
ALGEBRAIC
 COMBINATORICS

Vincent Pilaud, Vivane Pons & Daniel Tamayo Jimenez
Permutree sorting
Volume 6, issue 1 (2023), p. 53-74.
https://doi.org/10.5802/alco.249

© The author(s), 2023.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.249
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/

Algebraic Combinatorics
Volume 6, issue 1 (2023), p. 53–74
https://doi.org/10.5802/alco.249

Permutree sorting

Vincent Pilaud, Vivane Pons & Daniel Tamayo Jimenez

Abstract Generalizing stack sorting and c-sorting for permutations, we define the permutree
sorting algorithm. Given two disjoint subsets U and D of {2, . . . , n − 1}, the (U, D)-permutree
sorting tries to sort the permutation π ∈ Sn and fails if and only if there are 1 ⩽ i < j < k ⩽ n
such that π contains the subword jki if j ∈ U and kij if j ∈ D. This algorithm is seen as a way
to explore an automaton which either rejects all reduced words of π, or accepts those reduced
words for π whose prefixes are all (U, D)-permutree sortable.

1. Introduction
The weak order is a classical lattice on the symmetric group where permutations
are ordered by inclusion of inversion sets. Generalizing the classical Tamari lat-
tice [17], N. Reading studied the lattice quotients of the weak order [13], in par-
ticular the Cambrian lattices [14, 15]. Generalizing and interpolating between the
weak order, the Cambrian lattices and the boolean lattice, we introduced permutree
lattices in [12] based on the combinatorics of certain trees called permutrees. These
permutree lattices have strong combinatorial, geometric and algebraic properties dis-
tinguishing them among all lattice quotients of the weak order: for instance, they
are the only lattice quotients of the weak order which can be realized as removahe-
dra [1] (i.e. polytopes obtained by removing inequalities in the facet description of
the classical permutahedra, like the classical associahedra of [9, 6]), and they define
combinatorial Hopf algebras [12] analoguous to the Hopf algebras of C. Malvenuto
and C. Reutenauer on permutations [11] and of J.-L. Loday and M. Ronco on binary
trees [10].

Unlike Cambrian lattices which are well-understood for arbitrary finite Coxeter
groups [14, 15] with their connections to finite type cluster algebras [4, 5], permutree
lattices lack a combinatorial description beyond the symmetric group. To tackle this
problem, this paper still focusses on type A permutree lattices but from the lens
of reduced words for permutations (i.e. products of simple transpositions of minimal
length). This approach not covered in [12] is more suitable to generalizations to finite
Coxeter groups.

Manuscript received 27th July 2021, accepted 23rd May 2022.
Keywords. stack sorting, automata, permutrees, weak order.
Acknowledgements. V. Pilaud was supported by the French ANR (grants CAPPS 17 CE40 0018
and CHARMS 19 CE40 0017).

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.249
http://algebraic-combinatorics.org/

V. Pilaud, V. Pons & D. Tamayo Jimenez

The goal of this paper is to identify reduced words which correspond to the minimal
permutations of their permutree congruence classes. These permutations are general-
izations of the stack-sortable permutations introduced by D. Knuth in his textbook [8,
Sect. 2.2.1], which are characterized by the following equivalent conditions for a per-
mutation π ∈ Sn:

(i) π is sent to the identity by the stack sorting operator S defined inductively
by S(τnρ) := S(τ)S(ρ)n.

(ii) π avoids the pattern 231 (i.e. there is no p < q < r such that πr < πp < πq).
(iii) π is minimal among all linear extensions of a binary tree on n nodes (seen

as a poset, where the nodes are labeled in inorder and the edges are oriented
towards the leaves).

(iv) For i < j < k, the inversion set inv(π) := {(πp, πq) | p < q and πp > πq} of π
contains the inversion (k, j) as soon as it contains the inversion (k, i).

(v) π admits a reduced word of the form π = cI1 · · · cIp
with nested subsets

I1 ⊇ · · · ⊇ Ip, where c{i1<···<ij} := sij
· · · si1 is a product of the simple trans-

positions si := (i i + 1).
It follows from (iii) that these permutations are counted by the Catalan num-
ber Cn := 1

n+1
(2n

n

)
.

In [13, 14, 15], N. Reading defined natural counterparts to conditions (iii), (iv),
and (v) above, parametrized by the choice of a Coxeter element c in a finite Coxeter
group W : the minimality in c-Cambrian classes, the c-alignment, and the c-sortability.
(We skip the general definitions of these conditions here as we stick with the combi-
natorics of the symmetric group.) In the situation of the symmetric group Sn, we can
think of a Coxeter element on Sn as an orientation of an (n−1)-path, or equivalently
as a partition of {2, . . . , n − 1} into two subsets U and D. The Cambrian analogues
of the conditions (ii), (iii), (iv) and (v) above are the following equivalent conditions
for a permutation π ∈ Sn:

(ii’) For i < j < k, the permutation π does not contain the subword jki if j ∈ U
and kij if j ∈ D.

(iii’) π is minimal among all linear extensions of a c-Cambrian tree on n nodes.
A c-Cambrian tree is an oriented tree on [n] where node j has one parent
if j /∈ U and two parents if j ∈ U , and one child if j /∈ D and two children
if j ∈ D, with an additional local condition at each node similar to the binary
search tree condition [2].

(iv’) For i < j < k, if inv(π) contains (k, i), then it also contains (k, j) if j ∈ U
and (j, i) if j ∈ D.

(v’) π admits a reduced word of the form π = cI1 · · · cIp
with nested subsets

I1 ⊇ · · · ⊇ Ip, where cI := ci1 · · · ci|I| denotes the subword of c := c1 · · · cn−1
indexed by I := {i1 < · · · < ij}.

It turns out that for any Coxeter element c, the permutations satisfying these condi-
tions are still counted by the Catalan number Cn.

The generalization to permutrees consists of taking two subsets U and D
of {2, . . . , n − 1} that are not anymore required to form a partition of {2, . . . , n − 1}
(they may intersect and may not cover all the set). It was proved in [12, 3] that the
conditions (ii’), (iii’), and (iv’) are still equivalent for a permutation π ∈ Sn. We call
a permutation (U, D)-permutree minimal when it satisfies these conditions, i.e. when
it is minimal (minimal number of inversions) in its (U, D)-permutree class. The
number of (U, D)-permutree minimal permutations is called (U, D)-factorial-Catalan
number and admits recursive formulae interpolating between the formulae for the
factorial and for the Catalan number.

Algebraic Combinatorics, Vol. 6 #1 (2023) 54

Permutree sorting

U(j) :=

start U(j + 1)

sj−1

sj

sj

D(j) :=

start D(j − 1)

sj

sj−1

sj−1

Figure 1. The automata U(j) (left) and D(j) (right) defined recur-
sively.

The objective of this paper is to discuss characterizations of permutree minimal
permutations in terms of their reduced words. In other words, we aim at a condition
playing the role of condition (v’) and equivalent to conditions (ii’), (iii’), and (iv’)
for arbitrary subsets U and D of {2, . . . , n − 1}. We believe that understanding this
characterization in type A could lead to a general characterization for all finite Coxeter
groups since the condition (v’) generalizes to all types for Cambrian lattices.

We first focus on the case where U = ∅ and D = {j} for some j ∈ {2, . . . , n − 1},
or the opposite. To characterize the permutree minimal permutations in terms of
their reduced words in that situation, we use two automata U(j) and D(j) defined
inductively as shown in Figure 1. The induction stops at U(n) and D(1), which are
defined by deleting the transitions sn and s0 respectively in Figure 1. Figure 2 presents
the complete automaton U(j) after all recursion is done, and Figure 3 shows the
automata U(2), D(2), U(3), and D(3). In all these pictures the initial state is marked
with “start”, the accepting states are doubly circled, all transitions are labeled with
simple transpositions si for i ∈ [n−1], and all missing transitions are loops (we assume
the reader familiar with basic automata theory, see for instance [7]). Our main tool
is the following statement, proved in Section 2.

Theorem 1.1. Fix j ∈ {2, . . . , n − 1}. The following conditions are equivalent
for π ∈ Sn:

• π admits a reduced word accepted by the automaton U(j) (resp. D(j)),
• π contains no subword jki (resp. kij) with i < j < k.

