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graphs: Integrality, Lattices and Kronecker

coefficients

Joseph Ben Geloun & Sanjaye Ramgoolam

Abstract We define solvable quantum mechanical systems on a Hilbert space spanned by bi-
partite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative
algebra, where the product is derived from permutation group products. The existence and
structure of this Hilbert space algebra has a number of consequences. The algebra product,
which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to
define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of
symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are
tensor product multiplicities of symmetric group representations. The square of the Kronecker
coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice
in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a
combinatorial interpretation of the Kronecker coefficients. As avenues for future research, we
discuss applications of the ribbon graph quantum mechanics in algorithms for quantum com-
putation. We also describe a quantum membrane interpretation of these quantum mechanical
systems.

1. Introduction
Permutation centralizer algebras (PCAs) [73] have been found as an underlying struc-
ture which organizes the N -dependences of multi-matrix correlators in super-Yang
Mills theories with U(N) gauge symmetry [5, 60, 14, 11, 12, 14, 61, 83, 58, 59]. These
correlators are of interest in generalizing beyond the half-BPS sector the link between
BPS correlators and Young diagrams [22] in the AdS/CFT correspondence [71, 46, 94].

Permutation methods and PCAs also played a role in the enumeration of observ-
ables and the computation of correlators in Gaussian tensor models [8, 9], which have
been studied in the context of applications of tensor models to random geometries
and holography [1, 47, 86, 48, 95] (see reviews in [30, 63]). An important observation
from [8, 9] is that 3-index tensor observables of degree n in a complex tensor model
with U(N)×3 symmetry can be counted using 3-tuples of permutations in Sn, subject
to an equivalence relation defined by left and right multiplication by permutations
in Sn. A gauge-fixed version of this formulation was described where we have pairs
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of permutations, subject to an equivalence relation defined using simultaneous conju-
gation of the pair by a permutation in Sn. These equivalence classes of permutation
pairs are known to count bipartite ribbon graphs with n edges (a textbook refer-
ence for this subject is [66]). The permutation equivalence classes form an associative
algebra, denoted K(n), with a symmetric non-degenerate bilinear form [9]. As a semi-
simple algebra, according to the Wedderburn–Artin theorem, K(n) is isomorphic to
a direct sum of matrix algebras [41]. The explicit isomorphism was constructed using
Clebsch–Gordan coefficients of the symmetric group [73, 9]. The matrix basis for the
algebra takes the form of QR1R2R3

τ1,τ2
, where R1, R2, R3 are Young diagrams or parti-

tion of n and τi, i = 1, 2, range over Clebsch–Gordan multiplicities, also known as
Kronecker coefficients (the explicit formula is given in [73] and developed in detail
in [9]). Further investigations of tensor models from this algebraic perspective are in
[25, 4, 7, 34, 33, 31, 53, 55, 54, 2, 24]. A known connection between bipartite ribbon
graphs and Belyi maps [66, 87] gives a topological version of gauge-string duality
between tensor models and string theory [8], generalizing analogous correspondences
between two-dimensional Yang Mills theory and topological string theory [44, 21, 50].

AdS/CFT holography gives a map between half-BPS states in U(N) Yang-Mills
theory at large N and the corresponding space-time geometries [69]. The study of the
half-BPS sector as a toy model for questions in the black hole information loss problem
[5] raised a question on how restricted sets of U(N) Casimirs can distinguish Young
diagrams with a fixed number n (equal to the energy of the BPS state) of boxes. This
question is related, by Schur-Weyl duality, to properties of the group algebra of Sn and
was studied from this perspective in [57]. A key role in this investigation was played by
central elements Tk in the group algebra C(Sn) associated with permutations having
cycle structure consisting of a single cycle of length k (for some 2 ⩽ k ⩽ n) and
remaining cycles of length 1.

In addition to these developments from theoretical physics, the investigations in
this paper have been guided by the mathematical problem of determining whether
there are combinatorial objects which are counted by Kronecker coefficients. While a
combinatorial construction of Littlewood-Richarson coefficients, another representa-
tion theoretic multiplicity, associated with triples of Young diagrams is well known,
it has been a long-standing question whether there exists a family of combinatorial
objects, for each triple of Young diagrams, such that the combinatorial objects are
enumerated by Kronecker coefficients. This problem was posed in [77] and placed in
the context of a number of positivity problems in representation theory in [90] and
is discussed in recent papers, e.g. [80, 72] . This mathematical question which may
appear, at least at first sight to many physicists, to be a somewhat esoteric question,
has inspired substantial recent activity and progress at the intersection of computa-
tional complexity theory, quantum information theory and representation theory. We
will not attempt to give a summary of this thriving area of research, but will point
the reader to some papers which give a flavour of this field [80, 72, 75, 15, 52, 79, 81].

A way to understand the problem is to compare two known computations in rep-
resentation theory. The computation of characters χR(σ) of a permutation σ ∈ Sn in
a representation associated to Young diagram R with n boxes can be done by using
the Murnaghan–Nakayama rule [76, 78]. This can be phrased in terms of the counting
of a certain pattern of labellings of the boxes in R by numbers according to a rule
determined by the cycle structure of σ (see for example [92][93]). In this construc-
tion, it is clear why the outcome is an integer - which is a somewhat special property
of symmetric group characters, a property not shared by generic finite groups. The
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Kronecker coefficient can be computed using the formula

C(R1, R2, R3) = 1
n!
∑

σ∈Sn

χR1(σ)χR2(σ)χR3(σ).(1)

In this formula, it is not clear why the sum over all the conjugacy classes in Sn for
general n ends up giving an outcome which is a non-negative integer - although from
the representation theory definition as the number of invariants in the tensor product
of R1 ⊗R2 ⊗R3, it is clear why this is the case. A combinatorial interpretation should
give a new way to make it manifest that C(R1, R2, R3) is a non-negative integer.

The following formula which has played a role in counting tensor model invariants
shows that bipartite ribbon graphs (also called ribbon graphs for short in this paper)
hold some promise of progress on this problem. It is known that the total number
of bipartite ribbon graphs with n edges is equal to the sum of squares of Kronecker
coefficients [8, 73, 34, 9]

|Rib(n)| =
∑

R1,R2,R3⊢n

C(R1, R2, R3)2.(2)

This formula shows that the sum of squares of Kronecker coefficients does have a
combinatorial and geometric interpretation. Bipartite ribbon graphs have an elegant
group theoretic characterisation in terms of pairs of permutations with an equivalence
under simultaneous conjugation. A natural question is : Is it possible to refine this
link to give an interpretation of a fixed C(R1, R2, R3)2, and a fixed C(R1, R2, R3), in
terms of ribbon graphs? We would like an interpretation which makes the non-negative
integer property of the Kronecker coefficients manifest. And are there combinatorial
algorithms based on this interpretation for computing Kronecker coefficients?

The algebras K(n), and analogous algebras related to Littlewood-Richardson coef-
ficients, have been studied in the theoretical physics literature primarily as a tool to
understand the structure of the space of gauge invariant observables and their corre-
lators in matrix/tensor models and in AdS/CFT (see [85] for a short review). In this
paper, motivated by the mathematical question of a combinatorial interpretation of
Kronecker coefficients and the connections of this question to quantum information
and complexity theory, we introduce a new physical perspective on these algebras.
We propose that studying solvable quantum mechanics models on algebras such as
K(n), which are related to interesting combinatorial objects (in this case bipartite
ribbon graphs) having elegant descriptions in terms of symmetric groups (in this case
permutation pairs subject to an equivalence generated by conjugation with a per-
mutation), can be a fruitful avenue to explore interesting interfaces between physics,
mathematics and computational complexity theory.

Section 2 develops the quantum mechanics on K(n). K(n) is a subspace of C(Sn)⊗
C(Sn) which is invariant under conjugation by γ ⊗ γ for γ ∈ Sn. As a vector space,
it has two interesting bases. There is a basis Er of elements labelled by an index
r ranging over equivalence classes of pairs (σ1, σ2) ∈ Sn × Sn, with the equivalence
relation

(σ1, σ2) ∼ (γσ1γ−1, γσ2γ−1) ,(3)
defined using γ ∈ Sn. We refer to this basis as the geometric ribbon graph basis.
There is another basis labelled by triples of Young diagrams (R1, R2, R3), where each
Young diagram has n boxes, such that the Kronecker coefficient C(R1, R2, R3) is
non-zero. We refer to this as the Fourier basis for K(n). In Section 2.1, we review
(from [8, 73, 9]) the formula (14) for the Fourier basis elements in terms of matrix
elements and Clebsch–Gordan coefficients of Sn. The Fourier basis also makes the
Wedderburn–Artin decomposition of K(n) into matrix algebras manifest. We define
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a natural inner product on K(n) inherited from C(Sn) ⊗ C(Sn) and prove that K(n)
is a Hilbert space (Proposition 2.1). We prove that the product structure on K(n) in
the geometric ribbon graph basis is given by integers (Section 2.3).

The fact that K(n) is a vector space as well as an algebra (i.e. vector space equipped
with an associative product) with a known Wedderburn–Artin decomposition can be
exploited to write down interesting solvable Hamiltonians for quantum mechanical
systems having K(n) as a Hilbert space. We introduce a set of Hermitian operators
T

(i)
k on K(n) which are central elements of K(n) and act on K(n) using the product

operation in the algebra. The indices take values i ∈ {1, 2, 3} and k ∈ {2, 3, · · · k̃∗}.
The number k̃ is chosen to obey k̃∗ ⩾ k∗(n), where k∗(n) is an integer between 2 to
n. k∗(n) is defined [57] as the minimum integer such that the central elements Tk in
C(Sn) with k ranging in {2, 3, · · · , k∗(n)} generate the centre. The precise definition
of the operators T

(i)
k , which we call reconnection operators, is given in Section 2.4. It is

shown (Proposition 2.2) that the matrix elements of these operators in the geometric
ribbon graph basis are non-negative integers.

In Section 3, we introduce the notion of the Fourier subspace of K(n) associ-
ated with a triple of Young diagrams (R1, R2, R3). This subspace has dimension
C(R1, R2, R3)2. Proposition 3.1 shows that the Fourier basis elements are eigenvec-
tors of the reconnection operators, with eigenvalues given by normalized characters
of symmetric groups. Proposition 3.2 shows that the eigenvalue sets of reconnection
operators chosen with k ∈ {2, · · · , k̃∗} can be used to distinguish Fourier subspaces
associated with distinct triples of Young diagrams. These results are used (Section
3.2) to construct for each n, and each triple (R1, R2, R3), a rectangular matrix of
integers having a null space which spans the Fourier subspace of the specified triple.
Section 3.3 constructs Hamiltonians as linear combinations of the reconnection ma-
trices, which are square (non-negative) integer matrices in the geometric basis and
distinguish Fourier subspaces with distinct Young diagram triples. Using Proposition
3.1, the eigenvalues of these Hamiltonians are expressed as linear combinations of
normalized symmetric group characters. The eigenspaces for distinct eigenvalues are
the Fourier subspaces for distinct Young diagram triples.

