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Irreducibility of the Tutte polynomial of an
embedded graph

Joanna A. Ellis-Monaghan, Andrew J. Goodall, Ilain Moffatt,
Steven D. Noble & Lluis Vena

ABSTRACT We prove that the ribbon graph polynomial of a graph embedded in an orientable
surface is irreducible if and only if the embedded graph is neither the disjoint union nor the
join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a
graph is irreducible if and only if the graph is connected and non-separable.

1. INTRODUCTION
The Tutte polynomial of a graph G = (V, E) can be defined by

(1) T(Giayy) = Y (@ — 1) E A (y - 1)l
ACE

where r(A) is the rank of the subgraph (V, A) of G. It satisfies a universality property,
which roughly means that it contains all graph parameters that satisfy a linear relation
among G, G\e and G/e (see e.g. [20, Sec. 2.4] for details). Because of this, the Tutte
polynomial captures a surprisingly diverse range of graph parameters and appears in
a variety of areas, such as statistical physics, knot theory, and coding theory. (See,
for example, [1, 9, 18, 20, 36] for further background.)

A standard property of the Tutte polynomial is that when a graph G is the
disjoint union or the one-point join of graphs G; and Gy we have T(G;z,y) =
T(Gy;2,y) T(Go;x,y). Thus if T(G;z,y) is irreducible over Z[z,y], then G must be
connected and non-separable. In the 1970’s Brylawski [8] conjectured that the con-
verse also holds. This conjecture was verified in 2001 by Merino, de Mier and Noy [29].
Thus T'(G;x,y) is irreducible over Z[z,y] (or C[z,y]) if and only if G is a connected
and non-separable graph.
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An embedded graph (or equivalently a combinatorial map, ribbon graph, etc.) can
be thought of as a graph drawn on a closed surface in such a way that its edges do
not intersect (except at any common vertices), and such that its faces are homeomor-
phic to discs. Our aim is to extend the above irreducibility result to the setting of
embedded graphs.

The analogue of the Tutte polynomial for an embedded graph G is the ribbon
graph polynomial, R(G;x,y), which is a universal deletion-contraction invariant for
embedded graphs. Its definition differs from (1) by modifying the rank function so
that it records some topological information about the embedding. For an embedded
graph G = (V| E) and subset A of E, we define y(A) to be the Euler genus of the
embedded subgraph (V, A), which coincides with the genus of a neighbourhood of
(V,A) in the surface, in the case that the surface is non-orientable, and twice its
genus in the orientable case. Now let o(A) := r(A) + $7(A), and then let

(2) R(G;z,y) = Z (r — 1)0(E)—0(A) (y — 1)‘A|—O'(A).
ACE

Although the ribbon graph and Tutte polynomials coincide for graphs embedded in
the sphere, they do not agree in general. We note that the polynomial R(G;z,y)
is, up to a prefactor, a two-variable specialisation of the well known four-variable
Bollobds—Riordan polynomial of [3]. However, as discussed in Remark 1.3, there are
good reasons to work with R(G;z,y) rather than Bollobds—Riordan polynomial or
any of the more general topological Tutte polynomials in the literature.

We say an embedded graph is a join if it can be obtained from two embedded
graphs via a connected summing operation that acts as follows. Choose a disc in each
surface whose boundary intersects the graph in that surface at exactly a single non-
isolated vertex. Then identify the two discs so that the vertices on their boundaries
are also identified, and then delete the interior of the identified discs.

A standard property (see [3]) of the ribbon graph polynomial is that if G is either
the disjoint union or join of G; and Gg, then R(G;x,y) = R(Gy;z,y) R(G1;z,y). We
prove here that the converse holds in the orientable case.

THEOREM 1.1. Let G be a graph embedded in an orientable surface. Then R(G;x,y)
is irreducible over Z[z,y] (or Clx,y]) if and only if G is connected and not a join of
two smaller embedded graphs.

Theorem 1.1 is an analogue of Merino, de Mier and Noy’s result referred to above
that T(G;x,y) is irreducible if and only if G is connected and non-separable. As with
many results for the classical Tutte polynomial, this irreducibility property is properly
understood in terms of matroids, and was shown in this more general setting. Merino
et al. proved that for a matroid M the polynomial T'(M;x,y) is irreducible if and
only if M is connected. (The Tutte polynomial is extended to a matroid by taking
r in Equation (1) to be the rank function of the matroid.) The graph result follows
from the matroid one by considering cycle matroids of graphs.

The situation for the ribbon graph polynomial is similar: many properties of the
ribbon graph polynomial are properly understood in terms of delta-matroids. Delta-
matroids generalise matroids, in essence, by relaxing the requirement that bases all
have the same size, the analogue of bases being called feasible sets. It is well known
that many properties of graphs are actually properties of matroids. Similarly, many
properties of embedded graphs are in fact properties of delta-matroids. In particular,
the ribbon graph polynomial, connectivity and joins can be understood in terms of
delta-matroids (details are provided below), and Theorem 1.1 is properly a result
about delta-matroids:
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THEOREM 1.2. Let D be an even delta-matroid. Then T(D;x,y) is irreducible over
Zlz,y] (or Clx,y]) if and only if D is connected.