Let us warn the reader on the fact that j is fixed in Theorem 1.1, while i and k are
arbitrary such that 1 ⩽ i < j < k ⩽ n. A priori, we should try all possible reduced
words of π to decide if one is accepted by the automaton U(j) (resp. D(j)). However,
we can show that if π contains no subword jki (resp. kij) with i < j < k and has a
descent sℓ distinct from sj−1 (resp. sj), then it has a reduced word starting with sℓ

and accepted by the automaton U(j) (resp. D(j)). In other words, there is no loss
of generality in starting constructing a reduced word for π as long as we stay in the
states of the top row of U(j) (resp. D(j)). This yields a simple algorithm to construct
a reduced word accepted by U(j) (resp. D(j)). It also yields natural tree structures
on the permutations characterized by Theorem 1.1, which can be glanced upon in
Figure 3. These algorithmic and combinatorial consequences of Theorem 1.1 are ex-
plored in Section 3. Most results of Sections 2 and 3 are stated with respect to both
automata U(j) and D(j) but proved only for U(j) as all proofs for D(j) are symmetric.

Consider now arbitrary subsets U and D of {2, . . . , n − 1}. It follows from Theo-
rem 1.1 that a permutation is minimal in its (U, D)-permutree class if and only if it

Algebraic Combinatorics, Vol. 6 #1 (2023) 55

V. Pilaud, V. Pons & D. Tamayo Jimenez

start . . .

sj−1

sj

sj

sj

sj+1

sj+1

sj+1

sj+2

sj+2

sn−1

sn−2

sn−1

sn−1

sn−1

Figure 2. The complete automaton U(j).

admits a reduced word accepted by U(j) for each j ∈ U and by D(j) for each j ∈ D. In
general, the reduced words accepted by the automata U(j) for each j ∈ U and by D(j)
for each j ∈ D are distinct. We prove however in Section 4 that there is a reduced
word simultaneously accepted by all these automata when U and D are disjoint.

Theorem 1.2. Consider two disjoint subsets U and D of {2, . . . , n−1}. The following
conditions are equivalent for π ∈ Sn:

• π admits a reduced word accepted by all automata U(j) for j ∈ U and D(j)
for j ∈ D,

• π contains no subword jki if j ∈ U and kij if j ∈ D for any i < j < k.

Theorem 1.2 implies that given any permutation π avoiding jki if j ∈ U and kij
if j ∈ D, we can sort π while preserving these avoiding conditions. The resulting
sorting procedures, that we call (U, D)-permutree sorting, are discussed in Section 4.4.
For instance, stack sorting is a ({2, . . . , n − 1},∅)-permutree sorting.

Finally, in the particular situation when the subsets U and D form a partition
of {2, . . . , n − 1}, we actually show that the reduced word simultaneously accepted by
the automata U(j) for j ∈ U and D(j) for j ∈ D is the c-sorting word of π as defined
in [15]. This yields in particular an alternative proof that condition (v’) characterizes
the Cambrian minimal permutations. This new perspective on c-sortability is explored
in Section 5.

2. Automata for reduced words
2.1. Reduced words, automata, and subword avoidance. We start with
properly fixing the few notations needed in this paper. We consider the symmetric
group Sn of permutations of the set [n] := {1, . . . , n}. It is generated by the simple
transpositions si := (i i + 1) for i ∈ [n − 1] which are involutions s2

i = id and
satisfy the commutation relations si · sj = sj · si if |i − j| > 1 and the braid
relations si · si+1 · si = si+1 · si · si+1. Note that we multiply permutations as
usual, so that the left multiplication by si exchanges the entries with values i
and i + 1, while the right multiplication by si exchanges the entries at positions i
and i + 1. Each permutation π decomposes into products of transpositions of the
form π = si1 · · · sik

with i1, . . . , ik ∈ [n − 1]. The minimal number of transpositions in
such a decomposition is the length ℓ(π) of π and the decompositions of length ℓ(π)
are the reduced words for π.

Consider now the automata U(j) and D(j) described in the introduction, see Fig-
ures 1, 2, and 3. We call a state healthy, ill, or dead depending on whether it belongs
to the top, middle, or bottom row of the automata. Each state has n−1 possible tran-
sitions, one for each si for i ∈ [n−1], but we only explicitly indicate the ones between
different states. The automata U(j) and D(j) take as entry a reduced word si1 · · · siℓ

Algebraic Combinatorics, Vol. 6 #1 (2023) 56

Permutree sorting

for a permutation of Sn and read it from left to right. We start at the initial state
(marked with “start”), and at step t we follow the transition marked by the letter sit

if any, or stay in the current state otherwise. After ℓ steps, the reduced word si1 · · · siℓ

is declared accepted if the current state is accepting (doubly circled, healthy or ill
states), and rejected otherwise (dead states).

For a fixed j ∈ {2, . . . , n − 1}, we say that a permutation π avoids jki (resp. kij)
if for any i < j < k, the word jki (resp. kij) does not appear as a subword of
the one-line notation of π, or said differently if there are no positions p < q < r
such that π(r) < π(p) = j < π(q) (resp. π(q) < π(r) = j < π(p)). We insist
on the fact that while the value j is fixed, i and k take all possible values such
that 1 ⩽ i < j < k ⩽ n. This convenient notion here should not be mixed up with the
notion of pattern avoidance where j is not fixed. For instance, a permutation avoids
the pattern 231 if and only if it avoids jki for all j ∈ {2, . . . , n − 1}.

Example 2.1. The permutation 42135 avoids 2ki, 3ki, and 4ki (and therefore the
pattern 231), but contains ki3 (and therefore the pattern 312) because its one-line
notation contains 423.

2.2. Behavior under left multiplication. In the perspective of proving Theo-
rem 1.1, we study the two properties “π admits a reduced word accepted by U(j)
(resp. D(j))” and “π avoids jki (resp. kij)”. In this section, we study the behavior
of these properties under left multiplication. We treat separately the cases when we
multiply by a permutation commuting with both sj−1 and sj (Lemma 2.2), by sj−1
(Lemma 2.4), and by sj (Lemma 2.6).

Lemma 2.2. If two permutations σ, τ ∈ Sn are such that σ([j −1]) = [j −1], σ(j) = j,
and σ([n] ∖ [j]) = [n] ∖ [j] and ℓ(σ · τ) = ℓ(σ) + ℓ(τ), then:

(1) τ admits a reduced word accepted by U(j) (resp. D(j)) if and only if σ · τ
admits a reduced word accepted by U(j) (resp. D(j)),

(2) τ avoids jki (resp. kij) if and only if σ · τ avoids jki (resp. kij).

Proof. We deal with the two statements separately:
(1) The conditions on σ imply that none of its reduced words contain the trans-

positions sj−1 or sj . Therefore, while reading any reduced word for σ, the
automaton U(j) stays in the initial state. The result immediately follows.

(2) Since σ permutes only values smaller than j between themselves and values
greater than j between themselves, we see a subword jki with i < j < k in τ
if and only if we see a subword jk′i′ with i′ < j < k′ in σ · τ , where i′ = σ(i)
and k′ = σ(k). □

Example 2.3. Consider j := 4 and the permutations σ := 312465 = s2 · s1 · s5,
τ1 := 143256 = s3 · s2 · s3, and τ2 := 124536 = s3 · s4. Multiplying we ob-
tain σ · τ1 = 342165 and σ · τ2 = 314625. Observe that

(1) U(4) accepts all reduced words of both τ1 and σ · τ1 on its first ill state, and
rejects all reduced words of both τ2 and σ · τ2,

(2) both τ1 and σ · τ1 avoid 4ki, while both τ2 and σ · τ2 contain 4ki.

Lemma 2.4. If a permutation τ ∈ Sn has a reduced word starting with sj−1 (resp. sj)
and accepted by U(j) (resp. D(j)), then

(1) τ does not permute j and j + 1 (resp. j − 1 and j),
(2) τ avoids jki (resp. kij).

Algebraic Combinatorics, Vol. 6 #1 (2023) 57

V. Pilaud, V. Pons & D. Tamayo Jimenez

Proof. Consider a reduced word w starting with sj−1 and accepted by U(j). We deal
with the two statements separately:

(1) Since w starts with sj−1, the values j −1 and j are reversed in τ . If j and j +1
were also reversed in τ , we would obtain that j − 1 and j + 1 are reversed. It
follows that w must contain a sj at some point after the sj−1. But this would
lead to a dead state, contradicting the assumption that w is accepted.

(2) Let τ = sj−1 · ρ. Since any reduced word of ρ cannot contain sj (as w is
accepted by U(j)), we have that ρ([j]) = [j] and ρ([n+1]∖[j]) = [n+1]∖[j] and
find that ρ contains no subword ki with i < j < k. Therefore, τ avoids jki. □

Example 2.5. Consider j := 4 and the permutation τ := 413265, whose reduced
word s3 · s5 · s2 · s1 · s3 is accepted by U(4). Observe that

(1) τ indeed does not permute the values 4 and 5,
(2) τ avoids 4ki.