The realisation of Fourier subspaces in K(n) labelled by Young diagram triples
(R1, R2, R3) as eigenspaces of integer reconnection matrices is thus one of two im-
portant inputs in our discussion. It means that while the formula (14) for Fourier
basis elements uses detailed representation theoretic data such as matrix elements of
permutations in some chosen basis for symmetric group representations along with
Clebsch–Gordan coefficients, there is a new approach to the Fourier subspace of a
triple of Young diagrams based on integer reconnection matrices. Now generic inte-
ger matrices do not necessarily have integer or rational eigenvalues (see for example
[36]). For the reconnection matrices at hand however we know, using symmetric group
representation theory (Proposition 3.1 along with Lemma 3.3), that the eigenvalues
are integers. These eigenvalues are known to be calculable using combinatorial al-
gorithms, notably the Murnaghan–Nakayama rule. Thus, we are able to replace the
more obvious (but computationally expensive) computation of the Fourier subspace
using direct implementation of the formula (14) with the calculation of null spaces
of integer matrices which takes two combinatorial inputs: the combinatorics of recon-
nection matrices and the Murnaghan–Nakayama algorithm. This allows us to express
the problem of finding the Fourier subspaces of Young diagram triples as a question
about null spaces of integer matrices. This in turn allows us to access results from the
subject of integer matrices and lattice algorithms.
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Section 4 recalls a key result from the integer matrices and lattice algorithms. Any
integer matrix, square or rectangular, has a unique Hermite normal form (HNF).
There are standard algorithms in computational number theory for finding the HNF
(see e.g. [20, 88, 74]) and such algorithms are also accessible in group theoretic soft-
ware such as SAGE or GAP [39]. A consequence is that, for the Fourier subspaces
associated with Young diagram triples defined in Section 3, there are bases which
are integer linear combinations of the geometric ribbon graph basis vectors. For each
triple (R1, R2, R3), given a choice of the rectangular matrix (which can be specified
using a choice of k̃∗ as in Section 3.2) or square matrix (specified using a Hamiltonian
as in Section 3.3), any HNF algorithm leads to a list of linearly independent integer
null vectors, which are C(R1, R2, R3)2 in number. This list of integer null vectors
specifies a sub-lattice in the lattice Z|Rib(n)| in K(n) generated by all integer linear
combinations of the geometric ribbon graph vectors. This provides (Theorem 4.1 and
Corollary 4.2) a positive answer to the questions of a combinatorial interpretation
and construction for the square of the Kronecker coefficient.

It is natural to ask if a construction of C(R1, R2, R3) rather than its square can
be given along these lines. To this end, we consider an operation on bipartite ribbon
graphs, which has previously been studied in the context of Belyi maps [56]. In the
permutation pair description of ribbon graphs, this operation amounts to inverting
both permutations. In Section 4.3 we study a linear involution S (also called conjuga-
tion) on K(n) defined using this inversion. Comparing the action of the involution on
the ribbon graph basis with its action on the Fourier basis elements (14) leads to the
result that the sum of Kronecker coefficients is equal to the number of self-conjugate
ribbon graphs. Considering linear operators acting on K(n) constructed from the re-
connection operators T

(i)
k as well as the conjugation operator S leads to sub-lattices of

dimension C(R1, R2, R3)(C(R1, R2, R3) + 1)/2 , C(R1, R2, R3)(C(R1, R2, R3) − 1)/2,
both of which come equipped with a list of linearly independent integer basis vectors
from an HNF construction. Choosing an injection from the set of basis vectors of the
smaller sub-lattice into the set of basis vectors of the larger sub-lattice yields a subset
of basis vectors of the larger sub-lattice, which equal C(R1, R2, R3) in number. This
realises C(R1, R2, R3) as the dimension of a sub-lattice in Z|Rib(n)|.

In the concluding section we give a summary of our results. While the content of this
paper is primarily mathematical, its motivations come from the physics of strings and
tensor models. The concluding section thus includes a description of future research
directions based on the links to physics. There is a more extended discussion setting
up the first steps for these future directions in the arxiv version of this paper [10]. The
appendices give some detailed steps in the proofs and examples of results from the
computation of Fourier basis vectors using reconnection operators. The last appendix
gives key parts of the GAP code used.

2. Quantum Mechanics of ribbon graphs: commuting
Hamiltonians from centres of algebras K(n)

In this section we set up the quantum mechanics of bipartite ribbon graphs using
their description in terms of permutation groups. We introduce the space of states,
two bases for the space (a geometric basis and a Fourier basis), an inner product and
Hermitian operators on the state space which have eigenvalues expressible in terms
of normalized symmetric group characters.

2.1. Review of previous results on the algebra K(n) of bipartite ribbon
graphs. We give an overview of the description of bipartite ribbon graphs in terms
of symmetric groups. A useful textbook reference is [66] which gives references to the
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original mathematical literature. We will also be making extensive use of formulae
from the representation theory of symmetric groups. A mathematical physics reference
is [49]. The key formulae are summarised the appendices of [9].

2.1.1. Counting bipartite ribbon graphs. A bipartite ribbon graph, also called a hy-
permap, is a graph embedded on a two-dimensional surface with black and white
vertices, such that edges connect black to white vertices and cutting the surface along
the edges leaves a disjoint union of regions homeomorphic to open discs. Bipartite
ribbon graphs, denoted ribbon graphs for short in this paper, with n edges can be
described using permutations of {1, 2, · · · , n} forming the symmetric group Sn. Label
the edges with integers {1, 2, · · · , n}. Reading the edges around the black vertices fol-
lowing a chosen orientation on the surface gives the cycles of a permutation τ1, while
the white vertices similarly give a permutation τ2. Relabelling the edges, i → µ(i)
using µ ∈ Sn, amounts to conjugating the pair (τ1, τ2) → (µτ1µ−1, µτ2µ−1). Dis-
tinct ribbon graphs are thus equivalence classes of pairs (τ1, τ2) ∈ Sn × Sn under the
equivalence relation

(τ1, τ2) ∼ (τ ′
1, τ ′

2) iff ∃µ ∈ Sn , (τ ′
1, τ ′

2) = (µτ1µ−1, µτ2µ−1)(4)

The set of permutation pairs within a fixed equivalence class forms an orbit for the
action of Sn on Sn × Sn given in (4). We define Rib(n) to be the set of equivalence
classes, or the set of orbits. There are commands in group theoretic software GAP
[39] that directly generate these orbits for any n, see RibbSetFunction(n) appendix
C. As an example, consider the case n = 3. These are the 11 ribbon graphs shown in
Figure 1. The label appearing below each ribbon graph is an index running from 1 to
11. The sole non-planar (genus one) ribbon graph is the equivalence class containing
the pair [(123), (123)].
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Figure 1. Bipartite ribbon graphs with n = 3 edges
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The counting of ribbon graphs is also related to the counting of bipartite graphs
with n trivalent vertices with three incoming colored edges and n trivalent vertices
with three outgoing colored edges [8, 9]. This counting problem corresponds to equiv-
alence classes of triples (σ1, σ2, σ3) ∼ (µ1σ1µ2, µ1σ2µ2, µ1σ3µ3) for σi ∈ Sn and
µ1, µ2 ∈ Sn. In turn this counting also gives the number of linearly independent
degree n polynomial functions of tensor variables Φi1,i2,i3 and Φ̄ī1 ,̄i2 ,̄i3 invariant the
action of U(N)×3, for n ⩽ N and with (i1, i2, i3) transforming as the fundamental
of the unitary group and (̄i1, ī2 .̄i3), transforming in the anti-fundamental. Our focus
in this paper will be on ribbon graphs, and we will discuss tensor model observables
further in the outlook Section 5.

2.1.2. The permutation centralizer algebra (PCA) K(n) and its geometric basis. In-
troducing the group algebra C(Sn), consider the elements of C(Sn)⊗CC(Sn), written
more simply C(Sn) ⊗ C(Sn), obtained by starting with a tensor product σ1 ⊗ σ2 and
summing all their diagonal conjugates as

(5) σ1 ⊗ σ2 →
∑

γ∈Sn

γσ1γ−1 ⊗ γσ2γ−1.

Two pairs (σ1, σ2) and (σ′
1, σ′

2) related by the equivalence (4) produce the same
sum. Now, consider the C-vector subspace K(n) ⊂ C(Sn) ⊗ C(Sn) spanned by all∑

γ∈Sn
γσ1γ−1 ⊗ γσ2γ−1, σ1 and σ2 ∈ Sn:

(6) K(n) = SpanC

{ ∑
γ∈Sn

γσ1γ−1 ⊗ γσ2γ−1, σ1, σ2 ∈ Sn

}
.

The dimension of K(n) is equal to the number of ribbon graphs with n edges, i.e.
|Rib(n)|. In [9], it is shown that K(n) is an associative algebra, with the product be-
ing inherited from C(Sn) ⊗ C(Sn). K(n) is a permutation centralizer algebra (PCA)
- a subspace of an algebra with basis given by permutations forming a group (here
permutation pairs (σ1, σ2) forming the group Sn × Sn), which commutes with a sub-
group of the permutations, here (γ, γ) forming the diagonal subgroup Sn ⊂ Sn × Sn.
K(n) is also semi-simple: it has a non-degenerate symmetric bilinear pairing given by

δ2 : C(Sn)⊗2 × C(Sn)⊗2 → C(7)

where

(8) δ2(⊗2
i=1σi; ⊗2

i=1σ′
i) =

2∏
i=1

δ(σiσ
′−1
i )

which extends to linear combinations with complex coefficients. Semi-simplicity im-
plies that, by the Wedderburn–Artin theorem [41, 84], K(n) admits a decomposition
in simple matrix algebras. This decomposition is made manifest using what we denote
as the Fourier basis, which we discuss shortly in Section 2.1.3.

Start with a ribbon graph with label r ∈ {1, . . . , |Rib(n)|}. As discussed in Section
2.1.1, the set of ribbon graphs is in 1-1 correspondence with orbits of the action of
Sn on Sn × Sn, by conjugation as given in (4). Pick a pair of permutations (τ (r)

1 , τ
(r)
2 )

among the permutation pairs representing the ribbon graph r. The orbit Orb(r) is
the set of elements in Sn × Sn which can be written as (µτ

(r)
1 µ−1, µτ

(r)
2 µ−1) for some

µ ∈ Sn. Hence, consider the basis element in K(n) associated with r as:

Er = 1
n!
∑

µ∈Sn

µτ
(r)
1 µ−1 ⊗ µτ

(r)
2 µ−1.(9)
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Let Aut(τ (r)
1 , τ

(r)
2 ) be the subgroup of Sn which leaves fixed the pair (τ (r)

1 , τ
(r)
2 ). The

order of this group is |Aut(τ (r)
1 , τ

(r)
2 )| and is independent of the choice of representa-

tive, so we can write this as |Aut(r)|. The orbit-stabilizer theorem (see for example
[16]) gives an isomorphism between Orb(r) and the coset Sn/Aut(τ (r)

1 , τ
(r)
2 ). Let a be

a label for the distinct permutation pairs in Orb(r):

Er = 1
n!
∑

µ∈Sn

µτ
(r)
1 µ−1 ⊗ µτ

(r)
2 µ−1

= |Aut(r)|
n!