The orientably embedded graph of Theorem 1.1 is replaced in Theorem 1.2 by
an even delta-matroid, defined as one whose feasible sets all have size of the same
parity; and the ribbon graph polynomial R(G;x,y) is replaced by T(D;x,y), the
Tutte polynomial of the delta-matroid D. The latter is a universal deletion-contraction
invariant for delta-matroids (just as the classical Tutte polynomial is for matroids)
and can be defined using a sum similar to that in Equation (1), replacing the rank
function r with the average of the rank functions of ‘minimum and maximum matroids’
that arise from a delta-matroid. See Section 3 for details. Similarly to the graphs and
matroids case, Theorem 1.1 follows from Theorem 1.2 by considering the delta-matroid
of an embedded graph.

Here we are considering an analogue of the Tutte polynomial for embedded graphs.
There are many extensions of the Tutte polynomial from graphs to other types of com-
binatorial objects. Our main motivation in undertaking this work lies in uncovering
what properties are innate to graphs or matroids, and what properties extend or
should extend to a wider class of objects. The significance of embedded graphs and
delta-matroids in this context is that they provide an effective step in moving away
from the classical setting of graphs and matroids — they are different but not too dif-
ferent. What is especially interesting about Theorem 1.1 and 1.2 is that very little of
the argument depends upon the specific class of objects (graphs, matroids, embedded
graphs, or delta-matroids) that we are working with. This hints at a larger, yet to be
understood structure that would help explain the irreducibility of graph polynomials
such as the Tutte polynomial.

REMARK 1.3. Our interest here is in extensions of the Tutte polynomial to graphs
that are cellularly embedded in surfaces (the cellular condition means that the faces
are homeomorphic to discs). It is not obvious how the Tutte polynomial should be
extended from graphs to embedded graphs, and many candidates have been pro-
posed [2, 3, 21, 22, 25, 26, 27, 28, 32, 33, 34]. It is natural to ask why we chose the
ribbon graph polynomial R(G;x,y) as the analogue of the Tutte polynomial, rather
than any of these other graph polynomials.

The Tutte polynomial of a graph satisfies a deletion-contraction recurrence that
allows its expression in terms of its evaluations on trivial graphs. While all of the poly-
nomials mentioned above have deletion-contraction relations that apply to particular
types of edges of a cellularly embedded graph, only the ribbon graph polynomial has
a “full” deletion-contraction definition that applies to all edge-types.

In more detail, there is a way to associate a “canonical Tutte polynomial” with
a class of combinatorial objects [17, 26]. The resulting polynomials are universal
deletion-contraction invariants for that class, just as the classical Tutte polynomial
is for the class of graphs. In this framework, the ribbon graph polynomial R(G;zx,y)
arises as the polynomial associated with graphs that are cellularly embedded in sur-
faces, and hence is the universal deletion-contraction invariant for this class. (A similar
comment holds for the delta-matroid version of the ribbon graph polynomial.) All of
the other topological graph polynomials mentioned above arise in this framework as
deletion-contraction invariants associated with other types of embedded graphs (for
example, the Bollobas—Riordan polynomial arises as the universal deletion-contraction
invariant for graphs that are non-cellularly embedded in surfaces). See [25, 26, 32, 33]
for details.
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2. BACKGROUND AND NOTATION

2.1. RIBBON GRAPHS. It is convenient to realise embedded graphs as ribbon graphs.
We give a brief overview of ribbon graphs, referring the reader to [19] or [24] (where
they are called reduced band decompositions) for additional details, including their
equivalence with (cellularly) embedded graphs. A ribbon graph is a structure that
arises by taking a regular neighbourhood of a graph embedded in a surface while
keeping the vertex—edge structure of the graph. Informally it can be thought of as “a
graph with vertices as discs and edges as ribbons”. Formally, a ribbon graph G = (V, E)
is a surface with boundary represented as the union of two sets of discs, a set V' of
vertices, and a set E of edges such that: (1) the vertices and edges intersect in disjoint
line segments; (2) each such line segment lies on the boundary of precisely one vertex
and precisely one edge; (3) every edge contains exactly two such line segments.

Graph-theoretic terminology naturally extends to ribbon graphs. A ribbon subgraph
H of G is a ribbon graph obtained from G by removing some of its vertices and edges.
It is spanning if it has the same vertices as G. The rank r(G) of a ribbon graph
G = (V, E) is its number of vertices minus its number of connected components, that
is, it is the rank of its underlying graph. For A C E, r(A) is the rank of the ribbon
subgraph (V, A) of G.

Topologically, a ribbon graph is a surface with boundary. A quasi-tree is a ribbon
graph that has exactly one boundary component. A ribbon subgraph H is a spanning
quasi-tree of a connected ribbon graph G if it is a quasi-tree that contains all the
vertices of G. If G is not connected, then we say H is a spanning quasi-tree if for each
connected component of G the ribbon subgraph of H obtained by removing vertices
and edges not in this component is a spanning quasi-tree.

