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Implications of vanishing Krein parameters
on Delsarte designs, with applications in

finite geometry

John Bamberg & Jesse Lansdown

Abstract In this paper we show that if θ is a T -design of an association scheme (Ω, R), and
the Krein parameters qh

i,j vanish for some h ̸∈ T and all i, j ̸∈ T (i, j, h ̸= 0), then θ consists
of precisely half of the vertices of (Ω, R) or it is a T ′-design, where |T ′| > |T |. We then
apply this result to various problems in finite geometry. In particular, we show for the first
time that nontrivial m-ovoids of generalised octagons of order (s, s2) do not exist. We give
short proofs of similar results for (i) partial geometries with certain order conditions; (ii) thick
generalised quadrangles of order (s, s2); (iii) the dual polar spaces DQ(2d, q), DW(2d − 1, q)
and DH(2d − 1, q2), for d ⩾ 3; (iv) the Penttila–Williford scheme. In the process of (iv), we also
consider a natural generalisation of the Penttila–Williford scheme in Q−(2n − 1, q), n ⩾ 3.

1. Introduction
It is well known that vanishing Krein parameters of association schemes have im-
portant consequences in combinatorics, for example in determining the feasibility of
parameter sets for distance-regular graphs, and in placing bounds upon the orders of
generalised polygons. Vanishing Krein parameters may also be used to say something
about subsets of the vertices of an association scheme. The key result of this paper is
a simple observation (Theorem 1.3) which states that given certain vanishing Krein
parameters, either the possible sums of eigenspaces containing a Delsarte design are
constrained, or else the Delsarte design consists of exactly half of the vertices of the
association scheme. This leads to various interesting consequences which we explore in
this paper. We will assume the reader is familiar with the basic theory of association
schemes, but we refer to [34, Chapter 30] for background and notation.

The starting point for this work is the following theorem (Theorem 1.1) of Cameron,
Goethals and Seidel [6]. A short proof of it was given by Martin [21]. It states that
the Schur product of two vectors,(1) each lying in precisely one eigenspace, projects
trivially to a third eigenspace if the corresponding Krein parameter vanishes. In par-
ticular, this gives us combinatorial meaning, since if the two vectors in question are
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characteristic vectors of subsets, then their Schur product indicates the intersection
of the two sets.

Theorem 1.1 ([6, Proposition 5.1]). Let (Ω, R) be a d-class association scheme and
let h, i, j ∈ {1, . . . , d}. Write the simultaneous eigenspaces for (Ω, R) as Vℓ. If u ∈ Vi

and v ∈ Vj, and we have a vanishing Krein parameter qh
ij = 0, then the Schur product

u ◦ v has trivial projection to Vh.

Cameron, Goethals, and Seidel [7] proved that strongly regular graphs with either
q1

11 = 0 or q2
22 = 0 have strongly regular subconstituents about every vertex. Moreover,

they characterised such graphs, when connected, as being a pentagon, a Smith graph
(cf. [27]), or the complement of a Smith graph. Similar results have been investigated
for distance-regular graphs with slightly larger diameter [17, 18]. There is also an
important relation between vanishing Krein parameters and the triple intersection
numbers. Given x, y, z ∈ V (Γ), we define the triple intersection numbers

px,y,z
r,s,t = |{u : d(x, u) = r, d(y, u) = s, d(z, u) = t}|.

Theorem 1.2 ([10]). Let (Ω, R) be a d-class association scheme, and let Q denote the
matrix of dual eigenvalues of the association scheme. Then qh

ij = 0 if and only if
d∑

r,s,t=0
QriQsjQthpx,y,z

r,s,t = 0,

for all x, y, z ∈ Ω.

Theorem 1.2 has been used to show that distance-regular graphs with certain in-
tersection arrays do not exist [10, 19, 32, 36].

We now reach the main theorem of this paper. Theorem 1.3 shows, that given
certain vanishing Krein parameters, Delsarte designs must be constrained to a smaller
subset of the eigenspaces in which they lie, or else consist of exactly half of the vertices.

Theorem 1.3. Let (Ω, R) be an association scheme, and let θ be a subset of the
vertices, such that its characteristic vector χθ satisfies

χθ ∈ V0 ⊥

(
⊥
ℓ∈S

Vℓ

)
,

where S ⊆ {1, . . . , d}. If there is some h ∈ S, such that qh
i,j = 0 for all i, j ∈ S, then

χθ ∈ V0 ⊥

 ⊥
ℓ∈S\{h}

Vℓ

 ,

or |θ| = 1
2 |Ω|.

The proof of this result will appear in Section 3.

Example 1.4. Consider the Johnson scheme J(8, 4) on the 4-subsets Ω of {1, . . . , 8}.
We will order the simultaneous eigenspaces in the natural cometric ordering. We have
q1

ij = 0 for all i, j ∈ {1, 4}. Suppose θ is a subset of Ω such that χθ ∈ V0 ⊥ V1 ⊥ V4.
Then by Theorem 1.3, (i) χθ ∈ V0 ⊥ V4, or (ii) θ consists of half the elements of Ω. It
is not difficult to undertake a complete enumeration of these examples. It turns out
that θ is one of four examples up to symmetry:

(a) A 3 − (8, 4, 1) design equivalent to the design arising from the points and
planes of the affine space AG(3, 2). In this case χθ ∈ V0 ⊥ V4 and |θ| = 14.

(b) The unique flag-transitive 3 − (8, 4, 3) design. In this case χθ ∈ V0 ⊥ V4 and
|θ| = 42.
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(c) All of the 4-subsets containing one element. In this case χθ ∈ V0 ⊥ V1 and
|θ| = 35 = |Ω|

2 .
(d) A set(2) of half the elements of Ω, with stabiliser S5 in S8. In this case χθ ∈

V0 ⊥ V1 ⊥ V4 and |θ| = 35 = |Ω|
2 .

