(1 2 1 2). From this we obtain |wr,](1) = w(2),
|lwr,](2) = w(l), and |wry|(u) = w(u) for u € [3,n]. It follows from Lemma 4.11
that

(86) max{w(1),w(2)} < w(3) < w(4) < w(n) X n.

Hence [wr,|(u) = w(u) = u for u € [3,n]. If w(I) < w(2), then (w(1), [wr,y](1)) =
(1,2). If w(2) < w(I), then (w(1), lwry (1)) = (2,1). O
LEMMA 4.29. (g-B1) implies Q(1,w, 7).

Proof. Assume that (q-Bl) is true. We see from Lemmas 4.5 and 4.23-4.24 that
Q(1,w,~) is equivalent to £(|wr,]) — ¢(w) = 2 — 2n. Note that (g-Bl) and Lemma
4.11 yield (86).

If (w(1), |wry] (1)) = (1,2), then w = (1 1) and |wry] = (1 2)(12) = rq, by Lemma
4.11. Since £(|wry]) = 1 and {(w) = a;(w) + bi(w) +e1(w) =(n—-1)+(n—-1)+1=
2n — 1, we have £(|wry |) — {(w) =2 — 2n.
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If (w(1), lwry](1)) = (2,1), then w = (1 21 2) and |wr,] = e, by Lemma 4.11.
Since £(|wr,]) = 0 and {(w) = a;(w) +bi(w)+e1(w) = (n—1)+(n—2)+1=2n-2,
we have £(|wr,]) — l(w) =2 — 2n. O

LEMMA 4.30.4 € [2,n — 1], ¢;(vY) = 1, and Q(i,w,~y) imply (q-B2).

Proof. Assume that i € [2,n — 1] and ¢;(y") = 1, and that Q(i,w,) is true. By
Lemmas 4.4 and 4.23, we have 7V = ¢, —e;41 € Q¥ ) = i+ 1) 7+1),
and |wry| = wr,y(z,lyi{i})’l. We see from Lemmas 4.5 and 4.24 that Q(i,w,7y) is
equivalent to ¢(|wry|) —l(w) =i —2n+1. Let I \ {i} = I UI,, where [; = [i —1] is
of type A;_1 and I = [i+1,n] is of type B,,—;. We see that (i—1,i4+1) € (I1)at X (I2)ar
satisfies the condition for vV € @ in Lemma 4.1; note that I; ~ {i — 1} = [i — 2]

is of type A;_5 and Ir ~ {i + 1} = [i + 2,n] is of type B,_;—1. Hence zit{i} =

whwl Tyl 2 T2 DE+17F1) and lwr.y | = w(ii+
DEirDG+1i+DG - 210G - 2D =w(ii+17i+ 1)@ - 21)( --- 2 7T).
We have |wr., (1) = w(i+1), [wry](u) = w(u—1) for u € [2,i], [wry |(i+1) = w(i),
and |wry |(u) = w(u) for u € [i 4+ 2,n]. It follows from Lemma 4.11 that

. wi+1) <w(l) <w(2) < <w(—1) <w(),
(®7) max{w(i),w(i + 1)} <w(i+2) <w(i+3) < <wn) In =< w(i).

Hence w(i) < i+ 1. Set k = w(i) = [wr,](i+1). The rest of the proof will be divided
into four steps.

Step 1. We claim that k& = 1 and (1)—(5) below imply (q-B2). Let [ € [k — 1,4] be
such that w(l — 1) < n < w(l).

(1) ai([wry]) = bi([wry]) = e (lwr, ]) =0,

(2) as(lwry]) = as—1(w) — 1 for s € [2,k — 1], as(|wr,]) = as_1(w) for s € [k, 1],

(3) bs(lwry]) =bs—1(w) for s € 2,k —1]U[l+1,i], bs(|wry|) = bs—1(w) —1 for

s € [k,1],

(4) es(|lwry]) = es—1(w) for s € [2,1],

(5) aj(w) =n—1, bj(w) =n—i—1, ¢;(w) =1.
Indeed, if k£ > 1, then |wr,|(u) = u for v € [k — 1], by (87), Lemma 4.11, and
|wry] (i + 1) = k. Therefore w(u) = |wr,](u+1) =u+1 for u € [k — 2]. It follows
from w(1l) = 2 and (87) that |wry|(1) = w(i + 1) = 1. Also, by (87), we have
k—1=w(k—2) <w) <w(i) =k foru € [k—1,i — 1], which implies |jw(u)|| > k
for uw € [k — 1,7 — 1]. It remains to prove that w(u) < n for u € [k — 1,7 — 1]; we
only need to show that | = 4. It follows from Lemma 4.11 and (1)-(5) above that
(|lwry]) —l(w) =i —2n+ 14 (¢ —1). Since £(|wry]) — l(w) =i —2n + 1, we get
l=1. O

Step 2. We prove (1)—(5) in Step 1 under the assumption that &k > 1.

(1) follows from |wr,|(1) = 1.

(2): If s € [2,k — 1], then Aj(lwry]) = @ and A,_1(w) = {¢ + 1}, which im-
plies as(lwry]) = as—1(w) — 1. If s € [k, 1], then As(|wr,]) = As(w), which implies
as(lwry]) = as_1(w).

(3): If s € [2,k — 1], then By(|wry|) = Bs—1(w) = &, which implies bg(|wry|) =
bs—1(w). If s € [k,I], then & < |wry|(s) = w(s — 1) X n, i € Bs_1(w), and the
map Bg(lwry]) = Bs_1(w) \ {i}, t = ¢t — 1, is bijective. This implies bs(|wry|) =
be—1(w)—1.1f s € [I+1,1], then 7w = |wry |(s) = w(s—1) and B,(|wr,]) = Bs—1(w),
which implies b, (|wry]) = bs—1(w).

(4) follows from |wr, |(s) = w(s — 1) for s € [2,1].
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(5): Lemma 4.11 and w(i) = k = 7 show that a;(w) = n —i and e;(w) = 1. We see
from |lw(s)|| > k = ||w(3)| for s € [k — 1,7 — 1] that b;(w) =n —1i— 1. O

Step 3. It remains to prove that k > 1. On the contrary, suppose that £ = 1. Then
w(t) =k < w(i+ 1) < n. If we prove that

(6) er(lwry]) =0, es(lwry]) = es—1(w) for s € [2,7], and e;(w) =1,
(7) a;(w) =n —1,
(8) ar(lwry]) =1, ba(lwry]) = w(i+1) =2,
(9) as(|wry]) = as_1(w) for s € [2,4],
(10) bs(lwry]) =bs_1(w) —1 for s € [2,1],
(11) bi(w) =n —1,

then £(|wr, |)—€(w) = i—2n+14(w(i+1)+2i—4). Since (|wry]) —4(w) = i—2n+1
and i > 2, we have w(i + 1) = 4 — 2i < 0, a contradiction. O

Step 4. We prove (6)—(11) in Step 3 under the assumption that k& = 1; in fact, we do
not use k = 1 to prove (6)—(7).

(6) follows from (87) and |wr, |(u) =

(7): We deduce from (87) that A;(w)

(8): By Lemma 4.11, A;(|wr,]) C [z
|wry | (i+1), we have i+1 € A;(|wr, ]). Since |wry |(t) = w(t) for t € [i+2,n], we have
Ai(lwry])N[i+2,n] = @. Hence A (|wr,]) = {i+ 1} and a;(|wry|) = 1 as claimed.
Since [wry|(1) = w(i+1) < 1 =w(i) = o(|lwry (i + 1)), we have i + 1 ¢ By (lwr,]).
Therefore

w(u — 1) for u € [2,1].
= [i + 1, n], which gives a;(w) =n — 1.
+ 1,n]. Since [wry](1) = w(i + 1) = w(i) =

Bi(lwry]) = {t € [2,i] | [wry|(1) > o([wry ] (1))}
=w(i+1) =o(w(t—1))
Uit € li+2,n]| [wry](1) = o([wry ] (1))}
—_——— —/
=w(i+1) =o(w(t))
It follows that the map

[2,n] = [n], t— {

induces a bijection from Bi(|wr,]) to {t € [n] | w(i + 1) > o(w(t))} ~ {i}. Since
w(i+ 1) = min{w(u) | u € [n]}, the latter set equals
fw ' @), w @), (@l 1) ).

This proves by (|wry|) = w(i + 1) — 2.

(9): Let s € [2,4]. Since |wr,](i+1) =1 and w(i + 1) = min{w(u) | v € [n]}, we
have i +1 € Ag(lwry]) and i +1 € A;_1(w). It follows from Lemma 4.11 that

As(lwry]) = {i+ 1} U{t € [i +2,n] | [wry](s) = o(lwry (1)} = As1(w),
—_——  ——

=w(s—1) =w(t)

t—1 ifte[2i,
t if t € [i +1,n],

which implies a(|wry|) = as_1(w). . B
(10): Let s € [2,4]. Since |wr,](i +1) = w(:i) = 1, we have o(|wry (i + 1)) >
lwry |(s). Therefore i + 1 ¢ By(|wry|) and

By([wr ) = (By([wr ]) (1 [s+ 1,]) U (B (Lwr,]) N [i +2,1))
={tels+ 14| wr,](s) <o(lwr,]{))}
—_——  ——
=w(s—1) =o(w(t—1))
U{tefi+2,n] | lwry|(s) < o(lwry (1))}
=w(s—1) =o(w(t))
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Also, w(1) =1 implies i € Bs_;(w). It follows that the map

t—1 ifte[s+1,4,
t ift ei+1,n],

[s+1,n] — [s,n], t»—>{

induces a bijection from B,(|wr,]) to Bs_1(w) ~ {i}, which implies b(|wr,]) =
bs_1(w) — 1.

(11): Since w(i) = 1, we have B;(w) ={t € [i + 1,n] | w(i) > o(w(t))} = [i + 1,n].
This proves b;(w) = n — i as claimed. O

The proof of Lemma 4.30 is complete.
LEMMA 4.31. (q-B2) implies Q(i,w,~).

Proof. Assume that (q-B2) is true; note that c;(yY) = 1 and (87) in the proof of
Lemma 4.30 holds. We see from Lemmas 4.5 and 4.24 that Q(¢,w, ) is equivalent to
L(lwry|) — l(w) =i —2n+ 1. If we prove that

E ; ((Ll;myj) = Q, es(lwry|) = es—1(w) for s € [2,4], and e;(w) =1,
(3) (L ]) = by (Lor ) =0
) b1 (w) if w(s—1) < w(i), ,
(4) bs(lwr,]) = by () — 1 if w(s — 1) = w() for s € [2,1],
a(lwr as—1(w)—1 ifw(s—1)<w(i), s ;

) aulur, ) = 2N T T DI o )

(6) b;(w)=n—i+1,
then ¢(|wry]) — {(w) =i —2n+ 1 by Lemma 4.11, which is our assertion. We prove
(1)—(6) as follows.

(6
(1)—(2) follow by the same method as in Step 4 of the proof of Lemma 4.30.
(3): Since |wr,](1) = 1, we have A;(|wr,]) = Bs(lwry]) = @ and as(lwr,]) =
bs([wry]) = 0.
(4): Let s € [2,14]. We first claim that i+1 ¢ B,(|wr,]). Indeed, we see from (q-B2)
that [k — 1] C {|wry](v) | w € [i]} and k ¢ {|wr,](u) | u € [i]}. By Lemma 4.11, we
have

Lwrs J (i + 1) = min ([n] \ {{wry ] (u) | v € [i]}) = k = w(i).
Since |wry](s) = w(s —1) = n < k = w(i) = o(|wry](i + 1)), we have i + 1 ¢
Bs(lwry]) as claimed. It follows that
Bs(lwry ) ={t € [s + L] | [wry](s) > o([wry (1)}
=w(s—1) =o(w(t—1))
U{t e li+2n] | [wr)(s) = Lwr, ()
=w(s—1) =o(w(t))

We next claim that ¢ + 1 ¢ B;_1(w). We see from Lemma 4.11 that w(i + 1) = 1.
Hence o(w(i +1)) =1 = w(s — 1), which implies ¢ + 1 ¢ B,_;(w) as claimed. Note
that i € Bs_1(w) if and only if w(s — 1) > w(%). It follows that the map

t—1 iftels+1,i,
t ifteli+1,n],

[s+1,n] — [s,n], t»—>{

induces a bijection from B,(|wry]) to Bs_1(w) (resp. from Bs(|wry|) to Bs_1(w) ~
{i}) if w(s — 1) < w(i) (resp. if w(s — 1) = w(i)). This proves (4).
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(5): Let s € [2,4]. Since |wr. | (i +1) = w(i), we have i +1 € Ay([wry]) if and only
if w(s —1) = w(7). It follows from Lemma 4.11 and |wr,](t) = w(t) for t € [i + 2,n]
that As(lwr,]) = As—1(w) N {i + 1} (vesp. As(lwry]) = As—1(w)) if w(s — 1) < w(i)
(resp. if w(s — 1) = w(i)). This prove (5).

(6): By Lemma 4.11 and (87), we have w(i +1) = 1. Hence w(i) < 1 = o(w(i + 1))
and i+ 1 ¢ Bg(w). Also, we see from (87) that w(i) = o(w(t)) for ¢t € [i + 2,n], and
consequently Bs(w) = [i + 2,n]. This proves (6). O

LEMMA 4.32.7 € [2,n — 1], ¢;(vY) = 2, and Q(i,w,~) imply (q-B3).

Proof. Assume that i € [2,n — 1] and ¢;(v") = 2, and that Q(i,w,~) is true. We see
from Lemmas 4.5 and 4.24 that Q(¢, w, ) is equivalent to {(|wr,|)—l(w) = 2i—4n+1.
By the same argument as in Step 2 of the proof of Proposition 4.18 in §4.4, we
have |wr, |(1) = w(i), |wry](2) = w(@ —1), |wry](u) = w(u —2) for u € [3,4],
Y =eio1 + &, and L(|wry]) — l(w) = 2i —4n 4+ 1+ 2(w(i) — 1) + 2(w(i — 1) — 2).
Hence w(i) =1 and w(7 — 1) = 2. This implies (q-B3). O

LEMMA 4.33. (¢-B3) implies Q(i,w, ).

Proof. Assume that (q-B3) is true; note that ¢;(y") = 2. We see from Lemmas 4.5 and
4.24 that Q(i, w, ) is equivalent to £(|wr, |)—¢(w) = 2i—4n+1. By the same argument
as in Step 2 of the proof of Proposition 4.18 in §4.4, we have {(|wr,]|) — f(w) =

2i —4n+1+2(w(i) — 1)+ 2(w(i — 1) — 2). Since w(i) = 1 and w(i — 1) = 2 by (q-B3),
we conclude that £(|wr,]) — f(w) = 2i —4n + 1. O

LEMMA 4.34. Q(n,w,~) is equivalent to (q-B4).

Proof. By Lemmas 4.4 and 4.237 we may assume that 7V = ¢, 1 +¢e, € Q¥ )
and |wry| = wn,(zi?{n}) . We see from Lemmas 4.5 and 4.24 that Q(n,w,) is
equivalent to £(|wry]) — f(w) =1 — 2n.

We first show that Q(n,w,~) implies (q-B4). Set J = I ~ {n}; note that J is of
type An,_1. We see that n — 2 € J,¢ satisfies the condition for vV € QV in Lemma
4.1; note that J ~\ {n — 2} = [n — 3] U {n — 1} is of type A, 3 x A;. Hence 27, =

wb]w({\{n 2 = wbjw([)"_g] "= is given by w > u+ 2 for u € n—2],n—1m1,

and n — 2. Then |wr,] is given by 1 — w(n), 2 — w(n — 1), and u — w(u — 2) for
u € [3,n]. It follows from Lemma 4.11 that

(88) wm) <whn—-1) <w(l) <w2) << wn—-2)<wn—1) <wn).
<n n

[

Hence |[w(m)|| < [|w(n —1)|| < ||w(u)|| for v € [n — 2], which implies |wr,]|(1) =
w(m) =1 and |wr,](2) = w(n — 1) = 2. This proves (q-B4).

We next show that (q-B4) implies Q(n,w, ). We see that (q-B4) yields (88). If we
prove that

(1) a : (LUEH)J) T as(w) = 0 for s € [n], bi(lwry]) = ba(lwry]) = bn(w) =0,

(2) n( lwry]) = ex(lwry]) = 0, ep_1(w) = en(w) =1, es(lwry]) = es—a(w) for
s € [3,n],

(3) bs(lwry]) = bs_2(w) — 2 for s € [3,n],
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then £(|wry]) — £(w) = 1 —2n, which implies Q(n, w,~). We prove (1)—(3) as follows.
(1)—(2) follows from (88). We deduce from n — 1,n € Bs_2(w) that the map

Bs(lwry]) ={t € [s + 1L,n] [ [wry](s) > o(lwry] ()}
=w(s—2) =o(w(t—2))
= Bsa(w)~{n—1,n}, t—t—2

is bijective, which implies bs(|wr,]) = bs_2(w) — 2 for s € [3,n]. This proves (3). O
(

Proof of Proposition 4.21. (1) and (3)—(4) follow by the same method as in the proof
of Proposition 4.8.

We prove (2). The assertion for ¢ = 1 follows immediately from Proposition 4.27.
Also, we can prove the assertion for i = n by a similar argument to the proof of
Proposition 4.13. Assume that i € [2,n — 1]. Let z,y € (W) ¥P(2) = (T, ¢),
and VP (y) = (T/,¢). Tt follows immediately from Propositions 4.25-4.27 that = < y
implies ¢ < ¢ and T(u) X T'(u+ ¢ —¢) for u € [i — ¢’ + ¢]. Hence we may assume
that d := ¢ —¢ > 0 and T(u) < T'(u+ d) for u € [i — d]. The proof is by induction
on d. The assertion for d = 0 follows immediately from Propositions 4.25 and 4.27.
Assume that d > 1. In what follows, we write e = #{u € [i] | T(u) = W} and
{a1 <ag < <ap—jtef =[]~ {T(u) | u € [i]}. We have m < T(i —u+ 1) < @, for
u € [e]. Note that T(i —d) =< n is equivalent to e < d. We have divided the proof into
seven steps.

Step 1. We prove that if d > 2 is even, then & < y. Let s € [i + 1] be such that
T(s) = s+ 2and T(u) <u+1 for u € [s — 1]. Define Ty, To € CSTp, (w;) by

u+2 ifu € [min{s—1,i — 2},
T(u) ifue€l[s,i—2],

Ti(u) =< _
1) =145 ifu=i-—1,
1 if u =1,
1 if u=1,
To(u) =<2 if u=2,

Ti(u—2) ifue](3,i.

Let x1,29 € (W) ¢ be such that Y2 (x1) = (T1,¢) and VP (z5) = (Ta, ¢+ 2).
We have T(u) =< T1(u) for u € [i]. Hence x < x1 by the assertion for d = 0. We have
w1 < 2 by Proposition 4.27 (%-B7). It remains to prove that z» < y. By induction
hypothesis, it suffices to show that To(u) < T'(u + d — 2) for u € [i — d + 2]; note
that ¢ — (¢4+2) = d—2 > 0 is even. We have To(1) = 1 < T'(1 +d — 2) and
T2(2) =2=<T2+d—-2). Letue[i—d+2]N[3,d. If u—2 € [min{s — 1,7 — 2}],
then To(u) =u 2 T'(u) < T'(u+d—2). lf u—2 € [s,i — 2], then T2(u) = T(u—2) <
T (u+d-—2). O

Step 2. We prove that if # < y, d is odd, and d € [i — 1], then T(i — d) < n, or
equivalently, e < d. Since d is odd, we see from Proposition 4.27 that there exists an
edge 1 NI Tg, x1,20 € (WINH) i, B € AL, in SiBIM of type (5-B6) such that
x =X x1 and o = y; we may assume that there is no edges of type (%—Bfﬁ) in a directed
path p from z to z; in SiB/>{", Write VE (1) = (T1,e1) and Y2 (22) = (T2, c2);
note that ¢; — ¢ is even. Set e; = #{u € [i] | T1(u) = 7}; we have e; = 1 by (5-B6).
It follows from Proposition 4.27 that there exist (¢ — ¢)/2 edges of type (5-B7) in
the directed path p, and hence 1 = e; > e—(¢; —¢). Since ¢ —¢a 2 0 and ¢ —¢p = 1,
wehaved=c —c=(c —c2)+(ca—c1)+(c1—¢c) 214+ (c1 —¢) 2 e O
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Step 3. We prove that if x < y, d is odd, d € [i], and T(: — d + 1) = ag, then
1 < aq < T'(aq); we see from Step 2 and T(i —d + 1) = @g that e = d and aq € [d, i].
We proceed by induction on d.

Assume that d = 1. We first prove that 1 < a;. It follows from d = 1, z < vy,

and Proposition 4.27 that there exists an edge 1 L To, T1,Ty € (WI\{i})af,
B e Al in SiBI™M of type ($-B6) such that < x; and 2o =< y. If we write
YE (1) = (T",¢"), then ¢/ = ¢, T(u) < T"(u) for u € [i], and T”(i) < T (see
($2-B6)). Hence ay = T(i) < T”(i) < 1, which gives 1 < a;.