A ribbon graph is orientable if it is orientable when considered as a surface with
boundary. The genus of a ribbon graph is its genus as a surface with boundary. The
Euler genus ~v(G) of a ribbon graph G = (V, E) is its genus if it is non-orientable,
and twice its genus if it is orientable. For A C E, v(A) is the Euler genus of the
ribbon subgraph (V, A) of G. A ribbon graph is plane if it has Euler genus zero (note
that we allow plane ribbon graphs to be disconnected). The ribbon graph polynomial
R(G;z,y) of G is defined as in Equation (2), where again o(A) := r(A4) + 2v(A).

2.2. DELTA-MATROIDS. We shall work in the setting of delta-matroids and from this
recover our results for embedded graphs. We assume familiarity with the basic defi-
nitions of matroid theory [35], and give an overview of the delta-matroid theory we
use here. We refer the reader to [12, 31] for additional background on delta-matroids,
which were introduced by Bouchet in [4]. Equivalent concepts albeit using different
terminology were also introduced at around the same time in [10] and [15].

A delta-matroid D comprises a pair (E,F) where F is a finite set and F is a
non-empty collection of subsets of E with the property that for all triples (Fy, Fs,e)
comprising members F and F5 of F and an element e of Fy A Fy, there is an element
f of Fi A Fy (which may be equal to e) such that F; A {e, f} € F. This property is
known as the symmetric exchange axiom. The members of F are called feasible sets,
and FE is called its ground set. It is not difficult to see that matroids are precisely
delta-matroids in which the feasible sets are equicardinal.

Given a delta-matroid D, let F(D) denote its collection of feasible sets, and let
Finax and Fpin denote the subsets of F(D) comprising the feasible sets with maximum
and minimum size respectively. It is straightforward to show that both (E, Frax) and
(E, Fmin) are matroids, known as the mazimum and minimum matroids and denoted
by Dmax and Dy, respectively.
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For a matroid M, let (M) denote its rank and let 73, (A) denote the rank of the set
A of elements of M. For a delta-matroid D with element set E and set F of feasible
sets, the delta-matroid rank function, pp, introduced by Bouchet in [5] is given by

pp(A) = |E| —min{|AAF|: F € F}.

Note that if a delta-matroid D is also a matroid, then pp and rp do not generally
coincide. This explains why we do not define the Tutte polynomial of a delta-matroid
by merely replacing r by p in Equation (1).

A coloop of D is an element of D belonging to every feasible set. A loop of D is an
element of D belonging to no feasible set.

Let D be a delta-matroid and e an element of D. Suppose first that e is not a
coloop of D. Then we define D\e, the deletion of e, to be the pair

(E—e,{FeF|eg¢F}).

Now suppose that e is not a loop of D. Then we define D/e, the contraction of e, to
be the pair
(E—e{F—e|FeFandee€F}).

If e is either a coloop or a loop of D, then one of D\e and D/e is defined. In this
case, we define whichever of D\e and D/e is so far undefined by setting D\e = D/e.
It is easy to check that both D\e and D/e are delta-matroids. Moreover it is also
easy to check that if we perform a sequence of deletions and contractions then the
resulting delta-matroid does not depend on the order in which these operations are
carried out. Thus we may delete and contract sets of elements without ambiguity. Any
delta-matroid obtained from D by deleting and contracting possibly empty subsets of
the elements of D is said to be a minor of D.

For a subset A of the element set of D, let D|A = D\ A€ denote the delta-matroid
formed by deleting the elements of A¢ := E \ A and let 6(A) = (r((D|A)max) +
7((D|A)min))/2. The width w(D) of D is r(Dmax) — 7(Dmin). Note that o(A) =
r((D]A)min) + w(D]A) /2.

Just as the spanning trees in a graph give rise to its cycle matroid, the spanning
quasi-trees in a ribbon graph give rise to its delta-matroid. For a ribbon graph G =
(V,E), the pair D(G) := (E,F), where

F ={F C E: F is the edge set of a spanning quasi-tree of G},

is the delta-matroid of G. These delta-matroids can be regarded as the topological
analogues of the cycle matroids of graphs. A delta-matroid arising from a ribbon graph
in this way is said to be ribbon-graphic. The class of ribbon-graphic delta-matroids
was first considered by Bouchet in [6], albeit using very different language. In [12,
Proposition 5.3], it is shown that w(D(G)) = +(G), and consequently o(D(G)) =
a(G).

3. THE TUTTE POLYNOMIAL OF A DELTA-MATROID

We begin by extending the definition of the Tutte polynomial of a matroid to delta-
matroids. For a delta-matroid D with element set E, define its Tutte polynomial
T(D;=,y) by
3) T(Diz,y) = 3 (o = 7oAy — 1A=,

ACE
Note that if D is a matroid, then for every subset A of its elements, 7((D|A)min) =
7((D|A)max), 80 0(A) = r(A). Therefore our definition of the Tutte polynomial of a

delta-matroid is consistent with the existing definition of the Tutte polynomial of a
matroid and retains several key properties.
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Following [12], the Bollobds—Riordan polynomial of a delta-matroid D is given by

BR(D;x,y,z) = Z (2 — 1)"Pmin (B) =T Diyin (A) g lAI=7 Dy (A) w0 (DIA)
ACE

Since o(D(G)) = o(G) for any ribbon graph G, the ribbon graph polynomial of
G agrees with the Tutte polynomial of its delta-matroid: R(G;x,y) = T(D(G); z,y).
Similarly, the Bollobds—Riordan polynomial of a ribbon graph, introduced in [3], agrees
with the Bollobas—Riordan polynomial of its delta-matroid (see [12, Theorem 6.4]).

