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Refined Littlewood identity for spin
Hall–Littlewood symmetric rational

functions

Svetlana Gavrilova

Abstract Fully inhomogeneous spin Hall–Littlewood symmetric rational functions Fλ are mul-
tiparameter deformations of the classical Hall–Littlewood symmetric polynomials and can be
viewed as partition functions in sl(2) higher spin six vertex models.

We obtain a refined Littlewood identity expressing a weighted sum of Fλ’s over all signatures
λ with even multiplicities as a certain Pfaffian. This Pfaffian can be derived as a partition
function of the six vertex model in a triangle with suitably decorated domain wall boundary
conditions. The proof is based on the Yang–Baxter equation.

1. Introduction
1.1. Background. In the present paper we deal with summation identities for spin
Hall–Littlewood symmetric rational functions. These functions arise as partition func-
tions of square lattice integrable vertex models related to the quantum group Uq(ŝl2).
This description originally appeared in [4, 7].

The spin Hall–Littlewood functions also can be identified with Bethe Ansatz eigen-
functions of the higher spin six vertex model on Z, cf. [12, Ch. VII]. They also appear
as eigenfunctions of certain stochastic particle systems [16, 6, 9]. Following [4, 7] and
subsequent works, we treat spin Hall–Littlewood functions and their relatives from the
point of view of the theory of symmetric functions. A classical reference on the theory
of symmetric functions is the book [14] where Schur, Hall–Littlewood, and Macdonald
symmetric polynomials and symmetric functions are developed and various identities
for them are formulated or proved.

One of the common features for most families of symmetric polynomials is a Lit-
tlewood type summation identity. For example, the Schur symmetric polynomials sλ

satisfy the following Littlewood identity:∑
λ′ even

sλ(u1, . . . , um) =
∏

1⩽i<j⩽m

(1 − uiuj)−1.

Here the summation is over all signatures λ = (λ1 ⩾ . . . ⩾ λm ⩾ 0) such that all
parts of its conjugate λ′ are even, or equivalently, all part-multiplicities of λ are even.
For a comprehensive study of Littlewood identities for Hall–Littlewood polynomials,
we refer the reader to [14, Ch. III] and to [18, 17] for recent developments concerning
boxed Littlewood formulae for Macdonald polynomials.
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Moreover, Littlewood identities are important for integrable probability: they ap-
pear as a key tool for studying half-space integrable models related to the corre-
sponding half-space Macdonald processes, see [1, 2, 3]. Also, these types of identities
for stable spin Hall–Littlewood polynomials, which are specializations of our func-
tions, were applied in [8] for introducing the half-space Yang-Baxter random field and
studying related dynamic systems.

We study refinements of Littlewood type identities, which are derived by inserting
an extra factor into each term of the summation in the left-hand side. The expression
for the right-hand side, in turn, also gets more complicated: it becomes a Pfaffian.
Earlier, a number of Pfaffian formulas for partition functions of the six vertex model
were obtained by Kuperberg in [13]. We follow a method for proving refined (Cauchy
and Littlewood type) identities introduced in [20], which is based on the Yang–Baxter
equation.

One of the applications of refined Cauchy identities for Macdonald polynomials
is a possibility to compute the expectations of observables for Macdonald measures.
Namely, they can be expressed as a certain determinantal formula independent of the
parameter q. This result goes back to [11], see also [19, 5, 15]. It would be nice to see
if this q-independence extends to the Pfaffian case. Moreover, it would be interesting
to employ our result for the analysis of half-space models of integrable probability as
in [1, 2, 3], but this application is outside of the scope of the present work.

1.2. Refined Littlewood identity for spin Hall–Littlewood functions.
One of possible ways to define the fully inhomogeneous spin Hall–Littlewood sym-
metric rational functions is the following symmetrization form introduced in [7]:

Fλ(u1, . . . , uN ) =
∑

σ∈SN

σ

( ∏
1⩽i<j⩽N

ui − tuj

ui − uj

N∏
i=1

(
1 − t

1 − sλiui

λi−1∏
j=0

ui − sj

1 − sjui

))
,

where λ = (λ1 ⩾ . . . ⩾ λN ⩾ 0) is a signature, that is, a sequence of weakly decreasing
nonnegative integers. Here σ ∈ SN acts by permuting the variables ui’s. The function
Fλ depends on the “quantum parameter” t ∈ (0, 1), the variables uj and the inhomo-
geneities sx, where x ∈ Z⩾0. By setting sx = 0 for all x, we obtain the reduction to
the case of usual Hall–Littlewood symmetric polynomials.

Our main result is a generalization of the refined Littlewood identity (17) to the
case of the spin Hall–Littlewood functions.