Assume that d = 1. We next prove that a; < T’(ay). Suppose, contrary to our
claim, that T’(a1) = a;. By a similar argument above, we see from Proposition 4.27
(see (%-B6)) that there exist [ € [2,a1] and Ty, Ty € CSTp, (w;) such that T(u) =<
Ti(u) for w € [i], Ti(u) = u+1foru € [ —2], T1(4) =1, Ta(1) = 1, Ta(u) =
Ti(u—1) for uw € [2,i], and Ta(u) < T'(u) for u € [i]; it follows from Lemma 4.11
that Ty(u) > w+ 2 for u € [l — 1,4 — 1]. Since a1 — 1 € [l — 1,i — 1], we have
To(a1) =Ti(ar — 1) = a1 + 1> a; = T'(a1), contrary to Ta(a1) < T'(a1).

Assume that d > 3. Since a4 € [d,i], we have 1 < aq4. It remains to prove that
ag < T'(aq). Define T3, T4 € CSTpg, (w;) by

u+2 ifu€lag—2],
T(u) ifu€lag—1,i—2],

Ta(u) =< _
W =145 ifu=i-—1,
1 if u =1,
1 ifu=1,
T4(u): 2 ifu:2,

Ts(uw—2) ifuel3,i;

note that if u € [i — 2] and T(u) > ag, then u € [ag — 1,7 — 2] and T3(u) = T(u). Let
x4 € (W) ¢ be such that Y57 (x4) = (T4, ¢+ 2). We see that ¢ — (¢ +2) = d — 2
isodd, d—2 € [i — 2], T4(i — (d —2)) = n (by Step 2), and T4(i — (d —2)+ 1) =
T3(i—d+1) =T(i—d+ 1) = ag; note that i —d + 1 € [i — 2] and [n] ~ {T4(u) |
u€ i —d+2]} ={as < -+ < an—i+q}. Therefore, if we prove that x4 < y, then
ag < T'(aq) by induction hypothesis.

Let us prove that x4 < y. It suffices to show that T” € CSTp, (w;) and (T,c¢) <
(T",¢ + 2) imply (Tg4,c+2) 2 (T"”,c + 2). Indeed, we see from Proposition 4.27
that there exists #” € (W!>{) ¢ such that = < 2 < y and Y2 (2") = (T", ¢+ 2)
for some T” € CSTp, (w;). Since (¢ 4+ 2) — ¢ = 2 is even, z < z’ is equivalent to
(T,e) < (T", ¢+ 2) by Step 1. Also, x4 < 2’ is equivalent to (T4,c+2) < (T",c+2).
Therefore, (T4, c+2) 2 (T",c+2) (and 2" < y) yield z4 < y.

Assume that T” € CSTg, (w;) and (T,c¢) < (T”,¢+2). We have T4(u) = u = T (u)
for u € [ag], and Ty(u) = T(u —2) < T"(u) for u € [az + 1,4]. Hence (T4,c+ 2) =
(T", c+2). O

Step 4. We prove that d = 1 and (ii) in Definition 4.20 (2) for (T,¢) and (T’,¢’) imply
T =<y
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We first assume that (i # n—1and T(i) <n)or (W = T(i) < @1). Thenn—i+e > 2
and T(’L) < @s. Define T, T, € CSTB" (wz) by

u+1 ifu€lag—2],
Ti(u) =< T(u) ifu€lfag—1,i—1],
as if u=1,
1 ifu=1,
Ta(u) = . .
Ti(u—1) ifue€](2,1].

Let z1,22 € (W), be such that Y7 (z1) = (T1,¢) and VP (22) = (Ty,¢) =
(Ta,e+1). We have T(u) = u < u+1 = Ty(u) for u € [ag — 1], T(u) = T1(u) for
u € [a1,7 — 1], and T(i) < @z = T1(¢). Hence z < x; by the assertion for d = 0. We
have 21 < x5 by Proposition 4.27 ($-B6). We have To(u) = u < T'(u) for u € [az—1],
and Ta(u) = T(u—1) < T'(u) for u € [ag,i]. Hence x5 < y by the assertion for d = 0.
Consequently, we have x < y.

We next assume that ¢ =n — 1 and T(n — 1) < n; note that n — ¢ + e = 1. Define
T1, T2 € CSTp, (wh—1) to be such that Ty (u) = T(u) for u € [n—2], T1(n—1) =ag,
To(1) =1, and To(u) = Ty(u— 1) for u € [2,n — 1]. Let z1, 22 € (W {}),¢ be such
that Y2 (z1) = (T1,¢) and VP (23) = (T2,¢) = (Ta, ¢+ 1). By a similar argument
above, we can see that z < x7 < s < y.

We next assume that T(i) = a7 and 1 < a; < T'(a1). Thene=d, n—i+e > 2,
as € [3,i+ 1], and u+1 < T'(u) for u € [a1,i] (see (ii) in Definition 4.20 (2)). Define
T3, T4 € CSTBn (wz) by

u+1l ifuéefa —2],
Tg(’u): U+ 2 ifue [al—l,ag—Z],
T(u) ifu€lag—1,1,

1 ifu=1,
T4(“){Tg(u—n if ue (2,

Let z3,z4 € (W), be such that Y7 (z3) = (T3,¢) and Y2 (z4) = (T4, ) =
(Tgye+1). We have T(u) = u < u+1 = Tz(u) for u € [a; — 2], T(ay — 1) =
ap—1<a1+1=Ts(a1 —1), T(u) =u+1<u+2=Ts(u) for u € [as,as — 2], and
T(u) = T3(u) for u € [ag — 1,4]. Hence x < x3 by the assertion for d = 0. We have
x3 = x4 by Proposition 4.27 ($-B6). We have T4(u) = u < T'(u) for u € [a; — 1],
Ta(u) = Ta(u—1) = u+1 < T'(u) for u € [a1,a2—1], and T4(u) = T(u—1) < T'(u) for
u € [ag,1]. Hence x4 < y by the assertion for d = 0. Consequently, we have z < y. O

Step 5. We prove that if disodd, d = e € [3,i], T(i—d+1) = ag, and 1 < ag < T'(aq),
then x < y. Let T3, T4 € CSTp, (w;) be as in Step 3, and let z3,z4 € (WI\{i})af
be such that Y2 (z3) = (T3,¢) and Y2 (24) = (T4, ¢ + 2). We have T(u) < T3(u)
for u € [i], and hence x < x5 by the assertion for d = 0. We have z3 < x4 by
Proposition 4.27 (5-B7). Hence x < 4. By the same method as in Step 3, we see that
d—(c+2) =d—2isodd, d—2 € [i—2], T4(i—(d—2)) = n, T4(i—(d—2)+1) = ag, and
{az <+ < an—ita} = [n]~{Ta(u) | u € [i]}. Also, we have T4(u) < T (u+d—2) for
u € [i —d+2], because T4(u) = u = T'(u) X T'(u+d—2) for u € [min{aqg,i—d+2}],
and T4(u) = T(u—2) X T'(u+d —2) for u € [ag + 1,i — d + 2]. Consequently,
(Tgye+2) = (T',¢') (see (ii) in Definition 4.20 (2)). By induction hypothesis (and
Step 4), we have 24 < y. Hence z < y. O
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Step 6. We prove that if d is odd, d € [3,i], and T(i —d + 1) < n, then x < y. We
proceed by induction on e; note that e € [0,d — 1].

Assume that e = 0. By the same method as in Step 4, we can find zy,25 €
(W) ¢ and Ty, Ty € CSTp, (w;) such that Y2 (z1) = (T, ¢), V2" (22) = (Ta, e+
1), 2 <21 < 22, and To(u) X T'(u+d—1) for u € [u—d+1]. Since ¢ — (c+1) =d—1
is even, we have o < y by Step 1. Hence = < y.

Assume that e € [d — 1]. Let T4 € CSTp, (w;) and x4 € (WI\{i})af be as in Step
3; since n — i+ e > 2, Ty is well-defined. By the same method as in Step 5, we see
that © < 24, ¢ — (c+2) =d—21is odd, and T4(u) X T'(u+d—2) foru € [i—d+2]. It
remains to prove that z4 = y. We have T4(i —d+3) < max{i—d+3,T(i—d+1)} <= n
and #{u € [i] | T4(u) = 7} = max{0,e — 2} < e. If d > 5, then ¢/ — (c+ 2) € [3,1],
and hence x4 < y by induction hypothesis. If d = 3, then e € [2], ¢ — (¢ +2) = 1,
T4(i) <X n, and hence x4 < y by Step 4. Thus z < y. O

Step 7. We prove that if d is odd and d > ¢, then x < y. Note that d > 3 and
n—i1+e>1.

We first assume that n —i+e =1. Theni=n — 1 and e = 0. In a way similar to
the case of e = 0 in Step 6, we can see that x < y.

We next assume that n — i + e > 2. We proceed by induction on d. Let T4 €
CSTpg, (w;) and z4 € (WI\{i})af be as in Step 3; since n — i +e > 2, T4 is well-
defined. By a similar argument to Step 5, we have x < x4 and T4(u) X T'(u +d — 2)
for u € [i—d+2]. Note that ¢/ — (¢c+2) =d—2isodd. If d =3 =i+1,thend—2 =1,
T4(i) =2 <X n, and hence x4 < y by Step 4. If d > 5 and d € {i + 1,i + 2}, then
d—2 € [3,i], T4(i—d+3) = T4(2) =2 < n, and hence x4 = y by Step 6. If d > i+ 2,
then d — 2 > 4, and hence x4 < y by induction hypothesis. Thus x < y. 0

The proof of Proposition 4.21 is complete. d

4.6. Type DY, Fix an integer n > 4. Set I = [n]. We assume that the labeling of
the vertices of the Dynkin diagram of type D, is as follows.

.A—l

° Y e
1 2 n—2
n
Let €1,e9,...,6, be an orthonormal basis of an n-dimensional Euclidean space R".

Let A = {£(es £ &) | s,t € [n], s < t} be a root system of type D, and let
I={as;=¢cs—¢€s11|s€n—1]}U{an, =en_1+en} be a simple root system of A.

Let W be the Weyl group of A. Note that W acts faithfully on {+e; | s € [n]} C R™.
Define a partially ordered set D,, by

(89) Dn{1<2<~--<n1<Z<n1<~--<2<1}.

Let o : D,, = D,, be the bijection defined by s > 5 for s € [n]. If we identify D,, with
{fes | s€[n]} by s =¢e5s and § = —¢, for s € [n], then W can be described as follows:
W ={we&(D,) | w((s)) =oc(w(s)) for s € [n], and
(90) 1
#{s € [n] | w(s) = @} is even}.

Note that 74, —c,) = (s £)(5 f) and 74(c_4c,) = (s 1)(5 t) for s,t € [n], s < t.
For w € 6(D,,) and s € [n], set

(91) As(w)={t € [s+1,n]| w(s) = w(t) in D}, as(w)=#As(w),
(92) Bs(w)={t € [s+1,n] |w(s) = o(w(t)) in D,}, bs(w)=#Bs(w);
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note that a,(w) = by, (w) = 0. The length function ¢ : W — Z> is given by

n

(93) Uw) =Y (as(w) + by(w))

s=1
for w € W. The longest element of W is given by u — @, u € [n], if n is even, and
u— T, u € [n—1], if n is odd.
Let || - || : Dy — [n] be the map defined by ||s|| = s and ||3]| = s for s € [n]. We
identify a totally ordered i-element subset T = {T(1) < T(2) < --- < T(¢i)} C D,
with the column-strict tableau of the form (63). For i € I ~ {n — 1} and w € W, let

Tq(ui) C D,, be the totally ordered i-element subset such that

(04)  TY = {TOO) <TVE) < < TY0) | = {w(1), w(2),...,w(i)}.

For w € W, let Tgﬁl) C D, be the totally ordered n-element subset such that

TE — {TE00) <T@ < < TE )
={w(1),w(2),...,w(n —1),w(m)}.

For i € [n—2], let CSTp, (w;) be the family of totally ordered i-element subsets T of
D,, such that || T(u)||, v € [i], are all distinct. Let CSTp_ (wp—_1) (resp. CSTp, (w,))
be the family of totally ordered n-element subsets T of D,, such that || T(u)]||, u € [n],
are all distinct, and #{u € [n] | T(u) = 7} is odd (resp. even). The proof of the next
lemma is standard (cf. [4, §8.1]).

LEMMA 4.35. Let i € I. We have
WI\{Z'} _

(95)

{weW |wl) < <w(), and
wi+1) < <whn—-1) <wn) <wn—-1)} ifi e [n—2],
{weW | w()

( e <wn—1)<w@} ifi=n—1,
{weW |w(l)

<
<. <wn-=1)<wn)} ifi =n.
If we WINE | then f(w) = 32'_, (as(w) + bs(w)) and Ay(w) C [i + 1,n] for s € [i].
The map W™ = CSTp (w;), w — Tq(j), is bijective.

We see from Lemmas 4.1-4.2 and 4.35 that the map
(96) PP Wag = CSTp, (1) x Z, wie = (T, ci(€))
induces a bijection from the subset (WI\{i})af C Wag to CSTp, (w0;) X Z.

DEFINITION 4.36. Let i € I, (T,c¢),(T',¢') € CSTp, (w;) X Z, and d := ¢’ — c. Define
a partial order = on CSTp, (w;) X Z as follows.

(1) Assume that i € [n —2]. Set (T,c) < (T',¢) if
(97) (d>0), (T(uw) =T (u+d) in Dy, forue [i—d])

and one of the following conditions holds:
(i) d is even.

(ii) d is odd and T(i) < n.
(iii) d is odd and T(i) = 7. Let
o = min ([n] ~ {[T(w)]| |u € i, T(w) = 7)),
(98) b= min (fn] ~ {|T@)] | u € [}):
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note that a < b. If d € [i], then a X T'(d). If a < b and k € [i] satisfies
T(k) <b=<T(k+1), then (T(u) X T'(u+d—1) for u € [2,min{k,i —
d+1}]) and 0 < T'(k+d) if k € [i — d]).

(2) Assume that i € {n —1,n}. Set (T,c) X (T',¢) if

(99) (d>0) and (T(u) 2 T (u+2d) in D, foru € [n—2d]).

PROPOSITION 4.37. Let i € I.

(1) YPr o} = Yo,

(2) For z,y € Wat, we have T () < T (y) dn (WIS ¢ if and only if
VP (z) = P (y) in CSTp, (w;) x Z.

(3) Let i € [n—2] and (T,¢),(T',¢') € CSTp, (w;) X Z. If ¢ — ¢ > 4, then
(T,e) = (T',¢).

(4) Leti € {n—1,n} and (T,c),(T',c) € CSTp, (w;) X Z. If 2(c' — ¢) > n, then
(T,e) 2 (T',d).

By combining Propositions 3.2 and 4.37 (2), we obtain the following tableau crite-
rion for the semi-infinite Bruhat order on W of type Dy(ll).
THEOREM 4.38. Let J C I. For x,y € (W7)ar, we have x <y in (W) if and only
if VP (x) < P (y) in CSTp, (wi) X Z for alli € I~ J.

The remainder of this subsection is devoted to the proof of Proposition 4.37.
The proofs of Lemmas 4.39-4.40 below are straightforward.

LEMMA 4.39. Let i € I and v € AT A?\{i}. We have vV € QY"1 if and only if
one of the following conditions holds:
(1) i=1and vy =¢1 —e2 =ay.
(2) ie2,n—2] and v =¢; — €41 = ).
(3) i€ 2,n=2] and " = eg;_1+e; = o1 +2af +207  +- 20y _otay +a).
4)i=n—1andyY =ep_1 —ep =) _;.
(5) i=nandy =¢ep_1+te, =ay.

LEMMA 4.40. Let i € 1. We have

y m—i—1 ifie2n—2,

(100) 2adp = i) = {2n—2 ifie{ln—1n}

PROPOSITION 4.41 (cf. [4, §8.2]). Leti € I, w € W™ and v € A, There exists a

Bruhat edge w — |wr,] = wry in QB if and only if v € AT~ A}'\{i} and one

of the following statements holds.

(b-D1) i € [n — 2], ¢;(vY) = 1, and there exists s € [i] such that wr(u) = w(u) for
uwe i)\ {s}, 1 2w(s) <n, and wr,(s) = min([w(s) + 1,n] \ {|Jw(uw)| | v €
[i], w(u) = 7}); in this case, we have v = e, —e; = ) +af; + -+ )
for somet € [i+1,n].

(b-D2) i € [n—2], ¢;(vY) =1, and there exists s € [i] such that wry(u) = w(u) for
ue i\ {s}, m < w(s) =1, and wry(s) = o(max([|[w(s)|| — 1] ~ {w(u) | u €
[i], w(u) X n})); in this case, we have v =es —er = o) + a1+ -+ )
for some t € [i+1,n].

(b-D3) i € [n— 2], ¢;(vY) = 1, and there exists s € [i] such that wr(u) = w(u) for
u € [i] \ {s}, and (w(s),wry(s)) € {(n —1,7),(n,n —1)}; in this case, we
have v¥ =es+er=a) +-+ | +20) -+ 20, _5+ay_| +a) for some
tei+l,n—1), oryV =es+epn=a)+ - +a)_o+a.
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(b-D4) i € [2,n — 2], ¢;(vY) = 2, and there exist s,t € [i] such that s < t, wry(u) =
w(u) foru € [i|N{s,t} and either (wr,(s) = w(s)+1 = o(w(t)) = o(wr,(t))+
1=<n)or (w(s) =oc(wry(t)) =n—1and w(t) = o(wr,(s)) = n) holds; in this
case, we have vV = es+e; = af +- -+ +2a) +- - +20y_o+ o)+,

(b-D5) i € {n—1,n}, ¢;(v") =1, and there exist s,t € [i| such that s < t, wry(u) =

w(u) foru € [i{|~{s,t} and wry(s) = w(s)+1 =o(w(t)) = o(wr,y(t)+1 2 n;
in this case, we have Y =es+ey =ay + -+ o) 1 + 20 + -+ 20, _5 +
a) | +ay.

(b-D6) i =n—1, ch,_1(yY) =1, and there exists s € [n— 2] such that wr(u) = w(u
for u € [n] N {s,s + 1} and o(wry(s)) = o(wry(s +1)) +1 = w(s + 1)
w(s) + 1 = n; in this case, we have v = 5+ 541 = af + 200 + -+
20 o4y _1+a)ifsen=3], andyY =cp_aten_1 =) 5+ 1 +a
ifs=mn-—2.

(b-D7) i =n, ¢,(vY) = 1, and there exists s € [n — 1] such that wry(u) = w(u) for
u € [n)]\{s, s+1} and o(wry(s)) = o(wry(s+1))+1 = w(s+1) = w(s)+1 X n;
in this case, we have v¥ = es+e541 = o) +20)  + - +200_5+ o) +ay
ifsen—=3,9 =¢epaten1 =0q) o+al_;+a ifs=n—2, and
VW=éen1tepn=q) ifs=n—1.

Moreover, for i € I~ {n —1} and w,v € W3 we have w < v if and only if

w(u) < v(u) in Dy, foru € [i]. For w,o € W™= we have w < v if and only if

w(n) 2 v(n) in D, and w(u) X v(u) in D, for u € [n—1].

~

+ i

Fori e I, w e W and vy € At < A}r\{i}, let Q(¢,w,7) denote the following
statement.
Q(i,w,~): There exists a quantum edge w —— |wr, ] in QB

PROPOSITION 4.42. Let i € I, w € WM and v € AT AT

true if and only if one of the following statements holds.

(¢-D1) i € [n— 2] and ¢;(v") = 1. If we write {a1 < ag < -+ < ap_jr1} = [n] ~
()] w € =11}, thena = 1, {w(@),Lwr. ) (1)} = {1, 02} and [wr, ) u) =
w(u—1) for u € [2,i]; in this case, we have vV =¢; —g;41 = ).

(@-D2) i€ [2,n—2], c;(vY) =2, [wry (1) = w(i) =1, [wr,[(2) =w(i —1) =2, and
Lwr,yj( u) = w(u — 2) for u € [3,i]; in this case, we have vV = e;_1 +¢&; =

oy 208 +207 + o+ 20 ot oy +ay.
(@D3) i = 1— 1, car(3) = 1, [wry (1) = w(n) = 1, wr,|(2) = ow(n - 1)) =2,
-2

I~qiy- Then Qi, w,) is

lwry [(u) = w(u — 2) foru € [3,n —1], and |wr,](n) = o(w(n — 2)); in this
case, we have v =¢e,_1 — e, = @, _;.

(@-D4) i =n, c,(vY) =1, lwry](1) = o(w(n)) =1, [wr,](2) = a(w(n—l)) =2, and
|wry ] (u) = w(u—2) foru € [3,n]; in this case, we have vV = e,_1+&, = ).

Before starting the proof of Proposition 4.42, we mention a consequence of Lemma
4.3 and Propositions 4.41-4.42.