The next two results are from [12]. The first is stated on page 52 and the second
is Theorem 6.6(1).

LEMMA 3.1. For every delta-matroid D,

T(D;z,y) = (z — 1)*P/2BR(D;z,y — 1,1/ (@ = Dy - 1)).
PROPOSITION 3.2. For every delta-matroid D with element set E,

vU(D)u*“’(D)/?T(D; u/v+lLuv+1) = Z vl AlylBl=pp(4)
ACE

Recall that a delta-matroid is even if and only if the cardinalities of its feasible
sets all have the same parity. The property of being even is preserved under deletion
and contraction.

COROLLARY 3.3. For every delta-matroid D, the polynomial T'(D;z,y) determines
the following:

(1) the number of elements of D;

2) the number of feasible sets in D of given size;

3) the ranks of the minimum and mazimum matroids of D;

4) the width of D;

5) whether or not D is even;

6) whether or not D is a matroid; and

7) in the case where D is the delta-matroid of a ribbon graph G, whether or not
G is plane.

Proof. Tt follows from Proposition 3.2 that the minimum degree of v in T(D;u/v +
1,uv+1)is —o(D) and the maximum degree of v in T'(D;u/v+1,uv+1) is |E(D)| —
o(D). Thus both |E(D)| and (D) are determined by T'(D).

As A is feasible in D if and only if pp(A4) = |E|, the terms of T'(D;u/v+1,uv+1)
with minimum degree in u correspond to the feasible sets of D. Such a set F yields
a term u®(P)/2ylF1=9(D) 56 one may deduce the number of feasible sets of D of any
given size. In particular, T'(D) determines the ranks of the minimum and maximum
matroids of the delta-matroid D and consequently w(D), and whether or not D is
even. As T(D) determines the width of D, it also determines whether or not D is a
matroid. If D is the ribbon-graphic delta-matroid of a ribbon graph G, then, since
w(D(G)) = v(G), D is a matroid if and only if G is plane. O

Given delta-matroids Dy = (E1, F1) and Do = (Esy, F2) with disjoint element sets,
let Dy ® Dy denote the delta-matroid with element set F; U Eo and set of feasible
sets {F1 U Fy : F} € Fy and Fy € Fa}. We say that a delta-matroid D is connected if
there do not exist delta-matroids D; and Dy with non-empty element sets satisfying
D =D, ® Ds.

PROPOSITION 3.4. Let D be a delta-matroid D such that D = Di @ Dy. Then
T(D;z,y) = T(D1;z,y) T(Da2; 2, y).
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Proof. Let A; and A be subsets of the element sets of Dy and D5, and let A =
A1 U Ay, Then D|A = (D;]A1) @ (D2|Az). Moreover for any delta-matroids D} and
D), on disjoint element sets (D} & D5)min = (D})min © (D4)min and (D] & D5)max =
(D} max @ (D)) max, so all the relevant parameters are additive over the components
Dy and Dy of D. Hence the result follows. O

Following Bouchet [4], for a delta-matroid D and subset A of its elements, let
D % A denote the twist of D with respect to A, that is, the delta-matroid with the
same element set as D such that F' is feasible in D« A if and only if FFA A is feasible in
D. The dual D* of D = (E, F) is D« E. Observe that w(D) = w(D*), D*/e = (D\e)*,
and D*\e = (D/e)*. Recall that a loop of D is an element that appears in no feasible
set of D. An element e of a delta-matroid D is:

(1) ordinary if e is not a loop in Dyyin;
(2) a non-orientable ribbon loop if e is a loop in both Dy, and (D * €)min;
(3) an orientable ribbon loop if e is a loop in Dyyi, but not in (D * €)min.

Clearly, every element of D is of exactly one of these three types. Moreover, it is not
difficult to see that in an even delta-matroid every element is either ordinary or an
orientable ribbon loop. Note that every loop is an orientable ribbon loop, but the
converse does not generally hold.

The next result follows from Lemma 3.1 and the deletion-contraction recurrences
for BR(D) ([13, Corollary 5.10]). It is possible to add extra cases corresponding to
non-orientable ribbon loops of D or D*, but we omit these as we will not require
them.

PROPOSITION 3.5. For every delta-matroid D, the following hold.

(1) If the ground set of D is empty, then T(D;x,y) = 1.
(2) If element e is ordinary in both D and D*, then

T(D;x,y) =T(D\e;z,y) + T(D/e; ,y).
(3) If element e is ordinary in D and an orientable ribbon loop in D*, then
T(D;x,y) = (x = 1)T(D\e;x,y) + T(D/e; 2, y).
(4) If element e is an orientable ribbon loop in D and ordinary in D*, then
T(D;x,y) = T(D\e;x,y) + (y — 1)T(D/e; 2, y).
(5) If element e is an orientable ribbon loop in both D and D*, then
T(D;z,y) = (= )T(D\e;x,y) + (y — )T(D/e; 2, y).