To formulate the result we need some notation given below. Namely, m0(λ) is the
number of parts in signature λ equal to zero, and (a; t)k = (1−a)(1−at) . . . (1−atk−1)
is the t-Pochhammer symbol.

Theorem 1.1. Let γ ̸= 0 be an arbitrary complex number and let variables u1, . . . , u2n

satisfy restrictions (3) below which are needed for some convergence conditions. Then
spin Hall–Littlewood symmetric rational functions satisfy the following refined Little-
wood identity:

∑
λ:mi(λ)∈2Z⩾0

1
(t; t)m0(λ)

m0(λ)/2∏
j=1

(1 − s2
0γ−1t2j−2)(1 − γt2j−1)

2n∏
j=1

(1 − s0uj)

×
∞∏

i=1

mi(λ)/2∏
j=1

1 − s2
i t2j−2

1 − t2j
Fλ(u1, . . . , u2n) =

∏
1⩽i<j⩽2n

(
1 − tuiuj

ui − uj

)

× Pf
1⩽i<j⩽2n

[
(ui − uj)((1 − t)(1 − s0ui)(1 − s0uj) + (1 − γ)(t − s2

0γ−1)(1 − uiuj))
(1 − uiuj)(1 − tuiuj)

]
.

(1)
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1.3. Sketch of proof. Our approach follows the work of M. Wheeler and P. Zinn-
Justin [20] and the work of L. Petrov [15]. Namely, we represent spin Hall–Littlewood
rational functions as certain partition functions, using the integrable model of de-
formed bosons. Then we consider a partition function that can be identified with
some weighted sum of spin Hall–Littlewood functions. After that we use the Yang–
Baxter equation to equate our partition function with a partition function of the six
vertex model with finitely many vertices. This description allows us to prove certain
properties of the partition function and to present a particular function (in our case
it is some certain Pfaffian) with the same properties. Finally, we use Lagrange inter-
polation to verify that our properties determine the function uniquely. This technique
goes back to Izergin and Korepin [10, 12].

Note that in our case we deal with a rather complicated Pfaffian. The novelty of our
approach is to simplify one of the steps of the proof. Namely, instead of computing our
Pfaffian of order 2n in some nontrivial point, which is quite difficult, we specialize our
partition function in another point. This makes our argument combinatorial, while
the nontrivial pfaffian itself is computed as a by-product of the proof.

1.4. Notation. Let us introduce some notation.
Each signature λ = (λ1 ⩾ λ2 ⩾ . . . ⩾ λN ⩾ 0) can be written in multiplicative

form as λ = (0m01m12m2 . . . ), where mi is the multiplicity of i in λ. Throughout the
paper we will use this notation.

We often deal with tensor products of the same space, so we use upper indices to
point out in which component a certain operator acts. For example, if ω is a 4 × 4
matrix and we have a 2n-dimensional tensor power of n 2-dimensional spaces, then
ω(i,i+1) = 1

⊗(i−1) ⊗ ω ⊗ 1
⊗(n−i−1) where 1 is a 2 × 2 identity matrix.

1.5. Organization of the paper. In Section 2 we recall the basic notation, defi-
nitions and properties of the spin Hall–Littlewood rational symmetric functions and
the integrable model related to them. In Section 3 we prove the refined Littlewood
identity for the spin Hall–Littlewood functions. Finally, in Section 4 we discuss the
reduction of the result to the classical family of Hall-Littlewood symmetric functions
and write the non-refined case of our identity.

2. Higher spin six vertex model weights and spin
Hall–Littlewood functions

In this section we introduce a certain model with higher spin six vertex weights and
explain how to build spin Hall–Littlewood functions in terms of this model.

2.1. Definition of the model. Consider an infinite dimensional vector space V :
V = Span {|m0⟩0 ⊗ |m1⟩1 ⊗ |m2⟩2 ⊗ · · · } , mi ∈ Z ∀ i ⩾ 1,

where only finitely many of the mi are nonzero. In the case where all mi are nonneg-
ative, it is convenient to regard the corresponding basis vectors as a particle system
on Z⩾0 in which any number of particles can occupy sites located at each of the pos-
itive integers. Namely, each mi represents just the number of particles at site i. Note
that if mi are obtained as multiplicities of some signature λ, then obviously we have
mi ∈ Z⩾0 and in this case we denote the corresponding state by |λ⟩ ∈ V or ⟨λ| ∈ V ∗.
However, for our purposes it makes sense to work with negative integers, too.