PROPOSITION 4.43. Let i € I, z,y € (W) YP(2) = (T,¢), and Y (y) =
(T, ). There exists an edge x L y in SiIBID for some g € AL if and only if one
of the following conditions holds:
($-D1) i € [n—2|, ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for
€ i]~{s}, 1 X T(s) < n, and T'(s) = min([T(s) + L, n] ~ {||T(w)|| | v €
i), T(u) = m}).
($-D2) i € [n—2], ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for
eli]~{s},m<T(s) =1, and T'(s) = o(max([||T(s)]| — 1] ~ {T(u) | u €
[iL T(u) < n})).
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($-D3) i € [n—2], ¢ = ¢, and there exists s € [i] such that T'(u) = T(u) for
u € [i] ~{s}, and (T(s),T'(s)) € {(n—1,m), (n,n—1)}.

(5-D4) i € [2,n —2], ¢ = ¢, and there exist s,t € [i] such that s <t, T'(u) = T(u)
forue i ~{s,t} and T'(s) =T(s)+1=0(T()) =c(T'(¥)) +1 = n.

($-D5) i € {n —1,n}, ¢ = c, and there exist s,t € [i] such that s <t, T'(u) = T(u)
forue[if~{s,t} and T'(s) =T(s)+1=0(T(®)) =o(T'(¥)) +1 =< n.

($-D6) i = n —1, ¢ = ¢, and there exists s € [n — 2] such that T'(u) = T(u) for
u€ [n]~{s,s+1} and o(T'(s)) =o(T'(s+1))+1=T(s+1) =T(s)+1 =2 n.

($-D7) i = n, ¢ = ¢, and there exists s € [n — 1] such that T'(u) = T(u) for
u € [n]~{s,s+1} and o(T'(s)) = o(T'(s+1))+1=T(s+1) =T(s)+1 < n.

(5-D8) i € [n—2] and ¢ = ¢+ 1. If we write {ay < a2 < --+ < Gp_jp1} = [n] \
{IT@)| | w € [i = 1]}, then ax = 1, {o(T(%)), T'(1)} = {1,a2} and T'(u) =
T(u—1) foru e [2,i].

($-D9)ic[2,n—-2],c=c+2 TA)=0(T@l) =1, T(2)=0(T(i —1)) =2, and
T (u) = T(u—2) foru € [3,i].

($-D10) i€ {n—1,n}, ' =c+1, T'(1) =0o(T(n)) =1, T'(2) = o(T(n— 1)) = 2, and

T'(u) = T(u—2) foru € [3,n].

EXAMPLE 4.44. (1) Let ¢ = 1. (%-D8) is equivalent to ¢’ = ¢+ 1 and (T, T') €

(2] (=)}
(2) Let n = 4 and ¢ = 2. (5-D8) is equivalent to the condition that ¢’ = ¢ +1
and (T, T') equals one of the followmg

(52-D9) is equivalent to ¢ = c+2, T = and T' = .

We have divided the proof of Proposition 4.42 into a sequence of lemmas.

LEMMA 4.45. Q(1,w,) implies (q-D1).

Proof. Assume that Q(1,w, ) is true. By Lemmas 4.4 and 4.39, we have vV = g1 —¢5 €
QYN = (12)(T2), and |wr, | = wry (2 I\{l}) L Set J = I~ {1}; note that J
is of type D,,—1. We see that 2 € Ju satlsﬁes the condition for vV € @V in Lemma
4.1; note that J ~ {2} is of type D,,—». Hence 2 L o bjw(‘)]\{Q} is given by 2 +— 2,
n+— m, and u — u for u € [n] \ {2,n}. Then Lwryj is given by 1 — w(2), 2 — w(1),
u— w(u) for u € [3,n—1], and n — w(n). It follows from (90) and Lemma 4.35 that
(101) max{w(2),w(I)} < w3) <w(4) <--- <w(n—1) < @ <w(n —1).

Hence {|wr,](1) = w(2),w(1)} = {a1 = 1,as = 2}. This implies (g-D1). O
LEMMA 4.46.7 =1 and (q-D1) imply Q(1,w,~).

Proof. Assume that (q-D1) and i = 1; we have a; = 1, as = 2, and {w(3), |wr, (1)} =
{1,2}. We see from Lemmas 4.5 and 4.39-4.40 that Q(1,w,~v) is equivalent to
(|lwry]) — l(w) = 3 — 2n. We check at once that (g-D1), ¢ = 1, and Lemma
4.35 yield (101). If w(l) = I, then f(w) = 2n — 2, {(|wr,]) = 1, and hence
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(lwry]) — l(w) = 3 —2n. If w(l) = 2, then {(w) = 2n — 3, £(|wr,]|) = 0, and hence
(|lwry]) — l(w) =3 —2n. O

LEMMA 447.n 25, i € [2,n — 3], ¢;(vY) =1, and Q(4,w,v) imply (g-D1).

Proof. Assume that n > 5, € [2,n — 3], and ¢;(7¥) = 1, and that Q(i,w,) is true.
By Lemmas 4.4 and 4.39, we have vV = ¢; —e;41 € Q¥ NG cry =i+ 1) i+1),
and [wry] = wry(z, P }) . Let I ~{i} = I U Iy, where I} = [i — 1] is of type
Ai—qand I = [i + 1 n] is of type Dy,—;. We see that (i — 1,4+ 1) € (I1)ar X (I2)af
satisfies the condition for vV € @ in Lemma 4.1; note that I; ~ {i — 1} = [i — 2]

is of type A; o and Io N\ {i + 1} = [i + 2 n] is of type D,,_;_1. Hence zl\{}

whwl >yl T — 12 o )T 2 - i) i+ 17+ 1)(n 7). Then |wr., ] is
given by 1 — w(i 4+ 1), u — w(u—l) for u € [2 i, i +1 — w(i), u — w(u) for
u € [i 4+ 2,n — 1], and n — w(7). It follows from Lemma 4.35 that

wii+1) <w(l) <w2) < <w(—1) <w(),
(102) max{w(i),w(i+1)} <w(i+2) < <wn-—1) <w@m) <wn —1).

———
=n

Let {a1 < a2 < -+ < an—iz1} = [n] ~ {Jlw(w)]| | w € [i — 1]}. By (102), we have
w(i + 1) = min{w(u) | u € [n]}, which implies a; = 1. Since [n] \ {JJw(w)| | v €

[i =11} = {w(@), w(i+ 1), w(i+2),...,wn — 1), lwn)|[}, we have {w(i), [wry](1) =
wii+ 1)} ={a1 =1,a2}. O
LEMMA 4.48.n > 5, i € [2,n — 3], and (¢-D1) imply Q(i,w,~).

Proof. Assume that n > 5, ¢ € [2,n — 3], and (q-D1) hold. We see from Lemmas 4.5
and 4.39-4.40 that Q(i,w,) is equivalent to £(|wry|) — {(w) = 2 — 2n + . We check
at once that (q-D1) yields (102). We deduce from (102) that

Jo i w(i+1) < w(i),
(1) ar([wry]) = {1 if w(i + 1) = w(i),
0 ifwii+1) < w(i),

@ eullem =0 i+ 1) =2 ifwi+1) - w(),
(3) for s € [2,i] and t € [s+1,4], t € As(|wry]) and t — 1 € Ay_q(w),
(4) for s € [2,7] and t € [s + 1,i], t € By(|wry]) if and only if ¢t — 1 € B,_;(w),
(5) for s € [2,i], i+ 1 € As(|wry]) if and only if i € Bs_1(w),
(6) for s € [2,i], i+ 1 € Bs(|wry]) if and only if i € A1 (w),
(7) for s € [2,i] and t € [i +2,n — 1], t € A;(|wr,]) if and only if t € A;_1(w),
(8) for s € [2,i] and t € [i+2,n — 1], t € Bs(lwr,]) if and only if ¢t € B,_1(w),
(9) for s € [2,1], n € As(lwr,]) if and only if n € Bs_1(w)

(10) for s € [2,i], n € Bs(|wry]) if and only if n € A;_;(w)

(11) i+1 € As_1(w) for s € [2,1],

(12) i+1 € Bs_1(w) if and only if s € [i — w(i + 1) + 3,4],

(13) ai(w) =n i, bifwy= " 71T RO <wl)

n—i1 if w(i+1) = w(7).
Hence ¢(|wr,]) — ¢(w) = 2 — 2n + ¢, which is our assertion. O

LEMMA 4.49.n > 5, ¢,—2(7yY) =1, and Q(n — 2,w, ) imply (q-D1).

Proof. Assume that n > 5 and c,—2(7Y) = 1, and that Q(n — 2,w,~) is true. By
Lemmas 4.5 and 4.39-4.40, we have ¢(|wry|) — (w) = —n. By Lemmas 4.4 and 4.39,
we have ’Yv = Ep—2 —Ep-1 € QV’I\{n72}7 Ty = (Tl —-2n- 1)(7’L— 2n— 1)7 and
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lwry | = wry(zic{n 2}) LLet I~ {n—2} =L UI,UI where I; = [n — 3] is of

type An_3, It = {n — 1} is of type Ay, and I = {n} is of type A;. We see that
(n—3,n—1,n) € (I1)ar X (I3)as X (I})as satisfies the condition for v € @V in Lemma
4.1; note that I; \ {n 3} is of type A,_4. Hence zi\{n 2=l Tyl =
(12---n=2)(12 - n—2)(n—1n—1I)(nn). Then |wr,] is given by 1 — w(n—1),
u = w(u —1)forue2,n—=2,n—1— wn—2), and n — w(®). It follows from
Lemma 4.35 that

wn—1)<w(l) <w(2) < <wn—3) <wh —2),

max{w(n — 2),w(n — 1)} < w(@) < w(n —1).

Let {a1 < a2 < a3z} = [n] N {[w(u)| | v € [n = 3]} = {[lwn = 2)[,w(n — 1), [w@)]}
We see from (103) that a1 = 1 and w(n — 1) < ||w(@)||. What is left is to show that
w(n —2) X nand ||w(n —2)|| < ||w(m)]. We have the following cases:
(i) win —2) < w(n — 1),
(ii) w(n —2) = w(n — 1) and w(n — 2) > w(n),
(iif) w(n —2) = w(n —1) and w(n — 2) < w(n);
we will prove that (i) or (ii) holds and these imply (q-D1). It follows from (103) that

(1) ai(lwry]) = {(1) i EL)), or (iii),

w(n—1)—2 1f()

(103)

2) bi(Lwr,)) = o i)

) ’ o

(3) forse2,n—2],n—1¢€ A;(Lwr,yj) if and only if n — 2 € Bs_1(w),

(4) for s € [2,n— 2], n € A;(lwr,]) if and only if n € Bs_1(w),

(5) for s e 2,n—2],n —1¢ B(lwr,]) and n — 1 € A;_;(w),

(6) for s € [2,n — 2], n € Bs(|wry]) if and only if n € A;_1(w),

(7) for s e [2,n—2] and t € [s+ 1,n — 2], t € By(|wr,]) if and only if t — 1 €

Bs—l

(8) for s(G [2,n—2],n—1€Bs_1(w)ifand only if s € [n — (w(n—1)—1),n—2],
2 if (i),

(9) ap—2(w) =2 and b,_o(w) = ¢ 1 if (ii),
0 if (iii).

If (i) holds, then w(n — 2) = 1. Hence w(n — 2) < n and ||lw(n —2)|| < ||w(®@)].

If (ii) holds, then |wr,](1) = w(n — 1) =1 and w(n — 2) < min{w(n), w(®)} < n.
Hence [[w(n —2)| < [lw(@)].

If (iii) holds, then ¢(|wr,]|) — ¢(w) = 1 — n # —n, a contradiction. O
LEMMA 4.50.n > 5, i =n —2, and (q-D1) imply Q(n — 2, w,~).

Proof. Assume that n > 5, ¢ =n—2, and (q-D1) hold. By Lemmas 4.5 and 4.39-4.40,
Q(n — 2,w,7) is equivalent to £( Lwr,yj) (w) = —n. We check at once that (q- Dl)
and ¢ =n — 2 imply (103) and (i) or (ii) in the proof of Lemma 4.49. Then (1)—(9) in
the proof of Lemma 4.49 yield ¢(|wr,]) — {(w) = —n. O
LEMMA 4.51.n =4, co(vY) =1, and Q(2,w,v) imply (q-D1).

Proof. Assume that n = 4 and c2(7Y) = 1, and that Q(2,w,~) is true. By Lemmas
4.4 and 4.39, we have 7Y = g3 —e3 € Q¥ M2 r = (2 3)(2 3), and |wr,| =
wry (220 BN Let T~ {2} = [ U T, U I, where Iy = {1}, I, = {3}, and I§ = {4}
are of type A;. We see that (1,3,4) € (I1)ar X (I5)ar ¥ (I5)as satisfies the condition for
7Y € QY in Lemma 4.1. Hence Zi:{Q} =rirgry = (1 2)(12)(3 3)(4 4). Then |wr, ] is

Algebraic Combinatorics, Vol. 5 #5 (2022) 1131



MOTOHIRO ISHIT

given by 1 — w(3), 2 +— w(1), 3 — w(2), and 4 — w(4). It follows from Lemma 4.35
that

(104) w(3) < w(l) < w(2), w3) <w4)<w3), w?2)<wl)=<w?2);
all w € WI~{2} gatisfying (104) are listed in TABLE 1 below. It is easy to check that
each w in the table satisfies (q-D1) for n = 4 and i = 2. O
TABLE 1.
[w(@) w®@) w@) w@) [wr]@) [wry](?2) [wry]B) [wr](4) ]
2 3 1 4 1 2 3 4
3 2 1 4 1 3 2 4
3 1 2 4 2 3 1 4
4 2 1 3 1 4 2 3
4 1 2 3 2 4 1 3
4 2 1 3 1 4 2 3
4 1 2 3 2 4 1 3
3 2 1 4 1 3 2 4
3 1 2 4 2 3 1 4
2 1 3 4 3 2 1 4

LEMMA 4.52.n =4, i =2, and (q-D1) imply Q(2,w,~).

Proof. Assume that n = 4, ¢ = 2, and (g-D1) hold. By Lemmas 4.5 and 4.39—
4.40, Q(2,w,7) is equivalent to ¢(|wr,]) — f(w) = —4. We see that (¢g-D1) im-
plies [wr, ](1) < [wr,](2) = w(1) < w(@), [4] ~ {Jw()]} = {1 < az < ag}, and
{w(2), lwry](1)} = {1, az2}. For this to happen, w must be one of the ten elements
listed in TABLE 1. In either case, it is easy to check that £(|wry|) — l(w) = —4. O

LEMMA 4.53.1n > 5, co(7Y) = 2, and Q(2,w,v) imply (q-D2).

Proof. Assume that n > 5 and c2(7Y) = 2, and that Q(2,w,~) is true. By Lemmas
4.5 and 4.39-4.40, we have £(|wry|) — {(w) = 7 — 4n. By Lemmas 4.4 and 4.39, we

have 7V = g1 + &9 € QYN ) = (1 2)(T 2), and |wr,| = wrv(zit{z})_l. Let
I~ {2} = L UI,, where I = {1} is of type A; and Iy = [3,n] is of type D,,_2. We see
that (0,0) € (I1)ar X (I2)af satisfies the condition for vV € QY in Lemma 4.1. Hence
|wry| = wry acts by 1 — w(2), 2 — w(1), and v — w(u) for u € [3,n]. The proof
will be divided into three steps.

Step 1. We show that w(1) < w(2) < n leads to a contradiction. Suppose that w(1)
w(2) < n. Then w(n) = n, by (90). It follows from Lemma 4.35 that a;(|wr,])
as([wry)) = n— 2, bu([wr,]) = n —w(2) + 1, ba([wr,]) = n —w(l) - 1, ar(w) =
w(l) — 1, az(w) = w(2) — 2, and by(w) = be(w) = 0. Hence {(|wr,]) — l(w) =
dn — 1 —2w(1) — 2w(2) > 7 — 4n, a contradiction. O
Step 2. We show that w(1) < n and 7 < w(2) lead to a contradiction. Suppose that
w(l) = n and 7 < w(2). Then w(w) =< n, by (90). We have the following cases:
i) w(l) <w(2) <w@m) <n,

(ii) w(}) <w(@) < w(2) I n,
(iii) w(2) < w(l) < w(n) 2 n,
(iv) w(2) <wm) < w(l) 2 n,
(v) w(m) < w(l) <w(2) 2 n,
(vi) w(@) < w(2) < w(l) <X n.
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It follows from Lemma 4.35 that

{2 if (ii) or (v),
n—w(l)—1 if (i) or (ii),
(4) bo(lwry]) = {n —w(1) if (iii) or (v),
n—w(l)+1 if (iv) or (vi),
w(l) =3 if (iv) or (vi),
(5) a1(w) =< w(1) —2 if (iii) or (v),
w(l) =1 if (i) or (ii),

(2) — 1 if (iii) or (iv),
(8) be(w) =¢n—w(2) if (i) or (vi),
(2) +1 if (ii) or (v).
Hence
2w(2) —2w(1) — 1 if (i), (ii), or (v),

2
(105) U(lwry]) — b(w) = {gw( ) —2w(1) +1 if (iii), (iv) or (vi).

If (i), (ii), or (v) hold, then 2w(2) — 2w(1) — 1 > 0, contrary to £(|wr,]) — (w)
7—4n < 0. If (iii), (iv), or (vi) hold, then 1 < w(2) < w(1) < nand 2w(2)—2w(1)+1
3 — 2n, contrary to {(|wry]) —{(w) =7 —4n and n > 5.

Ow

Step 3. By Steps 1-2, we have m < w(1) < w(2); note that w(n) < n, by (90). It
remains to prove that w(1) = 2 and w(2 ) = 1 It follows from Lemma 4.35 that
a1([wr)) = w(®) — 1, az(lwr,]) = w(T) = 2, by([wr ) = ba(lwrs]) = 0, ay(w) =
ax(w) = n — 2, by(w) = (n— 1) — (w(T) - 2), and by(w) = (n — 2) — (w(2) — 1).
Hence ((|wr,]) —l(w) =7 —4n+ 2(w(2) — 1) + 2(w(I) — 2); note that w(2) —1 >0
and w(1) — 2 > 0. Since {(|wry]) — ¢(w) = 7 — 4n, we conclude that w(1) = 2 and
w(2) = 1. O

The proof of Lemma 4.53 is complete. 0

LEMMA 4.54.n > 5, i =2, and (q-D2) imply Q(2,w,~).

Proof. Assume that n > 5, i = 2, and (¢-D2) hold. By Lemmas 4.5 and 4.39-4.40,
Q(2,w,) is equivalent to {(|wr,]) — £(w) = 7 — 4n. It follows from Lemma 4.35
that w = r, = (1 2)(1 2) and |wr,] = e. We check at once that ¢(|wr,|) — l(w) =
7 —4n. O
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LEMMA 4.55.n > 5, i € [3,n — 3], ¢;(v") =2, and Q(i,w,v) imply (q-D2).

Proof. Assume that n > 5, 1 € [3,n — 3], and ¢;(7v¥) = 2, and that Q(i,w,~) is

true. By Lemmas 4.5 and 4.39-4.40, we have ¢(|wr,]) — {(w) = 3 — 4n + 2i. By
Lemmas 4.4 and 4.39, we have vV =¢;_1 +¢&; € Q¥4 v = (i —14)(i — 1), and
|wry] = wrv( I }) L Let I~ {i} = I; U I, where I} = [i — 1] is of type 4;_1 and
I, =[i+1,n] 1s of type D, _;. We see that (i — 2,0) € (I1)at X (I2)a satisfies the
condition for 7Y € @V in Lemma 4.1; note that I; ~ {i — 2} is of type A;_3 X Aj.

In{i} _ él (I)lx{i*2} isgivenby 1 —i—1,2 — i, u — u—2 for u € [3,14], and

Hence z
w+ u for u € [i+1,n]. Then [wr, | is given by 1 +— w(i), 2 — w(i — 1), u — w(u—2)
for w € [3,4], and u — w(u) for u € [i + 1,n]. It follows from Lemma 4.35 that

w(@) <w(@—1) <w(l) <w(2) < <w(—1) < w),
—— ~———

(106) PN g
wi+1) <w(i+2)<---<wh-1) <whn) <wh-—1).
T

We have the following cases:
(i) w(n) <w(i—1) <w(i),
(i) w(i —1) <w(n) < w(@),
(iii) w(i—1) < w(i) < w(n);
we will prove that (i) holds. It follows from (106) that
(1) ar(lwry]) = w(@) — 1, ag(lwry]) = w(i — 1) —

wr 0 if (i) or (ii), wr ) = if (i),

@) bullwr ) =9, (i), ba([wr- ) {1 if (ii) or (i),
(3) for s € [3,i], as(|wry]) = as—2(w) and b, (|wr,]) = bs_a(w) — 2,
(4)

. n—i if (i), 2 () = n—1 if (i) or (ii),
a0 = sic1 it i) or i), ¥ { '

(5) bi_1(w)=n—i+1—(w(i—1)—2)and b;(w) =n—1i— (w(z) — 1).
Hence

3—dn+2i+2(w() — 1) +2(w(i — 1) —2) if (i),
(107)  €(lwry]) — €(w) = {5 —dn+ 2i 4+ 2(w(@) — 1) + 2(w(@ — 1) — 2) if (i),
T—dn+2i+2(w(@) — 1) +2(w(i — 1) — 2) if (iii);
) —

)—1>0and w(i —1)—2 > 0. Since £(|wr,|) — £(w) =3 —4n + 2i, we

note that w(i
i) = and w(i—1)=2. ThlS implies (q-D2). O

have (i), w(
LEMMA 4.56.n > 5, i € [3,n — 3], and (q-D2) imply Q(i, w,).