For T ⊆ {1, . . . , d}, a (Delsarte) T -design of (Ω, R) is a subset θ ∈ Ω such that
χθEi = 0 for all i ∈ T . Reformulated in the language of T -designs, Theorem 1.3 states
that for S = {1, . . . , d}\T if qh

i,j vanishes for some h ∈ S and all i, j ∈ S then either
|θ| = |Ω|/2 or θ is a (T ∪ {h})-design.

In order to use Theorem 1.3 we require at a minimum that qh
hh = 0. Moreover, the

smallest such setting is where S = {h}. A subset θ ∈ Ω is called an intriguing set of
type h (cf. [3]) if χθ ∈ V0 ⊥ Vh. Hence an intriguing set of type i is a {1, . . . , d}\{h}-
design. Intriguing sets are often known by other names in different settings. For ex-
ample, Cameron–Liebler line classes (cf. [8, 12, 13, 22, 25]) and Boolean degree 1
functions (cf. [16]) are all variations of intriguing sets. We have the following special
case of Theorem 1.3 for intriguing sets of type h.

Corollary 1.5. If qh
hh = 0, then a nontrivial intriguing set of type h contains exactly

half of the vertex set.

Corollary 1.5 yields alternative proofs of three results in the literature: (i) a non-
trivial m-ovoid of a generalised quadrangle of order (s, s2) is a hemisystem [7] (see also
Corollary 5.3); (ii) a nontrivial m-ovoid of a dual polar space of the form DQ(2d, q),
DW(2d − 1, q), DH(2d − 1, q2) (for d ⩾ 3) is a hemisystem [1, Theorem 1.1] (see
also Theorem 6.1); (iii) a nontrivial relative m-ovoid of a generalised quadrangle of
order (q, q2), containing a doubly subtended quadrangle of order (q, q), is a relative
hemisystem [2] (see also Theorem 7.2).

Example 1.6. The Clebsch graph, the Schläfli graph, and the complement of the
Higman–Sims graph, are all strongly regular graphs, with parameters (16, 10, 6, 6),
(27, 16, 10, 8), and (100, 77, 60, 56), respectively. In each of these graphs, q1

11 = 0,
hence by Corollary 1.5, intriguing sets of type 1 in these graphs consist of half of the
vertices.

2. Some background and notational conventions
We remind the reader that we can calculate Krein parameters of an association scheme
(Ω, R) from the matrix of eigenvalues P , or the matrix of dual eigenvalues Q.

Lemma 2.1 (cf. [5, Theorem 2.3.2]). In an association scheme (Ω, R), let the kℓ be
the valencies, and let the mh be the multiplicities (of the simultaneous eigenspaces).
Then

qh
ij = 1

|Ω|mh

d∑
ℓ=0

kℓQℓiQℓjQℓh = mimj

|Ω|

d∑
ℓ=0

PiℓPjℓPhℓ

k2
ℓ

.

There is a bijection between the power-set of the vertices and the set of all {0, 1}-
vectors by taking the characteristic vector of a set. We write χS for the characteristic
vector of a subset S of a domain that is clear from the context. It is clear that
Schur multiplication of two {0, 1}-vectors produces another {0, 1}-vector with a one

(2)Consider PSL(2, 5) acting transitively on 6 elements (i.e. the natural action on the projective
line PG(1, 5)). Then PSL(2, 5) has two orbits O and O′ of size 10 on 3-subsets. Adjoin 7 to each S in
O and likewise, adjoin 8 to every element of O′ to produce a total of twenty 4-subsets Λ of {1, . . . , 8}.
Now, take the set ∆ of every 4-subset of {1, 2, 3, 4, 5, 6} containing {1, 2}. Then |∆∪Λ| = 15+20 = 35
and has characteristic vector lying in V0 ⊥ V1 ⊥ V4.
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in an entry if and only if the corresponding entry is one in both of the original
vectors. Thus intersection of two vertex subsets is described by Schur multiplication
of their characteristic vectors. That is, χS1∩S2 = χS1 ◦χS2 for all subsets S1, S2 of our
domain. Moreover, the all-ones vector 1 is the identity under Schur multiplication,
and 1− χS = χSc , where Sc is the complement of S in our domain.

We will need one more item of notation. Recall that the eigenspaces of the associa-
tion scheme in Theorem 1.3 are denoted Vi. Each Vi has a linear projection map Ei; a
minimal idempotent for the association scheme. Recall that the Ei have the following
property: EiEj = δi,jEi. So different minimal idempotents are orthogonal.

A partial linear space is a (nonempty) incidence geometry of points and lines such
that any two distinct points are contained in at most one line, and every line contains
at least two points. An m-ovoid of a partial linear space is a subset S of the points
such that every line is incident with m elements of S. If every line has s + 1 points
incident with it, then an s+1

2 -ovoid is a hemisystem. The trivial m-ovoids are the
empty set and the whole point set, that is, m is 0 or s + 1.

3. Proof of the main result
Proof of Theorem 1.3. Let v = χθ. Then v ∈ V0 ⊥

(
⊥ℓ∈S Vℓ

)
, and hence v = λ1 +∑

ℓ∈S vℓ, where vℓ ∈ Vℓ and vℓEh = 0 for all ℓ ̸= h. If vh = 0, then vEh = 0 and so

χθ ∈ V0 ⊥

 ⊥
ℓ∈S\{h}

Vℓ

 .