It is well known that the Tutte polynomials of a matroid M and its dual sat-
isfy T(M;x,y) = T(M*;y,x). This relation extends to delta-matroids, as shown in
Theorem 6.6 of [12].

PROPOSITION 3.6. For every delta-matroid D, T(D;x,y) = T(D*;y, x).

When D is even, this can be proved using Proposition 3.5 and induction.

Let D be a delta-matroid. Recall that a coloop of D is an element appearing in
every feasible set of D. Clearly an element e of D is a loop if and only if it is a coloop
of D*.

COROLLARY 3.7. For every delta-matroid D, the following hold.

(1) If elemente is a coloop of D, then T(D;x,y) = 2T (D/e;x,y) = 2T (D\e;z,y).
(2) If element e is a loop of D, then T(D;x,y) = yT(D/e;x,y) = yT(D\e; x,y).
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One of the many well known evaluations of the Tutte polynomial of a matroid M is
that T'(M;1,1) is equal to the number of bases of M. As shown in [12], this evaluation
only extends to T'(D) when D is a matroid.

PROPOSITION 3.8. For every delta-matroid D,

the number of bases of D if D is a matroid,

0 otherwise.

T(D;1,1) = {

We easily obtain the following corollaries.

COROLLARY 3.9. Let D be a delta-matroid that is not a matroid, and let M be a
matroid. Then T(D;z,y) # T(M;z,y).

COROLLARY 3.10. Let G be a non-plane ribbon graph, and let H be a graph. Then
R(G;z,y) # T(H;z,y).

COROLLARY 3.11. Let G be a ribbon graph and H a graph such that R(G;z,y) =
T(H;z,y). Then G is plane.

4. THE BETA INVARIANT

The beta invariant of a matroid was introduced by Crapo in [14] and encapsulates
a surprisingly large amount of information. It was first extended to delta-matroids
in [30], where the focus was on the transition polynomial rather than the Tutte poly-
nomial. Here we define the beta invariant of a delta-matroid as follows.

DEFINITION 4.1. The beta invariant, 3(D), of a delta-matroid D is the coefficient of
z in T(D;z,y).

For the special case of matroids, this coincides with Crapo’s definition from [14].
This is not the case for the invariant introduced in [30] and defined in terms of the
transition polynomial, but the invariant described here is easily computed from the
one introduced in [30] and vice versa. Versions of Theorems 4.7 and 4.9 below appear
in [30], phrased in terms of the transition polynomial. For completeness, we include
proofs which do not depend on any results from [30].

To deduce properties of B(D), we need the following results. The first follows
immediately from the definition of the Tutte polynomial given in Equation (3).

LEMMA 4.2. For every delta-matroid D with element set F,

T(D;0,0) = Z (—1)7E)-14] = {0 if E# @,

= 1 ifE=go.

PROPOSITION 4.3. Let D be an even delta-matroid with at least two elements. Then
the coefficients of x and of y in T(D;x,y) are equal.

Proof. We proceed by induction on the number of elements of D. We begin by consid-
ering all the possibilities for D when it has two elements. If D has two elements and
is disconnected, then each element is either a loop or a coloop, so by Corollary 3.7
both the coefficients of = and y are zero. If D has two elements and is connected,
then it is equal to D(G) where G is either the plane cycle with two edges or the
genus one orientable ribbon graph with one vertex and two edges. In the former case
T(D;x,y) = x+y and in the latter case T(D;x,y) = 2zy — x —y. So the result holds
when D has two elements.

The inductive step follows by combining Proposition 3.5 with Lemma 4.2. 0
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The following technical lemma is needed in most of the results of this section. An
orientable ribbon loop that is not a loop is said to be a non-trivial orientable ribbon
loop.

LEMMA 4.4. For an even delta-matroid D and element e of D, the following hold.

(1) If e is a loop or coloop of D, then w(D\e) = w(D/e) = w(D).

(2) If e is ordinary in both D and D*, then w(D\e) = w(D/e) = w(D).

(3) If e is a non-trivial orientable ribbon loop in D and ordinary in D*, then
w(D\e) = w(D) and w(D/e) = w(D) — 2.

(4) If e is ordinary in D and a non-trivial orientable ribbon loop in D*, then
w(D\e) = w(D) — 2 and w(D/e) = w(D).

(5) If e is an orientable ribbon loop in both D and D*, then w(D\e) = w(D/e) =
w(D) — 2.

Proof. If e is a loop of D, then F(D) = F(D\e) = F(D/e). Therefore w(D\e) =
w(D/e) = w(D). By duality, the same conclusion holds if e is a coloop of D. This
proves (1).