Proof. Assume that n > 5, ¢ € [3,n — 3], and (q-D2) hold. By Lemmas 4.5 and 4.39—
4.40, Q(i,w,7) is equivalent to £(|wry|) — £(w) = 3 — 4n + 2i. We check at once that
(¢-D2) yields w(n) < w(i — 1) < w(i) and (106). As in the proof of Lemma 4.55, we
have £(|wry]) — f(w) =3 —4n + 2i + 2(w(1) — 1) + 2(w(z — 1) — 2). Since w(1) =1
and w(: — 1) = 2, we conclude that ((|wr,]) — {(w) = 3 — 4n + 2i. O

LEMMA 4.57.n 25, c,_o(7Y) = 2, and Q(n — 2,w,~) imply (q-D2).

Proof. Assume that n > 5 and ¢,_2(7Y) = 2, and that Q(n — 2,w,~) is true. By
Lemmas 4.5 and 4.39-4.40, we have ¢(|wr,]) — {(w) = —1 — 2n. By Lemmas 4.4 and
4.39, we have 7V = ¢,,_3 + &40 € QV'IM""2 1y = (n -3 n —2)(n — 3 n—2), and

lwry| = wr,y(zii{n =L Let I~ {n—2} = I UI, U I}, where I = [n — 3] is of
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type An_3, It = {n — 1} is of type Ay, and Ij = {n} is of type A;. We see that
(n—4,0,0) € (I1)ar X (I5)af X (I5)ar satisfies the condition for v¥ € QY in Lemma
4.1; note that I; ~ {n — 4} is of type A,,_5 x A;. Hence ZI\{" 2 élwél\{"%} is
givenby u—u+2foruen—4,n—-3—1,n—2— 2, n—1|—>n—1, and n — n.
Then |wr, | is given by 1 — w(n — 2), 2 — w(m), u— w(u—2) for u € [3,n— 2],
n—1— w(n —1), and n — w(n). It follows from Lemma 4.35 that

win—2) <wn—-3) <w(l) <w(2) <--- <wn-3) <wn —2),

(108) w(n—1) < w(n) < w(n —1).

Analysis similar to that in the proof of Lemma 4.55 shows that w(n —2) = 1 and
w(n — 3) = 2. This implies (g-D2). O

LEMMA 4.58.n > 5, i =n—2, and (q-D2) imply Q(n — 2, w,~).

Proof. Assume that n > 5,4 = n—2, and (q-D2) hold. By Lemmas 4.5 and 4.39-4.40,
Q(n — 2,w,7) is equivalent to E(Lwr,yj) l(w) = =1 — 2n. We see that i = n — 2
and (g-D2) imply (108). Hence a; (|wr,]) = az(|wry]) = bi(lwry]) = bg(Lwr,yJ) =0,
As(lwry]) = As_a(w) for s € [3,n—2], Ap_3(w) = Ap_2(w) = Bp_o(w) = {n—1,n},
and B,_3(w) = {n —2,n —1,n}. Also, for s € [3,n — 2], we see that n —3,n — 2 €
Bs_2(w) and the map below is bijective.

t—t—2 iftels+1,n-2],
tt ifte{n—1,n}.

(109) Bs(lwry]) = Bs—a(w) ~{n—3,n — 2}, {

This implies bs(|wry]) = bs_2(w) — 2 for s € [3,n — 2]. Combining these yields
U|wry]) — l(w) = —1 —2n. O

LEMMA 4.59.n =4, co(vY) =2, and Q(2,w, ) are equivalent to (q-D2).

Proof. The assertion follows by the same method as in the proof of Lemmas 4.53-4.54;
in this case, we have w = (1 2)(1 2) and |wr,] =e. O

LEMMA 4.60. Q(n — 1,w,v) iémplies (¢-D3).

Proof. Assume that Q(n — 1,w,7) is true. By Lemmas 4.4 and 4.39, we have ~V

En_1—en € QVINT = (n —1n)(n—17), and |wr,| = wr,y(zf/\{" h-1,
Set J \ {n — 1}7 note that J is of type A, _1. We see that n — 2 € J,¢ satisfies the
condition for vV € QY in Lemma 4.1; note that J \ {n — 2} is of type A, _3 x Aj.

I~N{n—1}
Hence Zv

is given by u — u+2foru € [n—3],n—2—7n,n—1— 1,and n > 2.
Then |wrs | is given by 1 — w(n), 2 — w(n — 1), u +— w(u—2) for u € [3,n —1], and
n+— w(n — 2). It follows from Lemma 4.35 that

(110) wn) <wn—1) <w(l) <w2) < <whn—-2) <wn—1) < w),
which implies w(n) =1 and w(n — 1) = 2. This completes the proof. O
LEMMA 4.61. (g-D3) implies Q(n — 1,w, 7).

Proof. Assume that (q-D3) is true. By Lemmas 4.5 and 4.39-4.40, Q(n — 1, w, ) is
equivalent to £(|wr,]) — {(w) = 3 — 2n. We check at once that (g-D3) implies (110).
It follows that

(1) ar(lwry]) = as(lwry ]) = bi([Lwry]) = ba(lwry ]) =
g ifw(s—2)< w(n 2),

(2) fors € [3,n—1], As(lwry| = {n} ifw(s—2)=wn—2),

As—2(w) = {n},
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-1 ifw(s—2)<wln—2),
-2 fw(s—2)=wln—2),

(4) Ap_o(w) = A,_1(w) ={n}, Bp_o(w) ={n -1}, B,_1(w) = @.
We give the proof only for (3). Let s € [3,n — 1]. We have n — 1 € B,_o(w) and
n ¢ Bs_o(w). We see that n — 2 € Bs_2(w) if and only if w(s —2) > w(n — 2). Then
the map
(111) Bs(lwry|) = Bs—o(w) ~{n—2,n -1}, t =t —2,

is bijective. Combining these yields (3). By (1)-(4) above, we have £(|wr |) — ¢(w)
3 —2n.

(3) for s € [3,n — 1], bs(|wry]) —bs—2(w) =

O

LEMMA 4.62. Q(n,w,y) implies (q-D4).

Proof. Assume that Q(n,w, ) is true. By Lemmas 4.4 and 4.39, we have 'y =ep-1+

e QWM = (n—1n)(n—1n), and |wr,| = wn,(zi?{n}) Set J =
IN{n}=[n- 1]; note that .J is of type A,_1. We see that n — 2 € Jys satisﬁes the
condition for vV € @V in Lemma 4.1; note that J \ {n — 2} is of type A,_3 x Aj.
Hence ZVV{ "} s given by u — u+2 for u € [n — 2], n — 1+~ 1, and n — 2. Then
|wry] is given by 1 — w(n), 2 — w(n — 1), and u — w(u —2) for u € [3,n]. It follows
from Lemma 4.35 that

(112) w@) <wn—1) <w(l) <w(2) < <wn—-2) <wn —1) < wn),
which implies w(n) =1 and w(n — 1) = 2. This completes the proof. O
LEMMA 4.63. (q-D4) implies Q(n,w, ).

Proof. Assume that (g-D4) is true. By Lemmas 4.5 and 4.39-4.40, Q(n, w, ) is equiv-
alent to {(|wr,]) — ¢(w) = 3 — 2n. We check at once that (q-D4) implies (112).
Hence A (lwr,]) = As(w) = @ for s € [n], Bi(lwry]) = Ba(lwr,]) = By(w) = @,
B,—1(w) = {n}, and the map B,(|wry|) = Bs_2(w)~{n—1,n}, t — t—2, is bijective
for s € [3,n]. Since n—1,n € Bs_a(w) for s € [3,n], we have by(|wry]) = bs_a(w) —2
for s € [3,n]. It follows that £(|wr,]) — {(w) = 3 — 2n. O

Proof of Proposition 4.37. (1) and (3)—(4) follow by the same method as in the proof
of Proposition 4.8.

We prove (2). We can prove the assertion for i € {1,n—1,n} by a similar argument
to the proof of Proposition 4.13. Assume that i € [2,n — 2]. Let z,y € (W!>{i),
VP (x) = (T,¢), and YP(y) = (T',¢). Tt follows immediately from Propositions
4.41-4.43 that x < y implies ¢ < ¢ and T(u) < T'(u+ —¢) for u € [i — ¢ +
c]. Hence we may assume that d := ¢ —¢ > 0 and T(u) <X T'(u+d) for u €
[i — d]. If d is even, then the assertion follows by the same method as in Step 1
of the proof of Proposition 4.21. In what follows, assume that d > 1 is odd. Write
a = min ([n] \ {T()|| [ u € [i], T(u) =7}) and b = min ([n] | T(w)] | v € [i]})
(see (98) in Definition 4.36 (1)). Let {a1 < as < -+ < apn—it1} = [0~ {||[T(w)]| | u €
[i — 1]}. We divide the proof into four steps.

Step 1. We show that T(i) < n implies z < y. Define T, To € CSTp, (w;) by
u+1 ifu€fag—2],

(113) Ti(u) =4 T(u) ifu€lag—1,i—1],
ag if u =1,
_Ju if u € [ag — 1],
(114) Talu) = {T(u —1) ifu€|ag,i]
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Let 1,2 € (W) ¢ be such that VP (x1) = (T1,¢) and VP (z5) = (Ta,c+ 1).
Since T(u) = T1(u) for u € [i], we have < 21 by the assertion for d = 0. We have
x1 < 2 by Proposition 4.43 (5-D8). We have x3 < y because ¢’ —(c+1) =d—-12>0
is even and Ta(u) <X T'(u+d — 1) for u € [i — d + 1]. Combining these we conclude
that z < y. g

Step 2. We show that (T(i) = @, a = b, and d > i) or (T(i) = W, a = b, d € [i],
and @ < T'(d)) imply # < y. Assume that T(¢) > 7 and a = b; note that a3 = 1
holds. We claim that a < T(1). Indeed, if T(1) = @, then a < T(1). If T(1) < n, then
T1) € [n] ~{|IT(w)]| | w € [i], T(u) = 7} and hence a < T(1) by minimality of a.
Since a = b # || T(u)|| for u € [i], we conclude that a < T(1). Thus Ty € CSTp,, (w;)
below is well-defined.

a if u= ].7
(116) Ta(u) = {T(u— 1) ifue (2,

Let x1,29 € (WI\{i})af be such that y}’n (1) = (T1,¢) and yf’n (x2) = (Ta,c+ 1).
Write {b1 < by < -+ <bp_iy1} =[]~ {||T1(w)| | v € [ — 1]}; note that a, = b, for
v € [n—i+1]. Since T(u) < T1(u) for u € [i], we have z < 1 by the assertion for d = 0.
We claim that z1 < 2. Indeed, if || T(7)|| = a1 = 1, then T1(i) = T and T2(1) = a = as,
which imply b; = || T1(¢)|| = 1 and by = T3(1). If as < || T(4)], then T1(¢) = @z and
a = 1, which imply by = To(1) = 1 and by = || T1(i)||. Proposition 4.43 (5-D8) now
yields z1 < x2 as claimed. We claim that 2 < y. Indeed, ¢ — (c+1) =d—-12>10
is even. If d > 4, then the condition (97) is trivial, and hence x5 < y. If d € [i] and
a=<T/(d),then To(1) =a I T'(d) =T (1+(d—1)), To(u) = T(u—1) X T (u+(d—1))
for u € [2,i—d+ 1], and hence 25 < y as claimed. Combining these we conclude that
r <y. (]

Step 3. Assume that T (i) = 7 and a < b; note that T(1) = a holds. Let k € [i] be such
that T(k) < b < T(k+ 1). In this case, we show that the condition (iii) in Definition
4.36 (1) implies x < y. Define Ty, T2 € CSTp, (w;) by

T(u+1) ifuelk—1],
b if u=k,
(117) Ti(u) = T(w) ifuelk+1,i—-1],
max{az, T(i)} ifu=1i,
a ifu=1,
(118) To(u) = {Tl(u —-1) ifue(2,4].

If £ = 1, then T2(2) = Tl(l) =b>a Ifk € [2,2], then T2(2) == Tl(l) =
T(2) = T(1) = a. Therefore Ty is well-defined. Let 21,29 € (W/>{}),¢ be such that
VP (1) = (T1,¢) and Y27 (x3) = (To,c+1). Write {b) < by < -+ < by_iy1} =[]~
{IIT1(w)|| | w € [i—1]}. Since T(u) =< Ty (u) for u € [i], we have x < x1 by the assertion
for d = 0. We claim that x; < x. Indeed, if || T(7)|| = a1 = 1, then by = ||T1(d)|| =1
and by = To(1). If || T(2)|| = a1 > 1, then T1(4) = T(4), a = 1, and b = ag, which imply
by =Ta(l) =1 and by = || T1(¢)||. If | T(¢)|| = ag, then T1(i) =az, a =1, and b = ay,
which imply by = T2(1) = 1 and by = ||T1(¢)||. Proposition 4.43 (52-D8) now yields
x1 < x9 as claimed. We claim that 23 < y. Indeed, ¢ — (¢+1) =d—1 > 0 is even.
If d > i, then the condition (97) is trivial, and hence o < y. If d € [i], a <X T'(d),
(T(w) 2 T (u+d—1) for u € 2,min{k,i —d+1}]) and (b S T'(k+d) if k € [i — d]),
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then To(1) =a 2T (d) =T (14+(d—1)), Ta(u) = T1(u—1) = T(u) X T'(u+(d—1))
for u € [2,min{k,i —d+1}], To(k+1) =b T (k+d) =T (k+1+(d-1))if
keli—d, To(u) =T(u—1) T (u—1+d) =T (u+(d—1)) foru € [k+2,i—d+1],
and hence zs < y as claimed. Combining these we conclude that = < y. d

Step 4. We show that z < y and T(¢) = @ imply (T,c) < (T’, ). By Proposition 4.37
(3), we may assume that d € [i]. Let T1,To € CSTp,, (w;) and x1, 2 € (WI\{i})af be
as in Steps 2-3. By the arguments in Steps 2-3, the edge x; — x5 is of type (5-D8).
Note that (T,c¢) < (T’,¢') is equivalent to To(u) < T"(u+d —1) for u € [i —d + 1]
(see (iii) in Definition 4.36 (1)). Since d is odd, we see from Proposition 4.43 that
there exists an edge w3 A, T4, 23,04 € (WINE 0 B € A, in SiB/™M of type
(5-D8) such that z < x3 and x4 =< y; we may assume that there is no edges of
type (%-D8) in a directed path from x to x3 in SiB™ 4 Write y}’n (x3) = (T3,c")
and yf" (x4) = (Tg,” +1). We see from Proposition 4.43 that ¢ — ¢ > 0 and
¢ — (" 4+ 1) 2 0 are both even. Set d = ¢’ —c and d’ = ¢ — (¢’ 4+ 1); note that
d+d" +1=4dandd,d” €[0,d—1]. Since x4 < y, we have T4(u) < T'(u+d")
for uw € [i —d"]. Hence (T2(u) <X T'(u +d —1) for u € [i — d + 1]) follows from
(Ta(u) X Ta(u+d') for u € [i — d']).

We first claim that To(1) < T4(1) if d = 0. Assume that d’ = 0. We first assume
that T(i) < 1. Then Ty(i) < 1 and T2(1) = 1 by (5-D8). Hence Ta(1) =< Ty(1).
We next assume that T(i) = 1. Then T3(i) = 1, because # < z3 and d’ = 0. If
we write {¢; < ca < -++ < cp—ir1} = [0 N {||Ts@)|| | w € [i — 1]}, then ¢; = 1
and T4(1) = ¢z by (5-D8). Also, we have Ty(1) = a = ap by (5-D8); note that if
a < b, then ay = by, where by is as in Step 3, because T(1) = a and we assume that
T(i) = 1. By the definition of a, {T(u) | u € [i —az+1,i]} = {1,2,...,a2 — 1}. Hence
{T3(uw) | u € [i —azx+ 1,i]} = {1,2,...,a2 — 1}, because x < x3 and d’ = 0. This
implies as < . Therefore To(1) = T4(1).

We next claim that To(1) < T4(1+d') if d’ # 0. Assume that d’ € [d—1] or d’' = 0.
Set

{pr<p2<--<pu}=P-U~{T@I [weli—d], T(u) =7},
{onn<q < <qt=0b-1~\{ITs@)] [uvelil, Tsu)=n}
IEo—1~{|Ts(w)| | u € [i], Ts(u) = 7} = &, then b < T3(u) for u € [i]. In particular,
we have To(1) = a = b <X T5(d") = T4(1 + d') if d’ # 0, which is our claim. Therefore
we may assume that v > 1. We see from (5-D8) that ¢ < T4(1) < T4(2) = T3(1),
which implies ¢, < T3(u) for u € [v]. In particular, we have b < T3(u) for u € [v,4]. If
d € [v,i—1],then To(1) =a < b = T3(d') = T4(1+d’), which is our claim. Therefore
we may assume that v > 2 and d’ € [0, — 1]. Then (g, < T3(u) for u € [v]) gives
(qu+1 = T3(u) for u € [v—1]). By minimality of b, we have [b—1] C {||T(u)|| | u € [i]}.
Hence there exists [ € [0, d’] such that

(120)  {pr <p2 <--- <pu} ={T(w) [u € [p = U{IT@) [ue[i —1+1,i},

which implies T(u) < pyq; for u € [p —1]. Since I < d’, we have T(u) = pytq for
u € [p—d']. Since x =< x3, we have | T(u)|| = ||[Ts(u+d')|| if u € [i —d'] and T(u) = 7.
Hence p > v and p, < g, for u € [v]. Combining these gives

(121) T(u) X putar = quiar 2 T3(u+d —1)=Ty(u+d') foru € [v —d'] if d' # 0.
In particular, To(1) =a < T(1) X T4(1 + ') if d’ # 0, which is our claim. Similarly,

we have

(122) T(u+1) X T3(u) forue[v—1]if d =0.

(119)
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We next claim that T1(u) < Ts(u+d') foru € [i —d —1). If uw € [i —d — 1]
satisfies T1(u) = T(u), then T1(u) < T3(u+d’) since x < x3. It remains to prove that
Ti(u) 2 Ts(u+d') for u € [k] N [i —d’ — 1] under the assumption that a < b, where
k € [¢] is as in Step 3. Recall that b < T3(u) for w € [max{1,v},i]. If v € [0, 1], then
T1(u) b <X T3(u+d') for u € [k]N[i—d'—1]. Therefore we may assume that v > 2. We
first assume that d’ € [d—1]. If u € [k—1]N[r—d'], then T1(u) = T(u+1) < T3(u+d’)
by (121). If k € [v — d’ — 1], then Ty (k) = b < T(k + 1) < Ts(k + ') by (121). If
k=wv—d, then Ty(k) = b <X T3(v) = Ts(k+d). f u € [v—d + 1,k], then
Ti(u) = b = Ts(u+ d). We next assume that d’ = 0. If u € [k — 1] N [v — 1], then
Ti(u) = T(u+1) < Ty(uw) by (122). If k € [v — 1], then Ty (k) = b < T(k+1) < T3(k)
by (122). If u € [v, k], then Ty(u) = b < Ts(u).

We finally claim that To(u) < Ty(u+d’) for u € [2,i — d']. Let u € [2,7 — d']; note
that u — 1 € [{ — d’ — 1]. By the above, we have To(u) = T1(u—1) X Tz(u—1+d') =
T4(u + d/) O

The proof of Proposition 4.37 is complete. d

5. TABLEAU MODEL FOR CRYSTAL BASES OF LEVEL-ZERO
REPRESENTATIONS

In this section, we apply the results in §4 to crystal bases of level-zero representations
of U of type Bfll), CT(LU, and Dg). We introduce quantum Kashiwara—Nakashima
columns (see Definitions 5.15 and 5.20) and semi-infinite Kashiwara—Nakashima
tableaux (see Definitions 5.12, 5.17, and 5.22). We will see that these tableaux give
combinatorial models for crystal bases of level-zero fundamental representations and
level-zero extremal weight modules. When U is of type B,gl) or Dg), we give an
explicit description of the crystal isomorphisms among three different realizations of
the crystal basis of a level-zero fundamental representation by quantum Lakshmibai—
Seshadri paths (see §5.1), quantum Kashiwara—Nakashima columns, and (ordinary)
Kashiwara—Nakashima columns.

5.1. QUANTUM LAKSHMIBAI-SESHADRI PATHS. In this subsection, we give a brief
exposition of quantum Lakshmibai-Seshadri paths (see [25] for details). Assume that
U is of untwisted affine type.