Instead, take vh ̸= 0. Now,

v ◦ v = λ21+
∑
i∈S

2λvi +
∑

i,j∈S

vi ◦ vj ,

since 1 is the identity under Schur multiplication. Thus (v ◦ v)Eh = 2λvh, since
vℓEh = 0 for all ℓ ̸= h, and (vi ◦ vj)Eh = 0 for all i, j ∈ S, by Theorem 1.1 (as
qh

ij = 0 for all i, j ∈ S). However, note that v ◦ v = v = λ1 +
∑

ℓ∈S vℓ, since v is a
{0, 1}-vector. Thus (v ◦ v)Eh = vh. Equating these expressions yields 2λvh = vh, and
since vh is nontrivial, λ = 1

2 . Therefore,

|θ| = 1 · v = λ(1 · 1) +
∑
ℓ∈S

(1 · vℓ) = λ(1 · 1) = 1
2 |Ω|. □

4. Vanishing Krein parameters in cometric, Q-bipartite and
Q-antipodal schemes

A scheme is cometric (or Q-polynomial) with respect to the ordering {Ei}d
i=0, if

(1) qh
ij = 0 if i + j < h or 0 ⩽ h < |i − j|,

(2) qi+j
ij ̸= 0 for all i and j such that i + j ⩽ d.

Thus such schemes have a large proportion of vanishing Krein parameters. Indeed,
Terwilliger [30] was interested in cometric schemes for this reason. A scheme is called
metric if the equivalent conditions hold when qh

ij is replaced by ph
ij . Many of the classi-

cal association schemes are both metric and cometric. Schemes which are cometric but
not metric are relatively rare, hence the interest in the Penttila–Williford scheme. We
consider this scheme further in Section 7. Moreover, most association schemes arising
from geometries are cometric, such as the dual polar spaces, for example.
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Corollary 4.1. Let (Ω, R) be a cometric association scheme, and let θ be a subset
of the vertices, such that

χθ ∈ V0 ⊥

(
⊥
i∈S

Vi

)
⊥ Vh,

where S ⊆ {1, . . . , ⌈ h
2 ⌉ − 1} for some h. If qh

hh = 0 then

χθ ∈ V0 ⊥

(
⊥
i∈S

Vi

)
,

or |θ| = 1
2 |Ω|.

An association scheme is primitive if all of its associate graphs, Γi, are connected.
Otherwise it is called imprimitive. The following conjecture, due to Bannai and Ito, if
true, would imply that, for sufficiently large diameter, most of the Krein parameters
of a primitive distance-regular graph vanish.

Conjecture 4.2 (Bannai and Ito [4, p. 312]). For sufficiently large diameter, a prim-
itive association scheme is metric if and only if it is cometric.

There is no guarantee that qi
ii = 0 for some i, even in a cometric scheme. However,

we can say a bit more, particularly in the case of imprimitive cometric association
schemes. For a cometric association scheme, define a∗

i = qi
1i, b∗

i = qi
1,i+1, and c∗

i =
qi

1,i−1. The Krein array, or dual intersection array, is

{b∗
0, b∗

1, . . . , b∗
d−1; c∗

1, c∗
2, . . . , c∗

d}.

Furthermore, a∗
i + b∗

i + c∗
i = q0

ii.
A scheme is bipartite if ph

ij = 0 when i + j + h is odd, and antipodal if bj = cd−j

for all j except possibly j = ⌊ d
2 ⌋. Dually, a scheme is Q-bipartite if qh

ij = 0 when
i + j + h is odd, and Q-antipodal if b∗

j = c∗
d−j for all j except possibly j = ⌊ d

2 ⌋. Note
that a∗

i = 0 for all i implies that a scheme is Q-bipartite.

Example 4.3 ([33, 5.5.10]). For d ⩾ 2, a distance-regular graph is called almost Q-
bipartite if a∗

i = 0 for i < d and a∗
d > 0. An almost Q-bipartite distance-regular graph

is either the halved (2d + 1)-cube, the folded (2d + 1)-cube, or the collinearity graph
of the dual polar space DH(2d − 1, q2). Since a∗

1 = q1
11 = 0, it follows from Corollary

1.5 that an intriguing set of type 1 consists of half the vertex set.

An imprimitive metric association scheme other than a cycle is bipartite, or antipo-
dal, or both [5, Theorem 4.2.1]. Suzuki [28] proved that an imprimitive cometric asso-
ciation scheme is Q-bipartite, or Q-antipodal, or both Q-bipartite and Q-antipodal, or
has either four or six classes. Cerzo and Suzuki [9] later showed that the exceptional
four-class case does not exist, followed by a similar non-existence result by Tanaka
and Tanaka for the exceptional six-class case [29]. Therefore, an imprimitive cometric
association scheme other than a cycle is Q-bipartite, or Q-antipodal, or both.

The Q-bipartite condition is very strong, leading to the following result for con-
straining Delsarte designs.

Theorem 4.4. Let (Ω, R) be a Q-bipartite association scheme, and let θ be a nontrivial
subset of the vertices, such that

χθ ∈ V0 ⊥
i∈S

Vi,

where S ⊆ {1, . . . , d}, such that i is odd for all i ∈ S. Then |θ| = 1
2 |Ω|.
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Proof. Since i, j, h are odd for all i, j, h ∈ S, so too is i + j + h. Hence qh
ij = 0 for all

i, j, h ∈ S, as (Ω, R) is Q-bipartite. Assume for a contradiction that |θ| ≠ 1
2 |Ω|. If we

fix some h ∈ S, then

χθ ∈ V0 ⊥

 ⊥
ℓ∈S\{h}

Vℓ

 ,

by Theorem 1.3. Repeating this argument eventually constrains χθ to lie in V0 = ⟨1⟩,
but this is a contradiction, since θ is a nontrivial proper subset of the vertices. Thus
|θ| = 1

2 |Ω|. □

Example 4.5. The Taylor graphs are distance-regular graphs with intersection array
{k, µ, 1; 1, µ, k}.

They are cometric with respect to two orderings, and are Q-bipartite (cf. [5, p. 431]).
Hence by Theorem 4.4, intriguing sets of type 1 and 3 consist of half of the vertex
set, as do {2}-designs.