From now on we assume that e is neither a loop nor a coloop of D. It follows
from the symmetric exchange axiom that a coloop of Dy, is a coloop of D. Thus e
is not a coloop of Dyi,. Hence r((D\e)min) = 7(Dmin)- If € is ordinary in D, then
r((D/€)min) = 7(Dmin) — 1. Now suppose that e is a non-trivial orientable ribbon
loop in D. Then as e is not a loop, there is a feasible set containing e. Let Fy be
such a feasible set of minimum possible size. Let F; be a basis of Dy,i,. Applying the
symmetric exchange axiom to Fy, Fy and e, we deduce that there is a feasible set of D
containing e and having size at most r(Dmpin) +2. As D is even and e is an orientable
ribbon loop, such a set must have size r(Duin) + 2. Thus 7((D/€)min) = 7(Dmin) + 1.
Using duality, we see that r((D/€)max) = 7(Dmax) — 1; if e is ordinary in D* then
7(D\€)max = T(Dmax), and if e is a non-trivial orientable ribbon loop in D* then
r((D\e)max) = 7(Dmax) — 2.

Each of the remaining parts of the result now follows by applying the definition of
width. O

PROPOSITION 4.5. Let D be an even delta-matroid with at least two elements. Then
B(D) is either zero or has the same sign as (—1)“(P)/2. Moreover, if D has at least
three elements and e is an element of D that is neither a loop nor a coloop, then the
coefficient of x in both terms appearing on the right side of the equation in each of
parts (2)—(5) of Proposition 3.5 is either zero or has the same sign as (—1)(P)/2,

Proof. We proceed by induction on the number of elements of D. In the proof of
Proposition 4.3, we showed that if D has two elements then either 5(D) = 0, D has
width zero and §(D) = 1, or D has width two and S(D) = —1. So the result holds in
this case.

Now suppose that D has at least three elements and e is an element of D. If e is
either a loop or a coloop, then by Corollary 3.7 and Lemma 4.2, 5(D) = 0. From now
on, we assume that e is neither a loop nor a coloop. We first prove the assertion about
the coefficient of x in any term appearing on the right side of the equation in a part
of Proposition 3.5.

If e is ordinary in both D and D*, then by Lemma 4.4, w(D) = w(D\e) = w(D/e),
so the result follows from the inductive hypothesis.

If e is an orientable ribbon loop in D and ordinary in D*, then

T(D;x,y) = T(D\e;2,y) + (y — )T(D/e; 2, y).

By Lemma 4.4, w(D\e) = w(D) and w(D/e) = w(D) — 2. As D\e and D/e have at
least two elements, Lemma 4.2 and the inductive hypothesis imply that the coefficient
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of z in T(D\e; z,y) is either zero or has the same sign as (—1)*(P\e)/2 = (—1)w(D)/2
and the coefficient of z in (y — 1)T(D/e;x,y) is either zero or has the same sign as
—(—1)wP/e)/2 = (_1)w(P)/2 50 the result follows from the inductive hypothesis.
The case where e is ordinary in D and an orientable ribbon loop in D* follows
either by a very similar argument to the previous case or by applying the previous
case to D* and using Propositions 4.3 and 3.6.
Finally, if e is an orientable ribbon loop in both D and D*, then

T(D;x,y) = (x — 1)T(D\e; z,y) + (y — )T (D/e; z,y).

By Lemma 4.4, w(D\e) = w(D/e) = w(D) — 2. As both D\e and D/e have at least
two elements, Lemma 4.2 and the inductive hypothesis imply that the coefficient of
z in each of (z — 1)T(D\e;z,y) and (y — 1)T(D/e;x,y) is either zero or has the
same sign as —(—1)(P/€)/2 = (_1)w(P)/2 5o the result follows from the inductive
hypothesis.

By using Proposition 3.5, it follows immediately that B(D) is either zero or has
the same sign as (—1)“(P)/2, Hence the result follows by induction. O

Bouchet proved the following theorem in the more general context of tight multi-
matroids. In a sense that is made precise in [7], even delta-matroids are equivalent to
a subclass of tight multimatroids.

THEOREM 4.6. Let D be a connected even delta-matroid with element e. Then at least
one of D\e and D/e is connected.

We now obtain the following property of 8 generalizing a result of Crapo [14] for
matroids.

THEOREM 4.7. Let D be an even delta-matroid with at least two elements. Then
B(D) # 0 if and only if D is connected. Moreover if D is connected, then the sign of
B(D) is the same as that of (—1)(P)/2,

Proof. If D = Dy ® D5 then T(D;x,y) = T(D1;x,y) T(D2;x,y), so by Lemma 4.2 if
D is disconnected then (D) = 0.

To prove the converse, we proceed by induction on the number of elements of D.
If D has two elements and is connected, then from the proof of Proposition 4.3 we
see that T(D;x,y) = +y or T(D;z,y) = 2xy — x — y, so the result holds when D
has two elements.

Now suppose that the result holds for all even delta-matroids with fewer than n
elements. Let D be a connected, even delta-matroid having n > 2 elements.