Let A € PT. Recall the notation Jy in (29). For a rational number 0 < a < 1,
define QB(A; a) to be the subgraph of QB”7* with the same vertex set but having only
the edges of the form

(123) w — v with a(yY,\) € Z;

note that QB(\; 1) = QB”*. A quantum Lakshmibai-Seshadri path of shape X is, by
definition, a pair (w;a) of a sequence w : wy, ws,...,w; of elements in W and an
increasing sequence a : 0 = ag < a1 < --+- < a; = 1 of rational numbers such that
there exists a directed path from wy4+1 to w, in QB(A;a,) for u € [l — 1]. Let QLS(X)
denote the set of quantum Lakshmibai—Seshadri paths of shape A. We call an element
(w;a) € QLS(XA) a Lakshmibai-Seshadri path of shape A if there exists a directed
path from w,41 to w, in QB(A;a,) not having quantum edges for u € [l — 1]. Let
LS(\) denote the set of Lakshmibai-Seshadri paths of shape .

In the same manner as in §2.5 we can define maps wt : QLS(A) — P, e;, f; :
QLS(A) — QLS(A) L {0}, and &;, p; : QLS(A) — Zxg for i € L.

THEOREM 5.1 ([12, 15, 27, 25]). Let A =Y, m;w; € P™.
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(1) The set QLS(XN) equipped with the maps wt,e;, fi,ei, i, © € L, is a U’'-
crystal. The U’ -crystal QLS(X) is isomorphic to the crystal basis of the tensor
product @, c; W (w;)®™ of level-zero fundamental representations (see §2.4).

(2) The set LS(\) equipped with the maps wt, e;, fi i, 01, © € I, is a g-crystal.
The g-crystal LS(X) is isomorphic to the crystal basis of the integrable highest
weight module of highest weight A over the quantized universal enveloping
algebra associated with g.

5.2. QUANTUM BRUHAT GRAPHS AND MAYA DIAGRAMS. Throughout this subsec-
tion, we assume that U is of type Bﬁll), 07(11)7 or D%l). The aim of this subsection is
to give descriptions of QLS(w;) and LS(w;) in terms of Maya diagrams.

Let ¢ € I. Note that Jo, = I ~ {i}. We see from ¢;(v") = (vV,w;) € {0,1,2} for
v € AT that the graph QB(w;; a) has at least one edge only if a € {1/2,1}. Hence each
element of QLS(w;) is of the form (w;0,1) or (v,w;0,1/2,1) for some w,v € Wi},
For simplicity of notation, we write (w,w) = (w;0,1) and (v,w) = (v,w;0,1/2,1).
The next lemma follows immediately from the results in §4 (see Propositions 4.17,
4.25-4.26, and 4.41-4.42).

LEMMA 5.2. (1) If U is of type V| then QLS(w;) = LS(w;).

(2) If (U is of type BY and i = n), (U is of type cV and i = 1), or (U is
of type D,(ll) and i € {1,n — 1,n}), then w = v for all (w,v) € QLS(w;),
QLS(w;) = LS(w;), and W - QLS(w;), w — (w;0,1), is bijective.

We say that ¢ € I is minuscule if (7Y, ;) € {0,1} for all v € AT; we see that ¢ € T
is minuscule if and only if it satisfies the assumption of Lemma 5.2 (2).

Unless otherwise stated we assume that ¢ € I is not minuscule. We call a subset
J C [n] a segment if there exist j, k € [n] such that j < k and J = [j, k]. For segments
J =[j,k] and J' = [j', k'], we write J < J if k+1 < j'. Let S; be the family of all
sequences (J1 < -+ < J,), p > 1, of segments such that > % | #J, = 4. It is easy
to check that for w € Wi} there exists a unique J(w) = (J; < -+ < J,) € S;
such that {|lw(u)| | v e [i]} = JiU---UJ, For J = (J1 < --- < Ju) € S, set
WINHT] = {w e WM | T (w) = T} Tt follows that
(124) wisth = | | w7

JES;
Let 27 denote the power set of .J, for v € [u]. We call an element of [[/_, 2/~ a Maya
diagram. We see that the next map is bijective.
o
MW g TT 27,
v=1
w = M(w) = (Jy N {{lw(w)]| [ € i), wlu) =0},

The next lemma follows immediately from the results in §4 (see (b-C3), (b-B3),

(b-B5), (g-B3), (b-D4) and (q-D2) in Propositions 4.17, 4.25-4.26, and 4.41-4.42).

LEMMA 5.3. Assume that i € I is not minuscule. Let w,v € WIS If (v,w) €
QLS(w;), then J(w) = J(v).

Let J € S;. Define QB(w;;1/2)[J] to be the induced subgraph of QB(w;;1/2)
with the vertex set W/>{}[7]. Tt follows from Lemma 5.3 that

(126) QB(w;;1/2) = | | QB(@i;1/2)[J].

JES;

(125)

Let J C [n] be a segment. We concern the following conditions for Maya diagrams
M,N €2/
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(M1) There exists j € [n—1] such that j € N, j+1 € M,and M~{j+1} = N~{j}.
(M2) ne€ N and M = N ~ {n}.

(M3) n—1,ne Nand M = N~ {n—1,n}.

(M4) 1,2 € M and N = M ~ {1,2}.

DEFINITION 5.4. Assume that i € I is not minuscule. Let J C [n] be a segment such
that #J < i. For W of type By, Ch,, or D, define M(to;;1/2)[J] to be the directed
graph whose vertex set is 27 and edges are given as follows. Let M, N € 27.
(1) Assume that W is of type B,,. There exists an edge M — N if (M1), (M2),
r (M4) hold.
(2) Assume that W is of type C,,. There exists an edge M — N if (M1) holds.
(3) Assume that W is of type D,,. There exists an edge M — N if (M1), (M3),
or (M4) hold.

Write M < N if there exists a directed path from M to N in M(w;;1/2)[J]. Write
M <’ N if there exists a directed path from M to N in M(w;; 1/2)[J] not having edges
of type (M4). We see that < and < define partial orders on 2”; note that if (W is
of type Cy) or ({1,2} ¢ J), then < is identical to <.

The next lemma is an easy consequence of the definition of partial orders < and
<’ on 27.

LEMMA 5.5. Assume that i € I is not minuscule. Let J C [n] be a segment such that
#J <i. Let M,N € 27. Write M = {my < mgy < ---<m,} and N = {n; < ny <
< ns}'
(1) Assume that (W is of type Cy), (W is of type Bp, n ¢ J, and {1,2} ¢ J), or
(W is of type D,, and {1,2} ¢ J). We have M < N if and only if r = s and
my, = n, forv € [r].
(2) Assume that W is of type By, andn € J. We have M < N if and only if r < s
and m, = mn, forv € [r].
(3) Assume that W is of type D,, and n — 1,n € J. We have M < N if and only
if s—r € 2Zso and m, = n, forv € lr|.
(4) Assume that (W is of type Bp, n & J, and {1,2} C J) or (W is of type Dy,
n—1n¢J, and {1,2} C J). We have M < N if and only if r — s € 2Z>¢
and My_y, = ng_,, for v € [0,s —1]. We have M <’ N if and only if r = s
and m, = mn, forv € [r].

DEFINITION 5.6. Assume that i € I is not minuscule. Let J = (J1 < --- < J,) € S;.
Define M(w;;1/2)[J] to be the directed graph whose vertex set is [[_, 27v and edges
are given as follows: for (M,),(N,) € [1i_, 2%, set (M,) — (N,) if there exists
s € [u] such that My — Ny in M(w;;1/2)[J,] and My = Ny for t € [u] ~ {s}. Set
(M,) 9 (N,) (resp. (M,) < (N,)) if My < N, (resp. M, <' N,) for all v € [u].

The next lemma is an immediate consequence of (b-C3), (b-B3), (b-B5), (¢-B3),
(b-D4), and (g-D2) in Propositions 4.17, 4.25-4.26, and 4.41-4.42.

LEMMA 5.7. Assume that ¢ € I is not minuscule. Let J = (J1 < --- < J,) € S;. The
map (125) induces an isomorphism

(127) QB(w::1/2)[J) — M(w:31/2)[J]
of directed graphs.

We see that an edge in M(ww;;1/2)[J] of type (M1)—(M3) (resp. (M4)) corresponds
to a Bruhat edge (resp. a quantum edge) in QBI\{z}. By Lemma 5.7, we can define a
partial order < (resp. <') on W™ as follows. Let w,v € WU If 7(w) # T (v),
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then w and v are incomparable to each other. Assume that J(w) = J(v). Recall the
map M in (125). Set w < v (resp. w <’ v) if M(w) < M(v) (resp. M(w) <" M(v)).
We have thus proved that

(128) QLS(w;) = {(v,w) | w,v € wiN <« v},
(129) LS(w;) = {(v,w) | w,v € WINE < v},

From now on, we freely identify w, Tg), and M (w) with each other for w € WI>{i},
For (v, w) € QLS(w;), let d;(v,w) € Zx( be the number of edges of type (M4) in a
directed path from w to v in QB(w;;1/2); for convenience we define d;(v, w) = 0 for
(v,w) € QLS(w;) if i € I is minuscule. We see from the next lemma that d;(v,w) is
independent of the choice of a directed path from w to v in QB(zw,;1/2).

LEMMA 5.8. Assume that i € I is not minuscule. Let (v,w) € QLS(wz) we see from
Lemma 5.3 that J(w) = J(v). Write J(w) = J(v) = (J1 < --- < J,), r =#{u €
] ()| € Ja, wu) = 7}, and s = #{u € ]| [o(u)]| € 1, o(u) = 7} note that i
M(w) = (M,) and M(v) = (N,), thenr = #M; and s = #N;. If (W is of type Cy,)
or ({1,2} ¢ Jy), then d;(v,w) = 0. If (W is of type By or D,) and ({1,2} C J1),
then d;(v,w) = (r — s)/2.

Proof. The assertion follows from Lemma 5.5 (4). O

Let QLS(w;)af = QLS(w;) x Z be the affinization of the U’-crystal QLS(w;) (see
§2.2); we have wt((v,w), c) = (1/2)(vw; + ww;) — cd € Pyt for (v, w) € QLS(w;) and
¢ € Z. The next lemma holds for all 7 € I.

LEMMA 5.9. Let i € I and m € Zxy.

(1) We have an isomorphism
QLS(@;)ar — B (),

(130) I{i} I~{i} 1
(v, w),¢) = (”T<c+di<v,w>>ax 0T e g 0wy 0 5 1)
of U-crystals, where w,v € W™ and ¢ € Z; we understand that
(z,2;0,1/2,1) = (2;0,1) for x € (W),
(2) The crystal basis B(mw;) is isomorphic to the subcrystal of QLS(w;)5™ con-
sisting of the elements @', ((vy,wy),c,) such that

131w, = v, Tt L in (W)

(c —d; (vu,w,,))oc (C +1+d; ('Uv+l7wu+1))
forvem-—1].

Proof. (1): If ¢ € T is minuscule, then the proof is straightforward (see also Remark
5.10 below).

Assume that ¢ € I is not minuscule. By Lemmas 4.3 and 5.5-5.8, we check at once
that the map (130) is well-defined, and is an isomorphism of U-crystals.

(2): The assertion follows from (1) and [10, Theorem 3.4]. O

REMARK 5.10. Let ¢ € I. By Theorem 5.1 (1) and [16, Theorem 5.17 (vii)—(viii)], we
have a unique isomorphism QLS(w;).s = B(w;) of U-crystals. By Theorem 2.9 (2),
we have a unique isomorphism B(w;) = B% (w;) of U-crystals. The map (130) equals

the composition of these isomorphisms.
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5.3. TYPE C,(LD. Throughout this subsection, we assume that g and W are of type
Chp. Recall that T = [n], A = {*(es &) | s,t € [n], s <t} U{£2e, | s € [n]}, and
II={a; =¢e5s—¢€s+1| s €[n—1]}U{a, = 2¢,}. The highest root is § = 2¢; =
2000 + -+ -+ 2001 + on; we have 0V = 1. We identify w; with e; + &9 + -+ +¢; for
1el.

Let ¢ € [n]. A map C : [i] = C, is, by definition, a Kashiwara—Nakashima C,-
column (KN C),-column for short) of shape w; if

(KN-C1) C(1) < C(2) < --- < C(3),

(KN-C2) if t = C(p) = 0(C(q)) € [n] for some p, q € [i], then ¢ —p > i —¢.
Let KN¢, (w;) be the set of KN Cp-columns of shape w;. We sometimes identify
C € KN¢,, (w;) with its image {C(u) | u € [§]} C Cy.

Let C: [i] — C,, be a map satisfying (KN-C1). Let Ic = {z1 = 22 > -+ > 2z} be
the set of z € C,, such that z < n and {z,Z} C C. We say that C can be split if there
exists a subset Jc = {y1 > y2 > -+ > yx} C [n] such that

(i) yr =max{y €Cn |y <21, y ¢ C, ¥ ¢ C},

(ii) y» =max{y € C;, |y < min{y,—1,2,}, y ¢ C, g ¢ C} for v € [2,k].
Define rC,IC € CST¢, (w;) to be such that rC = (C~{zZ |z € Ic})U{y |y € Jc}
and [C = (C\ Ic) U Jc.

Define a g-crystal structure on KNg, (co;) as follows (cf. [18, §4]). Let C €
KNg¢, (w;). If we set €5 = —¢, for s € [n], then the weight of C is

(132) wt(C) = Y ecqu)-
weli]

Let 5 € I. Note that only the letters j,5 + 1,7 + 1,7 may be changed in C when
we apply e; or f;. Moreover, the actions of e; and f; are uniquely determined from
CN{j,j+1,57+1,7} Hence, by omitting the letters not being in {j,j + 1,7+ 1,5},
we can illustrate the actions of f; for j € [n — 1] by

(133) R U CS [ R R R LS N D L
(134) T ()7 |l T | e
J N j+1 _ j+1
(135) f] f.] ,
j+1 j+1 j
J J J Jj+1

i fi : - fi —
(136) j+1 i1, j+1 j+1];

J+1 Jj J J

set f;C = 0 otherwise. Similarly, the action of f,, is illustrated by

(137) n | Il 7|
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set f,C = 0 otherwise. The maps e;, j € I, are defined to be such that the condition
(C6) in §2.2 holds. For C € KN¢, (w;) and j € I, set €;(C) = max{k € Z> | e?C #0}
and ¢;(C) = max{k € Z | f]kC # 0}.

The next lemma is a reformulation of [34, Theorem A.1] in terms of Maya diagrams.

LEMMA 5.11. Assume that g and W are of type Cy,. For a map C: [i| — C,, satisfying
(KN-C1), we have C € KN¢, (w;) if and only if C can be split. The map

(138) KNg¢, (w;) — LS(w;), Cw— (rC,10),

is an isomorphism of g-crystals. The inverse of (138) is given as follows. Let (v,w) €

LS(w;), J(w) =T (v) = (J1 < --- < J,) € S and M(w) = (M,), M(v) = (N,) €

b 27w, The inverse image of (v,w) is
C={v(u) [uel], v(u) =n}U{w()|ueli, w)=n}
(139) " _
= VL:Jl (JuNNHU{Z | z€ M, });
we have Ic = J!i_; (M, ~ N,)) and Jc = U\_; (N, ~ M,).

By Lemma 5.2 (1), we have QLS(w;) = LS(w;) = KNg¢, (w;). Hence KN¢, (w;)
inherits a U’-crystal structure from QLS(c;). We see that only the letters 1,1 may
be changed in C when we apply eg or fy, and the actions of ey and fy are uniquely
determined from CN {1,1}. The action of fy is illustrated by

(140) I L I

set foC = 0 otherwise. The map eq is defined to be such that the condition (C6) in
§2.2 holds.

For a tuple (Cy,Ca,...,C,y,) of columuns, let C;Cs - - - C,,, denote the tableau whose
v-th column is C,. Recall the partial order < on CST¢,, (w;) X Z (see Definition 4.12).

DEFINITION 5.12. Let i € I and m € Zxyo.

(1) Let T = (T1Ta- - Ty, (c1,¢2, ..y Cm)), where T, € KN¢, (w1) = CST¢, (w1)
and ¢, € Z for v € [m]. We call T a semi-infinite KN C,,-tableau of shape
mooy if

(141) (Tl/7cl/) >__ (Tu+1acu+1)
in CST¢, (w1) X Z for v € [m —1].
(2) Assume that i € [2,n]. Let T = (C1Cq---Cp, (c1,¢2,...,¢m)), where C, €

KNg¢, (w;) and ¢, € Z for v € [m]. We call T a semi-infinite KN C,,-tableau
of shape mw; if

(142) (ICy,cy) = (rCusi, cutr)
in CST¢, (w;) X Z forv € [m —1].

>
2

Let Y& (mw;) be the set of semi-infinite KN Cy,-tableaux of shape mw;. For A\ =
> ermiwi € Pt set YE(A) = [Lics Y?n (m;w;). We call an element of YE(A) a
semi-infinite KN C,-tableau of shape .

Let KN¢, (w;)as denote the affinization of the U’-crystal KN¢, (w0;) (see §2.2).
Combining Theorem 2.8, Proposition 4.13 (2), Lemma 5.9, and Definition 5.12 we
obtain the following theorem; note that d;(v,w) = 0 for all ¢« € I and (v,w) €
QLS(z;), by Lemma 5.8.
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THEOREM 5.13. Assume that U is of type Cr(bl). Let A=), cpmiwo; € P*. For each
1 € I, the image of the map

Y?;(miwi) — KNg, (WZ)imlv
(143) (C1Co-++Comys (C1sCar o sm)) = ® (Cuycn),

veE[m;]

is a U-subcrystal. Hence we can define a U-crystal structure on Y?n (m;w;) to be
such that the map (143) is a strict embedding ofU crystals. In particular, Yz()\) is

a U-subcrystal of Q,.; KNg, (@ D™, Then Y2 z _(A) is isomorphic, as a U-crystal,
to the crystal basis B(X).

5.4. TYPE Bg). Throughout this subsection, we assume that g and W are of type
B,,. Recall that T = [n], A = {*(es &) | s,t € [n], s < t} U {xes | s € [n]}, and
I ={as =¢es —es11 |5 € [n—1]} U{an = &,}. The highest root is § = 1 + 2 =
a1 +2ag+- -+ 2a,,; we have 0¥ = . We identify w; with g1 +e9+- - +¢; if i € [n—1],

1
and with 5(51 +eat+--+ey,)ifi=n.
Set

(144) By={1<2<-<n=<0<n=<--=<2=<1}.

Define o : B,, — B, by 0(0) =0, o(u) =%, and o(u) = u for u € [n].
Let i € [n—1]. A map C: [i] — B, is, by definition, a Kashiwara—Nakashima
B,,-column (KN B,,-column for short) of shape w; if

(KN-B1) C(1) = C(2) < --- < C(i),
(KN-B2) if 0 < C(u) or C(u +1) <0, then C(u) < C(u+1) for u € [1 — 1],
(KN-B3) if t = C(p) = 0(C(q)) € [n] for some p, q € [i], then ¢ —p > i —t;

note that 0 € B, is the unique element that may appear in C more than once.
Let KNp, (w;) be the set of KN B,-columns of shape w;. We sometimes identify
C € KNp, (w;) with the multiset {C(u) | w € [i]}. For convenience we also denote by
KNB,I (wn) = CSTBn (wn)

Let i € [n —1]. Let C : [i] — B, be a map satisfying (KN-B1)-(KN-B2). Let
Ic ={z1 = 22 = -+ = 2} be the multiset of z € C such that z < 0 and {z,0(2)} C C;
note that {C(u) | u € [i], C(u) = 0} is a multisubset of Ic. We say that C can be split
if there exists a subset Jc = {y1 > y2 > -+ > yx} C [n] such that

(i) yp=max{y € B, |y <z, y¢ C, y¢C},
(ii) y, = max{y € B, | y < min{y,_1,2,}, y ¢ C, ¥ & C} for v € [2,k].

Define rC,IC € CSTp, (w;) to be such that rC = (C~{o(2) | z € Ic})U{o(y) | y € Jc}
and IC = (C\ Ic) U Jc.

Define a g-crystal structure on KNp_(w;) for i € [n— 1] as follows (cf. [18, §5]); for
the definition of a g-crystal structure on KNp, (w,,) we refer the reader to [21, §2.3].
The maps wt, €5, ¢; for j € I and ej, f; for j € [n—1] are defined in the same manner
as those for KN¢, (w;). Note that only the letters n,0,7 may be changed in C when
we apply e, or f,. Moreover, the actions of e,, and f,, are uniquely determined from
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the multiset {C(u) | w € [i], C(u) € {n,0,7}}. The action of f,, is illustrated by

n 0 0
f f 0 f f
(145) | n | —— | 0| ——= |7 |, = = ;
0
0 0 n

set f,C = 0 otherwise. The map e,, is defined to be such that the condition (C6) in
§2.2 holds.

The next lemma is a reformulation of [21, Corollary 3.1.11 and Remark 3.1.13] in
terms of Maya diagrams.

LEMMA 5.14. Assume that g and W are of type B,,.

(1) The map LS(w,) — KNpg, (w,) = CSTp, (w,), (w;0,1) — TG is an iso-
morphism of g-crystals.