5. Partial geometries and generalised quadrangles
Partial geometries are a class of partial linear spaces having strongly regular collinear-
ity graphs. To be more precise, a partial geometry pg(s, t, α) is a partial linear space
such that every line contains s + 1 points, every point is incident with t + 1 lines and
for a point P and line ℓ which are not incident, there are α points on ℓ collinear with
P . A partial geometry gives rise to a strongly regular graph with parameters

((s + 1)(st + α)/α, s(t + 1), s − 1 + t(α − 1), α(t + 1))
simply by considering the vertices to be the points, and adjacency to be collinearity
of points. By default, the association scheme arising from the partial geometry will be
that arising from the strongly regular collinearity graph, and the minimal idempotents
will have the natural ordering.(3) A partial geometry is thick if s, t > 1. Bruck nets and
generalised quadrangles occur naturally as partial geometries. Indeed, a pg(s, t, α) is
a generalised quadrangle precisely when α = 1.

Theorem 5.1. Let Γ be a thick pg(s, t, α). Then the Krein parameter qi
ii is zero if and

only if i = 2,

α =
s2 − t − 1 +

√
t(t + 1 − s2)

s − 1 ,

and t ⩾ s2. Moreover, in the positive case, α = 1 if and only if t = s2.

Proof. Note that 1 ⩽ α ⩽ s + 1, t + 1. There are (s + 1)(st + α)/α points, and the
matrix of eigenvalues for the collinearity graph (which is strongly regular) is:

P =

1 s(t + 1) st
α (s + 1 − α)

1 s − α α − s − 1
1 −t − 1 t

 .

Let us calculate the qi
ii (using Lemma 2.1):

q1
11 = 1 + (s − α)3

(s(t + 1))2 + (α − s − 1)3

( st
α (s + 1 − α))2 ,

q2
22 = 1 + (−t − 1)3

(s(t + 1))2 + t3(
st
α (s + 1 − α)

)2 .

(3)by their corresponding multiplicities 1, st(s+1)(t+1)
α(s+t+1−α) , s(s+1−α)(st+α)

α(s+t+1−α) .
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Case q1
11 = 0.: If α = s + 1, then

q1
11 = 1 − 1

s2(t + 1)2

which is clearly nonzero. So assume α < s + 1. Then we can cross-multiply
and take the numerator:

(s(t + 1))2 ( st
α (s + 1 − α)

)2 + (s − α)3 ( st
α (s + 1 − α)

)2 + (α − s − 1)3(s(t + 1))2 = 0.

Since s, t, α > 0,
0 = (s2(t + 1)2 + (s − α)3)t2 + (α − s − 1)(t + 1)2α2

and hence
(s2(t + 1)2 + (s − α)3)t2 = (s + 1 − α)(t + 1)2α2.

Now 0 ⩽ (s − α)3 and so
s2(t + 1)2t2 ⩽ (s + 1 − α)(t + 1)2α2.

Hence,
s2t2 ⩽ (s + 1 − α)α2 ⩽ (s + 1 − α)(t + 1)2

since α ⩽ t + 1. So
s2 ⩽ (s + 1 − α)( t+1

t )2 < s( t+1
t )2

as α ⩾ 1. Thus

s < ( t+1
t )2 =

(
1 + 1

t

)2
⩽

(
3
2

)2
= 2 + 1

4 .

Since s ⩾ 2, we have s = 2. When t > 2, we have (1+ 1
t )2 < 2; a contradiction.

Therefore, t = 2 and α = 1 because 0 < α < s + 1. We can now substitute in
our values for s, t, α to compute q1

11 = 65/72 ̸= 0.
Case q2

22 = 0.: If α = s+1, then the second relation is empty, so we assume α < s+1.
As before, we cross-multiply and take the numerator:

(s(t + 1))2 ( st
α (s + 1 − α)

)2 − (t + 1)3 ( st
α (s + 1 − α)

)2 + t3(s(t + 1))2 = 0.

Since s, t, α > 0,
0 = s2(s + 1 − α)2 − (t + 1)(s + 1 − α)2 + tα2 = (s2 − t − 1)(s + 1 − α)2 + tα2

and hence

α =
s2 − t − 1 ±

√
t(t + 1 − s2)

s − 1 .

Now for α to be a real number, it is necessary that t + 1 ⩾ s2. If t + 1 = s2,
then α = 0 (a contradiction). Therefore, t ⩾ s2. Furthermore, t ⩾ s2 implies
that

√
t(t + 1 − s2) ⩾

√
t ⩾ s ⩾ 1 and s2 − t − 1 ⩽ −1. Now, α > 0 and so

(1) α =
s2 − t − 1 +

√
t(t + 1 − s2)

s − 1 .

Moreover, from Equation (1), α = 1 is equivalent to t(t + 1 − s2) = (s2 −
t − s)2, which after rearrangement, yields t(s2 − 2s + 1) = s2(s2 − 2s + 1);
that is, t = s2. □

By Corollary 1.5, Theorem 5.1 yields a result on hemisystems of partial geometries.

Corollary 5.2. Let Γ be a pg
(

s, t,
s2−t−1+

√
t(t+1−s2)

s−1

)
, where s, t > 1. Then any

nontrivial m-ovoid of Γ is a hemisystem.
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As a direct consequence of this result, we re-obtain a theorem by Cameron,
Goethals and Seidel [7].

Corollary 5.3. Let Γ be a GQ(s, s2), where s > 1. Then any nontrivial m-ovoid of
Γ is a hemisystem.

For α = 2, the only putative partial geometries with vanishing Krein parameters
are pg(4, 27, 2), pg(5, 32, 2), and pg(7, 54, 2) [20]. Makhnev [20] showed that there is no
partial geometry pg(5, 32, 2) while Östergård and Soicher [23] showed that there is no
partial geometry pg(4, 27, 2), leaving the only open case for α = 2 being pg(7, 54, 2).