Also, we set up a two-dimensional auxiliary vector space W = C2 and its basis de-
noted by |0⟩ and |1⟩. Then the higher spin six vertex model weights wu,si

(i1, j1; i2, j2)
can be seen as the matrix elements of the operators Lu,si acting in W ⊗ Vi where by
Vi we denote the ith factor of V . Namely, the weight wu,s(i1, j1; i2, j2) is defined as
⟨j1| ⊗ ⟨i1| Lu,s |j2⟩ ⊗ |i2⟩, where i1, i2 ∈ Z⩾0 and j1, j2 ∈ {0, 1}. Graphically, we can
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represent this operator as in Figure 1. Exact expressions for the weights wu,s, except
zero ones, are also given in Figure 1. Apart from u and s, they depend on some fixed
parameter t ∈ (0, 1).

j2

i2

j1

i1
g

g g − 1

g g

g + 1

g

g

wu,s(i1, j1; i2, j2)
1− sutg

1− su

u(1− s2tg−1)

1− su

1− tg+1

1− su

u− stg

1− su

Figure 1. Vertex weights wu,s(i1, j1; i2, j2). Here i1, i2 ∈ Z⩾0 and
j1, j2 ∈ {0, 1}.

Likewise, let us define operators L∗
v,s and the corresponding weights as follows:

(2) w∗
v,s(i1, j1; i2, j2) = ⟨j1| ⊗ ⟨i1| L∗

v,s |j2⟩ ⊗ |i2⟩ = (s2; t)i1(t; t)i2

(s2; t)i2(t; t)i1

wv,s(i2, j1; i1, j2).

Exact expressions for the nonzero weights w∗
v,s, together with graphical illustrations,

can be found in Figure 2.

i1

i2

j2j1

g

g

g

g + 1

g

g

g + 1

g

w∗
v,s(i1, j1; i2, j2)

1− svtg

1− sv

v(1− tg+1)

1− sv

v − stg

1− sv

1− s2tg

1− sv

Figure 2. Vertex weights w∗
v,s(i1, j1; i2, j2). Here i1, i2 ∈ Z⩾0 and

j1, j2 ∈ {0, 1}.

Impose the following restrictions on the variables u1, . . . , uN :

(3)
∣∣∣∣ ui − sx

1 − sxui

∣∣∣∣ ⩽ 1 − ε < 1 for all i and all x = 0, 1, 2, . . ..

Here ε is some fixed positive real number.
Define the following transfer matrices acting on W ⊗ V :

T (u) =
∞∏

i=0
Lu,si

=
(

T−(x) 0
T+(x) 0

)
∈ End(W ⊗ V0 ⊗ V1 ⊗ · · · ),

T ∗(u) =
∞∏

i=0
L∗

u,si
=
(

T ∗
−(x) 0

T ∗
+(x) 0

)
∈ End(W ⊗ V0 ⊗ V1 ⊗ · · · ).

See Figure 3 for an illustration.

Remark 2.1. Since we require the convergence condition (3), it follows that operators
T+ and T ∗

+ have the vanishing property. Namely, any path that goes endlessly to the
right has weight equal to zero, so we can forbid such paths. This means that we do
not actually need to write 0 on the right boundary in Figure 3.

Algebraic Combinatorics, Vol. 6 #1 (2023) 40



Refined Littlewood identity for spin Hall–Littlewood functions

T+(u) = 1 0

wu,s0wu,s1
. . .

u
T ∗
+(u) = 1

w∗
u,s0

w∗
u,s1

. . .

0
u

T−(u) = 0 0

wu,s0wu,s1
. . .

u
T ∗
−(u) = 0

w∗
u,s0

w∗
u,s1

. . .

0
u

Figure 3. Graphical representation of T and T ∗ operators.

Let us introduce the R-matrix of the six vertex model:

Rz =


1 0 0 (1−t)z

1−z

0 1−tz
1−z 0 0

0 0 1−tz
1−z 0

1−t
1−z 0 0 t

 ∈ End(W ⊗ W ).

Graphically, we denote the action of this operator by cross vertices with the weights
given below:

j2

i2j1

i1

Rz(i1, j1; i2, j2) 1
(1−t)z
1−z

1−tz
1−z

1−tz
1−z

1−t
1−z t

Figure 4. Cross vertex weights Rz. Here we have i1, j1, i2, j2 ∈ {0, 1}.

Proposition 2.2 (Yang–Baxter equation). For i1, i2, j1, j2 ∈ {0, 1} and i3, j3 ∈ Z⩾0
we have ∑

k1,k2,k3

Ruv(i2, i1; k2, k1) w∗
v,s(i3, k1; k3, j1) wu,s(k3, k2; j3, j2)

=
∑

k′
1,k′

2,k′
3

w∗
v,s(k′

3, i1; j3, k′
1) wu,s(i3, i2; k′

3, k′
2) Ruv(k′

2, k′
1; j2, j1),

(4)

or, equivalently,
(5) R(12)

uv L∗(1)
v,s L(2)

u,s = L(1)
u,sL∗(2)

v,s R(12)
uv .