As D is connected, it has no loop or coloop. Let e be an element of D. By The-
orem 4.6 at least one of D\e and D/e is connected. Then the induction hypothesis
implies that at least one of S(D\e) and (D/e) is non-zero. Combining this observa-
tion with Propositions 3.5 and 4.5, we deduce that 5(D) # 0. Applying Proposition 4.5
again, we see that the sign of 3(D) is the same as that of (—1)“(”)/2, Hence the result
follows by induction. O

COROLLARY 4.8. For an even delta-matroid D, the following hold.
(1) T(D;z,y) is divisible by x* if and only if D has at least i coloops.
(2) T(D;z,y) is divisible by y’ if and only if D has at least j loops.
Proof. Tf D has at least i coloops, then Corollary 3.7 implies that T'(D; z, y) is divisible
by z*. Similarly if D has at least j loops, then T'(D;x,y) is divisible by 7.
Now suppose that D has i loops, j coloops and k components D1, ..., Dy that are
neither loops nor coloops. Then

T(D;z,y) = 'y’ T(Dy;2,y) - T(Dy; 2, y).
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For each [, D; has at least two elements, so Proposition 4.3 and Theorem 4.7 imply that
T(Dy;x,y) = ai(z+y)+pi(x, y), where q; is a non-zero constant and p; is a polynomial
in which every monomial has degree at least two. Thus none of T'(D;),...,T(Dy) is
divisible by either = or y. Hence the result follows. O

We say that a delta-matroid is series-parallel if there is a plane 2-connected series-
parallel network G such that D is a twist of D(G). Series-parallel delta-matroids were
introduced in [30], where twisted duals of D(G) were also considered.

The next result is a reformulation of a result from [30]. We include a proof for
completeness. We recall that Us 4 and M (K,) denote, respectively, the matroid with
four elements in which a set is independent if and only if it has size at most two and
the cycle matroid of the complete graph with four vertices. We use NP3 to denote
the delta-matroid on three elements in which a set is feasible if and only if it has
even size.

THEOREM 4.9. Let D be an even delta-matroid with at least two elements. Then the
following are equivalent.

(1) D is series-parallel.
(2) B(D) = (=)=,

Proof. Suppose the first condition holds. Then there is a plane 2-connected series-
parallel network G such that D is a twist of D(G). We proceed by induction on the
number of edges in G. If G has only two edges, then G is a cycle with two edges
and the result is easy to check. Otherwise G has an edge e such that one of G\e
and G/e contains a coloop or a loop, and the other is a plane 2-connected series-
parallel network with at least two edges. Thus one of D\e or D/e contains a loop or
a coloop, and the other is series-parallel. So one of 3(D\e) and 5(D/e) is zero, and
the inductive hypothesis together with Proposition 3.5 and Lemma 4.2 imply that the
other is £1. Hence 5(D) = %1, and Theorem 4.7 determines the sign to be as stated
in the second condition.

Now suppose that 3(D) = (—1)*(P)/2. Suppose for a contradiction that D is not
series-parallel. Then either D is not the twist of a matroid or it is the twist of a matroid
M that is not series-parallel. In the former case, by [16, Proposition 1.5], D contains a
twist of NP3 as a minor. In the latter case, by, for example, [35, Corollary 12.2.14], M
contains Us 4 or M (K4) as a minor, so D contains a twist of either Us 4 or M(K4) as a
minor. Thus we see that D contains a twist of either NP3, U 4 or M (K4) as a minor.
Let H denote such a minor. As D is connected (by Theorem 4.7), we may apply [11,
Corollary 3.3] to find a sequence D = Dq, D1, ..., Dy_1, D) = H of connected minors
of D such that for each i, D; is obtained from D;_; by deleting or contracting a single
element e;. We calculate T'(D) by deleting or contracting each element e; in increasing
order of ¢ and using Theorem 3.5. As each of Dy, D1, ..., Di_1 is connected, none of
e1,€,...,¢e is a loop or coloop. Therefore we may apply Proposition 4.5 to deduce
that the contributions to [ from the two terms on the right side of the appropriate
deletion-contraction relations never have opposing signs. Thus |3(D)| > |8(H)|. It is
easy to check that if H is a twist of Uz 4, NP3 or M(K,), and e is an element of H,
then both H\e and H/e are connected. Hence by Proposition 4.5 and Theorem 4.7,
|B(H)| = 2. So |3(D)| > 2, and the result follows. O

5. IRREDUCIBILITY OF T'(D)

In this section we prove our two main results, which characterise when R(G) and
T(D) are irreducible. Our approach adapts the argument from [29].
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For a delta-matroid D, we let b; j(D) denote the coefficient of 'y’ in T(D;z,y).
When the context is clear, we just write b; ;. By the duality formula of Proposition 3.6,
for every delta-matroid D we have b; ;(D*) = b; (D).

Brylawski [8] established a collection of affine relations satisfied by the coefficients
of the Tutte polynomial of a matroid. Much later, in a surprising result, Gordon [23]
demonstrated that these affine relations hold much more generally.

For a delta-matroid with element set E, we have o(&) = 0, and for any subset A
of E we have 0(A) < max{|A|,0(E)}. These conditions are sufficient to apply [23,
Theorem 11] to show that all of Brylawski’s affine relations hold for T'(D), giving the
following.