∑
a∈Orb(r)

τ
(r)
1 (a) ⊗ τ

(r)
2 (a)

= 1
|Orb(r)|

∑
a∈Orb(r)

τ
(r)
1 (a) ⊗ τ

(r)
2 (a).(10)

Both these expressions for Er will be useful. We will refer to the Er as the geometric
or ribbon graph basis vectors for K(n).

The pairing (7) evaluated on this basis is

δ2(Er, Es) = 1
n!
∑

γ

δ(σ(r)
1 γ(σ(s)

1 )−1γ−1)δ(σ(r)
2 γ(σ(s)

2 )−1γ−1)

= 1
n! |Aut(r)| δsr = 1

|Orb(r)|δrs.(11)

The basis vectors associated with distinct orbits r ̸= s are orthogonal.

2.1.3. A Fourier basis for K(n). The number of bipartite ribbon graphs with n edges,
which is the dimension of K(n), can be given as a sum of partitions of n [8, 9] or as
a sum over triples R1, R2, R3 of irreducible representations (irreps) of Sn:

|Rib(n)| = Dim(K(n)) =
∑

R1,R2,R3⊢n

C(R1, R2, R3)2 =
∑
p⊢n

Sym(p).(12)

R1, R2, R3 are partitions of n (denoted by Ri ⊢ n) which correspond to Young dia-
grams with n boxes. We will denote their dimension as d(Ri).

Describing p in terms of a set of numbers pi giving the multiplicity of parts i in
the partition,

Sym(p) =
∏

i

ipipi!.(13)

The form of this sum of squares is explained by the Wedderburn–Artin decomposition
of K(n): an explicit basis, which we refer to as the Fourier basis and which exhibits
the decomposition, can be constructed using Clebsch–Gordan coefficients and matrix
elements of permutation groups [73, 9]. This basis takes the form

QR1,R2,R3
τ1,τ2

=(14)

κR1,R2

∑
σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ1)DR2
i2j2

(σ2) σ1 ⊗ σ2.

DR
ij(σ) are the matrix elements of the linear operator DR(σ) in an orthonormal basis

for the irrep R. The indices τ1, τ2 run over an orthonormal basis for the multiplic-
ity space of R3 appearing in the tensor decomposition of R1 ⊗ R2. This multiplic-
ity is equal to the Kronecker coefficient C(R1, R2, R3) which is also the multiplicity
of the trivial representation in the tensor product decomposition of R1 ⊗ R2 ⊗ R3.
κR1,R2 = d(R1)d(R2)

(n!)2 is a normalization factor, where d(Ri) is the dimension of the
irrep Ri. CR1,R2;R3,τ1

i1,i2;i3
are Clebsch–Gordan coefficients of the representations of Sn
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(see the appendices of [9] for the properties needed to prove that this expression gives
a Wedderburn–Artin basis for K(n)).

These elements QR1,R2,R3
τ1,τ2

∈ C(Sn) ⊗ C(Sn) are invariant under diagonal conjuga-
tion

(15) (γ ⊗ γ) · QR1,R2,R3
τ1,τ2

· (γ−1 ⊗ γ−1) = QR1,R2,R3
τ1,τ2

,

and therefore belong to K(n). It was verified [9] that they define the Wedderburn–
Artin matrix bases of K(n):

(16) QR1,R2,R3
τ1,τ2

Q
R′

1,R′
2,R′

3
τ ′

2,τ3
= δR1R′

1
δR2R′

2
δR3R′

3
δτ2τ ′

2
QR1,R2,R3

τ1,τ3
.

The normalization κR1,R2 is chosen to ensure that the RHS has the standard form for
multiplication of elementary matrices, for each block labelled by triples (R1, R2, R3)
with non-vanishing Kronecker coefficient C(R1, R2, R3). Noting that C(R1, R2, R3) is
at most 1 for n ⩽ 4, then the matrices QR1,R2,R3

τ1,τ2
are 1 × 1 hence are commuting for

n ⩽ 4. The set {QR1,R2,R3
τ1,τ2

} ∈ K(n) are orthogonal with respect to the bilinear pairing
δ2

(17) δ2(QR1,R2,R3
τ1,τ ′

1
; Q

R′
1,R′

2,R′
3

τ2,τ ′
2

) = κR1,R2d(R3) δR1R′
1
δR2R′

2
δR3R′

3
δτ1τ2δτ ′

1τ ′
2

.

The cardinality of this set of orthogonal elements in K(n) is∑
R1,R2,R3

∑
τ1,τ2

1 =
∑

R1,R2,R3

C(R1, R2, R3)2 = |Rib(n)|(18)

which allows us to confirm that these elements {QR1,R2,R3
τ1,τ2

} form an orthogonal basis
of K(n).

The sets {QR1,R2,R3
τ1,τ2

} and {Er} define orthogonal bases of K(n). We refer to the
set {Er} as the geometric or ribbon graph basis and to the set {QR1,R2,R3

τ1,τ2
} as the

representation theoretic or Fourier basis of K(n). The change of basis from the Fourier
basis to the geometric basis is made explicit in the appendix B. The existence of these
two bases and their interplay is an important resource exploited in this paper.

2.2. Inner product and Hilbert space.

2.2.1. K(n) as a Hilbert space.

Proposition 2.1. The algebra K(n) is a Hilbert space with the ribbon graph vectors
Er forming an orthogonal basis; the vectors

√
|Orb(r)|Er ≡ er form an orthonormal

basis.

Proof. Define the inner product g on C(Sn) ⊗ C(Sn), using the basis of permutation
pairs and extend it by linearity. For two pairs α = (α1, α2), β = (β1, β2) in Sn × Sn

we define

g(α, β) = g(α1 ⊗ α2, β1 ⊗ β2) = δ(α−1
1 β1)δ(α−1

2 β2)(19)

where δ is the delta function on Sn (δ(σ) = 1 if and only if σ = id, otherwise δ(σ) = 0).
This extends by linearity to a sesquilinear form on C(Sn) ⊗ C(Sn) as

g(
∑

i

aiα1i ⊗ α2i,
∑

j

bjβ1j ⊗ β2j) =
∑
i,j

āibj δ(α−1
1i β1j)δ(α−1

2i β2j)(20)

where ai, bi ∈ C and where the bar means complex conjugation.
We can show that g satisfies conjugation property g(α, β) = g(β, α) and is positive

definite. It therefore gives an inner product on C(Sn) ⊗ C(Sn).
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We compute the inner product of two ribbon graph basis vectors

g(Er, Es) = 1
|Orb(r)|

1
|Orb(s)|

∑
a∈Orb(r)

∑
b∈Orb(s)

g(σ(r)
1 (a) ⊗ σ

(r)
2 (a), σ

(s)
1 (b) ⊗ σ

(s)
2 (b))

= 1
|Orb(r)|

1
|Orb(s)|

∑
a∈Orb(r)

∑
b∈Orb(s)

δa,bδr,s(21)

where the only way that δ((σ(r)
1 (a))−1σ

(s)
1 (b)) δ((σ(r)

2 (a))−1σ
(s)
2 (b)) = 1 for two orbit

elements a and b is when a = b. As a couple (σ(r)
1 (a), σ

(r)
2 (a)) can only appear in a

unique orbit, we therefore have

g(Er, Es) = 1
|Orb(s)|δr,s .(22)

Then the set of {Er} for r ∈ {1, · · · , |Rib(n)|} defines an orthogonal basis of K(n)
which becomes a Hilbert space of states with inner product g. We can define orthonor-
mal bases for K(n) as states of the form:

er =
√

|Orb(r)|Er .(23)
This completes the proof of the proposition.

□

2.2.2. Involution on K(n) from permutation inversion. We also define the linear con-
jugation operator S : C(Sn) → C(Sn) that maps a linear combination A =

∑
i ciσi ∈

C(Sn) to

S(A) :=
∑

i

ciσ
−1
i .(24)

Extend this operation to C(Sn) ⊗ C(Sn) by inverting the permutation in each tensor
factor: S(σ1 ⊗ σ2) = σ−1

1 ⊗ σ−1
2 and using linearity

S(
∑

i

ai σ1i ⊗ σ2i) =
∑

i

aiσ
−1
1i ⊗ σ−1

2i .(25)

S is an involution: S2 = id, and obeys S(AB) = S(B)S(A).
The conjugation S gives a well defined involution from the set of equivalence classes

forming K(n) to itself. To see this note that if (σ1, σ2) ∈ Orb(r) maps under inversion
to a pair (σ−1

1 , σ−1
2 ) ∈ Orb(s) (where s may or may not be equal to r), then for any

µ ∈ Sn

S(µσ1µ−1, µσ2µ−1) = (µσ−1
1 µ−1, µσ−1

2 µ−1) ∈ Orb(s).(26)
If for a given r, S maps the pairs Orb(r) back to Orb(r) we have

S(Er) = Er(27)
Such ribbon graphs will be called self-conjugate. If Orb(r) is mapped to Orb(s) with
s ̸= r, then

S(Er) = Es

S(Es) = Er(28)
and we call (Er, Es) a conjugate pair. In Section 4.3 we compute the action of S
on the Fourier basis. The interplay between these two actions is used to show that
the total number of self-conjugate ribbon graphs with n edges is equal to the sum of
Kronecker coefficients C(R1, R2, R3) for R1, R2, R3 ⊢ n. The operator S is also useful
in proving the hermiticity of the reconnection operators T

(i)
k (Proposition 2.3) which

are used to construct Hamiltonians on K(n) in Section 3.3.
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2.3. The integrality structure of the product on K(n). The product in the
algebra K(n) gives an expansion of the product ErEs of two geometric basis vectors

ErEs =
|Rib(n)|∑

t=1
Ct

rsEt.(29)

We will express the structure constants

Ct
rs = Coeff(Et, ErEs)(30)

in terms of non-negative integers. Recall from Section 2.1.2 the two expressions for
Er

Er = 1
n!
∑

µ∈Sn

µσ
(r)
1 µ−1 ⊗ µσ

(r)
2 µ−1

= 1
|Orb(r)|

∑
a∈Orb(r)

σ
(r)
1 (a) ⊗ σ

(r)
2 (a).(31)

For notational convenience, we define

σ(r) = σ
(r)
1 ⊗ σ

(r)
2 , µσ(r)µ−1 = µσ

(r)
1 µ−1 ⊗ µσ

(r)
2 µ−1 .(32)

We express (10) in a simpler form as

Er = 1
n!
∑

µ∈Sn

µσ(r)µ−1 = 1
|Orb(r)|

∑
a∈Orb(r)

σ(r)(a) .(33)

Consider the product of two elements of K(n) associated with orbits r and s:

ErEs = 1
|Orb(r)|

1
|Orb(s)|

∑
a∈Orb(r)

∑
b∈Orb(s)

σ(r)(a)σ(s)(b)

= 1
(n!)2

∑
µ1,µ2∈Sn

µ1σ(r)µ−1
1 µ2σ(s)µ−1

2 .(34)

We can write ν = µ−1
1 µ2 and then solve for µ1 = µ2ν−1 to write

ErEs = 1
n!