Lemma 2.6. If a permutation τ ∈ Sn does not permute j and j +1 (resp. j −1 and j),
then

(1) sj · τ (resp. sj−1 · τ) admits a reduced word accepted by U(j) (resp. D(j)) if
and only if τ admits a reduced word accepted by U(j + 1) (resp. D(j − 1)),

(2) sj · τ (resp. sj−1 · τ) avoids jki (resp. kij) if and only if τ avoids (j + 1)ki
(resp. ki(j − 1)).

Proof. We deal with the two statements separately:
(1) Suppose that w is a reduced word for τ accepted by U(j + 1). Since τ does

not permute j and j + 1, we know that sj · w is a reduced word for sj · τ , and
it is accepted by U(j) by construction. Conversely assume that sj · τ admits a
reduced word w accepted by U(j). Since sj · τ permutes j and j + 1, w must
contain a sj and cannot start by sj−1 by Lemma 2.4. Due to Lemma 2.2 we
can also assume that w starts with sj . Thus the suffix is a reduced word for
τ that is accepted by U(j + 1).

(2) Observe that since j and j+1 are reversed in sj ·τ and not in τ , the value j+1
cannot serve as k in a subword jki of sj · τ and the value j cannot serve as i
in a subword (j + 1)ki in τ . The result thus immediately follow from the fact
that the left multiplication by sj only exchanges the values j and j + 1. □

Example 2.7. Consider j := 4 and the permutations τ1 := 142536 and τ2 := 142563
that do not permute 4 and 5. Multiplying we obtain s4 · τ1 = 152436 and
s4 · τ2 = 152463. Observe that

(1) the reduced word s4 · s3 · s4 · s2 of s4 · τ1 is accepted by U(4) and the reduced
word s3 · s4 · s2 of τ1 is accepted by U(5), while all reduced words of s4 · τ2
are rejected by U(4) and all reduced words of τ2 are rejected by U(5),

(2) s4·τ1 avoids 4ki and τ1 avoids 5ki, while s4·τ2 contains 463 and τ2 contains 563.

2.3. Proof of Theorem 1.1. With these lemmas in hand, we are now ready to
show Theorem 1.1 that we repeat here for convenience.

Theorem 1.1. Fix j ∈ {2, . . . , n − 1}. The following conditions are equivalent
for π ∈ Sn:

• π admits a reduced word accepted by the automaton U(j) (resp. D(j)),
• π contains no subword jki (resp. kij) with i < j < k.

Proof of Theorem 1.1. We work by induction on the length of the permutations. As-
sume that a permutation π admits a reduced word accepted by U(j). Let si be the

Algebraic Combinatorics, Vol. 6 #1 (2023) 58

Permutree sorting

first letter of this reduced word and let τ be such that π = si · τ . We distinguish three
cases:

• If i = j − 1, then π avoids jki by Lemma 2.4 (2).
• If i = j, then τ admits a reduced word accepted by U(j+1) by Lemma 2.6 (1).

We obtain by induction that τ avoids (j + 1)ki. Thus π = sj · τ avoids jki by
Lemma 2.6 (2).

• Otherwise, τ admits a reduced word accepted by U(j) by Lemma 2.2 (1), so
that τ avoids jki by induction. Thus π = si · τ avoids jki by Lemma 2.2 (2).

In all three cases, we proved that π avoids jki.
Assume now that a permutation π avoids jki. Here, we have to be careful because

not all reduced words for π will be accepted by U(j) a priori. So we have to construct
a good reduced word for π. We distinguish two cases:

• Assume first that there is m > j such that π reverses j and m, and pick
m minimal for this property. It follows that π reverses ℓ and m for all ℓ
in {j, . . . , m − 1}. In other words, π admits a reduced word starting by
the cyclic permutation (j, j + 1, ..., m) = sm−1 · sm−2 · · · sj+1 · sj . Define
σ = sm−1 · sm−2 · · · sj+1 and τ such that π = σ ·sj · τ and so that this word is
reduced. By Lemmas 2.2 (2) and 2.6 (2), τ avoids (j + 1)ki. By induction, we
obtain that it admits a reduced word accepted by U(j+1). By Lemmas 2.2 (1)
and 2.6 (1), we conclude that π admits a reduced word accepted by U(j).

• Assume now that j appears before all m > j in π. Consider any reduced word
for π. If this word is accepted by U(j), we are done. Otherwise, it first uses
sj−1 and then sj (otherwise, j and some m > j would be exchanged). Call i
and k the two elements that are exchanged when the reduced word first uses
sj . We have i < j < k and jki in π (because j and k are not exchanged in
π, and i and k are already exchanged so they will remain exchanged in π), a
contradiction.

In both cases, we proved that π admits a reduced word accepted by U(j). □

3. Structure of accepted reduced words
In this section, we explore some additional properties of the set of reduced words
accepted by the automata U(j) and D(j) and derive relevant algorithmic and combi-
natorial consequences.

3.1. The set of accepted reduced words. Observe that a given permutation π
may admit both accepted and rejected reduced words. For instance, the (non-simple)
transposition (j − 1 j + 1) has reduced words sj ·sj−1 ·sj accepted by U(j) and sj−1 ·
sj · sj−1 rejected by U(j). However, Propositions 3.1, 3.2, and 3.3 below show that
the set of accepted reduced words satisfies the following three principles:

• Who can do more can do less! — The set of accepted reduced words is
closed by prefix.

• When health goes, everything goes! — If π admits an accepted reduced
word, then π admits an accepted reduced word starting with any descent that
remains in the healthy states.

• All roads lead to Rome! — All accepted reduced words for π end at the
same state.

Proposition 3.1. The set of reduced words accepted by U(j) (resp. D(j)) is closed by
prefix.

Algebraic Combinatorics, Vol. 6 #1 (2023) 59

V. Pilaud, V. Pons & D. Tamayo Jimenez

Proof. This immediately follows from the fact that the set of reduced words is closed
by prefix, and that the set of accepting states of U(j) is connected and contains the
initial state. □

Proposition 3.2. Let ℓ ∈ [n − 1] be distinct from j − 1 (resp. j). A permutation
π ∈ Sn that avoids jki (resp. kij) and reverses ℓ and ℓ + 1 admits a reduced word
starting with sℓ and accepted by U(j) (resp. D(j)).

Proof. Since π reverses ℓ and ℓ + 1, it admits a reduced word of the form π = sℓ · τ .
Now consider two cases depending on the value of ℓ:

• If ℓ = j, then τ avoids (j+1)ki by Lemma 2.6 (2). Hence, τ has a reduced word
accepted by U(j + 1) by Theorem 1.1, and we conclude by Lemma 2.6 (1).

• Otherwise, ℓ is neither j − 1 nor j, so that τ avoids jki by Lemma 2.2 (2).
Hence, τ has a reduced word accepted by U(j) by Theorem 1.1, and we
conclude by Lemma 2.2 (1). □

Proposition 3.3. Given a permutation π ∈ Sn, all the reduced words for π accepted
by U(j) (resp. D(j)) end at the same state.

To prove Proposition 3.3, it would be enough to check that any two reduced words
accepted by U(j) that differ by a single commutation or a single braid relation indeed
end at the same state. However, we prefer to prove instead the following stronger but
more technical version of Proposition 3.3.

Proposition 3.4. For a permutation π ∈ Sn, let
ninvj(π) = |

{
(j, i)

∣∣ i < j and π−1(i) > π−1(j)
}

|
and ninvj(π) = |

{
(k, j)

∣∣ j < k and π−1(j) > π−1(k)
}

|
denote the numbers of inversions involving j as the first and second entry respectively.
Then

(i) if ninvj(π) = 0, then all reduced words for π end at the same healthy state
of U(j),

(ii) if ninvj(π) = 0, then all reduced words for π end at the same state of U(j),
which might be healthy if π avoids ji, ill if π contains ji but avoids jki, or
dead if π contains jki,

(iii) if ninvj(π) ̸= 0 ̸= ninvj(π), all accepted reduced words for π end at the same
ill state of U(j) while the rejected reduced words may end at distinct dead
states of U(j).

Moreover, all reduced words for π accepted by U(j) end in the (ninvj(π)+1)st column
of U(j). A similar statement holds for D(j) by exchanging ninvj(π) and ninvj(π).

Proof. The proof works by induction on the length of π. Consider an arbitrary reduced
word w for π, starting with a transposition sℓ, and write w = sℓ · w′ and π = sℓ · τ .
Observe that:

• if ℓ /∈ {j − 1, j}, then sℓ loops in U(j), ninvj(π) = ninvj(τ) and ninvj(π) =
ninvj(τ),

• if ℓ = j, then sj goes to U(j + 1), ninvj(π) = ninvj+1(τ) and ninvj(π) =
ninvj+1(τ) + 1,

• if ℓ = j − 1, then sj−1 goes to the first ill state of U(j), ninvj(π) =
ninvj+1(τ) + 1 and ninvj(π) = ninvj+1(τ).