The partial geometry pg(6, 80, 3) induces pg(5, 32, 2) in the neighbourhood of a
vertex, and so there is no partial geometry pg(6, 80, 3) [20]. The smallest open case
for a partial geometry with α = 3 and a vanishing Krein parameter is thus pg(7, 75, 3).
For α ⩾ 4, the existence problem of partial geometries with q2

22 = 0 appears to be
completely open.

Question 5.4. Does there exist a pg(7, 54, 2) or pg(7, 75, 3)?

Question 5.5. For which values of α ⩾ 4 do partial geometries exist with q2
22 = 0?

6. Dual polar spaces
We present here an alternative proof of the main result of [1].

Theorem 6.1 ([1, Theorem 1.1]). The only nontrivial m-ovoids that exist in
DQ(2d, q), DW(2d − 1, q) and DH(2d − 1, q2), for d ⩾ 3, are hemisystems (i.e.
m = (q + 1)/2).

Proof. The matrix of eigenvalues for DH(5, q2), DQ(6, q), and DW(5, q) are as follows
(see [35, Theorem 4.3.6]):

PDH(5,q2) =


1 q(q4 + q2 + 1) q4(q4 + q2 + 1) q9

1 q3 + q − 1 q(q3 − q2 − 1) −q4

1 −q2 + q − 1 −q(q2 − q + 1) q3

1 −q4 − q2 − 1 q2(q4 + q2 + 1) −q6

 ,

and

PDQ(6,q) = PDW(5,q) =


1 q(q2 + q + 1) q3(q2 + q + 1) q6

1 q2 + q − 1 q(q2 − q − 1) −q3

1 −1 −q2 q2

1 −q2 − q − 1 q(q2 + q + 1) −q3

 .

Computing the Krein parameters with Lemma 2.1, q1
11 > 0, q2

22 > 0, and q3
33 = 0 in

each instance. Now m-ovoids of DH(5, q2), DQ(6, q), and DW(5, q) are intriguing sets
of type 3, and so by Corollary 1.5 the only nontrivial m-ovoids of DH(5, q2), DQ(6, q),
and DW(5, q) are hemisystems. The result for general dimension d > 3 follows by
noting that by taking the generators on a fixed point, and then projecting, maps an
m-ovoid to an m-ovoid. □

It is also worth noting here that nothing more can be said about designs in DW(5, q)
than what can be said about DQ(6, q) from a purely algebraic perspective, since the
intersection numbers are the same for both.

Remark 6.2. The conditions of Theorem 1.3 being satisfied does not imply the exis-
tence of a T -design, θ, such that |θ| = 1

2 |Ω|. Such a T -design may or may not exist.
By way of example, the dual polar space DW(5, 3) has Krein parameter q3

33 = 0,
which implies that every m-ovoid of this space is a hemisystem. However, it has no
hemisystems. While the dual polar space DQ(6, 3) also has Krein parameter q3

33 = 0,
and does have hemisystems (see [1]).
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The following is a long-standing open problem.

Question 6.3. When do DQ(2d, q), DW(2d − 1, q) and DH(2d − 1, q2) have hemisys-
tems, for d ⩾ 3?

7. The Penttila–Williford scheme
Let Q be a generalised quadrangle of order (s, t) and let Q′ be a generalised subquad-
rangle of Q of order (s, t′). Let P be a point of Q not in Q′. Then P ⊥ ∩ Q′ is an ovoid
OP of Q′ subtended by P . If there is exactly one other point P ′ such that OP is also
subtended by P ′, then we say OP is doubly subtended. If every ovoid of Q′ is doubly
subtended, then we say that Q′ is doubly subtended in Q.

Let Q be a generalised quadrangle of order (s, s2), where s > 2, and let Q′ be a
doubly subtended generalised quadrangle of order (s, s) contained in Q. For example,
we could take the classical generalised quadrangle Q−(5, q) and the subquadrangle
Q(4, q). Let Ω be the set of points of Q ∖ Q′, and define the following relations on
Ω × Ω:

• R0 is the identity relation;
• (X, Y ) ∈ R1 if and only if X and Y are not collinear in Q and |OX ∩OY | = 1;
• (X, Y ) ∈ R2 if and only if X and Y are not collinear in Q and |OX ∩ OY | =

s + 1;
• (X, Y ) ∈ R3 if and only if X and Y are collinear in Q;
• (X, Y ) ∈ R4 if and only if OX = OY .

Then the relations {Ri}4
i=0 form a primitive association scheme (see [24]), which we

call the Penttila–Williford scheme. The Penttila–Williford scheme is Q-bipartite (see
[24]), and so we have the following immediate consequence of Corollary 4.4.

Theorem 7.1. Let θ be a nontrivial intriguing set of type 1, intriguing set of type 3,
or a {2, 4}-design of the Penttila–Williford association scheme. Then |θ| = 1

2 |Ω|.

Bamberg and Metsch [3] recently described the intriguing sets of the Penttila–
Williford scheme arising from Q−(5, q)\Q(4, q), q > 2. They show that an intriguing
set of type 1 or type 3 must consist of exactly half of the vertices of the scheme. The-
orem 7.1 uses only algebraic arguments and hence generalises the result of Bamberg
and Metsch.

The following result of Bamberg and Lee follows as a corollary of Theorem 7.1 and
the fact that a relative m-cover is an intriguing set of type 1 [2, Corollary 3.4].

Theorem 7.2 ([2]). Given a generalised quadrangle of order (q, q2) containing a dou-
bly subtended quadrangle of order (q, q), a nontrivial relative m-ovoid is a relative
hemisystem. If it exists, q is even.