Proof. The proof is by direct computations, and we omit them. □

i2

i1

i3

j2

j1

j3

k3

k2

k1

=

i1

i2

i3

j1

j2

j3

k′
3

k′
2

k′
1

Figure 5. Graphical illustration of the Yang–Baxter equation (4).
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Remark 2.3. It is important that cross vertex weights in the Yang–Baxter equation
(4) do not depend on s. This observation allows us to iterate this interchange relation
horizontally and get an equation for T and T ∗ operators which is the same as (5) with
Lu,s and L∗

v,s replaced by T (u) and T ∗(v), respectively.

2.2. Spin Hall-Littlewood functions. Now we are able to give a definition of
the spin Hall–Littlewood rational functions in terms of our model. Namely, they are
given by the following formula:

Fλ(u1, . . . , uN ) = ⟨0| T+(u1) . . . T+(uN ) |λ⟩ .

In other words, we consider the weighted sum over all the up-right paths ensembles
in Z⩾0 × {1, . . . , N} with the following properties:

1. Each path comes from the left edge; the path entering in row i reaches the
top boundary at the corresponding coordinate λi.

2. No two paths can share the same horizontal line.
3. In the vertex (x, i) ∈ Z⩾0 × {1, . . . , N} we take the weight to be wui,sx

.
An example of such an ensemble is given in Figure 6.

0 1 2 3 4 5 6

u1

u2

u3

u4

Figure 6. An example of a path configuration contributing to the
partition function Fλ(u1, u2, u3, u4), where λ = (5, 2, 2, 0).

2.3. Refinement. One can define a generalization of this partition function by
adding an extra parameter α ∈ C. Namely, consider a vector space

V (α) = Span {|m0 + α⟩0 ⊗ |m1⟩1 ⊗ |m2⟩2 ⊗ · · · } , mi ∈ Z ∀ i ⩾ 1,

and the corresponding family of partition functions

F α
λ (u1, . . . , uN ) = ⟨0; α| T+(u1) . . . T+(uN ) |λ; α⟩ ,

where λ is a signature and

|λ; α⟩ = |m0(λ) + α⟩0 ⊗ |m1(λ)⟩1 ⊗ |m2(λ)⟩2 ⊗ · · · .

Note that formally we can no longer interpret the quantity m0 + α as the number
of particles on a vertical edge. However, m0 only appears in the weights as the power
for the parameter t, which allows us to deal with the states |λ; α⟩ in the same com-
binatorial way as with the states |λ⟩ but taking into account certain deformations in
zero column weights. Thus it makes sense to consider arbitrary m0, including negative
ones, which is important for the next section too.
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Let γ = tα. Since the only difference between F α
λ and Fλ comes from different zero

column weights, it is easy to express one partition function in terms of the other:

F α
λ (u1, . . . , uN ) = (γt; t)m0

(t, t)m0

N∏
j=1

1 − γs0uj

1 − s0uj

[
Fλ(u1, . . . , uN )

∣∣∣
s0 → γs0

]
,

Fλ(u1, . . . , uN ) = F 0
λ(u1, . . . , uN ).

(6)

3. Refined Littlewood identity. Proof.
In this section we prove the refined Littlewood identity (Theorem 1.1).

3.1. A property of the transfer matrices.

Lemma 3.1. Consider the following formal weighted sum of all states with even mul-
tiplicities:

|e; α⟩ =
∑

mi(λ)∈2Z⩾0
m0(λ)∈2Z

cλ(t; α) |λ; α⟩ ,

where the weights are given by

cλ(α, t) =
∞∏

i=1

mi(λ)/2∏
j=1

1 − s2
i t2j−2

1 − t2j
×



m0(λ)/2∏
j=1

1 − s2
0γt2j−2

1 − γt2j
, m0(λ) ⩾ 0,

−m0(λ)/2∏
j=1

1 − γt−2j+2

1 − s2
0γt−2j

, m0(λ) ⩽ 0.

Then the transfer matrices T± and T ∗
± have the following property:

(7) T+ |e; α⟩ = T ∗
+ |e; α⟩ , T− |e; α⟩ = T ∗

− |e; α⟩ .

Proof. Take any signature µ and the corresponding state
⟨µ; α| = ⟨m0(µ) + α|0 ⊗ ⟨m1(µ)|1 ⊗ ⟨m2(µ)|2 ⊗ · · ·

with m0(µ) ∈ Z and mi(µ) ∈ Z⩾0 for all i ⩾ 1. Note that there exists a unique
µ+ with even multiplicities such that ⟨µ; α| T+ |µ+; α⟩ ≠ 0 or ⟨µ; α| T− |µ+; α⟩ ≠ 0
(which of these is nonzero depends on the parity of the sum over all the multiplic-
ities). Also, denote by µ− the unique signature with even multiplicities such that
⟨µ; α| T ∗

+ |µ−; α⟩ ̸= 0 or ⟨µ; α| T ∗
− |µ−; α⟩ ̸= 0. For example, if µ = (6, 4, 4, 3, 2, 2, 0),

then µ+ = (6, 6, 4, 4, 2, 2, 0, 0) and µ− = (4, 4, 3, 3, 2, 2) (see Figure 7 for an illustra-
tion).