1
|Orb(r)|

∑
µ2∈Sn

∑
a∈Orb(r)

µ2σ(r)(a)σ(s)µ−1
2

= 1
|Orb(r)|

∑
a∈Orb(r)

1
|Orb(σ(r)(a)σ(s))|

∑
b∈Orb(σ(r)(a)σ(s))

σ(b)

=
∑

t

1
|Orb(r)|

∑
b∈Orb(t)

σ(t)(b)
|Orb(t)|

∑
a∈Orb(r)

δ(Orb(t), Orb(σ(r)(a)σ(s)))

=
∑

t

1
|Orb(r)|Et

∑
a∈Orb(r)

δ(Orb(t), Orb(σ(r)(a)σ(s))) ,(35)

where δ(Orb(s), Orb(t)) is the Kronecker symbol δst for the labels s and t. We have
thus expressed the product of ErEs in terms of the non-negative integer∑

a∈Orb(r)

δ(Orb(t), Orb(σ(r)(a)σ(s)))

= Number of times the multiplication of elements from orbit r
with a fixed element in orbit s to the right produces an element in orbit t.

(36)
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If we solve for µ2 instead as µ2 = µ1ν, then we get

ErEs =
∑

t

1
|Orb(s)|

∑
b∈Orb(t)

σ(t)(b)
|Orb(t)|

∑
a∈Orb(s)

δ(Orb(t), Orb(σ(r)σ(s)(a)))

=
∑

t

1
|Orb(s)|Et

∑
a∈Orb(s)

δ(Orb(t), Orb(σ(r)σ(s)(a))).(37)

Here we have expressed the same product in terms of the non-negative integers∑
a∈Orb(s)

δ(Orb(t), Orb(σ(r)σ(s)(a)))

= Number of times the multiplication of elements from orbit s
with a fixed element in orbit r from the left produces an element in orbit t.

(38)
Equivalently, we can express these by saying that the coefficient Coeff(Et, ErEs) of
Et in the expansion of ErEs is given by

Coeff(Et, ErEs) = 1
|Orb(s)|

∑
a∈Orb(s)

δ(Orb(t), Orb(σ(r)σ(s)(a)))

= 1
|Orb(r)|

∑
a∈Orb(r)

δ(Orb(t), Orb(σ(r)(a)σ(s))).(39)

If we just keep µ1, µ2 in (34) we can write (treating r and s more symmetrically)
(40)
Coeff(Et, ErEs) = 1

|Orb(s)| |Orb(r)|
∑

a∈Orb(r)

∑
b∈Orb(s)

δ(Orb(t), Orb(σ(r)(a)σ(s)(b))).

Recalling that (22) holds, we therefore have
Coeff(Et, ErEs) = g(ErEs, Et)|Orb(t)|.(41)

Hence
δ2(ErEsS(Et)) = g(ErEs, Et)(42)

= 1
|Orb(s)| |Orb(r)| |Orb(t)|

∑
a∈Orb(r)

∑
b∈Orb(s)

δ(Orb(t), Orb(σ(r)(a)σ(s)(b))).

These formulae show that the structure constants of the algebra K(n) are expressed
in terms of non-negative integers obtained from the combinatorial multiplications of
elements in the orbits, which provide the geometrical ribbon graph basis vectors Er of
K(n). In general, the product is not commutative ErEs ̸= EsEr. In the next section,
we will exploit this integral structure, for the particular cases where Er are chosen to
be central elements in K(n), associated with permutations having a cycle of length
k and remaining cycles of length 1. These central elements will be used to construct
Hamiltonians and the eigenproblems of these Hamiltonians will become questions
about non-negative integer matrices.

2.4. The centre of K(n) and reconnection operators T
(i)
k . In this section, we

will review some properties of the centre of K(n) and introduce central elements T
(i)
k ∈

K(n) labelled by k ∈ {2, 3, . . . , n} and i ∈ {1, 2, 3}. These central elements act on K(n)
by multiplication. Since K(n) (when equipped with the inner product specified) is also
the Hilbert space of our quantum mechanical systems, the elements T

(i)
k also define

linear operators when they act on K(n) by multiplication. We are taking advantage
of a state-operator correspondence which is possible when the Hilbert space of a
quantum mechanical space is also an algebra. We prove that these linear operators
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are Hermitian with respect to the inner product defined in Section 2.2. We refer
to the T

(i)
k as reconnection operators, since they act, as we will see shortly, on the

permutations defining elements of K(n) by multiplication of permutations. In the
diagrammatic description of tensor model observables associated with K(n) [8] this
operation involves reconnecting the index lines of the tensor variables Φ⊗n with those
of Φ̄⊗n. In terms of ribbon graphs, the action of T

(i)
k amounts to splitting and joining

of vertices: such operators have also been discussed in [53, 55].
Let us first recall some properties of the centre Z(C(Sn)) of C(Sn). The centre is

defined as the sub-algebra of elements which commute with all C(Sn). Z(C(Sn)) is a
commutative algebra of dimension p(n), the number of partitions of n. The conjugacy
classes of Sn are specified by cycle structures of permutations which define partitions
of n. The sum of elements in a conjugacy class is a central element in the group
algebra. A linear basis for the centre is given by these class sums. For any integer k,
such that 2 ⩽ k ⩽ n, let Ck to be the conjugacy class of permutations σ ∈ Sn made of
a single cycle of length k and remaining cycles of length 1. As an example, for n = 3,
k = 2, the conjugacy class C2 is the set of permutations {(1, 2)(3), (2, 3)(1), (1, 3)(2)}.
Define Tk as the sum

(43) Tk =
∑

σ∈Ck

σ.

|Tk| will refer to as the number of terms in that sum, equivalently the number of terms
in Ck, which is n!

k(n−k)! . For any n, the set {T2, T3, · · · , Tn} generates the centre [57],
i.e. linear combinations of products of these Tk span Z(C(Sn)). In fact there is no need
to consider the entire set to generate Z(C(Sn)). Indeed, there exists k∗(n) ⩽ n, such
that the subset {T2, · · · , Tk∗(n)} spans the center [57]. This is related to the fact that
the ordered list of of normalized characters (χ̂R(T2), χ̂R(T3), · · · , χ̂R(Tk∗(n))) uniquely
identifies the Young diagram R. These normalized characters are defined as

χ̂R(Tk) = χR(Tk)
d(R)(44)

where d(R) is the dimension of the irrep R. The sequence k∗(n) was explicitly com-
puted [57], with the help of character formulae in [67, 23], to be

k∗(n) = 2 for n ∈ {2, 3, 4, 5, 7}
k∗(n) = 3 for n ∈ {6, 8, 9 . . . , 14}
k∗(n) = 4 for n ∈ {15, 16, . . . , 23, 25, 26}
k∗(n) = 5 for n ∈ {24, 27, . . . , 41}
k∗(n) = 6 for n ∈ {42, . . . , 78, 79, 81}.(45)

At any n ⩾ 2, we will define elements in C(Sn) ⊗ C(Sn)

T
(1)
k = Tk ⊗ 1 =

∑
σ∈Ck

σ ⊗ 1 ,

T
(2)
k = 1 ⊗ Tk =

∑
σ∈Ck

1 ⊗ σ ,

T
(3)
k =

∑
σ∈Ck

σ ⊗ σ .(46)

These commute with permutations γ ⊗ γ and are thus in the sub-algebra K(n) ⊂
C(Sn) ⊗ C(Sn). Using the correspondence between permutation pairs and ribbon
graphs described in Section 2.1.1, it is straightforward to describe the ribbon graphs
corresponding to T

(i)
k . In the case n = 3, T

(1)
2 , T

(2)
2 , T

(3)
2 correspond to the ribbon

graphs labelled 4, 2, 5 respectively in Figure 1. The elements T
(1)
3 , T

(2)
3 , T

(3)
3 correspond
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to the graphs labelled 8, 3, 10 respectively. For general n, T
(1)
k corresponds to a ribbon

graph with genus zero, having one black vertex of valency k, n − k black vertices of
valency one, and n white vertices of valency one. For T

(2)
k , we have a ribbon graph

with one white vertex of valency k, n − k vertices of valency one, and n black vertices
of valency one. For T

(3)
k we have a graph with genus ⌊ k−1

2 ⌋ with a black k-valent
vertex connected to a white k-valent vertex, along with n − k one-valent black and
white vertices. These graphs are disconnected for n > k.

The T
(i)
k ’s act as linear operators on C(Sn) ⊗ C(Sn) by left multiplication. Right

multiplication gives the same operators because these are central operators in C(Sn)⊗
C(Sn). They are also central in K(n), since this is a sub-algebra of C(Sn) ⊗ C(Sn).
Let (M(i)

k )s
r be the matrix elements of T

(i)
k

T
(i)
k Es =

∑
s

(M(i)
k )t

sEt(47)

in the geometric basis.

Proposition 2.2. The matrix elements (M(i)
k )s

r are non-negative integers.

Proof. The T
(i)
k are proportional to instances of the geometric basis vectors Er (31)

obtained by summing over diagonal conjugations of permutations of the form σ⊗1, 1⊗
σ, σ ⊗ σ, where σ is a cyclic permutation of a subset of k numbers from {1, 2, · · · , n}.
Using the correspondence (Section 2.1.1) between ribbon graphs and permutations,
they each correspond to a ribbon graph. Each T

(i)
k corresponds to a ribbon graph,

with some label r which we will call r(k, i). The proportionality constant is given as

T
(i)
k = |Orb(r(k, i))| Er(k,i)(48)

since the T
(i)
k are equal to a sum of elements in an orbit generated by the diagonal

conjugations, while Er are defined to be such sums normalized by the orbit size. The
formula (39) for the algebra product in the geometric basis then implies that

(M(i)
k )t

s = Number of times the multiplication of elements in the sum T
(i)
k

with a fixed element in orbit s to the right produces an element in orbit t.
(49)

□

Proposition 2.3. T
(i)
k are Hermitian operators on K(n) in the inner product defined

by (20) :

g(Es, T
(i)
k Er) = g(T (i)

k Es, Er) .(50)

Proof. Using (22) and (47) we evaluate

g(Es, T
(i)
k Er) = (M(i)

k )s
r

1
|Orb(s)| .(51)

By renaming r, s, we have

g(Er, T
(i)
k Es) = (M(i)

k )r
s

1
|Orb(r)| .(52)

Using definition of g in (20) and of δ2 in (8), the following is true
g(α, β) = δ2(α, β) .(53)

Using this relation between the inner product and the delta function, we have

g(Er, T
(i)
k Es) = δ2(Er, (T (i)

k Es)).(54)
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From the definition of S (24), note that δ2(S(a), id) = δ2(a, id), and
δ2(a, b) = δ2(aS(b), id) = δ2(S(b)a, id).