We now look at a generalisation of the Penttila–Williford scheme which, although
a natural extension, does not appear to be in the literature. We state it explicitly
and consider some of its properties by drawing on tools from Cossidente and Pavese
who studied the generalisation of relative m-ovoids [11]. Let Ω be the set of points
of Q−(2n − 1, q) not contained in a fixed nondegenerate hyperplane Π. So |Ω| =
qn−1(qn−1 − 1). We define σ : Ω → Ω as follows. Let P be a point of Ω. Then the
line joining Π⊥ and P is a hyperbolic line and so contains a unique second point
P ′ of Ω. Let σ be the central collineation of PG(2n − 1, q) having axis Π and centre
Π⊥, mapping P to P ′. Then σ commutes with the polarity ⊥ and so stabilises Ω.
Moreover, since PP ′ has only two points of Q−(2n − 1, q) on it, we have σ(P ′) = P
and hence σ2 is the identity. It turns out that σ is independent of the choice of P .
We write X ∼ Y as a shorthand notation for the ‘collinear and not equal’ relation.
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Theorem 7.3. Let q be a prime power, greater than 2, and let Ω be the set of points
of Q−(2n − 1, q) not contained in a fixed nondegenerate hyperplane Π. Define the
following relations on Ω:

R0 = {(X, Y ) ∈ Ω × Ω | X = Y },

R1 = {(X, Y ) ∈ Ω × Ω | Y ̸∼ X ∼ Y σ},

R2 = {(X, Y ) ∈ Ω × Ω | Y ̸∼ X ̸∼ Y σ},

R3 = {(X, Y ) ∈ Ω × Ω | Y ∼ X ̸∼ Y σ},

R4 = {(X, Y ) ∈ Ω × Ω | X = Y σ}.

Then (Ω, {R0, R1, R2, R3, R4}) is an association scheme with matrix of eigenvalues:
1 (qn−2 − 1)(qn−1 + 1) qn−2(q − 2)(qn−1 + 1) (qn−2 − 1)(qn−1 + 1) 1
1 qn−1 + 1 0 −

(
qn−1 + 1

)
−1

1 qn−2 − 1 −2qn−2 qn−2 − 1 1
1 −

(
qn−2 − 1

)
0 qn−2 − 1 −1

1 −qn−2(q − 2) − 1 2qn−2(q − 2) −qn−2(q − 2) − 1 1

 .

Proof. We will sketch the proof since it is similar to the proof of [24, Theorem 1].
First, one verifies that the relations Ri are symmetric and the intersection numbers
ph

ij are well-defined. Next, the parameters ph
ij can be computed geometrically and we

obtain the intersection matrices L1, L2, L3, and L4, which we list in Appendix A.
The eigenvectors for L1 give the matrix of eigenvalues as described above. □

Lemma 7.4. The association scheme described in Theorem 7.3 is not metric. It is
cometric precisely when n = 3, in which case there is a single cometric ordering.

Proof. The dual intersection matrices L∗
i have been computed using Lemma 2.1 and

are given in Appendix B. Observe that L∗
1 is tridiagonal when n = 3, and hence

the association scheme is cometric with respect to the given ordering of eigenspaces.
When n > 3, there are 10, 6, 10, and 6 entries of L∗

1, L∗
2, L∗

3, and L∗
4, respectively,

which are non-zero and not on the diagonal. Any ordering of the eigenspaces induces a
permutation σ ∈ S4 on the indices. Now, since (L∗

i )jh = qh
ij , it follows that (Lσ(i))jh =

q
σ(h)
σ(i)σ(j), and so Lσ(i) = T ⊤LiT , where T is the permutation matrix induced by σ.

Note that the diagonal of Li is fixed by T , and so the rows and columns of L∗
1 and

L∗
3 clearly cannot be permuted to a tridiagonal form, as they have too many non-

diagonal, non-zero entries. Similarly, L∗
2 and L∗

3 have too few entries; even if they
were permuted into a tridiagonal form, it would result in b∗

x and c∗
y being zero for

some x, y ∈ {1, 2, 3, 4}, which is not possible. Hence the association scheme is not
cometric for n > 3. Since the number of non-diagonal, non-zero entries of L∗

2, L∗
3, and

L∗
4 are constant for n ⩾ 3, the same argument shows that only the given ordering is a

cometric ordering for n = 3. A similar treatment shows that none of the intersection
matrices (see Appendix A) can be expressed in tridiagonal form, for n ⩾ 3, and so
the association scheme is not metric. □

Theorem 7.5. Let θ be a nontrivial intriguing set of type 1, intriguing set of type 3, or
a {2, 4}-design of the association scheme described in Theorem 7.3. Then |θ| = |Ω|

2 .
If n = 3 and θ is a nontrivial {2, 3}-design, then either θ is a {1, 2, 3}-design or
|θ| = |Ω|

2 .

Proof. Recall that qh
ij = (L∗

i )jh. By inspecting the dual intersection matrices (Appen-
dix B), we see that the following Krein parameters always vanish:

q1
11, q3

33, q1
13, q1

31, q1
33, q3

11, q3
13, q3

31.
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Additionally, when n = 3, the following also vanish:
q1

44, q1
1,4, q1

41. □

A relative m-ovoid of Q−(2n−1, q), with respect to a nondegenerate hyperplane Π,
is a subset R of points of Q−(2n−1, q)∖Π such that every generator of Q−(2n−1, q)
not contained in Π meets R in m points. A relative m-ovoid is said to be nontrivial
or proper if it is nonempty and not the entire set of points of Q−(2n − 1, q) ∖ Π. It
is a relative hemisystem if it comprises half of the points of Q−(2n − 1, q) ∖ Π. Now
the points of Q−(2n − 1, q) ∖ Π in a generator of Q−(2n − 1, q) (not contained in
Π) form a clique of size qn−2 for the R3-relation and so has inner distribution vector
a = (1, 0, 0, qn−2 − 1, 0). Now

aQ =
(

qn−2, 0,
qn−2(q − 2)(q + 1)(qn−1 − 1)

2(q − 1) ,
1
2qn−1(qn−1 − 1), qn−1(qn−2 − 1)

q − 1

)
and so a relative m-ovoid is an intriguing set of type 1 (by [26, 3.3, 3.4] and [5,
Proposition 2.5.2]).