1

2

2

2

0

0 0

1 2

2

0

0

1

2

1

0

2

2

0

0 2

1 2

2

0

0

1

0

Figure 7. An illustration for the definition of µ+ and µ− when µ = (6, 4, 4, 3, 2, 2, 0).

So, we obtain
⟨µ; α| T± |e; α⟩ = cµ+ ⟨µ; α| T± |µ+; α⟩ , ⟨µ; α| T ∗

± |e; α⟩ = cµ− ⟨µ; α| T ∗
± |µ−; α⟩ .

It remains to check that
(8) cµ+ ⟨µ; α| T± |µ+; α⟩ = cµ− ⟨µ; α| T ∗

± |µ−; α⟩ .
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This equality can be seen from the special case of equation (2) and its analogue for the
zero column. Indeed, to get ⟨µ; α| T± |µ+; α⟩ with given ⟨µ; α| T ∗

± |µ−; α⟩ we need to do

m

m + 1

=
1−s2i t

m

1−tm+2

m + 1

m + 2

m

m + 1

=
1−s2i t

m

1−tm+2

m + 1

m

m+ α

m+ 1 + α

=
1−s20γtm
1−γtm+2

m+ 1 + α

m+ 2 + α

m+ α

m+ 1 + α

=
1−s20γtm
1−γtm+2

m+ 1 + α

m+ α

Figure 8. The correspondence between vertex weights on both sides
of (8).

the replacements as in Figure 8. These replacements produce some factor, meanwhile
the ratio cµ+/cµ− precisely compensates this factor. This concludes the proof. □

Graphically, our statement can be represented as in Figure 9.

|e;α〉

0
u

=

|e;α〉

0
u

Figure 9. Graphical representation of equation (7). Here we do not
need to specify the state on the left boundary.

3.2. Setting and transformation of the partition function. Consider the
following partition function which has an additional parameter α:

P(u1, . . . , u2n; t, α) =

u1

u2n

1

1

1

1

α

|e;α〉

0 0 0 0 0 0

0

0

0

0

Figure 10. The left-hand side of the Littlewood identity expressed
graphically as a partition function.

From the very definition we have
P(u1, . . . , u2n; t, α)

=
∑

λ:mi(λ)∈2Z⩾0

m0(λ)/2∏
j=1

1 − s2
0γt2j−2

1 − γt2j

∞∏
i=1

mi(λ)/2∏
j=1

1 − s2
i t2j−2

1 − t2j
F α

λ (u1, . . . , u2n).
(9)

Since we have up-right path ensembles and the left edge is occupied, it follows that
only states with non-negative m0 in |e; α⟩ contribute to our summation.
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P(u1, . . . , u2n; t, α) =

u1

u2n

1

1

1

1

α

|e;α〉

0 0 0 0 0 0

0

0

0

0

=

u1

u2n

1

1

1

1

α

|e;α〉

0 0 0 0 0 0

0

0

0

0

Figure 11. First step of the transformation of the partition function.

Let us apply Lemma 3.1 to the upper row. We get the first equality in Figure 11.
The second equality in Figure 11 holds due to the completely frozen cross part on the
right, which has weight 1.

Next, using the Yang–Baxter equation, one can move cross part of the partition
function to the left edge. Then we repeat this trick several times (see Figure 12 for
an illustration).

P =

u1

u2n

|e;α〉

1

1

1

1

α 0 0 0 0 0 0

0

0

0

0

=

1

1

1

1
u1

u2n

α

|e;α〉

0 0 0 0 0 0

0

0

0

0

Figure 12. Next steps of the transformation of the partition function.

After moving all the crosses to the left, the partition function factorizes, and the
blue frozen part on the right has weight 1, since it is devoid of paths. Thus, we obtain
the partition function as in Figure 13. The boundary vector |α−⟩ involved there can

P(u1, . . . , u2n; t, α) =

1

1

1

1
u1

u2n

α

|α−〉

0

0

0

0

Figure 13. Expression for the left-hand side of the Littlewood iden-
tity as a partition function of the inhomogeneous six vertex model
with weights Ruiuj and decorated boundary conditions.

be expressed explicitly as the following weighted sum:

|α−⟩ =
∞∑

k=0

k∏
j=1

1 − γt−2j+2

1 − s2
0γt−2j

|α − 2k⟩ .