Moreover, S(Tk) = Tk and S(AB) = S(B)S(A) imply

δ2(Er, T
(i)
k Es) = δ2(S(T (i)

k Es)Er, id) = δ2(S(Es)T (i)
k Er, id)(55)

= δ2(T (i)
k Er, Es) = g(T (i)

k Er, Es).

Next observe that α = T
(1)
k Er and β = Es have all real coefficients in the geometric

ribbon graph basis,

g(T (i)
k Er, Es) = g(T (i)

k Er, Es).(56)
This sequence of steps starting from (54) shows that

g(Er, T
(i)
k Es) = g(T (i)

k Er, Es).(57)
This proves the proposition. □

Remark
The matrix elements of T

(i)
k in the non-orthogonal basis Er are not symmetric. Indeed

from (51), (52), and (50) we have

(M(i)
k )s

r = |Orb(s)|(M(i)
k )r

s

1
|Orb(r)| .(58)

If we consider instead the matrix elements of T
(i)
k on the orthonormal basis vectors

er =
√

(|Orb(r)|Er,

T
(i)
k er =

√
|Orb(r)|(M(i)

k )s
r

1√
|Orb(s)|

es.(59)

These matrix elements are symmetric under exchange of r and s.
Remark
The operators T

(i)
k , as i ranges over {1, 2, 3} and k ranges over some subset of

{2, 3, · · · , n} form a set of commuting Hermitian operators on K(n). The commu-
tativity follows from the fact that they are central elements of K(n), the hermiticity
from Proposition 2.3. Considering such sets of operators as Hamiltonians defining a
time evolution of states in K(n) we have time-dependent ribbon graph states of the
form

Er(t) = e−itT
(i)
k Er.(60)

In Section 3.3 we will construct Hamiltonians which are particular linear combina-
tions of these operators, and have the property that their eigenvalue degeneracies are
Kronecker coefficients. In order to build up to this, we will now consider the action
of the T

(i)
k operators on the Fourier basis of K(n).

3. Integer matrices and Kronecker coefficients
In this section we will consider the action of the reconnection operators T

(i)
k introduced

in Section 2.4 on the elements QR1,R2,R3
τ1,τ2

of the Fourier basis set for K(n) described in
Section 2.1.3. The subspace of K(n) spanned by the Fourier basis elements for a fixed
ordered Young diagram triple (R1, R2, R3) has dimension equal to C(R1, R2, R3)2, the
square of the Kronecker coefficient for the triple. We will refer to such a subspace as the
Fourier subspace of K(n) associated with the triple (R1, R2, R3). We will show (Section
3.2) that the Fourier subspace for a triple form an eigenspace of the reconnection
operators. The eigenvalues are normalized characters of the symmetric group, with
rational values known from symmetric group representation theory.
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We work with a set of reconnection operators chosen such that their eigenvalues
uniquely specify the Young diagram triple. This means that, although the Fourier
basis was initially defined using matrix elements and Clebsch–Gordan coefficients for
symmetric groups (equation (14)) , we can use the reconnection operators and the
eigenvalues as input, and compute the Fourier subspace for a fixed triple of Young
diagrams directly as the null space of an integer matrix built from the reconnec-
tion operators and the eigenvalues specifying a Young diagram triple. This gives a
computational approach for the Fourier subspace associated with a Young diagram
triple without using the detailed representation theory input of matrix elements and
Clebsch–Gordan coefficients: we are only using the coarser input of character formulae
(having known combinatorial algorithms for their computation) alongside the combi-
natorially defined reconnection operators. The first algorithm based on this approach
(Section 3.2) amounts to finding the null vectors of a rectangular integer matrix. In
Section 3.3 we give the construction of quantum mechanical Hamiltonians which are
integer linear combinations of the reconnection operators T

(i)
k and have eigenvalues

that uniquely specify a Young diagram triple. This leads to an algorithm which ob-
tains the Fourier subspace for a specified triple as the null space of a square integer
matrix.

3.1. Fourier subspace of a Young diagram triple as eigenspace of recon-
nection operators.

Proposition 3.1. For all k ∈ {2, 3, · · · n}, {Ri ⊢ n : i ∈ {1, 2, 3}}, τ1, τ2 ∈
[[1, C(R1, R2, R3)]], the Fourier basis elements QR1,R2,R3

τ1,τ2
are eigenvectors of T

(i)
k :

T
(1)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

σ ⊗ 1)QR1,R2,R3
τ1,τ2

= χR1(Tk)
d(R1) QR1,R2,R3

τ1,τ2
,(61)

T
(2)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

1 ⊗ σ)QR1,R2,R3
τ1,τ2

= χR2(Tk)
d(R2) QR1,R2,R3

τ1,τ2
,(62)

T
(3)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

σ ⊗ σ)QR1,R2,R3
τ1,τ2

= χR3(Tk)
d(R3) QR1,R2,R3

τ1,τ2
.(63)

The proof is given in appendix B. Note that the eigenvalues do not depend on the
multiplicity indices τ1 and τ2, but only on the Young diagram labels (R1, R2, R3).
The proof of Proposition 3.1 relies on representation theoretic arguments.

Proposition 3.2. For any k̃∗ ∈ {k∗(n), k∗(n)+1, · · · , n} the list of eigenvalues of the
reconnection operators {T

(1)
2 , T

(1)
3 , · · · , T

(1)
k̃∗

; T
(2)
2 , T

(2)
3 , · · · , T

(2)
k̃∗

; T
(3)
2 , T

(3)
3 , · · · , T

(3)
k̃∗

}
uniquely determines the Young diagram triples (R1, R2, R3).

Proof. It was shown in [57] that the normalized characters { χR(T2)
d(R) , χR(T3)

d(R) , · · · , χR(Tn)
d(R) }

form ordered lists of numbers which distinguish Young diagrams R with n boxes.
For all n > 2 it was shown that the shorter list { χR(T2)

d(R) , χR(T3)
d(R) , · · · , χR(Tn−1)

d(R) } distin-
guishes Young diagrams. This result follows from the fact that the central elements
{T2, · · · , Tn−1} generate the centre of C(Sn) for n > 2. It was found that there gener-
ically exist k∗(n) < n − 1 such that the shorter lists { χR(T2)

d(R) , χR(T3)
d(R) , · · · ,

χR(Tk∗(n))
d(R) }

distinguish Young diagrams. The values of k∗(n) computed for all n up to 79 are
given in (45). While the general k∗(n) are not currently known, any n ⩾ k̃∗ ⩾ k∗(n)
gives a longer list which distinguishes Young diagrams. A triple of lists of length k̃∗
distinguishes a triple of Young diagrams. Using Proposition 3.1, these are the sets
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of eigenvalues of the operators {T
(1)
2 , T

(1)
3 , . . . , T

(1)
k̃∗

; T
(2)
2 , T

(2)
3 , . . . , T

(2)
k̃∗

; T
(3)
2 , T

(3)
3 ,

. . . , T
(3)
k̃∗

}. □

Lemma 3.3. The sum of all permutations σ in the conjugacy class Cp in Sn for par-
tition p are central elements in Z(C(Sn)). The irreducible normalized characters of
these central elements are integers :

χR(Tp)
d(R) ∈ Z.(64)

The proof combines a known number theoretic fact about the normalized characters
of a finite group being algebraic integers [89], along with the rationality of characters
of irreducible representations of Sn which follows from the Murnaghan–Nakayama
Lemma.

Proof. The elements Tp as p runs over the classes form a basis for Z(C(Sn)). The
structure constants of the multiplication are defined by

TpTq =
∑

r

Cr
pqTr.(65)

These structure constants Cr
pq are integers. The normalized characters χR(Tp)

d(R) are
eigenvalues of the matrix defined by Cr

pq for fixed p. The eigenvalues of an integer
matrix are algebraic integers (see e.g. Proposition III.4.3 [89]). In the case of symmetric
groups, we know that χR(σ) for σ ∈ Cp is an integer by using the Murnaghan–
Nakayama Lemma. It follows that the normalized characters χR(Tp)

d(R) are rational. A
rational number which is also an algebraic integer is necessarily an integer. This means
that the normalized characters are integers, for any conjugacy class p. □

In particular for the partitions of the form [k, 1n−k] the normalized characters
χR(Tk)
d(R) ∈ Z.(66)

Using the formulae for the normalized characters in [67, 23] the normalized characters
for T2 (as well as T3, T4, T5, T6) are evidently integers for any Young diagram. For
higher higher Tk, the integrality is not evident from the formulae, but hold from the
above argument.

3.2. Fourier subspace of triple as null-space of rectangular integer
matrices. It is useful to recall from equation (49) and Proposition 2.2 reproduced
here for convenience (with a slight change in index labels ) :

T
(i)
k Er =

∑
s

(M(i)
k )s

rEs(67)

with
(M(i)

k )s
r = Number of times the multiplication of elements in the sum T

(i)
k

with a fixed element in orbit r to the right produces an element in orbit s.
(68)

Using the definition of T
(i)
k , this means that

(M(1)
k )s

r =
∑

γ∈Ck

δ(Orb(s), Orb(γτ
(r)
1 ⊗ τ

(r)
2 )),

(M(2)
k )s

r =
∑

γ∈Ck

δ(Orb(s), Orb(τ (r)
1 ⊗ γτ

(r)
2 )),
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(M(3)
k )s

r =
∑

γ∈Ck

δ(Orb(s), Orb(γτ
(r)
1 ⊗ γτ

(r)
2 )).(69)

The integer matrices M(i)
k of T

(i)
k are constructed in Code2 of the appendix C, see

the function ArrayTi(n, kmax). Note also that we have the following relations∑
s

(M(i)
k )s

r = |Tk| = n!
k(n − k)! ,(70)

where |Tk| is the number of terms in the sum Tk, see the discussion after (43). Thus
each column of (M(i)

k )s
r is a list of non-negative integers adding up to |Tk|.