(2) Assume thati € [n—1]. For a map C : [i] = B, satisfying (KN-B1)—(KN-B2),
we have C € KN, (w;) if and only if C can be split. The map

(146) KNB,L (wl) — LS(WJ, C— (TC, ZC),
is an isomorphism of g-crystals. The inverse of (146) is given as follows.
Let (v,w) € LS(w;), J(w) = Jw) = (J1 < -+ < Jp) € Si, M(w) =
(M), M(v) = (N,) € TT4_, 27, and f = #N,, — #M,, € Zx¢. The inverse
image of (v,w) is
C = {v(u) | u € [i], v(w) <n}U{w(w) | ue [, w(w) =a}U{0,0,...,0}
—_———

f times
(147) .
= U (J,~N,H)U{Z|z€e M,})u{0,0,...,0};
v=1 i ey
we have Ic = J\_; (M, ~ N,) U{0,0,...,0} and Jc = U_; (N, \ M,).
f times
Set

(148) B,=B,u{0}={1<2<--<n<0<mn=<--<2<1=<0}.

DEFINITION 5.15. Let i € [n —1]. A map C : [i] — B, is, by definition, a quantum
Kashiwara—Nakashima B,,-column (QKN B,,-column for short) of shape w; if
(QKN-B1) there exists m € Zxq such that 2m < i and
C(1) = C(2) < --- = C(i —2m)
<0=C(i—2m+1)=---=C(i—1) =C(i),
(QKN-B2) the map C: [i —2m] — By, u— C(u), is a KN By,-column of shape w;_om;

in this case, we write C = CU{0,0,...,0} for brevity. Let QKN (w;) be the set of
———

(149)

2m times

QKN B, -columns of shape w;. We sometimes identify C € QKNp (w;) with the mul-
tiset {C(u) | u € [i]}. For convenience we also denote by QKNp (wy,) = CSTg, (wn).
Leti € [n—1]. Let C € QKNp (w;), and let C € KNp, (@;i—2m) be as in (QKN-
B2). Write {z1 < x2 < -+ < Tp_ijzom} = [n] N {||rC(w)]| | v € [i — 2m]} and set
K¢ ={z1 <22 <--- < Topm}; note that x,,, v € [2m], are uniquely determined by
(i) vy =min{z € B, |z =1, x ¢ rC, T ¢ rC},
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(ii) z, =min{z € B, |z > z,_1, x ¢ rC, T ¢ rC} for v € [2,2m].
Define rC = Kz UrC and IC = {T | © € K¢} UIC; note that rC,1C € CSTp, (w;)
(cf. [6]; see also [26, Algorithm 4.1]).

Let i € [n — 1]. Define a U’-crystal structure on QKNp (w;) as follows. Let C=
CU{0,...,0} € QKN (w;) and j € I. Set wt(C) = wt(C), ¢;C = ¢;C U {0,...,0},
and f;C = f;CU{0,...,0}; we understand that ¢;C = 0 (resp. f;C = 0) if ¢;C = 0
(resp. f;C =0).

Recall that z, = min Ic and #Kg = 2m, where m € Zxq is as in (QKN-B1). The
actions of eg and fo are uniquely determined from I¢, Jc, K¢, and CN{1,2,2,1, zj, Z }.
Let yx, = min Jc. If m > 0, let 1 = min K¢ and z2 = min(Kg \ {z1}). The action of
fo is illustrated as follows.

(i) Assume that m = 0 and y; ¢ {1,2}. Set

— I — s 2 P 0
(150) 2 | —— 1], I| =2/, — 2 —,
1 0
and set ij = 0 otherwise.
(ii) Assume that m > 0 and yi ¢ {1,2}. Set
2 fo 0 fo 1
T 0 2 |
(151) 2 1 T 2
oY fo o fo
0| —— 22|, 0| —— x|,
0 T 0 T2
and set ij = 0 otherwise.
(iii) Assume that y € {1,2}. Set
2k 1 2 2
(152) | 2|0, | - | 0|,
5 -

and set ij = 0 otherwise.
The map e is defined to be such that the condition (C6) in §2.2 holds. For C €
QKNp (w@;) and j € I, set £;(C) = max{k € Z> | e?é #0} and ¢;(C) = max{k €
Z>o | fj’-“C # 0}. It is Theorem 5.16 (2) below that makes these definitions allowable.
Similarly, we can define a U’-crystal structure on QKNp (). The maps eq, fo
is given as follows. Let C € QKNp (wy,). We see that only the letters 1,2,2,1 may

be changed in C when we apply ep or fo, and the actions of eg and fo are uniquely
determined from C N {1,2,2,1}. The action of fy is illustrated by

2 1
(153) fo :

2

—
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set foC = 0 otherwise. The map eq is defined to be such that the condition (C6) in
§2.2 holds.

THEOREM 5.16. Assume that U is of type Bgl).

(1) The set QKNp (wy) equipped with the maps wt,e;, fj,€5, 05, j € lat, i5 a
U'-crystal. The map QLS(w,) = LS(w,) - QKNg (w,) = CSTp, (w,),
(w;0,1) — Tﬁ,?), is an isomorphism of U’-crystals.

(2) Assume that i € [n — 1]. The set QKNpg (w;) equipped with the maps
wt,€ej, fj,€5, 95, J € Lat, is a U'-crystal. The map

(154) QKNy (w;) = QLS(w;), C— (rC,10),

is an isomorphism of U’-crystals. The inverse of (154) is given as follows.
Let (v,w) € QLS(w;), J(w) = J(v) = (J1 < --- < J,) € §; and M(w) =
(M,)),M(v) = (N,) € T[l_,2%. Set f = #N, — #M, € Zso if n € J,,
and set f = 0 otherwise. Set 2m = #M; — #N1 € 2Z>¢ if 1,2 € Jy1, and set
m = 0 otherwise; we see from Lemma 5.8 that m = d;(v,w). Define

() {y'<y? < <y} = Ny~ My,

(ii) 2! =min{z € Ji | 2=y, 2 € My~ N1}, and
(iii) 2 = min{z € J; | 2 = max{y”, 2”71}, 2 € My ~ N1} forv € [2,1].
The inverse image of (v, w) is

C=(A~(MUN) U7 [ve[l]}U{z|ze MynNi}

155 1 _ _
(155) Uy (J,~N,)U{z|ze M, })u{0,0,...,04U{0,0,...,0};
v=2 — —
f times 2m times
if we set C=C~ {0,0,...,0}, then C € KNp, (wi_am) and
——
2m times
I 1
(156) Ic={z"|ve[}u U M, ~N,)U{0,0,...,0}, Jc= U (N, ~M,).
v=2 ?/—/ v=1
(3) Assume that i € [n — 1]. The map
4] )
(157) QKNg (w;) = | | KNg, (@i 2m), C=CU{0,0,...,0} = C,
m=0

2m times

is an isomorphism of g-crystals, where C and m are as in (QKN-B1)—(QKN-
B2) for C. Here we understand that KNp (wo) = {@} is a g-crystal iso-
morphic to the crystal basis of the trivial module. The inverse image of C €
KN3p, (wi_om) under the map (157) is C = CU{0,0,...,0}.

————

2m times

The proof of (1) and (3) in Theorem 5.16 is straightforward (cf. [7, Lemma 2.7
(1)])- In §5.6, we will give the proof for Theorem 5.16 (2).

Recall the partial order < on CSTp, (w;) x Z (see Definition 4.20).
DEFINITION 5.17. Let i € I and m € Zxyo.

(1) Let T = (T1To-- T, (c1,¢2,...,6m)), where T, € QKNp (w,) =
CSTp, (wy) and ¢, € Z for v € [m]. We call T a semi-infinite KN B,-
tableau of shape mw,, if

(158) (TV7 Cl/) = (Tu+17 cl/+1)
in CSTp, (w;) X Z for v € [m —1].
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(2) Assume that i € [n —1]. Let T = (C;Cq---Cpn, (c1,¢2, .-+, ¢m)), where C,, €
QKNpg (w;) and c, € Z forv € [m]. We call T a semi-infinite KN B,,-tableau
of shape mw; if

(159) (lCuy Cy, — di(TC,,, ZCU)) t (TCU+1, Cut+1 —+ di(rCH_l, ZCV+1))
in CSTp, (w;) X Z for v € [m — 1].

fo=3
2

Let Y5 (mw;) be the set of semi-infinite KN B, -tableauz of shape mwo;. For A =

> iermiwm; € Pt set Yz (A) =1Iler Yz (miw;). We call an element of YEL()\) a
semi-infinite KN By, -tableau of shape .

Let QKNp (w;)ar denote the affinization of the U’'-crystal QKNp (w;) (see §2.2).
Combining Theorem 2.8, Proposition 4.21 (2), Lemma 5.9, and Definition 5.17 we
obtain the following theorem.

THEOREM 5.18. Assume that U is of type Bél). Let A=), mim; € PT. For each
1 € I, the image of the map
an (mlwz) — QKNBn (wi)?}mi,
(160) (C1C2 ce Cm“ (017 C2, ... 7Cm,-)) = ® (Cya Cy);
vE[m;]
%

is a U-subcrystal. Hence we can define a U-crystal structure on Y2 (m;w;) to be

n

such that the map (160) is a strict embedding of U-crystals. In particular, Yz (\) is

a U-subcrystal of @,c; QKNp (wi)gmi. Then Yz (N\) is isomorphic, as a U-crystal,
to the crystal basis B(X).

5.5. TYPE DS). Throughout this subsection, we assume that g and W are of type
D,,. Recall that I = [n], A = {£(es &) | s,¢t € [n], s < t}, and 1T = {a; =
€s—€st1 | s € [n—1]} U{an = en—1 +en}. The highest root is e1 + 2 = a3 + 200 +
s 4 209 + a1 + . We identify w; with ey + 63+ ---g; if i € [n — 2], with
%(51 +eg+-tep_1—¢&,) if i =n—1, and with %(51 +egttep1te,) ifi=n.

Let i € [2,n —2]. A map C: [i] = D, is, by definition, a Kashiwara—Nakashima

D,,-column (KN D,,-column for short) of shape w; if

(KN-D1) C(1) # C(2) # - # C(i),

(KN-D2) if t = C(p) = 0(C(q)) € [n] for some p,q € [i], then |¢ —p| > i —¢;
note that n,m € D, may appear in C more than once. Let KNp_(w;) be the set of
KN D,,-columns of shape ;.

Let ¢ € [2,n — 2]. Let C : [{] — D,, be a map satisfying (KN-D1). Define C" :
[i] = By to be such that C"(u) = C*(u+1) = 0if C(u) =7 and C(u+ 1) = n for
u € [i], and C"(u) = C(u) otherwise. We say that C can be split if C* can be split.
If C € KNp, (w;) can be split, then we write rC = rC" and IC = IC"; note that
rC,IC € CSTp, (w;). For convenience we also denote by KNp (w;) = CSTp, (w;)
fori e {1,n—1,n}.

Define a g-crystal structure on KNp_ (w;) for i € [n — 2] as follows (cf. [18, §6]);
for the g-crystal structure on KNp_(w;) for ¢ € {n —1,n} we refer the reader to [21,
§2.3]. The maps wt,e;, ; for j € I and e;, f; for j € [n — 2] are defined in the same
manner as those for KN¢, (z7;). Note that only the letters n — 1,n,7,n — 1 may be
changed in C when we apply e,_1, €y, fn—1, or f,,. To define the action of f,,_1, let
{C(u) | u € [i), Cu) € {n—1,n,7,7— T}} = {C(un) # Cluz) # -+ # Clup)}, where
1<y <ug <--- <up <1, and continue deleting a successive pair a ¥ b such that

(a,b) € {(m,n),(n—1,n),(m,n—1),(n—1,n—1)} from C(u1) % Cluz) % --- % Cluyp)
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until no such pair exists. Let C(v1) % C(v2) # --- % C(vq) be the resulting sequence.
It follows that

(161)
C(v1)
n n—1 n
e, in=1(,| n |,| n |,|n—1], , ,
n n n—1
C(vg)

Then the action of f,,—1 is uniquely determined from (161), and only one of the entries
in (161) may be changed in C when we apply f,—_1. This is illustrated by

f’VL* _— fnf
n—1| —/— n |, n s |n—1],

162
( ) n—1 n n

fn-1 fn-1

n n n—1

set fn—1C = 0 otherwise. We next define the action of f,,. Similarly, continue deleting
a successive pair a ¥ b such that (a,b) € {(n,n),(n —1,n),(n,n—1),(n —1,n—1)}
from C(uy) % Cluz) % - -+ % C(up). Let C(v]) % C(vh) ¥ -+ # C(v].) be the resulting
sequence. It follows that

(163)
C(v1)
n n—1 n
e, n—1|,| n |,| n |,|n—1], , ,
n n n—1
Clor)

Then the action of f,, is uniquely determined from (163), and only one of the entries
in (163) may be changed in C when we apply f,. This is illustrated by

n—1| | & , n | I |n=T ,
164
(164) n—1 n n
In In )
n n n—1

set f,C = 0 otherwise.
The next lemma is a reformulation of [21, Corollary 3.1.11 and Remark 3.1.13] in
terms of Maya diagrams.

LEMMA 5.19. Assume that g and W are of type D,,.
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(1) Assume that i € {1,n—1,n}. The map LS(w;) — KNp,_ (w;) = CSTp, (w;),
(w;0,1) —~ Tg), is an isomorphism of g-crystals.

(2) Assume that i € [2,n — 2]. For a map C : [i] — D, satisfying (KN-D1), we
have C € KNp, (w;) if and only if C can be split. Hence the map KNp (w;) —
KNpg, (w;), C— CN, is injective. The map

(165) KNp, (w;) = LS(w;), C— (rC,I10),
is an isomorphism of g-crystals. The inverse of (165) is given as follows.
Let (v,w) € LS(w;), J(w) = Jw) = (1 < - < Jy) € S, M(w) =
(M), M(v) = (N,) € [Th_, 27, and f = #N, — #M,, € 2Z>. The inverse
image of (v,w) is the KN D, -column C such that

C" = {v(u) |u e [i], v(u) 2 n}U{w) | u e i, w(u)=n}u{0,0,...,0}

[ times
(166) "
= U ((J,~N)U{z|ze M})U{0,0,...,0};
v=1 N——
f times
we have Ich =J8'_ (M, ~ N,)U{0,0,...,0} and Jer = J)_{ (N, \ M,).
f times
Set

(167) @n:DnU{O}:{1<2<---<n—l<Z<n—1<---<2<1<0}.

DEFINITION 5.20. Let i € [2,n —2]. A map C : [i] — D, is, by definition, a quantum
Kashiwara—Nakashima D,,-column (QKN D,,-column for short) of shape w; if
(QKN-D1) there exists m € Zxq such that 2m < i and

C1) £ C2) %% Cli —2m)

(168) - o
<0=ClE—-2m+1)=---=C(i—1)=C(>%),

(QKN-D2) the map C: [i — 2m] — Dy, u > C(u), is a KN D,,-column of shape w;_om;
in this case, we write C = CU{0,0,...,0} for brevity. Let QKN (w;) be the set
2m i
of QKN D,,-columns of shape w;. For convenience we also denote by QKNp (w;) =
CSTp, (w;) forie{l,n—1,n}t. ) ) .

For amap C: [i] = D, define C" : [i] = B, to be such that C"(u) = C"(u+1) =0
if C(u) =@ and C(u+ 1) = n for u € [i], and C"(u) = C(u) otherwise. We see that
if C=CuU{0,0,...,0} € QKN, (w;), then C" € QKN (w;) and, in consequence,

—_———

2m times
CN =C U {0,0,...,0}. For C e QKNp, (w;), define rC = rC" and IC = IC"; note
2m times

that rC,1C € CSTp, (w;).

Define a U’-crystal structure on QKNp (w;) in the same manner as that on
QKNBn (wl).

THEOREM 5.21. Assume that U is of type D,(ll).
(1) Assume that i € {1,n — 1,n}. The set QKNp, (w;) equipped with the maps
wt,e;, f5.€5,05, § € Ias, is a U'-crystal. The map QLS(w;) = LS(w;) —
QKNp (w;) = CSTp, (w;), (w;0,1) — TO, is an isomorphism of U'-
crystals.
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(2) Assume that i € [2,n — 2]. The set QKNp (w;) equipped with the maps
wt, e, fj.€5, 95, J € Lat, is a U'-crystal. The map

(169) QKN (w;) = QLS(w;), C+ (rC,1C),

is an isomorphism of U’-crystals. The inverse of (169) is given as follows.
Let (v,w) € QLS(w;), J(w) = T(v) = (J1 < --- < J,) € §; and M(w) =
(M), M(v) = (N,) € [Th_, 27v. Set f = #N,—#M,, € 2Z>¢ ifn—1,n € J,,
and set f = 0 otherwise. Set 2m = #M; — #N1 € 2Z>¢ if 1,2 € Jy1, and set
m = 0 otherwise; we see from Lemma 5.8 that m = d;(v,w). Define

(1) {y' <y?*<---<y'} =N~ M,

(i) 2! =min{z € Jy | 2=y, 2 € My~ N1}, and
(iii) 2 = min{z € J; | 2 = max{y”, 2”71}, 2 € My ~ N1} forv € [2,1].
Let C be the KN D,,-column of shape w;_op, such that

Ch = (I~ (MiUN ) U7 |ve [} U{Z |z € My Ny}

170 Iz
(170) UlU ((J,~NHU{z|ze M, })u{0,0,...,0};
v=2 N——
f times
we have Icn = {z" | v € [} UU\_y(M, ~ N,) U{0,0,...,0} and Jer =
It
" (N, ~ M,). The inverse image of (v,w) is C = CU{0,0,...,0}.

2m times

(3) Assume that i € [2,n — 2]. The map
14] ~
(171) QKNp, (@) = | | KNp, (@i2m), C=CU{0,0,...,0} = C,
——

m=0 2m times

is an isomorphism of g-crystals, where C and m are as in (QKN-D1)-(QKN-
D2) for C. Here we understand that KNp (wo) = {@} is a g-crystal iso-
morphic to the crystal basis of the trivial module. The inverse image of C €
KNp, (@i—am) under the map (171) is C = CU{0,0,...,0}.

————

2m times
The proof of (1) and (3) in Theorem 5.21 is straightforward (cf. [7, Lemma 2.7
(ii)]). Theorem 5.21 (2) may be proved in much the same way as Theorem 5.16 (2)

(see §5.6); the details are left to the reader.
Recall the partial order < on CSTp, (w;) x Z (see Definition 4.36).

DEFINITION 5.22. Let i € I and m € Zxo.
(1) Assume thati € {1,n —1,n}. Let T = (T1Ta - Ty, (c1,¢2,...,¢m)), where
T, € CSTp, (w;) and ¢, € Z for v € [m]. We call T a semi-infinite KN
D,,-tableau of shape mw; if
(172) (Tu, ) = (Tus1s Cogr)

in CSTp, (w;) X Z for v € [m —1].

(2) Assume that i € [2,n—2]. Let T = (C,Cq---Cpn, (c1,C2, ..., m)), where C, €
QKNp, (w;) and ¢, € Z forv € [m]. We call T a semi-infinite KN D,,-tableau
of shape mw; if

(173) (lCl,, Cy — di(T'CV, lC,,)) i (TCU+1, Cu+1 + di(Téy+1, ZC,,+1))
in CSTp, (w;) X Z for v € [m —1].
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Let Yg; (mw;) be the set of semi-infinite KN D, -tableauz of shape mwo;. For A =

> ermiwi € P set YEH()\) = [Lier Y?;n (m;w;). We call an element of Y?;n N a
semi-infinite KN D,,-tableau of shape .

Let QKN (@;)ar denote the affinization of the U’-crystal QKN (w;) (see §2.2).
Combining Theorem 2.8, Proposition 4.37 (2), Lemma 5.9, and Definition 5.22 we
obtain the following theorem.

THEOREM 5.23. Let A = .., m;w; € P*. For each i € I, the image of the map

Yg; (mzwz) — QKND" (wi)?}mi,

(174) (C1Co- - Comis (1,0 rsem)) > ® (Corcn),
ve[my)

is a U-subcrystal. Hence we can define a U-crystal structure on an (my;) to be
such that the map (174) is a strict embedding of U-crystals. In particular, Y?;n (\) is

a U-subcrystal of @,c; QKNp ()™ . Then YD%W (N) is isomorphic, as a U-crystal,
to the crystal basis B(X).

5.6. PROOF OF THEOREM 5.16 (2). Throughout this subsection, we assume that g
and W are of type By, and that ¢ € [n — 1]. This subsection is devoted to the proof
of Theorem 5.16 (2). We have divided the proof into a sequence of lemmas.

Recall the notation and terminology in §5.2 and §5.4. A segment is a subset of [n]
of the form [j, k] with j, k € [n] and j < k. For segments J = [j,k] and J' = [j', k'],
write J < J'if k+1 < j'. S; is the family of all sequences (J; < --- < Jy),
p = 1, of segments such that Y 0, #J, = i. For J = (J; < --- < J,) € S;, write
UJ =Jiu---UJ, For J,J € S;, we have J = J' if and only if JJ = JJ".
For w € WU} et J(w) € S; be such that |JJ(w) = {||w(u)|| | u € [i]}. For
w e WU with J(w) = (J; < -+ < J,) € i, write M(w) = (J, N {||w(u)| | u €
i), wlu) = WP, € [, 2% (see (125)).