Algebraic Combinatorics, Vol. 6 #1 (2023) 45



S. Gavrilova

3.3. Properties of the partition function.

Lemma 3.2. Let Z2n denote the partition function P(u1, . . . , u2n; t, α) as in Figure 13
multiplied by

∏
1⩽i<j⩽2n(1 − uiuj)

∏2n
i=1(1 − sui). Then Z2n possesses the following

properties:
1. Z2n is symmetric in {u1, . . . , u2n}.
2. Z2n is a polynomial in u2n of degree 2n − 1.
3. Setting u2n = u−1

2n−1, we have the recursion relation

Z2n|u2n=u−1
2n−1

= (1−t)(1−γs0u2n)(1−γs0u2n−1)
2n−2∏
j=1

(1−tuju2n)(1−tuju2n−1)Z2n−2.

4. Under the specialization u2j−1 = t, u2j = 1/t2 for 1 ⩽ j ⩽ n, we have

Z2n(t, 1/t2, . . . , t, 1/t2) = γn(t − 1)n2
t−2n(−(t − 1/t)2)n(n−1)/2(1 − s0t−2)n(1 − s0t)n.

5. For n = 1 we have
Z2(u1, u2) = (1 − t)(1 − γs0u1)(1 − γs0u2) + (1 − γ)(t − γs2

0)(1 − u1u2).

Proof. To prove that Z2n is symmetric, let us introduce the vertex weights as in
Figure 14. One can check that they satisfy the following Yang–Baxter equations and

j2

i2j1

i1

rz(i1, j1; i2, j2) 1
z(1−t)
1−tz

1−z
1−tz

t(1−z)
1−tz

1−t
1−tz 1

j2

i2j1

i1

r̄z(i1, j1; i2, j2) 1
z(1−t)
1−tz

1−z
1−tz

t(1−z)
1−tz

1−t
1−tz 1

Figure 14. The vertex weights rz and r̄z involved in the proof of
symmetry. Here i1, j1, i2, j2 ∈ {0, 1}.

the unitary relation:∑
k1,k2,k3

ru/v(i2, i1; k2, k1) Rvw(k1, k3; j1, i3) Ruw(k2, j3; j2, k3)

=
∑

k′
1,k′

2,k′
3

Rvw(i1, j3; k′
1, k′

3) Ruw(i2, k′
3; k′

2; i3)ru/v(k′
2, k′

1; j2, j1).
(10)

∑
k1,k2,k3

Ruw(i3, i2; k3, k2) Rvw(k3, i1; j3, k1)r̄v/u(k2, k1; j2, j1)

=
∑

k′
1,k′

2,k′
3

r̄v/u(i2, i1; k′
2, k′

1) Ruw(k′
3, k′

2; j3, j2) Rvw(i3, k′
1; k′

3, j1).
(11)

∑
k1,k2,k3

r̄v/u(i2, i1; k2, k1) w∗
v,s(i3, k1; k3, j1) w∗

u,s(k3, k2; j3, j2)

=
∑

k′
1,k′

2,k′
3

w∗
v,s(k′

3, i1; j3, k′
1) w∗

u,s(i3, i2; k′
3, k′

2) r̄v/u(k′
2, k′

1; j2, j1).
(12)
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(13) ∑
k1,k2,l1,l2

ru/v(i2, i1; k2, k1) Ruv(k1; k2, l1, l2) r̄v/u(l2; l1, j2, j1) = Ruv(i2, i1, j2, j1).

Graphically, these equations can be viewed as in Figures 15 - 18:

i2

i1
i3

j2

j1

j3

k3

k2

k1

=

i1

i2
i3

j1

j2
j3

k′
3

k′
2

k′
1

Figure 15. Graphical il-
lustration of equation
(10).

j2

j1

j3

i2

i1

i3

k3

k2

k1 =

j1

j2

j3

i1

i2

i3

k′
3

k′
2

k′
1

Figure 16. Graphical il-
lustration of equation
(11).

i2

i1

i3

j2

j1

j3

k3

k2

k1

=

i1

i2

i3

j1

j2

j3

k′
3

k′
2

k′
1

Figure 17. Graphical illustration of equation (12).

i2

i1

j1

j2

k1

k2 l1

l2

=

i1

i2 j1

j2

Figure 18. Graphical illustration of equation (13).

To see property 1, add to the partition function in Figure 13 a vertex of weight
rui+1/ui

on the left at the i-th position, and a vertex of weight r̄ui/ui+1 on the right
at the i-th position. On the one hand, these operations do not change the partition
function at all. On the other hand, we can apply Yang–Baxter equations several
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times and the unitary relation to get the partition function with variables ui and ui+1
swapped. This concludes the proof of Property 1.