3.2.1. Stacking T
(i)
k matrices and common eigenspace. Using Proposition 3.2, the

Fourier subspace for a given triple (R1, R2, R3) is uniquely specified as common
eigenspace of the operators T

(i)
k , for k ∈ {2, . . . , k̃∗(n)} and i ∈ {1, 2, 3}; with k∗(n) ⩽

k̃∗ ⩽ n, with specified eigenvalues for these reconnection operators, which are known
from symmetric group representation theory. These eigenvalues are normalized char-
acters which can be combinatorially computed in at least two known ways. The nu-
merator χR(Tk) is given by χR(Tk) = |Tk|χR(σ) for σ ∈ Ck. The character χR(σ) can
be computed with the combinatorial Murnaghan–Nakayama rule [76] [78]. The dimen-
sion d(R) is obtained from the hook formula for dimensions. Another combinatorial
formula gives kχR(Tk)

d(R) [91][37].
The vectors in the Fourier subspace for a triple (R1, R2, R3) solve the following

matrix equation 

M(1)
2 − χR1 (T2)

d(R1)
...

M(1)
k̃∗

−
χR1 (T

k̃
)

d(R1)

M(2)
2 − χR2 (T2)

d(R2)
...

M(2)
k̃∗

−
χR2 (T

k̃∗
)

d(R2)

M(3)
2 − χR3 (T2)

d(R3)
...

M(3)
k̃∗

−
χR3 (T

k̃∗
)

d(R3)



· v = 0.(71)

This rectangular array gives the matrix elements of a linear operator mapping K(n)
to 3(k̃∗ −1) copies of K(n), using the geometric basis of ribbon graph vectors for K(n).
From Lemma 3.3, the normalized characters are integers. Renaming as LR1,R2,R3 the
integer matrix in (71) we have

LR1,R2,R3 · v = 0.(72)

We then have, for each triple of Young diagrams, the problem of finding the null
space of an integer matrix. Null spaces of integer matrices have integer null vector
bases. These can be interpreted in terms of lattices and can be constructed using
integral algorithms. We will discuss the integrality properties of the null vectors and
the associated interpretation in terms of lattices further in Section 4.
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3.2.2. Computational implementation and examples. The construction of this rect-
angular matrix using reconnections on ribbon graph equivalence classes along with
normalized symmetric group characters is implemented using the software [39]. This is
described in appendix C. For the case n = 3, k∗(n) = 2 and we choose k̃∗ = k∗(3) = 2.
The three reconnection operators T

(1)
2 , T

(2)
2 , T

(3)
2 suffice to distinguish the Young di-

agram triples. The matrices for each operator are given in appendix A.2. In this case
the Kronecker coefficients C(R1, R2, R3) are either 0 or 1. An integer null basis vector
for the Fourier subspace associated with each triple having non-vanishing Kronecker
coefficient is given in appendix A.2. The vectors shown give the coefficients of the
vectors Er for the index r ∈ {1, 2, . . . , 11} and the graph associated with each index
is shown in Figure 1.

3.3. Fourier subspace of triple as null space of square integer matrices.
We now show that Fourier subspace for a triple of Young diagrams can be obtained as
the null space of a square matrix. Rather than stacking the matrices for reconnection
operators T

(i)
k in a rectangular matrix, we will take linear combinations of these linear

operators with integer coefficients. These linear combinations define Hamiltonians in
the quantum mechanics of ribbon graphs. The coefficients are chosen with some care,
using a procedure we explain, to ensure that the eigenvalues of the Hamiltonian for
distinct Young diagram triples are distinct.
Distinguishing Young diagram triples with quantum mechanical Hamiltonians. We
consider Hermitian Hamiltonians of the form

(73) H =
3∑

i=1

k∗(n)∑
k=2

ai,kT
(i)
k

with coefficients ai,k which we will discuss shortly. For simplicity we have taken k̃∗ =
k∗(n) which is the minimum needed for the list of normalized characters to distinguish
Young diagrams with n boxes. Using Proposition 3.1 we have

(74) HQR1,R2,R3
τ1,τ2

=
(∑

i.k

ai,k
χRi(Tk)
d(Ri)

)
QR1,R2,R3

τ1,τ2
.

The Fourier subspace of K(n) for the ordered triple (R1, R2, R3), which has dimen-
sion C(R1, R2, R3)2, is an eigenspace of these Hamiltonians. We will show that the
coefficients ai,k can be chosen as integers which ensure that the eigenvalues, which we
denote as ωR1,R2,R3

(75) ωR1,R2,R3 =
∑
i,k

ai,k
χRi

(Tk)
d(Ri)

distinguish the ordered triples (R1, R2, R3). In other words, we can choose integers
ai,k to have

triple-distinguishing Hamiltonians with the property :
If (R1, R2, R3) ̸= (R′

1, R′
2, R′

3) then ωR1,R2,R3 ̸= ωR′
1,R′

2,R′
3
.(76)

Characterising the general choice of integers ai,k which defines a Hamiltonian (73)
with the property (76) is an interesting problem: here we will only show that these
Hamiltonians exist, using a particular construction. As an operator on K(n), using
the geometric ribbon graph basis, the matrix elements of H are integers

Coeff (Es, HEr) =
3∑

i=1

k∗(n)∑
k=2

ai,k(M(i)
k )s

r(77)
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using Proposition 2.2 and (49). For convenience, we will use the notation χ̂R(Tk) for
the normalized characters χR(Tk)

d(R) which are integers by Lemma 3.3. The eigenvalues
of the Hamiltonians are
(78)

ωR1,R2,R3 =
3∑

i=1

k∗∑
k=2

ai,kχ̂Ri
(Tk) =

k∗(n)∑
k=2

a1,kχ̂R1(Tk) + a2,kχ̂R2(Tk) + a3,kχ̂R3(Tk).

For each triple of Young diagrams (R1, R2, R3) the operator
(H − ωR1,R2,R3) ≡ HR1,R2,R3(79)

is, in the geometric ribbon graph basis, a square integer matrix. The Fourier subspace
of K(n) associated with the triple (R1, R2, R3) is the space spanned by the null vectors
v of this operator

HR1,R2,R3 · v = 0.(80)
We now turn to the demonstration that such triple-distinguishing Hamiltonians con-
structed from integer ai,k indeed exist in general.

Triple distinguishing property for low n
Consider the problem of establishing the property in (76) for the cases n = 2, 3, 4, 5, 7
where k∗(n) = 2. In this case, simplify the notation

a1,2 = a1 ; a2,2 = a2 ; a3,2 = a3(81)
Introduce a label q which indexes partitions of n, so Rq is a Young diagram with n
boxes. With the simplified notation

Xq = χ̂Rq (T2)(82)
the eigenvalues are

ωRq1 ,Rq2 ,Rq3
= (a1Xq1 + a2Xq2 + a3Xq3).(83)

These Xq are integers using Lemma 3.3.

Conditions on ai

The problem of finding ai to have Hamiltonians with the triple-distinguishing
property is now the problem of finding a1.a2, a3 such that for any distinct triples
(Rq1 , Rq2 , Rq3) ̸= (Rq′

1
, Rq′

2
, Rq′

3
) the eigenvalues in (83) ωRq1 ,Rq2 ,Rq3

̸= ωRq′
1

,Rq′
2

,Rq′
3
.

In other words, the problem is to
Find integers a1, a2, a3 such that
a1(Xq1 − Xq′

1
) + a2(Xq2 − Xq′

2
) + a3(Xq3 − Xq′

3
) = 0

is only satisfied when Xq1 = Xq′
1
, Xq2 = Xq′

2
, Xq3 = Xq′

3
.(84)

Equivalently, the problem is to find integers (a1, a2, a3) such that the sum
a1(Xq1 − Xq′

1
) + a2(Xq2 − Xq′

2
) + a3(Xq3 − Xq′

3
)(85)

is never zero for any choice of distinct triples (q1, q2, q3) and (q′
1, q′

2, q′
3). Note that two

triples are considered distinct if they differ in any of the 3 slots. E.g. if q1 ̸= q′
1 then

(q1, q2, q3) and (q′
1, q2, q3) are distinct triples.

Given the condition on the ai, none of the ai can be zero. Suppose the contrary,
e.g. a1 = 0. Then we can take Xq1 ̸= Xq′

1
but Xq2 = Xq′

2
, Xq3 = Xq′

3
, and get a

solution to (84). Let us look for a solution where a1 = 1.
The possible differences Xq −Xq′ at fixed n form a finite set of values. For example

at n = 3, they can be (0, 3, −3, 6, −6). The list of non-zero Xq −Xq′ has prime factors
2, 3. Take a prime p1 which is not one of these prime factors. E.g. in this n = 3 case,

Algebraic Combinatorics, Vol. 6 #2 (2023) 566



Quantum mechanics of bipartite ribbon graphs

take p1 = 5. Let a2 = p1. This ensures that, when Xq3 = Xq′
3
, we cannot solve (84) :

the second term has a prime factor p1 while the first does not, so they cannot add up
to zero. For a3 we pick another prime p2 which is not p1 and does not appear among
the prime factors of Xq − Xq′ for any q, q′. This ensures that the condition (84) on
the ai is satisfied for all triples where Xq2 = Xq′

2
.

Now we consider the generic case where
Xq1 ̸= Xq′

1
, Xq2 ̸= Xq′

2
, Xq3 ̸= Xq′

3
.(86)

To continue satisfying (84) we can choose a3 large enough that the last term cannot
be cancelled by the sum of first two terms. So pick p2 such that

p2Minq,q′ |Xq − Xq′ | > Max(|p1(Xq2 − Xq′
2
) + (Xq1 − Xq′

1
)|).(87)

Using the inequality,
p1Maxq2,q′

2
|Xq2 − Xq′

2
| + Maxq1,q′

1
|Xq1 − Xq′

1
| ⩾ Max(|p1(Xq2 − Xq′

2
) + (Xq1 − Xq′

1
)|).

(88)
we can write a computationally simpler condition

p2Minq,q′ |Xq − Xq′ | > (p1 + 1)Maxq,q′ |Xq − Xq′ |.(89)
Since we are in the case (86), Minq,q′ |Xq − Xq′ | > 0.

In the example of n = 3, choosing p1 = 5 as explained above, pick p2 = 13, which
satisfies (89) because 13 ∗ 3 > 5 ∗ 6 + 6. We conclude that the choice (a1, a2, a3) =
(1, 5, 13) at n = 3, satisfies the condition (84) and the eigenvalues of H = T

(1)
2 +

5T
(2)
2 + 13T

(3)
2 distinguish the triples (R1, R2, R3) which label the Q-basis, and the

degeneracies of the eigenspaces are precisely the squares of Kronecker coefficients.

Triple distinguishing property for general n
We now have eigenvalues of H equal to

ωRq1 ,Rq2 ,Rq3
=

k∗∑
k=2

(a1,kXq1,k + a2,kXq2,k + a3,kXq3,k)(90)

with
Xqi,k = χ̂Rqi

(Tk).(91)
We choose ai,k to have Hamiltonians with the triple-distinguishing property, i.e.
ωRq1 ,Rq2 ,Rq3

̸= ωRq′
1

,Rq′
2

,Rq′
3

for (Rq1 , Rq2 , Rq3) ̸= (Rq′
1
, Rq′

2
, Rq′

3
). This the problem

Find integers a1,k, a2,k, a3,k such that
k∗∑

k=2
a1,k(Xq1,k − Xq′

1,k) + a2,k(Xq2,k − Xq′
2,k) + a3,k(Xq3,k − Xq′

3,k) = 0

is only satisfied when Xq1 = Xq′
1
, Xq2 = Xq′

2
, Xq3 = Xq′

3
.(92)

The previous strategy for low n extends here. Suppose q1 ̸= q′
1 but q2 = q′

2, q3 = q′
3.