By induction, we obtain that the reduced word w′ for τ ends as predicted in the
statement. The previous observations ensure that the reduced word w for π also
does. □

Algebraic Combinatorics, Vol. 6 #1 (2023) 60

Permutree sorting

Example 3.5. We present an example of each case:
(i) For π := 4312, we have that ninv2(π) = 0 and all of its 5 reduced words end

at the third healthy state of U(2).
(ii) For π := 32145 (resp. π := 43215, resp. π := 43251), we have ninv4(π) = 0 and

all its 2 (resp. 16, resp. 35) reduced words end at the first healthy (resp. ill,
resp. dead) state of U(4).

(iii) For π := 4321, we have ninv2(π) = |{(2, 1)}| = 1 and ninv2 = |{(3, 2), (4, 2)}| =
2. Among the 16 reduced words of π, the automaton U(2) accepts 7 at its
third ill state, rejects 7 at its first dead state, and rejects the other 2 at its
second dead state.

3.2. Finding accepted reduced words. Proposition 3.2 has a strong algorithmic
consequence. Imagine we want to test whether a permutation π ∈ Sn is minimal in
its permutree class for U = {j} and D = ∅. Of course, the quickest way is to check
for all i < j < k whether π contains the subword jki. But since this interpretation
will be lost beyond type A, let us impose the use of reduced words for π to make
this test. While it would be a priori necessary to check all reduced words on the
automaton U(j), Proposition 3.2 enables us to construct without loss of generality a
candidate reduced word for π and we will just need to check that this one is accepted
by U(j). Somewhat dually, one can also construct a reduced word accepted by U(j)
that is a reduced word for π if and only if π avoids jki. This is done in the following
algorithm, that we call ({j},∅)-permutree sorting. The reader is invited to write down
the symmetric (∅, {j})-permutree sorting. We will discuss further permutree sorting
in Section 4.4.

Algorithm 1: ({j},∅)-permutree sorting
Input : a permutation π ∈ Sn and an integer j ∈ [n]
Output: a reduced word accepted by U(j), candidate reduced word for π

1 w := ε

2 repeat
3 if ∃ ℓ ̸= j − 1 such that ℓ and ℓ + 1 are reversed in π then
4 π := sℓ · π, w := w · sℓ

5 if ℓ = j then j := j + 1
6 if j − 1 and j are reversed in π then
7 π := sj−1 · π, w := w · sj−1
8 w := w · w′ · w′′ where w′ sorts π[j] and w′′ sorts π[n]∖[j]
9 return w

Example 3.6. Let us present the ({2},∅)-permutree sorting algorithm in action for
the permutations π1 := 3421 and π2 := 4231. The steps of the algorithm are presented
in Table 1. Each row contains the states of the permutation π and of the word w
and the current values of j and ℓ in use at each step. Notice that for π1 := 3421
the algorithm ends with the identity, which coincides with the fact that π1 := 3421
avoids 2ki. In contrast, for π2 := 4231 the algorithm ends with the permutation 1243,
meaning that π2 is not ({2},∅)-sortable, which coincides with the fact that π2 := 4231
contains 2ki.

Corollary 3.7. For any permutation π and j ∈ {2, . . . , n − 1}, Algorithm 1 returns
a reduced word w accepted by U(j) with the property that w is a reduced word for π if
and only if π avoids jki.

Algebraic Combinatorics, Vol. 6 #1 (2023) 61

V. Pilaud, V. Pons & D. Tamayo Jimenez

π1 w1 j1 ℓ1
3421 ε 2 2
2431 s2 3 1
1432 s2 · s1 3 3
1342 s2 · s1 · s3 4 2
1243 s2 · s1 · s3 · s2 4 3
1234 s2 · s1 · s3 · s2 · s3 4

π2 w2 j2 ℓ2
4231 ε 2 3
3241 s3 2 2
2341 s3 · s2 3 1
1342 s3 · s2 · s1 3 2
1243 s3 · s2 · s1 · s2 3

Table 1. ({2},∅)-permutree sorting of π1 := 3421 and π2 := 4231.

Proof. This algorithm constructs a candidate reduced word for π while following the
automaton U(j) and prioritizing healthy states over ill states. Lines 2 to 5 start by all
possible transitions sℓ that remain in healthy states, updating j to j + 1 when ℓ = j
according to Lemma 2.6 (if condition at line 5). When we have exhausted all these
transitions, if we need to go to an ill state (if condition at line 6) applying sj−1, then
we are not anymore allowed to use sj and we obtain a candidate reduced word by
sorting independently the first j positions of π with a reduced word in {s1, . . . , sj−1}∗

and the last [n] ∖ [j] positions of π with a reduced word in {sj+1, . . . , sn−1}∗. The
resulting reduced word w is clearly accepted by U(j) because we never allow the
transition from an ill state to the corresponding dead state. If w is a reduced word
for π, then π avoids jki by Theorem 1.1. Conversely, if π avoids jki, then w must
be a reduced word for π since the choice to start with sℓ is valid in lines 2 to 5 by
Proposition 3.2 and forced in lines 6 to 8 (since all reduced words of π then start
by sℓ). □

Remark 3.8. We really wrote Algorithm 1 as a sorting algorithm. It first tries to sort
the permutation π ∈ Sn while avoiding to swap j − 1 and j for a certain token j
(and changing the token when swapping j and j + 1). Once it is forced to swap j − 1
and j, it tries to sort the permutation π while avoiding to swap any value of [j] with
a value of [n] ∖ [j]. If we were only interested in deciding whether the permutation π
is ({j},∅)-sortable, then we could stop and accept the permutation as soon as we
reach j = n, and we could just check at line 8 of the algorithm whether π([j]) = [j]
and π([n] ∖ [j]) = [n] ∖ [j].

3.3. Generating trees on accepted reduced words. Propositions 3.1 and 3.3
also have a relevant consequence, more combinatorial this time. Namely, they natu-
rally define generating trees for the ({j},∅)-permutree minimal permutations, fol-
lowing certain special reduced words for them. To construct these trees, pick an
arbitrary priority order ≺ on {s1, . . . , sn−1}. For a ({j},∅)-permutree minimal per-
mutation π ∈ Sn, denote by π({j},∅, ≺) the ≺-lexicographic minimal reduced word
for π that is accepted by U(j). Denote by R(n, {j},∅, ≺) the set of reduced words of
the form π({j},∅, ≺) for all ({j},∅)-permutree minimal permutations π ∈ Sn. The
following statement is an analogue of Proposition 3.1.

Proposition 3.9. The set R(n, {j},∅, ≺) is closed by prefix.

Proof. Consider a reduced word w = u ·v where u is not in R(n, {j},∅, ≺). If u is not
accepted by U(j), neither is w by Proposition 3.1. Otherwise, there exists a reduced
word u′ representing the same permutation as u, accepted by U(j) and ≺-lexicographic
smaller than u. By Proposition 3.3, the reduced words u and u′ end at the same
state of U(j). Therefore, if w = u · v is accepted by U(j), so is u′ · v. Since u′ · v

Algebraic Combinatorics, Vol. 6 #1 (2023) 62

Permutree sorting

is ≺-lexicographically smaller than u · v and represents the same permutation, this
ensures that w is not in R(n, {j},∅, ≺). □

Proposition 3.9 yields a natural generating tree for R(n, {j},∅, ≺) where the par-
ent of a reduced word w is obtained by deleting its last letter. Replacing each re-
duced word by the corresponding permutation, this provides a generating tree for the
({j},∅)-permutree minimal permutations of Sn. Of course there is a similar gener-
ating tree for the (∅, {j})-permutree minimal permutations of Sn. Figure 3 presents
these generating trees for n = 4 and j = 2, 3, with the priority order s1 ≺ s2 ≺ s3. It
is natural to draw these trees on top of the Hasse diagram of the right weak order on
permutations, defined by inclusion of inversion sets. In other words, the cover rela-
tions in weak order correspond to the swap of the values at two consecutive positions
in a permutation, i.e. to a right multiplication by a simple transposition. The edges
of the trees corresponding to the right multiplications by s1, s2 and s3 are colored by
blue, red, and green respectively.

4. Intersection of automata
We now consider arbitrary subsets U and D of {2, . . . , n − 1}. We already know
from [12] and Theorem 1.1 that the following conditions are equivalent for π ∈ Sn:

(i) the permutation π is minimal in its (U, D)-permutree class,
(ii) for i < j < k, the permutation π does not contain the subword jki if j ∈ U

and kij if j ∈ D,
(iii) for each j ∈ U (each j ∈ D), there is a reduced word for π accepted by U(j)

(resp. by D(j)).
A natural question is whether there is a reduced word simultaneously accepted by all
these automata. We start with an example showing that this is not always the case.