Let C = CU{D,...,0} € QKNp (w;), with C € KNp, (@;—2/m) (see Definition
—— ‘

2m times

5.15). Ic = {z1 = 29 = -+ = 2} is the multiset of z € C such that z < 0 and
{z,0(2)} € C. Jc ={y1 > y2 > --- > yi} is a subset of [n] such that #Ic = #Jc and

(i) yp =max{y € By |y <21, y¢ C, ¢ C},
(i) y, = max{y € B, | y < min{y,_1,2,}, y ¢ C, 7 ¢ C} for v € [2,k].
We have
rC=(C~\{o(z)|ze€lc})U{o(y) |y € Jc} € CSTp, (wi—2m),
ZC = (C AN IC) U JC S CST‘Bn (wi_zm).
Then Kz = {z1 < 3 < -+ < Zam}, where {21 < 22 < --- < Tp_jyom} = [n] N
{l[rC(w)|| | w € [¢ — 2m]}. Note that #Kg = 2m. We have
rC = Kz UrCe CSTp, (w;),
IC={7 |z € Kz} UIC € CSTp, (w;).

(175)

(176)

By (75) and Lemma 4.11, there exist w, v € W such that Tq(ﬁ) =ICand Tq(,i) =rC.
We have w(u) = IC(u) and v(u) = rC(u) for u € [i]. Likewise, there exist w’,v’ €
WIsti=2m} guch that TV, >™ = IC and T *™ = 1C. It follows that

UJ (w) = {liCu)ll | u € [i]} = Ke U {[IC(u)[| | u € [i]} = Ke uJ.T (w'),

(177) i | |
UI @) = {IrC)ll | ue [} = Ke U {IrC)]| | u € [i]} = Ke UUT ).
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We know from Lemmas 5.3 and 5.14 (2) that (v/,w') € LS(w;—2,) and J(w') =
J(v"). Hence J(w) = J(v), by (177).

In what follows, we freely identify w, T, and M(w) with each other for w €
WINE Write 7(TY) = J(w) and M(Tg)) = M(w) for w € Wit From what
has already been proved, we have J(IC) = J(rC) for C € QKNp (w;).

LEMMA 5.24. If C € QKN (@), then (rC,1C) € QLS(w;).

Proof. Let C = CU{0,...,0} € QKN (w;), with C € KNp, (w;_an). Write J (IC) =
JrC) = (1 < - < Ju) €8, JUC) = J(rC) = (J} < -+ < J.) € Si—om,
M(IC) = (M,), M(rC) = (N,) € TT;_, 27, and M(IC) = (M}), M(rC) = (N}) €
[15_, 27". We know from (177) that J'_, J, = Kz U US_, J,. Recall that J; is
a segment. It follows from the definition of K¢z that there exists 7 € [0,x] such
that Jy = Ke UUl_, J,, My = Ke UUL_, M), Ny = U N, Jy = Joyr o,
M,=M), 4, N,=N, ,  forve2pu,and p+717—-1=ks.

We first assume that n € J. (C Ji). Then 1 ¢ J; since J; is a segment such that
#J1 <i < n. Hence 1 ¢ K¢ U J{. By the definition of K¢, this implies K¢ = @ and
m = 0. It follows that (rC,IC) = (rC,IC) € LS(w;) C QLS(w;).

We next assume that n ¢ J. (or equivalently, n ¢ J), for v € [r]), and show that
(M,) < (N,) in []#_, 27 (see Definition 5.6 and (128)). Since (rC,IC) € LS(w;—2m),
we see from (129) that M/ <’ N/ in 270 for v € [x]. In particular, it follows from
Definition 5.4, {1,2} ¢ J,, J, = J,\, 1, M, = M,,_,, and N, = N/, for
v € [2,p] that M, < N, in 27 for v € [2,u]. Also, n ¢ J., Lemma 5.5 (1) and (4)
yield #M)], = #N;, for v € [r]. Since M; = K UJ)_, M}, and Ny = |J]_, N, we
have # My —#Ny = #Kg = 2m € 2Zx¢. Write Y] _, M}, = {m}| <mf <--- <ml} C
My ={m; <mg <---<m,}and Ny ={n; < ng < --- < ng}, where r = s+ 2m.
It is clear that m,._, > m/,_, for v € [0,5 — 1]. Since M/, < N/, in 270 for v € [7],
we have m!,_, > ns_, for v € [0,s — 1], by Lemma 5.5 (1) and (4). Consequently,
my_, = ns_, for v € [0,s—1], and hence M; < Nj in 271, by Lemma 5.5 (1) and (4).
We conclude that (M,) <t (N,,) in []"_, 27, and so (rC,IC) € QLS(w;), by (128). O
LEMMA 5.25. Let (v,w) € QLS(w;), J(w) = J(v) = (J1 < --- < Ju) € S, and
M(w) = (M), M(v) = (N,) € [Th_, 27. Write {y* < y®> <--- < y'} = Ny ~ M;.
The elements 2! = min{z € J; | z = y', 2 € My ~ N1} and 2¥ = min{z € J; | z =
max{y”, 2" 1}, z € My ~ N1}, v € [2,1], are well-defined (see (i)—(iii) in Theorem
5.16 (2)).

Proof. We see from Lemma 5.5 (1)—(2) and (4) that our assertion follows from (M7 ~
Np) < (Ny~ My) in 271, Write (temporarily) J; = [p,q] and M; ~ Ny = {w! < w? <
< wk}.

We first assume that (n ¢ Jy and {1,2} ¢ Jy) or (n € Jy). Since M7 < N; by (128),
we see from Lemma 5.5 (1)—(2) that #(M; ~ Np) — #(Ny ~ M) = #M; — #N; <0
and #(M; N [p,w]) < #(N1 N [p,w]) for all w € J;. On the contrary, suppose that
(M; ~ Ny) 4 (Ny ~ M) in 27t By Lemma 5.5 (1)—(2), there exists r € [k] such that
w” < y" and w¥ > y” for v € [r—1]. This implies #(M1 N [p,w"]) — #(N1N[p,w"]) =
1 > 0, a contradiction.

We next assume that {1,2} C Ji. Since My < Np by (128), we see from Lemma 5.5
(4) that #(MI\NI)_#(NI\Ml) = #Ml_#Nl S 2Z>0 and #(Mlﬂ[y,q]) > #(N1m
[y,q]) for all y € [p, q]. On the contrary, suppose that (M; ~ N1) 4 (N7 ~ M) in 271,
By Lemma 5.5 (4), there exists r € [0,] — 1] such that w*~" < ¢!=" and w"=" > ¢!~
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for v € [0,7 — 1]. This implies #(M; N [y""",q]) — #(N1 N[y ",q]) = -1 < 0, a
contradiction. O

LEMMA 5.26. Under the hypotheses of Lemma 5.25, set f = #N, — #M, € Zx¢ if
n € J,, and set f =0 otherwise. Set 2m = #M, — #N, € 2Z>¢ if 1,2 € J1, and set
m = 0 otherwise. Then

C=(IN(MUN))YU{" 2" |vell]fU{z|ze M NN}
(178) I B B _
Uy (Jo~N)U{z|ze M,})ud{o,...,0tu{0,...,0}
v=2 N—— N——
f times 2m times
is a QKN By, -column of shape w; (see (155)).
Proof. Tt suffices to prove that
C= (Jl \(M1UN1))U{ZU,ZT|V€ [l]}U{§|Z€M1 le}

(179) O U (o~ N)UE] 2 € M) U0, 0}

f times

is a KN Bj,-column of shape w;_a,. It is easily seen that C satisfies (KN-B1)—(KN-
B2) (see §5.4). By Lemma 5.14 (2), we only need to show that C can be split. We see
at once that Ic = {2 | v € [J} UU._,(M, ~ N,) U{0,...,0}. We show that Jc is
f times
given by [J)_ (N, ~ M,).
We see that Lemma 5.25 (and (i)—(iii) in Theorem 5.16 (2)) imply
(i) ¥t =max{y € J1 |y < 2!, y € Ny \ M},
(ii) y¥ =max{y € J; | y < min{y* ™!, 2"}, y € Ny ~ My} for v € [l —1].
It follows from (179) that for y € J; we have y € Ny ~ M; if and only if y ¢ C and
7y ¢ C. Since Jp is a segment, N1 \ My C Ji, and z¥ € J; for v € [l], we can rewrite
(i)—(ii) as
(i) vt =max{y € B, |y <2, y¢ C, y¢C},
(ii") v = max{y € B, | y < min{y**, 2"}, y¢ C, y ¢ C} for v € [l —1].
Let 7 € [2,pu]. Write (M, ~ N,)U{0,...,0} = {zf' = 2§ = --- = 2/}, M. \ N, =
foti
imes
{2] >25 > >z} if 7 # p, and N. ~ M, = {y] > y5 > --- > yj}. Similarly to
(i")—(ii’), we can deduce from N, > M, Lemmas 5.5 and 5.14 (2) that
(7-1) y{ =max{y € B, |y <2, y ¢ C, 5 ¢ C},
(r-ii) y) = max{y € B, |y <min{y)_,, 27}, y ¢ C, 7 ¢ C} for v € [2,k].
We conclude from #Ic = # J!'_ (N, ~M,), (i")-(ii"), and (7-i)—(7-ii) for 7 € [2, y]
that Jec = J"_, (N, ~ M,). This completes the proof. a

By Lemmas 5.24-5.26, we obtain the maps ®; : QKNg (w;) — QLS(w;), C
(rC,1C), and U, : QLS(w;) — QKNg (@), (v,w) = C, where C is defined as (155)
or (178).

LEMMA 5.27. The maps ®; and V; are inverses of each other.

Proof. By Lemma 5.14 (2), the map @, is injective. The proof is completed by showing
that (®; o U;)(v,w) = (v, w) for (v,w) € QLS(w;).

Let (v,w) € QLS(w;) and J(w) = J(v) = (J1 < --- < J,) € §;. If {1,2} ¢ Jy,
then we conclude from Definition 5.4 and (129) that (v,w) € LS(w;), hence that
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(®; o ¥;)(v,w) = (v,w) by Lemma 5.14 (2). Therefore we may and do assume that
{1, 2} C~ Jr.
Let C = CU{0,...,0} = ¥;(v,w) € QKNp (w;), with C € KNp, (w;_2,,), and
——

2m times
et (rC,1C) = ;(C) € QLS(w;). Write M(w) = (M,), (2:(,,)61'[ 2%,
J( C) = j(rC) (i < - < Jz) € Siy, and M(IC) = (M,), M(rC) = (N,,) €
HZ . Note that C and C are described by (178)(179). Our claim is that

(rC, lC) (v,w). It suffices to show that u = i, J, = J,, M, = M,, and N, = N,
for v € [u].

We know from (the proof of) Lemma 5.26 that Ic = {2 | v € [[|} UU"_, (M, ~
N,)UA{0,...,0} and Jc = U,_, (N, ~ M,). By (175)—(176), we have

f times

rC=Ke UL~ (MiUN))U{ZY |ve[lJUf{z]|ze N}

(180) -G .
U L:Jz ((J,~N,)U{Z | z€ N,}),

=rC,

IC={T |z e Ke}U(Ji~M)U{Z" |ve[}U{z|z€ M NN}

=1Cy
(181)

o
UU (Jo~M,)U{Z|ze M,});

v=2

=iC,

set 7Cy = Ke U (Ji~ (M UN))U{z" | v € [} u{z |z € M}, IC, ={7 |z €
KeU (L NM)U{z" [ve[l}uf{z|z€ MinNi}, 7€ = (J,\N,)U{Z |z € No},
and IC, = (J, ~ M,)U{zZ |z € M,} for v € [2, u]. If we prove that
(182) {ll=ll | 2 € rC.} = {ll2ll | z € 1C,} = J,

for v € [p], then we see at once from (180)(181) that p = fi, J, = J, for v € [u],
M, = M, for v € [2,p], and N, = N, for v € [u]; the proof for M; = M, will be
given later. By (180)—(181), it is easy to check that (182) holds for v € [2, u].

We give the proof only for {||z|| | z € IC;} = Jy; the proof for {||z]| | z € rC1} = J;
is similar. Note that

(183) {”Z” ‘ S lCl} = KC (] (Jl AN Ml) L {ZV | S [l]} (] (Ml N Nl)
It is clear that (Jy~ Mq)U{z" | v € [I]}U(M1NN;y) C Jy. Recall that J; is a segment.
Therefore, by the definition of K¢, it suffices to show that #{||z|| | z € IC;} = #J.
Since | = #(N1~M;) and # K¢ = #M,—#N1, we have # M, = #Ke+1+#(N1NMy).
From this, M; C Ji, and (183), we conclude that #{||z|| | z € IC,} = #J;.

It remains to prove that M; = ]\;[1. We have

M, ={||z| | z€1Cy, z =7} (by definition)
=KeU{z"|ve[]}u(MinNy) (by (181))
=M, (by (182)-(183)).
This completes the proof. 0
Let C € QKN (w;), @i(é) = (rC,IC) € QLS(wi), JIO)=J@C) =(, <--- <
Ju) € Si, and /N\/l(lé) = (M,), M(r C (N,) € T14_, 27v. We continue to use the
notation rC,, IC,, v € [u], i ( 0)—(181). We see from (128)—(129) that (rCq,1Cy) €
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QLS(wwz,) and (TC,,JZCV) € LS(wyy, ) for v € [2,pu]. Write Cp = Uy (rCy,1C)) €
QKNp (wxs,) and C, = Yy (rC,,IC,) € KNp, (wgs,) for v € [2,u]. It follows
from (the proofs of) Lemmas 5.26-5.27 that

i
(184) C=0;(rCI0) = | | ¥y, (C,1C,) = | | G,

Set p, = min J, and J} = J, U{p, — 1} C I for v € [y].

LEMMA 5.28. With the notation above, we have

(185)
foCi U Lve, C, if j =0 and foCy # 0,
fiC=<fCu Uyeu gy C, ifje€J:~{0} and f;C, # 0 for some T € [y,
0 otherwise.

Proof. The assertion for j € I is immediate from the definition of f; (see (133)-(136)
and (145)). Assume that j = 0, and show that foC is determined from C; (and .J;).
We follow the notation in (150) (152).

If m =0 and y, ¢ {1,2}, then foC is determined from C N {1,2,2,1} (see (150)).
We see from (184) that C N {1,2 2,1} C C;. Hence the assertion follows.

If m > 0 and yi ¢ {1,2}, then foC is determined from C N {1,2,2,T} and x5 (see
(151)). Since CN{1,2,2, 1} c C, and x5 € K¢ C Jy, the assertion follows.

If . € {1,2}, then f,C is determined from Cﬂ {1,2,2,1} and zj (see (152)). Since
CN{1,2,2,1} c Cy, it follows that y; € Jy, hence that zj, € J; by the proof of Lemma
5.26, and the assertion follows. O

Let n = (v,w) € QLS(w;) and j € Is. Recall from (31)—(32) that

l\D\H

tvo; for 0 <t <

() =
L + (¢ L fo L <t<1
Svw; - = , for - <t <1,
5 Vi 5 | wei 5
and hJ(t) = (af,n(t)) for 0 < t < 1; note that the function AJ(t) is uniquely
determined from (ay,vw;) and (o, ww;). We see from (35)-(36) that f;(v,w) is
determined from %7 (t). Consequently, f;j(v,w) € {0, (r;v,w), (v,rjw), (rjv,7jw)}
is determined from (o}, vw;),(af, ww;) € {-2,-1,0,1,2}. Note that hJ(1) is
an integer. We know from [25, Proposition 4.1.12] that all local minima of hJ(t)
are integers. Hence ({a,vw;), (), ww;)) is neither (—2,-1),(-2,1),(~1,-2),
(-1,0),(-1,1),(-1,2),(0,-1),(0,1),(1,-2),(1,0),(1,2),(2, 1), nor (2,1). It fol-
lows that
(rjv,w)  if ({0, vwi), (), wes)) €{(2,0),(2,2)},
(186)  fiww) =4 (o) i (Y, vm), 0¥, wm) € {(=2,2), (0,2)},
(rjv,rjw) if (o %vwﬁ,(a}ﬂ w;)) = (1,1),
and f;(v,w) = 0 if ({(a ,vw;), () ,wow;)) is either
(187) (—2,-2),(-2,0),(-1,-1),(0,-2),(0,0),(1,-1), or (2,—2).

We now give a restatement of (186)-(187) in terms of tableaux. Let (rC,IC) e
QLS(w;). Recall that War acts on C,, = {£e; | s € [n]} by War — &(Cy), 10
(12)(12), 7= (jj+1)(j+1)forje[n—1], and ry = (n 7).
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We first assume that j € [n—1]. Write [IC]; = ICN{j, j+1,7 + 1,j} and [rC]; = 7CN
{4,j+1,7+ 1,7} If [rC]; (resp. [lé]j) € {{s},{4, 7+ 1}}, then define r;rC (vesp. 741C)
€ CSTp,, (w;) to be such that (r;7C)(u) = r;(rC(u)) (resp. (r;{C)(u) = r;(IC(u))) for
u € [i]. Recall that af = e; —¢;11. Since w; = Zi:1 €5, we have ww; = 22:1 E1C(u)

and vw; = Zi:l €rc(u); We understand that es = —e, for s € [n]. Hence we can
rewrite (186)—(187) as

i={i+1
Clie {75 +1}, 45,7 +1},{7,7 +1}},

i e{{si+1n4{7,7+1}1{j,7+1}}
1IC); = {j,7 +1},
;=

[(1Cl; € ({7} 7+ 13},

(r;rC,I1C)  if [ q
dl

(188)  f;(rC,1C) = { (rC,r;IC) [(:
d[

(rjrC rle) flr
and f;(rC,IC) = 0 if ([rC];,[IC];) is either

i+ 10+, i+ 130+ 1), (G + L T+ 15,
{hUD, T+ 150 +1h), ({7 + 11 {7 + 1,5},
+L5L{+15h.(2,2), ({45 +1}{,5 +1}),
{0+ 15+, G+ L0 6,0+ 1), G+ 1,54 {7 + L),
{hUD, T+1h{+1}), or ({5, + 11 {7 + 1.7})-

We next assume that j = n. Write [IC],, = ICN {n,7} and [rC], = rC N {n,7}. If
[rCl, (resp. [IC],) € {n}, then define r,rC (resp. r,IC) € CSTg, (ww;) to be such that

(rnrC)(u) = 1, (rC(u)) (resp. (1,1C)(u) = 7, (IC(u))) for u € [i]. Note that a) = 2e,,.
Similarly to (188)—(189), we have

(189)

~ o~ o~ o~

o (r,zré,lg) if [r@] = ] = {n},
(190) fr(rC,IC) =< (rC,7r,IC) if [rC]n = {~ n} and [lC]ﬁ = {n},
0 if ([rCl, [IC]n) € {(,2), ({n}, {n}), ({n}, {A})}.

We finally assume that j = 0. Write [/ Clo = ICN{1,2,2,1} and [rC]y = rCN
{1,2,2,1}. If [rClo (resp. [IClo) € {{2},{1},{2,1}}, then define rorC (vesp. rolC) €
CSTg, (w;) to be such that (rorC)(u) = ro(rC(u)) (resp. (rolC)(u) = r(IC(u))) for
u € [i]. Note that 0¥ = e; + &2 and (a,\) = (—0Y,\) = —(e1 + €2, \) for X\ € P.
Similarly to (188)—(189), we have

(191)
o (rorC,1C)  if [rClo = {2,1} and [IC]p € {{1,2},{2,1},{2,1}},
fo(rC,1C) (rC,rolC)  if [rClo € {{1,2},{1,2},{2,T}} and [IC]o = {2,T},
(rorC,rolC) if [rClo = [IC)o € {{T}, {2}},

and fo(rC,1C) = 0 if ([rClo, [IC]o) is either
({1,2},{1,2}), ({1, 2}, {1,2}), ({1, 2}, {2, 1)), ({1}, {1}), ({2}, {2}),
(192)  ({1,2},{1,2}), ({2, 1},{1,2}), (2, 2), ({2, 1}, {2, 1}), ({2, T}, {1, 2}),
(1,25 £2,Th, (1,21, (12D, (T {11, (21,421, o (2T}, {1,2}).

LEMMA 5.29. Keep the notation above. If f; (rC,,1C,) # 0 for some j € I and T € [,
then j € Jr. If fo(rC.,1C;) # 0 for some T € [u], then 7 = 1. In these cases, write
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(rC.,1C) = f;(rC,,1C,) € QLS(wyy, ). For j € I, we have

(193) LCIO = rCu || oG, Cu || G,
velul~{r} velul~{r}

if fi(rC,1C,) # 0 for some 7 € [u], and f;(rC,I1C) = O otherwise.