THEOREM 5.1. Let D be an even delta-matroid with element set E and let n = |E|.
Then, for all k with 0 < k < n,

and ,
7 (" s = e,
: J

LEMMA 5.2. Let D be an even delta-matroid with element set E. If i > o(E) or
j > |E|—o(E), then b; ; = 0. Moreover,

|E|—o(E) o(E)
> bemys = Z bi,|Bl-o(p) = 1.
=0

Proof. The first part follows from the definition of 7" and the observation preceding
Theorem 5.1. Notice that Z‘E‘ o(E) bs(E),; is equal to the coefficient of z°(E) in
T(D;z,1). Thus, as 0(@) =0,

|E|—o(E)
Z bo(E),j = Z (1- 1)‘14\ =1.
j=0 ACE:0(A)=0

The equation Z b J|E|-o(E) = 1 can be established by a similar argument or by
using duality. O

We now prove our main result on the irreducibility of even delta matroids (see
Theorem 1.2).

Proof of Theorem 1.2. If D is disconnected then there are non-empty delta-matroids
D and D5 such that D = Dy @ Ds. Proposition 3.4 implies that T(D) is not irre-
ducible.

Now suppose that D is connected. If D has at most one element then T'(D;z,y) is
clearly irreducible, so we may assume that D has at least two elements.

Suppose there is a non-trivial factorization

T(D;z,y) = Alz,y) C(z,y),
where A(z,y) = >, ; a; 'yl and C(z,y) = > i Cigxt 'yJ. As D has at least one
element, we have agocoo = bpo = 0. Without loss of generality, we assume that
ap,0 = 0. As D is connected with at least two elements, Theorem 4.7 implies that
bl,O 75 0. We have bl’() = a1,0€0,0 + a0,0€1,0 = @1,0C0,0, SO Cp,0 75 0 and a1,0 7é 0.
Similarly ag1 # 0 since bp,; # 0. We shall obtain a contradiction by proving that
Co,0 = 0.
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For a polynomial P(z,y) = ZU pijx'y’, define
deg, (P) = max{i : there exists j such that p; ; # 0}
and
deg, (P) = max{;j : there exists i such that p; ; # 0}.

Now let m(P) = deg,(P) + deg,(P). Then we have m(T(D)) = m(A) + m(C).
Furthermore, deg,(A) < m(T(D)) and deg,(A) < m(T(D)).
It follows from Lemma 5.2 that

1= "baeg, (1(D))j = D Adeg, (A)k D Cdeg, (C).1
j k l

J
and similarly, or by duality,

1= Z bi,deg, (T(D)) = Z Uk, deg, (A) Z Cldeg, (C)-
i % 7
Thus,
(4) Z Ageg, (A),k 7 0 and Z Uk deg, (4) 7 0-
% %

Now, for k =0,1,...,m(A), let

k k—s k—s
Ak,i = Z (—:I_)YH»Z < " )as,pﬂ'.

Notice that Ay o = Ag. We now prove a recurrence relation involving these quantities.
If £ > deg,(A) and ¢ > 0, then, using the identity (kzs) = (k_:_l) + (k;le), we
have

k k—s
) k—s
Apio1 = Z Z(—l)tﬂ_l( ; )as,t+i1

s=0t=0
k—1k—1—s E—1_s
R oS <_1>t+~< ! )+
s=0 t=0
k—1k—s
i—1(k—1—35
D) (T 1( f_1 )as,tﬂ'l'
s=0t=1

As k > deg,(A), we have ay;—1 = 0. The second and third terms in the equation
above are equal to Ay_1;—; and Aj_;; respectively. Thus,

(5) Ap_1i=Api—1 — Ak—1,i—1
whenever k > deg,(A) and i > 0. By Lemma 5.2 and Equation (4),

deg, (A)
Adeg, (Ayaeg, (1) = Y (=D Wag g0 4y #0.

s=0

By applying Equation (5) repeatedly we can write Adegm(A),degy(A) as a linear com-
bination of Ageg (4),05- -5 Am(a),0- As Ago = Ag we see that there exists k with
deg, (A) < k < m(A) such that Ay # 0.
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The proof is completed by following exactly the proof of Lemma 4 from [29] to
deduce that cp o = 0 and thereby reach the desired contradiction. [l

We conclude by applying Theorem 1.2 to ribbon graphs. A ribbon graph G is said
to be a join of ribbon graphs G; and Gs if G can be constructed by picking arcs
on the boundaries of a non-isolated vertex in each of G; and Gy (the arcs should
not intersect any edges), then “gluing together G; and Go” by identifying the arcs
and merging the two vertices they lie on into a single vertex of G. This definition is
consistent with that of the join of embedded graphs given in the introduction.

THEOREM 5.3. If G is an orientable ribbon graph, then R(G;z,y) is irreducible over
Zx,y] (or Clz,y]) if and only if G is not a disjoint union or join of ribbon graphs.

Proof. By [12, Proposition 5.22], the delta-matroid D(G) of a ribbon graph G is
connected if and only if G is not a disjoint union or join of ribbon graphs. By [12,
Proposition 5.3], G is orientable if and only if D(G) is even. The result then follows
from Theorem 1.2 upon noting that R(G;x,y) = T(D(G); z,y). O

Theorem 1.1 is obtained from Theorem 5.3 by rewording it in terms of embedded
graphs.
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