Example 4.1. For j ∈ {2, . . . , n−1}, consider U = {j} = D, and π = sj−1 ·sj ·sj−1 =
sj · sj−1 · sj . Then, the word sj−1 · sj · sj−1 is accepted by D(j) but not by U(j), while
the word sj · sj−1 · sj is accepted by U(j) but not by D(j).

This example clearly extends to all subsets U and D of {2, . . . , n − 1} with a non-
empty intersection. In contrast, we will now show that this situation cannot occur
when U and D are disjoint.

4.1. Proof of Theorem 1.2. Example 4.1 motivates Theorem 1.2 that we repeat
here for convenience.

Theorem 1.2. Consider two disjoint subsets U and D of {2, . . . , n−1}. The following
conditions are equivalent for π ∈ Sn:

• π admits a reduced word accepted by all automata U(j) for j ∈ U and D(j)
for j ∈ D,

• π contains no subword jki if j ∈ U and kij if j ∈ D for any i < j < k.

Proof. The direct implication is immediate from Theorem 1.1. For the converse im-
plication, consider a permutation π that avoids jki for j ∈ U and kij for j ∈ D.
Consider Ū := {j ∈ U | ninvj(π) ̸= 0} and D̄ :=

{
j ∈ D

∣∣ ninvj(π) ̸= 0
}

. By Proposi-
tion 3.4 (ii), any reduced word for π is accepted by U(j) for j ∈ U ∖ Ū and by D(j)
for j ∈ D ∖ D̄. We can therefore assume that Ū = U and D̄ = D and one of them is
non-empty, say Ū = U ̸= ∅. Let j◦ := max(U) and m be minimal such that j◦ < m
and π−1(j◦) > π−1(m). By minimality of m, we obtain that π contains the sub-
word mj◦ℓ for any j◦ < ℓ < m. It implies that

Algebraic Combinatorics, Vol. 6 #1 (2023) 63

V. Pilaud, V. Pons & D. Tamayo Jimenez

U
(2

)
D

(2
)

U
(3

)
D

(3
)

st
ar

t

s 1

s 2

s 2

s 2

s 3

s 3

s 3

st
ar

t

s 2

s 1

s 1

s 1

st
ar

t

s 2

s 3

s 3

s 3

st
ar

t

s 3

s 2

s 2

s 2

s 1

s 1

s 1

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

F
ig

ur
e

3.
G

en
er

at
in

g
tr

ee
s

fo
r

th
e

({
j}

,∅
)-

an
d

(∅
,{

j}
)-

pe
rm

ut
re

e
m

in
im

al
pe

rm
ut

at
io

ns
of

S
4,

w
ith

pr
io

rit
y

or
de

r
s 1

≺
s 2

≺
s 3

.

Algebraic Combinatorics, Vol. 6 #1 (2023) 64

Permutree sorting

• ℓ is neither in U by maximality of j◦, nor in D by assumption on π, for
all j◦ < ℓ < m,

• π reverses ℓ and m for all ℓ in {j◦, . . . , m − 1}, so that π admits a reduced
word of the form π = sm−1 · · · sj◦ · τ .

Lemmas 2.2 (2) and 2.6 (2) ensure that
• τ avoids jki for all j ∈ U ∖ {j◦} and kij for all j ∈ D ∖ {m} (be-

cause j◦, . . . , m − 1 are all distinct from j − 1 and j in these cases by the
second observation above),

• τ avoids (j◦ + 1)ki,
• if m ∈ D, then τ avoids kij◦.

By induction, it follows that τ admits a reduced word w simultaneously accepted by all
automata U(j) for j ∈ U ∖{j◦} and j = j◦ +1, and all automata D(j) for j ∈ D∖{m}
and j = j◦ if m ∈ D. By Lemmas 2.2 (1) and 2.6 (1), we conclude that sm−1 · · · sj◦ · w
is a reduced word for π simultaneously accepted by all U(j) for j ∈ U and D(j)
for j ∈ D. □

4.2. Intersection of automata. Theorem 1.2 can be rephrased in terms of in-
tersection of automata. Recall that the intersection of some automata A1, . . . ,Ap is
the automaton A =

⋂
i∈[p] Ai such that a word is accepted by A if and only if it is

accepted by all A1, . . . ,Ap. A state of the automaton A is p-tuple formed by states of
the automata A1, . . . ,Ap, and a transition t simultaneously changes all entries of the
p-tuple corresponding to states modified by t. See [7, p. 59–60] for details. We denote
by P(U, D) the intersection of the automata U(j) for j ∈ U and D(j) for j ∈ D. We
thus obtain the following statement.
Corollary 4.2. When U and D are disjoint, the following conditions are equivalent
for π ∈ Sn:

• π admits a reduced word accepted by the automaton P(U, D),
• π contains no subword jki if j ∈ U and kij if j ∈ D with i < j < k.

We say that a state of P(U, D) is healthy (resp. ill, resp. dead) when the corre-
sponding states in U(j) for j ∈ U and D(j) for j ∈ D are all healthy (resp. contain at
least one ill state, but no dead one, resp. contains at least one dead state). Figure 4
illustrates the automata P({4}, {2}) when n = 5 (left), P({3}, {2}) for n = 4 (middle),
and P({2}, {4}) for n = 5 (right). For the first two automata, we draw the complete au-
tomata on top, and their skeleta on the bottom. Here, we call skeleton a simplification
of the automaton that recognizes the same reduced words. It is obtained using the fact
that the word is rejected as soon as we reach a dead state, and that the automata U(n)
and D(1) accept all reduced words. For the last automaton, the complete intersection
is too big, so we only draw the reachable healthy states. We color the transitions in red,
blue, or purple depending on whether only U, only D, or both U and D change state.

4.3. The set of accepted reduced words of P(U, D). Applying the principles
of Section 3.1 to each automaton U(j) for j ∈ U and D(j) for j ∈ D, we derive
similar principles for the automaton P(U, D). The following statements are direct
consequences of Propositions 3.1, 3.2, and 3.3.
Proposition 4.3. The set of reduced words accepted by P(U, D) is closed by prefix.
Proposition 4.4. If a permutation π avoids jki for j ∈ U and kij for j ∈ D, and ad-
mits a reduced word starting with sℓ such that the transition sℓ leads to a healthy state
of P(U, D), then it admits a reduced word starting with sℓ and accepted by P(U, D).
Proposition 4.5. Given a permutation π ∈ Sn, all the reduced words for π accepted
by P(U, D) end at the same state.

Algebraic Combinatorics, Vol. 6 #1 (2023) 65

V. Pilaud, V. Pons & D. Tamayo Jimenez

st
ar

t

s 1

s 2

s 3
s 4

s 1

s 2

s 4
s 1

s 2

s 4

s 1

s 2

s 2

s 1

s 3
s 4

s 1

s 4

s 1

s 4

s 1

s 1

s 1

s 3
s 4

s 1

s 4

s 1

s 4

s 1

s 1

s 3
s 4

s 4

s 4

s 3
s 4

s 4

s 4

st
ar

t

s 1

s 2s 3

s 1

s 2

s 3
s 1

s 2

s 1

s 2
s 3

s 1

s 3

s 1

s 3

s 1

s 1

s 1

s 3

s 3

s 1
s 1

s 1

s 2
s 3

s 3

s 3

s 3

s 3

st
ar

t

s 2

s 3
s 2

s 3

s 1

s 3

s 3
s 2

s 4

s 1

s 4
s 4

s 2
s 1

st
ar

t

s 1

s 3
s 4

s 2 s 4

s 1

s 2
s 3

s 1

s 4

s 1
,s

4

s 1

s 2

s 1

s 4
s 3

s 4

st
ar

t

s 1

s 2
s 3

s 1
,s

3

s 1

s 2 s 1

s 3
s 2

s 3

F
ig

ur
e

4.
T

he
au

to
m

at
on

P(
{4

},
{2

})
fo

r
n

=
5

an
d

its
sk

el
et

on
(le

ft
),

th
e

au
to

m
at

on
P(

{3
},

{2
})

fo
r

n
=

4
an

d
its

sk
el

et
on

(m
id

dl
e)

,a
nd

th
e

he
al

th
y

st
at

es
of

th
e

au
to

m
at

on
P(

{2
},

{4
})

fo
r

n
=

5
(r

ig
ht

).

Algebraic Combinatorics, Vol. 6 #1 (2023) 66

Permutree sorting

4.4. Permutree sorting. We have seen that the set of reduced words for
any (U, D)-permutree minimal permutation π that are accepted by P(U, D) is
non-empty (by Corollary 4.2) and that the set of all reduced words that are accepted
by P(U, D) is closed by prefix (by Proposition 4.3). Therefore, it is possible to sort π
passing only through (U, D)-permutree minimal permutations along the way. This
motivates the following definition.