For property 2 we may think of Z2n as the partition function for the model given
in Figure 13 but with the weights Ruivj replaced by (1 − uivj)Ruivj and the weights
w∗

uj
replaced by (1 − s0uj)w∗

uj
. This makes all the weights linear, in particular, it

allows to verify that u2n contributes to each part of the summation 2n − 1 times with
some coefficients (independent of u2n).

For property 3 let us notice that in this case (1−u2nu2n−1)Ru2nu2n−1(1, 1; 1, 1) = 0,
so we should avoid this weight at the beginning. The only remaining option is to choose
the weight (1 − u2nu2n−1)Ru2nu2n−1(1, 1; 0, 0) = 1 − t, which leads to factorization of
the partition function. After some computations we get the desired property.

To prove property 4, note that the chosen u1, . . . , u2n satisfy 1−tuiuj = 0 for all i, j
such that i + j is odd. So, for odd i + j we have Ruivj

(0, 1, 0, 1) = Ruivj
(1, 0, 1, 0) = 0

and Ruivj
(k1, k1, k2, k2) = (−1)k1+k2tk1 . This observation together with some simple

freezing/combinatorial arguments implies that there are 2n possible configurations
with non-zero weights. Moreover, they are uniquely determined by values on the
right edge of the six vertex model. One can compute explicitly the weight of each
configuration. For example, it can be done through the following recursion relation:

Z2n(t, 1/t2, . . . , t, 1/t2)
= (1 − t)(t2n−1(1 − s2

0γ/t)(1 − γ) + (−t)2n−1(1 − s0γ/t2)(1 − s0γt))

×
∏

i<2n−1
(1 − uiu2n)(1 − uiu2n−1)Z2n−2(t, 1/t2, . . . , t, 1/t2).

Here the first and the second summands correspond to the cases where we choose
Ru2nu1(1, 1, 1, 1) or Ru2nu1(1, 1, 0, 0) cross vertex weights, respectively. This recursion
immediately gives us the formula:

Z2n(t, 1/t2, . . . , t, 1/t2)

= γntn(n−2)(1 − s0t−2)n(1 − s0t)n
∏
i<j

(1 − uiuj)|(u1,...,u2n)=(t,1/t2,...,t,1/t2).

Finally, property 5 comes from direct computations. □

3.4. Explicit formula for the partition function.

Theorem 3.3. The partition function P(u1, . . . , u2n; t, α) can be expressed explicitly
as follows:

P(u1, . . . , u2n; t, α)

=
2n∏

j=1

1
1 − s0uj

∏
1⩽i<j⩽2n

(
1 − tuiuj

ui − uj

)
Pf

1⩽i<j⩽2n

[
Z2(ui, uj)(ui − uj)

(1 − uiuj)(1 − tuiuj)

]
.

(14)

Proof. First, one can deduce that the Pfaffian on the right-hand side of (14) multi-
plied by the product

∏2n
j=1(1−s0uj)

∏
1⩽i<j⩽2n(1−uiuj) satisfy all the properties 1-5

from Lemma 3.2. Namely, we have property 1 because both the Pfaffian and the Van-
dermonde

∏
1⩽i<j⩽2n(ui − uj) change the sign under swaps ui ↔ ui+1. Properties 2

and 5 are straightforward from the very definition of the Pfaffian. To get property 3,
one can multiply the last row and column by

∏
1⩽j<2n(1 − uju2n) and the second-to-

last row and column by (1 − u2n−1u2n)
∏

1⩽j<2n−1(1 − uju2n−1). Note that all the
elements in this matrix hook vanish except two with indices n − 1 and n. In turn,

Z2(u2n−1, u2n)
∣∣
u2n=u−1

2n−1
= (1 − t)(1 − γs0u2n)(1 − γs0u2n−1).
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Likewise, one can prove property 4, using the recurrence and the following:

Z2(t, 1/t2) = γ(1 − t)(1 − s0t−2)(1 − s0t).

So, it remains to show that these properties determine a function uniquely. For this
purpose one can use Lagrange interpolation as in [15] and [20, Appendix B].

Namely, we assume that two families of polynomials f2n(u1, . . . , u2n) and
g2n(u1, . . . , u2n) satisfy properties 1-5 and prove that f2n = g2n by induction
on n. The base case follows from Property 5. To prove the induction step, assume
that we proved this statement for n − 1. Then, let us fix 2n − 1 arbitrary non-zero
distinct points u1, . . . , u2n−1. Using the recurrence relation and symmetry, we obtain
that f2n and g2n treated as polynomials in u2n coincide in 2n − 1 distinct points
u−1

1 , . . . , u−1
2n−1. Since their degree is 2n−1, it follows that f2n−g2n = c·

∏
i<j(1−uiuj)

where c does not depend on u2n. However, because of symmetry it does not depend on
u1, . . . , u2n−1 either, which means it is an absolute constant. Finally, as can be seen
from property 4, f2n and g2n have the same value at a fixed point, hence f2n = g2n.