Proof. First part follows immediately from (188)-(192). For (193), we give the proof
only for the case that j € J2~\{0,n}, rC AN, i+15+1 }— 1IC,N{j,j+1,7+ 1,7} =
{5}, and (rC.,1C.) = f;(rC,,1C;) = (r;rCr,7;IC,) # 0 for some 7 € [u] (see (188));
the proofs for the other cases are similar. It follows from (J; < --- < J,) € S;
and (180)-(181) that [rC]; = [IC]; = {j}. By (188), f;(rC,IC) = (r;rC,r;IC). Since
rjrC, = rC, and r;IC, = IC,, for v € [u]~ {7}, we have r;7C = Tjrérl—'uye[#}\{f} rC,

and rjlé = leCT L uye[#]\{T} lCl,, which is the desired conclusion. O

LEMMA 5.30. QKNg (w;) is a U'-crystal, and the map ®; is a morphism of U’-
crystals.

Proof. We need to show that the set QKNp (zw;)LU{0} is stable under the maps e;, f;,
J € Iat, and that the map ®; satisfies the conditions (CM2)— (CM3) in §2.2. We give
the proof only for the equality ®;(f;C) = f;®;(C) for C = CU{D,...,0} € QKN (=)
and j € I,¢, where we understand that ®;(0) = 0 and f;0 = 0; the other statements
are left to the reader.

We continue to use the notation above. If j # 0 and j ¢ Jx for all 7 € [u], then
®,(f;C) = 0 = f;@;(C) by Lemmas 5.28-5.29 (see also (133)-(136) and (145)). If
j € J; for some 7 € [2,4], then f;C; = Wy (f;®4,,(C)) by Cr € KNp, (w4,)
and Lemma 5.14 (2), and hence fJC = U,(f;®,(C)) by (184) and Lemmas 5.28-
5.29, which implies ®;(f;C) = f;®;(C), by Lemma 5.27. It remains to prove the
assertion for j € Jy U{0}. By (184) and Lemmas 5.28-5.29, it suffices to show that
Dy, (f;C1) = fj®4,(Cy). Therefore there is no loss of generality in assuming that
p=1,J1=[p,pr+i—1],C=Cy, and j € JF U{0}.

We first assume that j # 0. If p; > 2, then m = 0, C = C € KNp_(w;), and the
assertion follows from Lemma 5.14 (2). Therefore we can assume that p; = 1 and
J1 = [i]. In particular, j # n and

(194)  {j.j+ 13N C IeUde U Ke U ({|IC@)]| | u € [i — 2m]} ~ Ic);

=lIClI~1c

for simplicity of notation, we write ||C|| \ Ic = {[|C(u)[| | u € [i —2m]} \ Ic. Recall
that [C]; = CN{j,i+ 1,7+ 1,5}, [I d; = ICN{j,j+1,7+1,5}, and [rC]; = rC N
{54+ 17T L7} It follows from {[1C(w)| | u € [} = {rC(w)] | u € [} = Jy = [i]
that {[|u]l | w € [IC];} = {|Jull | u € [rCl;} € {5} {j,J + 1}}. If £;C # O, then we
write f;C = C'U{0,...,0} and ®;(f;C) = (rf;C,1f;C); recall from (175)—(176) that

rfiC=K;cU(C'~{o(2) | z€lc})Ufoly) |y € Job,
fiC={ |z e K;e}U(C' N Ic)UJo.
If f;(rC,1C) # 0, then we write (rC’,1C') = f;(rC,1C), IC']; = 1C'N{j,j+1,7+ 1,5},

and [rC'; =rC'N{j,j+ 1,7+ 1,7}
Since [C]; € {4,7 + 1,7 + 1,7}, we have the following sixteen cases.

Case 1. Assume that [C]; = @. By (133)-(136), f;C = 0. It follows from [C]; = @
and (194) that (j =i € Kg), (j,j+1 € Kg), or (j € K¢ and j + 1 € Jc), hence that

(195)
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([rCl;, [1CJ;) is either ({j},{7}), ({4,4 + 1}, {G+ L,7}), or ({4, 5+ 1}.{j + L,j}). By

(189), f;(rC,I1C) = 0. O
Case 2. Assume that [C]; = {j}. By (133), f;C = (C~ {j}) U {j + 1}. It follows
from [C]; = {j} and (194) that j € ||C|| \ Ic, and that (j = i), (j + 1671(6)’ or
(7 + 1 € Jc), hence that ([rCJ;,[IC];) is either ({j},{s}), ({7,j + 1},{7,.7+1}), or
{57+ 1145, 5 +1}). L

If j = i and ([rCJ;, [IC];) = ({j}, {4}), then ([rC'];, IC'];) = ({7 + 1}, {j + 1}), by
(188). Tt follows from f;C = (C~{j})U{j+1} that C' = (C~{jHU{j+1}, Ic = I¢,
Jo = Je, and K ¢ = K¢; note that J(rf;C) = J(1f;C) = ([i — 1] < {i +1}). By
(195), ®;(f;C) = (rC",1C").

It j+1 € Ke and (Cly, (1€)) = ({d + 11 {5,711, then (4T, BE;) =
({7,d + 1}, {7 + 1,4}), by (188). It follows from f;C = (C~ {j}) U {j + 1} that
C=C~{hu{j+1}, I =Ic, Jo = Jc, and Kfjé = (KC ~{i+1Hu{j}. By
(195), ®;(f;C) = (rC’,1C").

If j+1 € Jcand ([rCl;, [IC];) = ({4, +1}{j,j + 1}), then ([rC];,[IC'];) =
({7 + 1,7}, {4.J + 1}) by (188). It follows from f;C = (C~ {j}) U {j + 1} that
C=C~{jHuli+1} Ic =1Ic, Jo = (Je~{j+1}) U{j}, and K; ¢ = K¢. By
(195), ®;(f;C) = (rC’,1C"). O
Case 3. Assume that [C]; = {j + 1}. By (133)-(136), f,C = 0. It follows from [C]; =
{j +1} and (194) that j + 1 € ||C|| \ I¢, and that (j € K¢) or (j € Jc), hence
that ([rCJ;, ICJ;) is either ({j.j+ 1}, {j + 1,7}) or ({j + 1,7} 43, + 1}). By (189),

fi(rC,1C) = 0. O
Case 4. Assume that [Cl; = {7+ 1}. By (134), f;,C = (C~ {F+1})u{j}. It follows
from [C]; = {j + 1} and (194) that j + 1 € ||C|| \ Ic, and that (j € K¢) or (j € Jc),

hence that ([rC];, [IC];) is either ({j,j +1},{j,j +1}) or ({j,5 + 1}, {j,J +1}).

If j € K¢ and ([rCJ;, [IC];) = ({7, 7+ 1}, {7,7 + 1}), then ([rC'];, IC'];) = ({j +
1,74, 47,7+ 1}), by (188). It follows from f;C = (C~ {j+1}) U {j} that C' = (C~
FHINUGN To = I, Jo = Jo, and K, ¢ = (Ke ~ {7} U {j + 1. By (195),
q)z(fj(:) = (TC/,ZCI).

0 e Jc and (bC0CL) = (G.7FT) G5, then (bClICT) =
({7,5+1},{j +1,4}), by (188). It follows from f;C = (C~ {j+1}) U {j} that
C=C~{+1Hu{i}t le =1Ic, Jo = (Je~ {7} U{j + 1}, and K, ¢ = Ke. By
(195), @;(f;C) = (rC',1C"). O
Case 5. Assume that [C]; = {j}. By (133)-(136), f;C
and (194) that j € ||C|| \ Ic, and that (j =14), (j +1

that ([C], [1C)y) is either ({7}, (7)), ({j+ 1,7} {7+ 1
By (189), f;(rC,I1C) = 0.

Case 6. Assume that [C]; = {j,j+1}. By (133)- (136), fjg = 0. Tt follows from [C]; =
{j.j+1} and (194) that j, j +1  |[C ~ Ic and ([rCJ;, (iC};) = ({j.j + L} (s + 1}).
By (189), f;(rC,IC) = 0. a

Case 7. Assume that [Cl; = {j,7 +1}. By (135), £;C = (C~ {j}) u{j+1h It
follows from [C]; = {j,7 + 1} and (194) that j,j + 1 € ||C|| \ Ic and ([rC];, [IC];) =
(T T I 45:] 71))- By (188), (45, [)],) = ({5 + L7} {77+ 1)- It follows
from f;C = (C\{jHU{j+1} that C" = (C\ {jHU{j+1}, o = IcU{j+1},
Jo=JcU {j}, and Kfjf = K¢. By (195)7 (fj ) (’I“C/ lC/) O

0. It follows from [~]j ={j}
K¢), or (j+1 € Jc), hence

€
Lj}),or G+ 1,5}5 {7+ 175}

O
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Case 8. Assume that [C]; = {j,7}. By (133)-(136), f;C = 0. It follows from [C]; =
{j,7} and (194) that j € Ic, and that (j = 1), (j +1 € K¢), or (j +1 € Jc), hence
that ((rCl;, [1€),) is either ({3}, {71), (4.4 + 1}, G F 171, or (4.7 F 1), 47 4 1,7}).
By (189), f,(rC,IC) = 0. a

Case 9. Assume that [Cl; = {j + 1,7 + 1}. By (135), f;C = (C~ {j+ Hufjr It
follows from [C]; = {j+1,7 + 1} and (194) that j+1 € Ic, j € Jc, and ([rCl;, 1C]5) =

({7 + 1,7}, {4, + 1}). By (188), ([rC];, [IC];) = ({j + 1.7}, {4 + 1,}). It follows
from f;C = (C~ {j+1}) U {j} that C' = (C ST+ UG Io = Ic ~ {j + 1},

Jor = Je~{j}, and K ¢ = Ke. By (195), ®;(f;C) = (rC’,1C"). O
Case 10. Assume that [C; = {j + 1,7}. By (133)- (136), ijN: 0. It follows from
[C]; = {j+1,j} and (194) that j, j+1 € ||C|| \ Ic and ([rC];, [IC];) = ({j + 1,7} {j +
1,7}). By (189), f;(rC,IC) = . O

Case 11. Assume that C; = {7+1,7}. By (133)-(136), f;,C = 0. It follows
from [C]; = {j+1,j} and (194) that j,j + 1 € [|C|| \ Ic and ([rC];,[IC];) =
{7+1,55{/+1,7}). By (189), f;(rC,IC) = 0. U

Case 12. Assume that [C]; = {j,j + 1,7 + 1}. By (136), f;C = (C~ {7+ 1) U {j}.
It follows from [C]; = {j,j + 1,7 + 1} and (194) that j + 1 € I¢, j € ||C|| \ Ic, and
(€15, 1€15) = ({1}, 14:T + T By (188), ((rC'), [1E]5) = (g +11 4+ 1,7)).
It follows from f;C = (C~ {j+1}) U {j} that C" = (C~{j+1}) U{sj}, I =
(Ie~ {i + 1) U{j}, Jo = Je, and K ¢ = K¢. By (195), ®;(f;C) = (rC",1C). O

Case 13. Assume that [C]; = {j,j + 1,7}. By (133)-(136), f;C = 0. It follows from
[Cl; = {45 + 1,jl and (194) that j € Ic, j +1 € [|C|| \ Ic, and ([rC]y, [IC];) =
({4,7 + 1}, {7 +1,5})- By (189), f;(rC,IC) = 0. O

Case 14. Assume that [C]; = {j,7 + 1,j}. By (136), f;C (C\{j})u{j+1~}. It follows
from [C]; = i]ﬁl,]} and (194) that j € Ic, j+ 1 € [[C[| \ I¢, and ([rC];, [IC];) =
({47 + 13,44, 5+ 1}). By (188), ([rC'];, [IC)];) = ({7 + 1,7}, {55 + 1}). Tt follows
from f;C = (Cx{7})U{j+1} that ¢ = (C~{j})U{j +1}, oo = (I~ {71 U{i +1},

Jor = Je, and K ¢ = Ke. By (195), ®;(f;C) = (rC’,1C"). O
Case 15. Assume that [C|; = {j + 1,7 + 1,;}. By (133)-(136), f,C = 0. It follows
from [C]; = {j+1,7 + 1,7} and (194) that j+1 € I¢, j € ||C||\Ic, and ([rC];, [IC];) =
({7 + 1,7} {7 +1,7})- By (189), f;(rC,1C) = 0. O
Case 16. Assume that [C]; = {j,j + 1,7+ 1,j}. By (133)-(136), f;C = 0. It follows
from [C]; = {j, 7+ 1,7 + 1,7} and (194) that 5,7 + 1 € Ic and ([rC];, [IC];) = ({4, 7 +
1}, {7+ 1,7}). By (189), f;(rC,IC) = 0. O
We next assume that j = 0. Similarly to (194), we have
(196) {L,2}nJy CIcUJc UKe U({|IC(w)| | w € [i —2m]} \ I¢).
=lIClI~Ic

Recall that [Clo = CN{1,2,2,1}, [IC]o = ICN{1,2,2 2,1}, and [TC] =rCNn{1,2,2,1}.
If py > 2, then f,C = 0 by (150)-(152), and fo(TC I1C) = 0 by [IC)y = [rClp = @ and
(192). Therefore we can assume that Jy = [i] or J; = [2,4 + 1]; note that if p; = 2,
then m = 0. If foC # 0, then we continue to use the notation foC = C' U {0,... ,6}
and (195) for j = 0. If fo(rC,1C) # 0, then we write (rC’,1C") = fo(rC,1C), [IC']o =
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1C'N{1,2,2,1}, and [rC']o = rC'N{1,2,2,T}. Recall that z; = min Ic and y; = min Jc.
If m > 0, then z; = min K¢ and o = min(Kg \ {z1}).

We see from (QKN-B2) and (KN-B3) that {1,2} N Ic # @ implies [Clo = {2,2}.
Hence we have the following ten cases.

Case 1. Assume that [Clo = @. It follows from (196) that (1,2 € K¢), (1 € K¢ and
2 =1y, € Jc), or (2=p; =y € Jc), hence that ([rC, [IC]o) is either ({1,2},{2,T}),
({12}, 2. 1)), or ({2}, {2}). o

If 1,2 € Kg and ([rCo,[IClo) = ({1,2},{2,1}), then m > 0 and y; ¢ {1,2}.
By (151), fo€ = (€ ~ {0,01) U {1,2}. By (191), (o, (1) = ({12}, {1,2}). Tt
follows from foC = (C ~ {0,0}) L {1,2} that C' = CU{1,2}, Ic: = Ic, Jor = Jc, and
Kj e = Ke~{1,2}. By (195), ®;(foC) = (rC’,1C").

Assume that 2 = y, € Jc, and that ([rClo, [IC]o) is elther ({1,2},{2,1}) or
({2},{2}). By (150)-(152), foC = 0. By (192), fo(rC,IC) =

Case 2. Assume that [C|o = {1}. By (150)—(152), foC = It follows from [C]o = {1}
and (196) that 1 € ||C|| \ Ic, and that (i = 1), K¢), or (2 € Jc) hence

(2
that_([rClo, [IClo) is either ({1},{1}), ({1,2},{1,2}), o ({1 2}, {1 2}). By (192),
fo(rC,1C) = 0. O

Case 3. Assume that [Clo = {2}. By (150)-(152), foC = 0. It follows from [C]o = {2}
and (196) that 2 € [|C|| \ Ic, and that (p1 = 2), (1 € K¢), or (1 € Jc), hence
that~([r~C]0,[lC]0) is either ({2}3{2})3 ({172}7{27T})7 or ({271}7{1a2}) By (192)7
fo(rC,IC) = 0. O

Case 4. Assume that [C]o = {2}. It follows from (196) that 2 € ||C|| \ Ic, and that
(p1 =2), (1 =11 € Kg), or (1 =y, € Jc), hence that ([rClo, [1C)o) is either ({2}, {2}),
{125 2T, o (BT {12).

If py = 2 and ([rClo, [1Clo) = ({2 },{2}), then m = 0 and y, ¢ {1,2}. By (150),
fOC = (C~ {2} u{1}. By (191), ([rC')o, [IC"]o) = ({1}, {1}). It follows from foC =
(C N {2}) U {1} that C' = (C N {2}) U {1} Ic = I¢c, Jor = Je, and Kfo(: = K(: =o
note that J(rfoC) = J(1foC) = ({1} < [3,i + 1]). By (195), ®;(foC) = (rC’,1C").

If 1 =21 € K¢ and ([r ]0, [1Clo) = ({1,2},{2,1}), then m > 0 and yy, ¢ {1,2}. By
(151), foC = (C~{2,0,0}) U{1, 22, 73}. By (191), ([rC'o, [IC']o) = ({1,2},{1,2}). 1
follows from foC = (C~\{2,0,0}) U{1, 22,72} that C' = (C~ {2}) UL, 29,72}, Ic =
IcU {.’L‘Q}, Jo=Jc U {2}, and Kfoé = KC ~N {1,372}. By (195) (fo ) (TC/ 1’ )

_Assume that 1 =y, € Jc and ([rClo, [IClo) = ({2,1},{1,2}). By (152), foC =
(C~A{zr, 7, 2}) U{1,0,0}. By (191), ([rC'o, [IC']o) = ({1, 2}, {1,2}). Tt follows from
foC = (C~ {2k, 2k, 2}) U{1,0,0} that C" = (C~ {zx, 2k, 2}) U{1}, Icr = Ic ~ {zx},

Jor=Jc~A{1}, and K ¢ = Ke U{2, 2} By (195), ®;(foC) = (rC',1C"). O
Case 5. Assume that [C]o = {I}. It follows from (196) that 1 € [[C][ \ Ic, and that
(i=1), (2=, € Kg), or (2 =y € Jc), hence that ([rClo, [IClo) is either ({1}, {T}),

({2,1},{2,1}), or ({2,1},{2,1}). _

Ifi =1 and ([rClo, [1Clo) = ({1},{1}), then m = 0 and y, ¢ {1,2}. By (150),
foC = (C~A{1H U {2} = {2}. By (191), ([rC'o, [IC'o) = (rC,IC") = ({2}, {2}).
Tt follo~ws from fOC = {2} that C' = {2} a{ld Ic = J~c/ = K¢ = &; note that
T(r1o€) = T(U6C) = ({2)). By (195), @s(£oC) = (rC/,1C").

If 2=, € K¢ and ([rClo, [1C)o) = ({2,1},{2,1}), then m > 0 and y;, ¢ {1,2}. By
(151), foC = (C~{1,0,0}) U{2, 22, Z2}. By (191), ([rC']o, [IC"]0) = ({2,1},{1,2}). It
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follows from foC = (C~ {T,0,0}) U{2, 20,72} that C' = (C~ {1}) U{2, 20,72}, Ic: =
IcU{ms}, Jo = JcU{1}, and K ¢ = K¢ \ {2,22}. By (195), ®;(foC) = (rC’,1C").

Assume that 2 = y; € Jc and ([TC]Q,[ZC] ) = ({2,1},{2,1}). By (152), foC =
(C~ {2z, 75, 1}) U {2,0,0}. By (191), ([rC'o, [IC"]0) = ({1,2},{2,1}). It follows from
foC = (C~ {2, %5, 1}) U {2,0,0} that C' = (C~ {z1, 2, 1}) U {2}, Tcr = Ic ~ {z1.},

Jor = Jc~A{2}, and K ¢ = Ke U{1, 2} By (195), ®;(foC) = (rC',1C"). O
Case 6. Assume that [Clo = {1,2}. By (150)— (152), foC = 0. Tt follows from [C]y =
{1,2} and (196) that 1,2 € [|C|| \ Ic and ([rClo, [1CJo) = ({1,2},{1,2}). By (192),
fo(rC,IC) = 0. O
Case 7. Assume that [C]o = {1,2}. By (150)(152), f 0. Tt follows from [C]o =
{1,2} and (196) that 1,2 € [|C|| \ Ic and ([r Clo, [1Clo) = ({1 2},{1,2}). By (192),
fo(rC,IC) = 0. O
Case 8. Assume that [Clo = {2,2}. By (150)- (152), fo C = 0. It follows from [C]y =
{2,2} that 2 = 2, € Ic, 1 = yx € Jc, and ([rC]o, [IClo) = ({2,1},{1,2}). By (192),
fo(rC,1C) = 0. O

Case 9. Assume that [Co = {2,T}. By (150)— (152), fo = 0. It follows from [Clo
{2,T} and (196) that 1,2 € ||C|| ~ Ic and ([rClo, [IClo) = ({2,1},{2,1}). By (19

02),
fo(rC,1C) = 0. O

Case 10. Assume that [C]o = {2,1}. By (150)-(151), foC = (C ~ {2,1}) U {0,0}.
It follows from [Clo = {2,T} and (196) that 1,2 € ||C|| ~ Ic and ([rClo, [IC]o) =
({2,1},{2,T}). By (191), ([rC'Jo, [IC']o) = ({1,2},{2,T}). It follows from foC = (C ~
{2,1}) U {0,0} that C' = C\ {2,1}, I = Ic, Jor = Jc, and K ¢ = K¢ U {1,2}. By
(195), ®;(foC) = (rC’,1C"). O

The proof is complete.
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