Definition 4.6. An (U, D)-permutree sorting algorithm is a sorting procedure such
that

• applied to a (U, D)-permutree minimal permutation π, it only passes through
(U, D)-permutree minimal permutations and arrives to the identity permuta-
tion,

• it fails to sort a non (U, D)-permutree minimal permutation π.

Example 4.7. The stack sorting algorithm is a ({2, . . . , n − 1},∅)-permutree sorting
algorithm.

Said differently, any procedure that looks for a reduced word accepted by P(U, D)
gives a (U, D)-permutree sorting algorithm. For instance, Algorithm 1 is a ({j},∅)-
permutree sorting algorithm. We generalize it in the following algorithm, where we
opted for a recursive style. As in Algorithm 1, the algorithm will read the automa-
ton P(U, D) without actually constructing it. To virtually follow the edges of the
automaton P(U, D), we use two operations on our sets U and D:

moveU(U, ℓ) =
{

U if ℓ /∈ U,

(U ∖ {ℓ}) ∪ {ℓ + 1} if ℓ ∈ U,

moveD(D, ℓ) =
{

D if ℓ + 1 /∈ D,

(D ∖ {ℓ + 1}) ∪ {ℓ} if ℓ + 1 ∈ D.

Algorithm 2: (U, D)-permutree sorting
1 Function permutreeSort(π, U, D)

Input : a permutation π ∈ Sn and two disjoint subsets U and D
of [n]

Output: a reduced word accepted by P(U, D), candidate reduced
word for π

2 if ∃ ℓ ∈ [n − 1] such that ℓ and ℓ + 1 are reversed in π, and ℓ + 1 /∈ U

and ℓ /∈ D then
3 return sℓ · permutreeSort(sℓ · π, moveU(U, ℓ), moveD(D, ℓ))
4 if ∃ ℓ ∈ [n − 1] such that ℓ and ℓ + 1 are reversed in π,
5 and (ℓ + 1 /∈ U or π([ℓ + 1]) = [ℓ + 1]) and (ℓ /∈ D or

π([ℓ − 1]) = [ℓ − 1]) then
6 return

sℓ ·permutreeSort(sℓ ·π, moveU(U∖{ℓ+1}, ℓ), moveD(D∖{ℓ}, ℓ))

7 return ε

Note that in Algorithm 2, we could ignore n in the list U (resp. 1 in the list D)
since U(n) (resp. D(1)) accepts all reduced words. We have decided not to do it to be
coherent with our recursive definition of U(j) and D(j).

Algebraic Combinatorics, Vol. 6 #1 (2023) 67

V. Pilaud, V. Pons & D. Tamayo Jimenez

Example 4.8. We present in Table 2 the ({3}, {2})-permutree sorting algorithm in
action for the permutations π1 := 3214, π2 := 1324 and π3 := 1342, and in Table 3
the ({2}, {4})-permutree sorting algorithm in action for the permutations π4 := 54213
and π5 := 15342. The corresponding automata P({3}, {2}) and P({2}, {4}) are repre-
sented in Figure 4. Each row in these tables contains the states of the permutation π
and of the word w, the current values of U , D and ℓ in use at each step, and the
values of k for which we have to check that π([k]) = [k], crossed in red when it fails.
These tables show that π1 and π2 are ({3}, {2})-permutree sortable while π3 is not,
and that π4 is ({2}, {4})-permutree sortable while π5 is not.

π1 w1 U1 D1 ℓ1 k1
3214 ε {3} {2} 1 .
3124 s1 {3} {1} 2 3
2134 s1 · s2 ∅ {1} 1 0
1234 s1 · s2 · s1

π2 w2 U2 D2 ℓ2 k2
1324 ε {3} {2} 2 1, 3
1234 s2

π3 w3 U3 D3 ℓ3 k3
1342 ε {3} {2} 2 1, �A3

Table 2. ({3}, {2})-permutree sorting of π1 := 3214, π2 := 1324
and π3 := 1342.

π4 w4 U4 D4 ℓ4 k4
54213 ε {2} {4} 3 .
53214 s3 {2} {3} 2 .
52314 s3 · s2 {3} {2} 1 .
51324 s3 · s2 · s1 {3} {1} 4 .
41325 s3 · s2 · s1 · s4 {3} {1} 3 .
31425 s3 · s2 · s1 · s4 · s3 {4} {1} 2 .
21435 s3 · s2 · s1 · s4 · s3 · s2 {4} {1} 1 .
12435 s3 · s2 · s1 · s4 · s3 · s2 · s1 {4} {1} 3 4
12345 s3 · s2 · s1 · s4 · s3 · s2 · s1 · s3 {4} {1}
π5 w5 U5 D5 ℓ5 k5
15342 ε {2} {4} 2 .
15243 s2 {3} {4} 3 .
15234 s2 · s3 {4} {3} 4 .
14235 s2 · s3 · s5 {5} {3} 3 �A2

Table 3. ({2}, {4})-permutree sorting of π4 := 54213
and π5 := 15342.

Corollary 4.9. For any permutation π and any disjoint subsets U and D
of {2, . . . , n − 1}, Algorithm 2 returns a reduced word w accepted by P(U, D)
with the property that w is a reduced word for π if and only if π avoids jki for j ∈ U
and kij for j ∈ D.

Proof. This algorithm constructs a candidate reduced word for π following the au-
tomaton P(U, D) and prioritizing healthy states over ill states. It begins by checking

Algebraic Combinatorics, Vol. 6 #1 (2023) 68

Permutree sorting

all possible transitions sℓ that keep P(U, D) in healthy states following Lemma 2.6 (if
condition in line 2). Doing this in the intersection of automata translates to updat-
ing ℓ to ℓ + 1 when ℓ ∈ U and ℓ + 1 to ℓ when ℓ + 1 ∈ D (line 3). When we have
exhausted all these transitions, we need to go to an ill state of P(U, D), i.e. to apply
a transposition that sends at least one automaton of the intersection to an ill state. If
there is ℓ + 1 ∈ U (resp. ℓ ∈ D) such that sℓ is a descent of π and π([ℓ + 1]) = [ℓ + 1]
(resp. π([ℓ − 1]) = [ℓ − 1]), then any reduced word for π is accepted by the automa-
ton U(ℓ) (resp. D(ℓ)) by Proposition 3.4 (i). We can thus start with sℓ and forget
about the automaton U(ℓ) (resp. D(ℓ)) (lines 4, 5 and 6). Finally, if none of these
options are possible, any reduced word for π will lead to a dead state in at least one
of the automata, so that π is not (U, D)-sortable. We thus return the empty reduced
word (line 7). □

4.5. Generating trees. As in Section 3.3, we can define natural generating trees
for the (U, D)-permutree minimal permutations. Namely, fix an arbitrary priority
order ≺ on {s1, . . . , sn−1}. For an (U, D)-permutree minimal permutation π, we
denote by π(U, D, ≺) the ≺-lexicographic minimal reduced word for π that is ac-
cepted by P(U, D). We denote by R(n, U, D, ≺) the set of reduced words of the
form π(U, D, ≺) for all (U, D)-permutree minimal permutations π ∈ Sn. The same
proof as that of Proposition 3.9 shows that R(n, U, D, ≺) is closed by prefix. This
yields a natural generating tree on R(n, U, D, ≺) where the parent of a reduced word w
is obtained by deleting its last letter. Replacing each reduced word by the correspond-
ing permutation, this provides a generating tree for the (U, D)-permutree minimal
permutations of Sn. Figure 5 presents these generating trees for different values of U
and D.

5. Permutree sorting versus Coxeter sorting
In this section, we discuss the particular case when U and D form a partition
of {2, . . . , n − 1}. In that situation, we connect the (U, D)-permutree sorting with the
c-sorting of N. Reading [16].

5.1. Coxeter sorting word and Coxeter sortable permutations. We first
recall the theory of c-sorting developed by N. Reading in [16]. While it was defined in
arbitrary finite Coxeter groups, we focus on the symmetric group in this presentation.

We consider a Coxeter element c of Sn, i.e. the product of all simple transposi-
tions {s1, . . . , sn−1} in an arbitrary order. For a permutation π ∈ Sn, the c-sorting
word π(c) is the lexicographically smallest reduced word for π in the infinite word
c∞ = c · c · c · c · · ·. Note that strictly speaking, π(c) depends on a reduced word for c,
not only on the Coxeter element c. Here, we assume that we have chosen a reduced
word and hide this dependence. We let I1, . . . , Ip denote the subsets of [n − 1] such
that π(c) = cI1 · cI2 · · · cIp where cI is the subword of c obtained by keeping only
the letters si for i ∈ I. The permutation π is c-sortable if I1 ⊇ I2 ⊇ · · · ⊇ Ip. Note
that this does not depend on the choice of the reduced word c, only on the Coxeter
element c.