This concludes the proof of Theorem 3.3. □

Corollary 3.4. Under the specialization uj = t2n−j/(γs0), we have

Pf
1⩽i<j⩽2n

[
(tj − ti)(γ2s2

0(1 − t)(ti − t2n)(tj − t2n) + (1 − γ)(t − s2
0γ)(ti+jγ2s2

0 − t4n)
t2i+2j−2nγs0(γs0 − t4n/(γs0))(γs0 − t4n+1−i−j/(γs0))

]
=

2n−1∏
j=0

(1 − tjγ−1)
∏

0⩽i<j⩽2n−1

(
tj − ti

γs0 − ti+j+1/(γs0)

)
× P(t2n−1/(γs0), t2n−2/(γs0), . . . , 1/(γs0); t, α)

= (−1)nγntn2 ∏
0⩽i<j⩽2n−1

(
tj − ti

γs0 − ti+j+1/(γs0)

) n∏
j=1

(1 − s2
0γt−2j+1)(1 − γ−1t2j−2).

(15)

Proof. Consider the lattice interpretation of P(t2n−1/(γs0), . . . , 1/(γs0); t, α). Indeed,
under this specialization the right boundary is fixed, and therefore the whole config-
uration becomes frozen. It is not so easy to verify independently that the Pfaffian in
the left-hand side of (15) factorizes. □

Using (9) and (6), the left-hand side of the identity (14) can be rewritten as the
weighted sum of Fλ’s over all signatures λ with even multiplicities in the following
way:

∑
λ:mi(λ)∈2Z⩾0

1
(t; t)m0(λ)

m0(λ)/2∏
j=1

(1 − s2
0γt2j−2)(1 − γt2j−1)

2n∏
j=1

1 − γs0uj

1 − s0uj

×
∞∏

i=1

mi(λ)/2∏
j=1

1 − s2
i t2j−2

1 − t2j

[
Fλ(u1, . . . , u2n)

∣∣∣
s0 → γs0

]
.

After replacing γs0 by s0, we obtain the desired statement of Theorem 1.1.

4. Some specializations of the Littlewood identity
In this section we reduce our result to classical Hall–Littlewood polynomials and we
write a non-refined degeneration of our result.
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4.1. Reduction to the case of classical Hall–Littlewood polynomials.
As was shown in [15], spin Hall–Littlewood rational functions Fλ can be reduced to
classical Hall–Littlewood polynomials P HL

λ in the following way:

(16) Fλ(u1, . . . , uN )
∣∣∣
sx = 0

=
∏
r⩾0

(t; t)mr(λ) · P HL
λ (u1, . . . , uN ).

So, after setting sx = 0 in equation (1), we get

(17)
∑

λ:mi(λ)∈2Z⩾0

m0(λ)/2∏
j=1

(1 − γt2j−1)
∞∏

i=1

mi(λ)/2∏
j=1

(1 − t2j−1)P HL
λ (u1, . . . , u2n)

=
∏

1⩽i<j⩽2n

(
1 − tuiuj

ui − uj

)
Pf

1⩽i<j⩽2n

[
(ui − uj)((1 − γt + (γ − 1)tuiuj)

(1 − uiuj)(1 − tuiuj)

]
,

which coincides with the Littlewood identity proved in [20, Theorem 5].
Note that the classical (non-refined) Littlewood identity can be seen as a special

case of (17) at γ = 0, even though we exclude this point to write down our main and
most general Theorem 1.1. Indeed, under this specialization the Pfaffian on the right-
hand side is simplified to a product

∏
1⩽i<j⩽2n

ui−uj

1−uiuj
which gives us the following:

∑
λ:mi(λ)∈2Z⩾0

∞∏
i=1

mi(λ)/2∏
j=1

(1 − t2j−1)P HL
λ (u1, . . . , u2n) =

∏
1⩽i<j⩽2n

1 − tuiuj

1 − uiuj
.

4.2. Reduction to the unrefined case. To get unrefined identity, we set γ = 1
and obtain the following formula:

(18)
∑

λ:mi(λ)∈2Z⩾0

∞∏
i=0

mi(λ)/2∏
j=1

1 − s2
i t2j−2

1 − t2j
Fλ(u1, . . . , u2n)

=
∏

1⩽i<j⩽2n

(
1 − tuiuj

ui − uj

)
Pf

1⩽i<j⩽2n

[
(ui − uj)(1 − t)

(1 − uiuj)(1 − tuiuj)

]
.

The right-hand side of (18) coincides with the right-hand side of (17) at γ = 1,
but the expansions are different.
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