Corollary 7.6 ([11, Theorem 2.4]). Let R be a proper relative m-ovoid of Q−(2n −
1, q). Then q is even and R is a relative hemisystem.

Relative hemisystems of Q−(4n + 1, q) are known to exist for q even and n ⩾ 2
[11, Theorem 3.3]. Other than for Q−(7, 2), where no relative hemisystem exists [11,
Remark 3.5], the question of their existence is open for Q−(4n − 1, q), q even and
n ⩾ 2.

Question 7.7. Do there exist relative hemisystems of Q−(4n−1, q), q even and n ⩾ 2?

8. Generalised octagons
A finite generalised octagon is a partial linear space such that (i) there are no ordinary
n-gons in the geometry with n < 8, and (ii) there exists an ordinary octagon in the
geometry. If there are parameters (s, t) such that every line is incident with s + 1
points and every point is incident with t + 1 lines, then we say that the generalised
octagon has order (s, t). If a generalised octagon of order (s, t) has s, t ⩾ 3, then we
say it is thick. The dual incidence structure of a generalised octagon of order (s, t)
(whereby points and lines are interchanged) is again a generalised octagon, but with
order (t, s). The only known examples of finite thick generalised octagons are the Ree–
Tits octagons of order (q, q2) and their duals, where q is an odd power of 2. Indeed,
they are the natural geometries for the exceptional groups of Lie type 2F4(q). Now
it is customary in the theory of generalised polygons with gonality at least 6 to use
the term distance-j-ovoid for a maximum(4) set of points mutually at distance j, and
reserve the term ovoid for a maximum set of pairwise opposite points. However, for
convenient notation, we will still stipulate that an m-ovoid of a generalised polygon
is a set of points such that every line meets it in m points; in the original vein of [31,
§3]. The authors believe the following result is new.

Theorem 8.1. A generalised octagon of order (s, s2) does not contain a nontrivial
m-ovoid.

Proof. Let O be a generalised octagon of order (s, t). The collinearity graph on the
points of O is distance-regular with intersection array

{s(t + 1), st, st, st; 1, 1, 1, t + 1},

(4)in particular, obtaining a natural upper bound
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and hence with intersection matrix

L =


0 s(t + 1) 0 0 0
1 s − 1 st 0 0
0 1 s − 1 st 0
0 0 1 s − 1 st
0 0 0 t + 1 (s − 1)(t + 1)

 .

The eigenvalues of L are s−1 , s−1−
√

2st, s−1+
√

2st, −(t+1), and s(1+ t), from
which we can compute the eigenvectors of L via standard sequences and the eigenvalue
multiplicities via Biggs’ formula (cf. [33, pp. 13–4]). After scaling by the eigenvalue
multiplicities, the eigenvectors form the columns of the matrix of dual eigenvalues, Q.
With the aid of Mathematica [37], we computed the matrix of eigenvalues to be

Q =



1 1 1 1 1
1 s−1

s(t+1) − 1
s

√
2st+s−1
s(t+1)

−
√

2st+s−1
s(t+1)

1 − 1
st

1
s2

(t−1)
√

s+
√

2t(s−1)
s3/2t(t+1)

(t−1)
√

s−
√

2t(s−1)
s3/2t(t+1)

1 1−s
s2t(t+1) − 1

s3
−

√
2s/t+s−1

s2t(t+1)

√
2s/t+s−1
s2t(t+1)

1 1
s2t2

1
s4 − 1

s2t2 − 1
s2t2

 · diag(1, m1, m2, m3, m4)

where

m1 =
st(s + 1)(t + 1)(st + 1)

(
s2t2 + 1

)
4
(
(s − 1)2t +

√
2st(s − 1)(t − 1) + s(t − 1)2 + 2st

) ,

m2 =
st(s + 1)(t + 1)(st + 1)

(
s2t2 + 1

)
4
(
(s − 1)2t −

√
2st(s − 1)(t − 1) + s(t − 1)2 + 2st

) ,

m3 =
st(s + 1)(t + 1)

(
s2t2 + 1

)
2(s + t) ,

m4 =
s4(st + 1)

(
s2t2 + 1

)
(s + t) (s2 + t2) .

Consider the point-set of a line. It has size s + 1 and is a clique with respect to the
first relation. Hence it has inner distribution vector a = (1, s, 0, 0, 0). Considering the
MacWilliams transform (see [5, Proposition 2.5.2]),

aQ =
(

1 + s,
s(1 + s)t(s + t)(1 + st)(1 + s2t2)

4(t + s2t +
√

2st −
√

2st3 + s(t − 1)(t − 1 +
√

2st))
, 0,

s(1 + s)t(s +
√

2st + t)(1 + s2t2)
2(s + t) ,

s4(s −
√

2st + t)(1 + st)(1 + s2t2)
(1 + t)(s + t)(s2 + t2)

)
,

we see that only aQ2 = 0 for s, t > 0. Hence by [14, (3.27)] a line is a {2}-design.
Thus an m-ovoid of O is a {1, 3, 4}-design (by [26, Corollary 3.3]). In order to apply
Theorem 1.3 to m-ovoids of O, we thus require q2

22 = 0.
Since we are interested in when q2

22 vanishes, by Lemma 2.1, we need only compute:
4∑

ℓ=0
kℓQ

3
ℓ2 = (s − 1)(1 + s)4(s2 − t)t3(1 + t)3(1 + st)3(s4 + t2)(1 + s2t2)3

64s5
(

t + s2t −
√

2st +
√

2st3 − s(t − 1)(1 − t +
√

2st)
)3 .