For our proofs we will need some simple yet useful facts from [16] on how prefixes
of words influence sortability.

Lemma 5.1. Consider a Coxeter element of the form c = sℓ · d and let π ∈ Sn. Then
• if π = sℓ · τ with ℓ(π) = ℓ(τ) + 1, then π(c) = sℓ · τ(d · sℓ),
• otherwise, π(c) = π(d · sℓ).

Algebraic Combinatorics, Vol. 6 #1 (2023) 69

V. Pilaud, V. Pons & D. Tamayo Jimenez

U
(2

)∩
U

(3
)

U
(2

)∩
D

(3
)

U
(3

)∩
D

(2
)

D
(2

)∩
D

(3
)

st
ar

t

s 1

s 2

s 2

s 2

s 3

s 3

s 3

st
ar

t

s 1

s 2

s 2

s 2

s 3

s 3

s 3

st
ar

t

s 2

s 3

s 3

s 3

st
ar

t

s 2

s 1

s 1

s 1

st
ar

t

s 2

s 3

s 3

s 3

st
ar

t

s 3

s 2

s 2

s 2

s 1

s 1

s 1

st
ar

t

s 2

s 1

s 1

s 1

st
ar

t

s 3

s 2

s 2

s 2

s 1

s 1

s 1

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

12
34

21
34

13
24

12
43

23
14

31
24

21
43

13
42

14
23

32
14

23
41

31
42

24
13

41
23

14
32

32
41

24
31

34
12

42
13

41
32

34
21

42
31

43
12

43
21

F
ig

ur
e

5.
G

en
er

at
in

g
tr

ee
s

fo
r

th
e

(U
,D

)-
pe

rm
ut

re
e

m
in

im
al

pe
rm

ut
at

io
ns

of
S

4,
w

ith
pr

io
rit

y
or

de
r

s 1
≺

s 2
≺

s 3
.

Algebraic Combinatorics, Vol. 6 #1 (2023) 70

Permutree sorting

Lemma 5.2. Let si ̸= sj be two letters that appear in the c-sorting word π(c) of a
c-sortable permutation π. Then

(1) if si appears before sj in c, then si appears before sj in π(c),
(2) if sj does not appear in between two occurrences of si in π(c), then it does

not appear after these occurrences either.

Proof. We deal with the two statements separately:
(1) Immediate from the definition since both si and sj appear in π(c).
(2) Since π is c-sortable, π(c) is formed by a succession of subwords that are

nested. Thus if sj were to appear after the occurrences of si it would have to
appear between them as well. □

5.2. Coxeter sorting via permutree automata. A Coxeter element c of Sn

defines a partition {2, . . . , n − 1} = Uc ⊔ Dc, where Uc (resp. Dc) consists of the el-
ements j ∈ {2, . . . , n − 1} such that sj appears before (resp. after) sj−1 in c. For
instance, when c = s2 ·s5 ·s4 ·s3 ·s1 ·s6, we obtain Uc = {2, 4, 5} and Dc = {3, 6}. Said
differently, j ∈ U (resp. j ∈ D) if c is accepted by U(j) but not by D(j) (resp. by D(j)
but not by U(j)). The goal of this section is the following connection between the
c-sorting of Section 5.1 and the (Uc, Dc)-permutree sorting of Section 4.

Theorem 5.3. For any Coxeter element c and any permutation π, the following as-
sertions are equivalent:

(i) π is c-sortable,
(ii) the c-sorting word π(c) is accepted by the automaton P(Uc, Dc),
(iii) there exists a reduced word for π accepted by the automaton P(Uc, Dc),
(iv) for each j ∈ {2, . . . , n − 1}, there exists a reduced word for π that is accepted

by the automaton U(j) if j ∈ Uc and D(j) if j ∈ Dc,
(v) π avoids jki for j ∈ Uc and kij for j ∈ Dc.

The equivalences (iii) ⇐⇒ (iv) ⇐⇒ (v) were already established earlier. Here, we
aim at identifying the c-sorting word as a reduced word for π accepted by P(Uc, Dc).
We split the proof of the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) into the following few
lemmas.

Lemma 5.4. The c-sorting word of a c-sortable permutation is recognized by U(j)
for j ∈ Uc and by D(j) for j ∈ Dc.

Proof. Consider j ∈ Uc (the proof for j ∈ Dc is symmetric). We distinguish two
possible cases:

• If π(c) contains no sj−1, then π(c) either remains in the first healthy state or
ends in the first ill state of U(j).

• If π(c) contains sj−1, then by Lemma 5.2 (1) sj−1 appears before sj in π(c)
and π(c) leads to the second healthy state of U(j). From here on out, notice
that π(c) cannot end at a dead state because of Lemma 5.2 (2).

In both cases, π(c) is accepted by U(j). □

Lemma 5.5. A permutation π ∈ Sn whose c-sorting word π(c) is accepted by P(Uc, Dc)
is c-sortable.

Proof. Suppose that π is not c-sortable. We will find an automaton that rejects π(c)
among the automata U(j) for j ∈ Uc and D(j) for j ∈ Dc. Once again, we work
by induction on the length of π and the size of c. Let sℓ be the first letter of c
and write c = sℓ · d. Since sℓ appears before sℓ−1 and sℓ+1 in c, we have ℓ ∈ Uc

and ℓ + 1 ∈ Dc. Moreover, the letter sℓ yields to the next healthy state in both
automata U(ℓ) and D(ℓ+1), and remains in the initial state for all other automata U(j)

Algebraic Combinatorics, Vol. 6 #1 (2023) 71

V. Pilaud, V. Pons & D. Tamayo Jimenez

for j ∈ Uc∖{ℓ} and D(j) for j ∈ Dc∖{ℓ+1}. We now distinguish two cases, depending
on whether ℓ and ℓ + 1 are reversed in π.

Assume first that ℓ and ℓ + 1 are reversed in π and write π = sℓ · τ . We then
have π(c) = sℓ · τ(d · sℓ) by Lemma 5.1, so that τ is not d · sℓ-sortable. By induction
hypothesis, τ(d · sℓ) is rejected by one of the automata U(j) for j ∈ Ud·sℓ

and D(j)
for j ∈ Dd·sℓ

. Since Ud·sℓ
= Uc △ {ℓ, ℓ + 1} and Dd·sℓ

= Dc △ {ℓ, ℓ + 1}, Lemmas 2.2
and 2.6 ensure that π(c) = sℓ · τ(d · sℓ) is rejected by one of the automata U(j)
for j ∈ Uc and D(j) for j ∈ Dc.

Assume now that ℓ and ℓ + 1 are not reversed in π. Then π(c) does not use sℓ

and π is not d-sortable in W⟨sℓ⟩. By induction hypothesis, π(c) is rejected by one
of the automata U(j) for j ∈ Ud and D(j) for j ∈ Dd. This concludes the proof
since Ud ⊆ Uc and Dd ⊆ Dc. □

Lemma 5.6. If a permutation π ∈ Sn admits a reduced word accepted by P(Uc, Dc),
then its c-sorting word π(c) is accepted by P(Uc, Dc).

Proof. Once again, we work by induction on the length of π. Let sℓ be the first
letter of c and write c = sℓ · d. Since sℓ appears before sℓ−1 and sℓ+1 in c, we
have ℓ ∈ Uc and ℓ + 1 ∈ Dc. Moreover, the letter sℓ yields to the next healthy state
in both automata U(ℓ) and D(ℓ + 1), and remains in the initial state for all other
automata U(j) for j ∈ Uc ∖ {ℓ} and D(j) for j ∈ Dc ∖ {ℓ + 1}. We now distinguish
two cases, depending on whether ℓ and ℓ + 1 are reversed in π.

Assume first that ℓ and ℓ+1 are reversed in π and write π = sℓ ·τ . Using Lemma 5.1
it suffices now to show that after sℓ, there is a reduced word for τ accepted by the
automata. For each j, since the automaton D(j) or U(j) that we see accepts at least
one reduced word for π and sℓ does not lead to a ill state, it also accepts a reduced
word for π starting with sℓ by Proposition 3.2. Observe moreover that:

• τ admits a reduced word accepted by U(j) for each j /∈ {ℓ, ℓ+1} by Lemma 2.2.
This lines up with the fact that the order of sj−1 and sj has not changed from
c = sℓ · d to d · sℓ.

• τ admits a reduced word accepted by U(ℓ + 1) and a reduced word accepted
by D(ℓ) by Lemma 2.6. This fits the fact that ℓ now appears after ℓ − 1 and
ℓ + 1 in d · sℓ.

By induction, we obtain that τ(d · sℓ) is accepted by P(Ud·sℓ
, Dd·sℓ

), so that
π(c) = sℓ · τ(d · sℓ) is accepted P(Uc, Dc).