In this case, we need to make sure that the a1,k are chosen such that for any pair
q1, q′

1
k∗∑

k=2
a1,k(Xq1,k − Xq′

1,k) ̸= 0.(93)

One scheme for producing such a collection of a1,k is to use prime decompositions
again. Consider the differences Xq1,k − Xq′

1,k as q1, q′
1 range over distinct pairs. Con-

sider the set of prime factors, denoted PrimesDiffs(n, k) appearing in the integer
differences Xq1,k − Xq′

1,k as q1, q′
1 range over distinct pairs. Choose a1,2 = 1 and
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a1,3 = p1, with p1 /∈ PrimesDiffs(n, 2). Then a1,4 = p2 is a bigger prime chosen such
that p2 /∈ {p1} ∪ PrimesDiffs(n, 2) ∪ PrimesDiffs(n, 3) and

(94) Maxq,q′ |(Xq,2 − Xq′,2)| + p1Maxq,q′ |(Xq,3 − Xq′,3)| < p2Minq,q′ |(Xq,4 − Xq′,4)|.

By iterating this procedure, we select increasing primes p1, p2, · · · , pk∗−2 to ensure
(93).

Back to considering (92): the case q1 = q′
1, q2 ̸= q′

2, q3 = q′
3 requires

k∗∑
k=2

a2,k(Xq2,k − Xq′
2,k) ̸= 0.(95)

The case q1 = q′
1, q2 = q′

2, q3 ̸= q′
3 requires

k∗∑
k=2

a3,k(Xq3,k − Xq′
3,k) ̸= 0.(96)

We also need to ensure that the condition (92) holds when two of the q’s are distinct
and when all three are distinct. We can pick

(a1,2, a1,3, · · · , a1,k∗) = (1, p1, p2, · · · , pk∗−2)
(a2,1, a2,2 · · · , a2,k∗−2) = pk∗−1(1, p1, · · · , pk∗−2)
(a3,1, a3,2, · · · , a3,k∗−2) = pk∗(1, p1, · · · , pk∗−2).(97)

The primes are chosen such that p1 < p2 < · · · < pk∗−2 < pk∗−1 < pk∗ , with pk∗−1
such that

Maxq,q′

(∣∣∣ k∗∑
k=2

pk−2(Xq,k − Xq′,k)
∣∣∣) ⩽

Maxq,q′

( k∗∑
k=2

pk−2|Xq,k − Xq′,k|
)

< pk∗−1 Minq,q′

(∣∣∣ k∗∑
k=2

pk−2(Xq,k − Xq′,k)
∣∣∣)(98)

where we extend the sequence pl to p0 = 1, and also such that pk∗ obeys
(99)

(1 + pk∗−1)Maxq,q′

( k∗∑
k=2

pk−2|Xq,k − Xq′,k|
)

< pk∗Minq,q′

(∣∣∣ k∗∑
k=2

pk−2(Xq,k − Xq′,k)
∣∣∣).

The Min on the RHS is non-zero since this condition is coming from the vase q1 ̸=
q′

1, q2 ̸= q′
2, q3 ̸= q′

3. With these integer choices of a1,k, a2,k, a3,k we can ensure that H
has eigenvalues which distinguish the triples (R1, R2, R3) in the Fourier basis elements
QR1,R2,R3

τ1,τ2
. The dimensions of the distinct eigenspaces are C(R1, R2, R3)2.

Examples. In fact, for k = 2, Maxq,q′ |Xq,2 −Xq′,2| is known and equals 2 · |χ̂[1n](T2)| =
n(n−1) and Minq,q′ |Xq,2−Xq′,2| cannot be lower than 1 since we know that Xq,2, Xq′,2
are integers. Using this lower bound

p2Minq,q′ |Xq,2 − Xq′,2| > p2 > (p1 + 1)n(n − 1).(100)

Thus picking the minimal prime p2 larger than (p1 + 1)n(n − 1) would solve the
inequality in (89). When Minq,q′ |Xq,2 − Xq′,2| > 1 then the above is a still sufficient
condition but does not lead to the smallest p2. After some illustrations, we will discuss
sufficient conditions that leads to other solutions of the problem.

Case n = 5. Here k∗ = 2 and we have

Xq,2 − Xq′,2 ∈(101)
{−20, −15, −12, −10, −8, −7, −5, −4, −3, −2, 0, 2, 3, 4, 5, 7, 8, 10, 12, 15, 20}
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with χ̂[1n](T2) = −10 so that Maxq,q′ |Xq,2 − Xq′,2| = 20, and Minq,q′ |Xq,2 − Xq′,2| =
2 > 0. The set of prime divisors of the above set is {2, 3, 5, 7}. We choose p1 = 11 and
therefore the inequality (89) becomes

2p2 > 12 × 20 = 240.(102)
Hence we choose p2 = 127, and the triple (p0, p1, p2) = (1, 11, 127) solves (84). The
Hamiltonian H = T

(1)
2 +11T

(2)
2 +127T

(3)
2 is an integer matrix in the geometric ribbon

graph basis, with the property that distinct Young diagram triples are associated with
distinct eigenvalues, and the eigenvalue degeneracies are given by C(R1, R2, R3)2.

Case n = 7. Again k∗ = 2 should be the max of k. We have
Xq,2 − Xq′,2 ∈ {−42, −35, −30, −28, −27, −24, −23, −22, −21, −20, −18, −17, −16,
−15, −14, −13, −12, −11, −10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 27, 28, 30, 35, 42} ,

(103)
with χ̂[1n](T2) = −21, Maxq,q′ |Xq,2 − Xq′,2| = 42, and Minq,q′ |Xq,2 − Xq′,2| = 1. The
set of prime divisors is {2, 3, 5, 7, 23, 17, 13, 11}. Choose p1 = 19, and then we seek

p2 > 20 ∗ 42 = 840 .(104)
We fix p2 = 853 and (a1, a2, a3) = (p0, p1, p2) = (1, 19, 853) is one correct triple solves
(84). Thus H = T

(1)
2 + 19T

(3)
2 + 853T

(3)
2 is an integer matrix in the geometric ribbon

graph basis, with the property that distinct Young diagram triples are associated with
distinct eigenvalues, and the eigenvalue degeneracies are given by C(R1, R2, R3)2.

Case n = 6. In this case k∗ = 3 and
Xq,2 − Xq′,2 ∈ {−30, −24, −20, −18, −15, −14, −12, −10, −9, −8, −6, −5, −4, −3,
−2, 0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30}

PrimesDiffs(6, 2) = {2, 3, 5, 7} , Minq,q′ |Xq,2 − Xq′,2| = 2 ;

Xq,3 − Xq′,3 ∈ {−48, −45, −40, −36, −24, −21, −16, −12, −9, −8, −5, −4, −3, 0, 3,
4, 5, 8, 9, 12, 16, 21, 24, 36, 40, 45, 48}

PrimesDiffs(6, 3) = {2, 3, 5, 7} , Minq,q′ |Xq,3 − Xq′,3| = 3 .
(105)
We follow the procedure and require p1 /∈ PrimesDiffs(6, 2), hence, for instance
p1 = 11. Then we seek p2 that obeys

Maxq,q′

(
|Xq,2 − Xq′,2| + p1|Xq,3 − Xq′,3|

)
< p2Minq,q′

∣∣∣(Xq,2 − Xq′,2) + p1(Xq,3 − Xq′,3)
∣∣∣

Maxq,q′

(
|Xq,2 − Xq′,2| + p1|Xq,3 − Xq′,3|

)
= 30 + p1 ∗ 48 = 30 + 11 ∗ 48 = 558 ,

Minq,q′

∣∣∣(Xq,2 − Xq′,2) + p1(Xq,3 − Xq′,3)
∣∣∣ = 2 .

(106)
Thus we seek a prime p2 such that

558 < 2p2 , p2 > 279 .(107)
We then use p2 = 289. It remains to determine p3 satisfying

(1 + p2) × 558 < 2p3
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(1 + 289) × 558 = 161820 < 2p3 , p3 > 80910.(108)

that gives p3 = 80917. Thus the quadruple is (1, p1, p2, p3) = (1, 11, 289, 80917) with
a1,2 = 1, a1,3 = 11, a2,2 = 289, a2,3 = 289 × 11 = 3179, a3,2 = 80917, a3,3 = 80917 ×
11 = 890087 solves the condition (92). As a result the Hamiltonian H =

∑
i,k ai,kT

(i)
k

with these coefficients has integer matrix elements in the ribbon graph basis, has
distinct eigenvalues for distinct triples of Young diagrams, and eigenvalue degeneracies
given by C(R1, R2, R3)2.

Sufficient conditions. At smallest order of k∗ = 2, 3, there are quick sufficient
conditions that solve the problem, for all n = 2, 3, 4, . . . , 14. We are confident that
similar identities holds for higher order in k∗. Note that the solutions pk’s provided
below need not be the smallest possible but we arrive at easy programming equalities.

Consider first k∗ = 2, pick p1 as the first prime number above n(n − 1) (as
Maxq,q′ |Xq,2 − Xq′,2| = n(n − 1)). This already guarantees that it does not be-
long to the set of prime divisors of the set {Xq − Xq′}. Then choose the prime
p2 > (p1 + 1) ∗ n(n − 1) then (a1, a2, a3) = (1, p1, p2) solves the condition (84).

Addressing k∗ = 3, we can replace Minq,q′ |·| by the lower bound 1 and the Maxq,q′ |·
| = 2χ̂[1n](Tk). Let us illustrate this idea at n = 6. Already, p1 has been fixed to be
the smallest prime p1 > n(n − 1). We consider MaxqXq,3 = χ̂[1n](T3) = n(n−1)(n−2)

3 ,
and thus Maxq,q′ |Xq,3 − Xq′,3| ⩽ 2 n(n−1)(n−2)

3 . We choose

p2 > Maxq,q′(|Xq,2 − Xq′,2|) + p1Max(|Xq,3 − Xq′,3|)
> n(n − 1) + p1

2
3n(n − 1)(n − 2).(109)

Thus we choose p2 to be the next prime after n
3 (n−1)(3+2p1(n−2)). Last p3 should

obey the bound

p3 > (1 + p2)Maxq,q′(|Xq,2 − Xq′,2| + p1|Xq,3 − Xq′,3|)

> (1 + p2)(n(n − 1) + p1
2
3n(n − 1)(n − 2)).(110)

Therefore picking p3 as the next prime larger than n
3 (n − 1)(1 + p2)(3 + 2p1(n − 2))

will solve the issue.
At n = 6, Maxq,q′ |Xq,2 − Xq′,2| = 30 = 2χ̂[1n](T2), We can pick p1 = 31. Then

Maxq,q′ |Xq,3 − Xq′,3| = 48 < 80 = 2χ̂[1n](T3). This will fixe p2 and p3. Then an
alternative quadruple that solves the problem is given by (1, 31, 2521, 6330223) (to be
compared with the previous quadruple (1, 11, 289, 80917) in equation (108)).