The numerator of this sum, and hence q2
22, is clearly zero when s2 = t or s = 1.

Thus by Theorem 1.3 a non-trivial m-ovoid is a hemisystem when s2 = t. However,
2st = 2s3 is a perfect square by Feit–Higman [15], so 2 divides s resulting in an odd
number of points on a line. A hemisystem must contain exactly half of the points on
every line and so an m-ovoid must be trivial. □
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Recalling that the Ree–Tits octagon has order (q, q2):

Corollary 8.2. The Ree–Tits octagon does not contain any nontrivial m-ovoids.

Remark 8.3. The dual Ree–Tits octagon of order (4, 2) has m-ovoids for every pos-
sible m ∈ {1, 2, 3, 4}. They are not difficult to construct by computer if one uses the
orbits of a Sylow 13-subgroup of 2F4(2)′.

Question 8.4. When do m-ovoids of the dual Ree–Tits octagons exist? Are there
infinite families?

Appendix A. Intersection matrices for the generalisation of the
Penttila–Williford association scheme

We list below L1 through L4 from top to bottom.
0 (qn−2 − 1)(qn−1 + 1) 0 0 0
1 q2n−4 qn+1 − 2qn qn−2(qn−2 − q + 1) − 2 0
0 qn−2(qn−2 − 1) (qn−2 − 1)((q − 2)qn−2 + 1) qn−2(qn−2 − 1) 0
0 qn−2(qn−2 − q + 1) − 2 qn+1 − 2qn q2n−4 1
0 0 0 (qn−2 − 1)(qn−1 + 1) 0




0 0 (q − 2)qn−2
(

qn−1 + 1
)

0 0
0 (q − 2)q2(n−2) (q − 2)qn−2

(
(q − 2)qn−2 + 1

)
(q − 2)q2(n−2) 0

1 (qn−2 − 1)((q − 2)qn−2 + 1) qn−2
(

(q − 2)2qn−2 + 3q − 8
)

(qn−2 − 1)((q − 2)qn−2 + 1) 1
0 (q − 2)q2(n−2) (q − 2)qn−2

(
(q − 2)qn−2 + 1

)
(q − 2)q2(n−2) 0

0 0 (q − 2)qn−2
(

qn−1 + 1
)

0 0




0 0 0 (qn−1 + 1)(qn−2 − 1) 0
0 qn−4

(
qn − q3 + q2

)
− 2 (q − 2)q2(n−2) q2(n−2) 1

0 qn−2
(

qn−2 − 1
)

(qn−2 − 1)((q − 2)qn−2 + 1) qn−2
(

qn−2 − 1
)

0
1 q2(n−2) (q − 2)q2(n−2) qn−4

(
qn − q3 + q2

)
− 2 0

0 (qn−1 + 1)(qn−2 − 1) 0 0 0




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
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Appendix B. Dual intersection matrices for the generalisation
of the Penttila–Williford association scheme

We list below L∗
1 through L∗

4 from top to bottom. For clarity, we have set γ := q − 2.

0
(qn−q)

(
qn−2−1

)
2(q+1) 0 0 0

1 0
(q−2)

(
q2(n−1)−1

)
2(q2−1) 0

(qn+q)
(

qn−2−q

)
2(q2−1)

0
(qn−q)

(
qn−2−1

)
2(q+1)2 0

(qn−q)
(

qn−1−q

)
2(q+1)2 0

0 0
(q−2)(qn−q)

(
qn−2−1

)
2(q2−1) 0 (qn−q)(qn−2−1)

2(q2−1)

0
(qn−q)

(
qn−2−q

)
2(q+1)2 0

q

(
qn−1−1

)2

2(q+1)2 0




0 0
γ

(
q2n−2−1

)
2(q−1) 0 0

0
γ

(
q2n−2−1

)
2(q2−1) 0

γ

(
q2n−1−q

)
2(q2−1) 0

1 0 γ2q2n−2+(q−3)qn−2q2+7q−4
2(q−1)2 0

(
qn−q2

)(
γqn−2+1

)
2(q−1)2

0
γ(qn−q)

(
qn−2−1

)
2(q2−1) 0

γ

(
qn−1−1

)
(qn+2q+1)

2(q2−1)
0

0 0
γ(qn−q)

(
γqn−2+1

)
2(q−1)2 0

γ

(
qn−1−1

)2

2(q−1)2




0 0 0 q2n−1−q
2(q+1) 0

0 0
γ

(
q2n−1−q

)
2(q2−1) 0 q2n−1−q

2(q2−1)

0
(qn−q)

(
qn−1−q

)
2(q+1)2 0 (qn−q)(qn+2q+1)

2(q+1)2 0

1 0
γ

(
qn−1−1

)
(qn+2q+1)

2(q2−1) 0
(qn+q+2)

(
qn−1−q

)
2(q2−1)

0

(
qn−1−1

)2

2(q+1)2 0 (qn−q)(qn+q+2)
2(q+1)2 0




0 0 0 0
(qn+q)

(
qn−2−1

)
2(q−1)

0
(qn+q)

(
qn−2−q

)
2(q2−1) 0 q2n−1−q

2(q2−1)
0

0 0
(qn−2−1)

(
qn+1−2qn+q2

)
2(q−1)2 0 (qn−q)(qn−2−1)

2(q−1)2

0 (qn−q)(qn−2−1)
2(q2−1)

0
(qn+q+2)

(
qn−1−q

)
2(q2−1) 0

1 0
γ

(
qn−1−1

)2

2(q−1)2 0 q2n−2−(q2−4q+5)qn−1+(4−3q)q

2(q−1)2
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