Assume now that ℓ and ℓ + 1 are not reversed in π. We want to show that sℓ never
appears in the reduced words for π, i.e. that π([ℓ]) = [ℓ] and π([n] ∖ [ℓ]) = [n] ∖ [ℓ].
Otherwise, the reduced word wℓ accepted by U(ℓ) would see first a sℓ+1, and then a
sℓ before it sees any sℓ−1, so that we would have an inversion kℓ in π for some ℓ < k.
Similarly, the reduced word wℓ+1 accepted by D(ℓ + 1) should see first a sℓ−1 and
then a sℓ before it sees any sℓ+1, so that we would have an inversion (ℓ + 1)i in π for
some i < ℓ + 1. Since ℓ and ℓ + 1 are not reversed, we see kℓ(ℓ + 1)i which contradicts
twice Theorem 1.1. We conclude that this case never happens, so that we can work in
the parabolic subgroup of permutations that never use sℓ in their reduced words. □

5.3. Some negative observations. We conclude this paper with some negative
observations and warnings about the connection between c-sorting and (Uc, Dc)-
permutree sorting. First, we want to underline that using c-sorting words to test
whether a permutation avoids jki or kij for a fixed j is dangerous for the following
two reasons.

Remark 5.7. Even if a permutation π avoids jki (resp. kij) for a given j, there might
be no Coxeter element c for which π is c-sortable and j ∈ Uc (resp. j ∈ Dc). For

Algebraic Combinatorics, Vol. 6 #1 (2023) 72

Permutree sorting

instance, the permutation 41325 ∈ S5 avoids 2ki and ki4, but contains 352 and 413,
so it is not c-sortable for any Coxeter element c.

Remark 5.8. When a permutation π is not c-sortable, there might exist j ∈ Uc

(resp. j ∈ Dc) for which the c-sorting word π(c) is not accepted by U(j) (resp. D(j))
even if π avoids jki (resp. kij). For instance, consider c = s2 · s1 · s3 and
π = 4213 = s3 · s1 · s2 · s1 = s3 · s2 · s1 · s2 = s1 · s3 · s2 · s1. Then 2 ∈ Uc, and the
c-sorting word π(c) = s1 · s3 · s2 · s1 is rejected by U(2) while π contains no 2ki (and
indeed s3 · s2 · s1 · s2 is accepted by U(2)).

We conclude the paper with an observation about sorting networks and permutree
sorting.

Remark 5.9. Given a Coxeter element c, the word c∞ which is used to compute π(c)
is a sorting network. This means that we decide beforehand a list of transpositions to
apply if appropriate. On the other hand, the permutree sorting given in Algorithm 2 is
not a sorting network. Indeed, the order on transpositions depends on the permutation
and more specifically on the state of the automaton we are at. A natural question
then occurs: can we replace the permutree sorting algorithm by a sorting network?
Or said differently, when U and D are disjoint but do not cover {2, . . . , n − 1}, can
we find a word c̃ which plays the role of c∞ in the sense that looking at π(c̃) would
be enough to check whether π is accepted by P(U, D)?

The answer is negative in general. A counter-example is found for n = 5, U = {2},
and D = {4}. In this case one can check through computer exploration that no
reduced word c̃ of the maximal permutation 54321 can be used as a sorting network.
Namely, for all choices of c̃, there exist a permutation π which is accepted by P(U, D)
whereas the reduced word π(c̃) is rejected. The healthy states of P({2}, {4}) are shown
in Figure 4. We see that accepted reduced words can start with either s2 or s3. For
some permutations, such as 54213 shown in Example 4.8, all accepted reduced words
start with s3 whereas for some other permutations such as 35421, all accepted reduced
words start with s2. This eventually leads to an empty intersection for the choice of c̃.

Nevertheless, it seems interesting to study in which case the answer is posi-
tive. The Cambrian case with the c-sorting word when U and D form a partition
of {2, . . . , n − 1} is one example. The case where |U | + |D| = 1 is another one. This
is the case corresponding to Theorem 1.1 where we have only one automaton. In
this case, we can construct a word c̃ by reading the healthy states of the automaton
linearly, adding at each state the word (si1 · · · sik

)ksj where si1 , . . . , sik
are the

looping transitions and sj is the transition going to the next healthy state. This
process gives a prefix that can be extended in any way to obtain a proper sorting
word c̃. For example, if U = {2}, we obtain the prefix s3 · s2 · s1 · s3 and indeed
s3 · s2 · s1 · s3 · s2 · s1 acts as a sorting network equivalent to the ({2},∅)-permutree
sorting. This process actually seems to extend to all cases where, at each healthy
state of the intersection automaton, the choices for the healthy transitions commute.
For example, in the case where n = 5, U = {4} and D = {2} as illustrated in
Figure 4, the word s1 · s2 · s4 · s3 · s2 · s1 · s4 · s3 · s2 gives a proper sorting network.

References
[1] Doriann Albertin, Vincent Pilaud, and Julian Ritter, Removahedral congruences versus per-

mutree congruences, Electron. J. Combin. 28 (2021), no. 4, article no. P4.8 (38 pages).
[2] Grégory Chatel and Vincent Pilaud, Cambrian Hopf Algebras, Adv. Math. 311 (2017), 598–633.
[3] Grégory Chatel, Vincent Pilaud, and Viviane Pons, The weak order on integer posets, Algebr.

Comb. 2 (2019), no. 1, 1–48.
[4] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15

(2002), no. 2, 497–529.

Algebraic Combinatorics, Vol. 6 #1 (2023) 73

V. Pilaud, V. Pons & D. Tamayo Jimenez

[5] , Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121.
[6] Christophe Hohlweg and Carsten Lange, Realizations of the associahedron and cyclohedron,

Discrete Comput. Geom. 37 (2007), no. 4, 517–543.
[7] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and

computation, Addison-Wesley Publishing Co., Reading, Mass., 1979, Addison-Wesley Series in
Computer Science.

[8] Donald E. Knuth, The art of computer programming. Vol. 1: Fundamental algorithms, Second
printing, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.

[9] Jean-Louis Loday, Realization of the Stasheff polytope, Arch. Math. (Basel) 83 (2004), no. 3,
267–278.

[10] Jean-Louis Loday and María O. Ronco, Hopf algebra of the planar binary trees, Adv. Math.
139 (1998), no. 2, 293–309.

[11] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and
the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967–982.

[12] Vincent Pilaud and Viviane Pons, Permutrees, Algebr. Comb. 1 (2018), no. 2, 173–224.
[13] Nathan Reading, Lattice congruences of the weak order, Order 21 (2004), no. 4, 315–344.
[14] , Cambrian lattices, Adv. Math. 205 (2006), no. 2, 313–353.
[15] , Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math.

Soc. 359 (2007), no. 12, 5931–5958.
[16] , Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), no. 3-4, 411–

437.
[17] Dov Tamari, Monoides préordonnés et chaînes de malcev, Ph.D. thesis, Université Paris Sor-

bonne, 1951.

Vincent Pilaud, CNRS & LIX, École Polytechnique, Palaiseau, France
E-mail : vincent.pilaud@lix.polytechnique.fr
Url : http://www.lix.polytechnique.fr/~pilaud/

Vivane Pons, Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du
Numérique, 91400, Orsay, France
E-mail : viviane.pons@lisn.upsaclay.fr
Url : https://www.lri.fr/~pons/

Daniel Tamayo Jimenez, Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences
du Numérique, 91400, Orsay, France
E-mail : daniel.tamayo-jimenez@lri.fr
Url : https://sites.google.com/view/danieltamayomath/home

Algebraic Combinatorics, Vol. 6 #1 (2023) 74

mailto:vincent.pilaud@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~pilaud/
mailto:viviane.pons@lisn.upsaclay.fr
https://www.lri.fr/~pons/
mailto:daniel.tamayo-jimenez@lri.fr
https://sites.google.com/view/danieltamayomath/home

	1. Introduction
	2. Automata for reduced words
	2.1. Reduced words, automata, and subword avoidance
	2.2. Behavior under left multiplication
	2.3. Proof of Theorem 1.1

	3. Structure of accepted reduced words
	3.1. The set of accepted reduced words
	3.2. Finding accepted reduced words
	3.3. Generating trees on accepted reduced words

	4. Intersection of automata
	4.1. Proof of Theorem 1.2
	4.2. Intersection of automata
	4.3. The set of accepted reduced words of P(U,D)
	4.4. Permutree sorting
	4.5. Generating trees

	5. Permutree sorting versus Coxeter sorting
	5.1. Coxeter sorting word and Coxeter sortable permutations
	5.2. Coxeter sorting via permutree automata
	5.3. Some negative observations

	References