4. Kronecker coefficients and ribbon graph sub-lattices
In Section 3, we constructions of an integer matrix for each ordered triple of Young
diagrams (R1, R2, R3) with n boxes, with the property that their null space gives a
basis for the Fourier subspace of K(n) associated with that triple. This subspace has
dimension equal to the square of the Kronecker coefficient : C(R1, R2, R3)2. These
matrices are constructed from central elements T

(i)
k (introduced in Section 2.4) of

the algebra K(n) of bipartite ribbon graphs with n edges, where i ∈ {1, 2, 3} and
k ∈ {2, 3, . . . , k̃∗}. The parameter k̃∗ ∈ {k∗(n), k∗(n) + 1, . . . , n}, where k∗(n) is the
minimal integer such that the central elements {T2, . . . , Tk∗(n)} generate the centre of
C(Sn) and it has been computed for n up to 79 [57]. We have two constructions for
each Young diagram triple, one producing a rectangular matrix LR1,R2,R3 (72) and
another producing a square matrix HR1,R2,R3 (80). In each case, we are solving the
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linear equation
X · v = 0(111)

where X = LR1,R2,R3 or X = HR1,R2,R3 .
The null spaces of integer matrices have bases given as integer vectors. This follows

from the theory of Hermite normal forms and has an interpretation in terms of sub-
lattices. In the present application we have a lattice

Z|Rib(n)| ⊂ R|Rib(n)|(112)
which is interpreted as the space of integer linear combinations of the geometric ribbon
graph basis vectors Er of the ribbon graph algebra K(n). We will refer to Z|Rib(n)|

as the lattice of ribbon graphs. In this section, we will explain the key facts about
integer matrices and sub-lattices that we will need and state the first main result of
this paper, Theorem 4.1. This is the construction of C(R1, R2, R3)2 as the dimension
of a sub-lattices of the lattice of ribbon graphs.

A classic problem asks for a combinatorial construction of the Kronecker coefficient
associated with every triple of Young diagrams [77, 90]. Recent progress on this prob-
lem from a number of directions and its connections to computational complexity is
summarised in [80]. Theorem 4.1 gives a combinatorial interpretation of the square of
the Kronecker coefficients. The theory of Hermite normal forms for integer matrices
also offers combinatorial algorithms for finding the null spaces (Corollary 4.2). It is
also interesting to ask if there is a purely combinatorial proof - without using represen-
tation theory - of the formula for Kronecker coefficients in terms of characters, which
can be viewed as combinatorial objects, for example, by the Murnaghan–Nakayama
algorithm. Our proof of Theorem 4.1 relies in an important way on representation
theory, e.g. in the derivation of Proposition 3.1 which enters the proof, and is there-
fore not purely combinatorial. In Section 4.2 we discuss how the question of a purely
combinatorial proof of the Theorem 4.1 raises interesting questions on integer matri-
ces.

In Section 4.3, we consider the S = ±1 eigenspaces of the conjugation op-
erator defined in 2.2.2. This leads to the definition of sub-lattices of the lat-
tice of ribbon graphs with dimensions C(R1, R2, R3)(C(R1, R2, R3) + 1)/2 and
C(R1, R2, R3)(C(R1, R2, R3) − 1)/2, constructed as null spaces of integer matrices.
The difference of these dimensions is C(R1, R2, R3) which can therefore be con-
structed by choosing a map from a basis set for the null vectors, determined for
example by a Hermite normal form algorithm, for the smaller sub-lattice to a basis
set for the larger sub-lattice (Theorem 4.4).

4.1. Null-vectors of integer matrices and lattices. The null space of the
integer matrix X defined by (111) is the span of a set of null vectors which can be
chosen to be integer vectors, i.e. integral linear combinations of the Er. A key result
from the theory of integer matrices and lattices is that any integer matrix A (square or
rectangular) has a unique Hermite normal form (HNF) (as explained in textbooks such
as [20][88] or online notes such as [74]). These can be computed using mathematical
software such as GAP, SAGE or Mathematica. Thus A has a decomposition A = Uh:
U is a unimodular matrix, i.e. an integer matrix of determinant ±1. In the following
discussion we will use A = XT . h is an integer matrix with the following properties :

• h is upper triangular (that is, hij = 0 for i > j), and any rows of zeros are
located below any other row.

• The leading coefficient (the first non-zero entry from the left, also called the
pivot) of a non-zero row is always strictly to the right of the leading coefficient
of the row above it; moreover, it is positive.
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• The elements below pivots are zero and elements above pivots are non-
negative and strictly smaller than the pivot.

The construction of h proceeds by applying a sequence of operations involving one
of the following in each step.

• Swop two rows.
• Multiply a row by −1.
• Add an integer multiple of a row to another row of A.

Each of these operations corresponds to left multiplication of A by a unimodular
matrix U : A → UA. Every integer matrix A can be brought into HNF by a sequence
of these elementary integer row operations. Suppose we want to find the vectors v
which obey Xv = 0. Equivalently vT XT = 0. We apply the elementary integer row
operations to bring XT to HNF. This means XT = Uh. The number N of lower rows
of zeroes in h is the dimension of the null space of X. The integer null vectors can be
read off from the lower N rows of U . The non-zero rows of h give an integer basis for
the image of X.

As a simple example to illustrate these properties, take

X =
(

1 1
2 2

)
, XT =

(
1 2
1 2

)
,(113)

with XT being the transpose of X. By applying the row operation of replacing the
second row R2 by R2 − R1 we get the HNF

XT → h =
(

1 2
0 0

)
.(114)

The unimodular matrix which implements this row operation is

U =
(

1 0
1 −1

)
(115)

i.e

UXT =
(

1 2
0 0

)
= h.(116)

The lower row of U , when transposed, gives the null vector for the action of X : v →
Xv

X

(
1

−1

)
=
(

0
0

)
.(117)

The non-vanishing row of h, transposes to the column vector which gives the image
of X since

X

(
x1
x2

)
= (x1 + x2)

(
1
2

)
.(118)

To see that the connection between the lower rows of the unimodular matrix U in
the decomposition UXT = h corresponds to null vectors, observe that

UXT = h(119)
can be written as ∑

k

UikXT
kj = hij .(120)

The vanishing rows of h correspond to values of i such that hij = 0 for all j. Fixing
one of these i we have vectors Uik as k varies, with the property:∑

k

XjkUik = 0.(121)
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Note that we could have equivalently worked with elementary column operations on
X rather than elementary row operations on XT .

By definition the matrix U has integer entries, so this construction gives an in-
teger basis for the null space of XT . The null vectors of X, found as integer linear
combinations of Er, define a sub-lattice of the lattice Z|Rib(n)|. The dimension of the
sub-lattice is the square (C(R1, R2, R3))2 of the Kronecker coefficient. The square of
the Kronecker coefficient thus has the combinatorial interpretation as the dimension
of a sub-lattice of the lattice of ribbon graphs. We have thus arrived at the first main
theorem of this paper.

Theorem 4.1. For every triple of Young diagrams (R1, R2, R3) with n boxes, the
lattice

Z|Rib(n)|(122)
of integer linear combinations of the geometric basis vectors Er of K(n) contains a
sub-lattice of dimension (C(R1, R2, R3))2 spanned by a basis of integer null vectors of
the operator X, which is LR1,R2,R3 from (72) in the rectangular matrix construction
or HR1,R2,R3 from (80) in the square matrix construction.

Solving for the null vectors of X using the HNF shows that there is sub-lattice
in the lattice of ribbon graphs whose dimension is (C(R1, R2, R3))2. This gives a
combinatorial interpretation for the square of the Kronecker coefficient.

But the theory of lattices is even more powerful. The columns of X (equivalently the
rows of XT ) are a set of vectors in the lattice of ribbon graphs. The space spanned by
the integer linear combinations of these vectors is a sub-lattice of dimension |Rib(n)|−
C(R1, R2, R3)2 (that is the column rank of X or the row rank XT ). The process
of arriving at the HNF through row operations on XT amounts to simplifying the
description of this sub-lattice until it is given as the integer linear combinations of
a linearly independent set of integer vectors which sit in the rows of h. This process
also defines a unimodular matrix which encodes the integer null vectors of X. Each
step in the process of row operations acts on the set of lattice vectors in X, and can
thus be viewed as constructive combinatorial steps.

Corollary 4.2. There is a constructive procedure for the sub-lattice in Theorem 4.1
consisting of integer row operations on the list of integer rows of XT , which produce
the HNF of XT .

Proof. The treatment of rows of XT to put it in a HNF form XT = Uh is a combinato-
rial construction consisting of a discrete sequence of integer row operations (swop, mul-
tiplying by −1 and integer linear combinations of rows). The outcome h of the HNF
construction gives a basis for the sub-lattice of dimension |Rib(n)| − C(R1, R2, R3)2

spanned by integer linear combinations of the rows of XT . The outcome U is built
in successive steps by matrices implementing the integer elementary row operations
on XT . At the start of an algorithm for the HNF of XT , the rows give a generically
over-complete basis for the lattice generated by these rows. XT is modified step by
step until the last step produces h. At each step the intermediate matrix has a list of
lattice vectors. At the end of an algorithm for the HNF, there is a sequence of rows
of zeros in h and the corresponding rows of U record the integer null vectors, the
number of which is C(R1, R2, R3)2. The construction of U associated with a given X
is thus a sequence of combinatorial operations on lattice vectors in Z|Rib(n)|.

□

The key fact from the theory of integer matrices and lattices we have used is the
existence and uniqueness of the HNF. In the above we have focused on the fact that
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integral algorithms exist which produce from X, the null vectors and the HNF. We
have not focused on the computational complexity of the problem. We make some
initial remarks in this direction. The LLL algorithm [68] is known to calculate HNF’s
in a time that is polynomial in the size of the matrix. Our matrices are very large -
grow as the number of ribbon graphs. We know from [8] for a partition

∑
i ipi = n

|Rib(n)| =
∑
p⊢n

n∏
i=1

ipi(pi!).(123)

The leading orders of the asymptotics of this number are known (see [64]): |Rib(n)| ∼
n! ∗ (1 + 2/n2 + 5/n3 + 23/n4 + 106/n5 + 537/n6 + 3143/n7 + 20485/n8 + 143747/n9 +
1078660/n10). Thus the data size of our problem already grows like O(n!) (assuming
that k∗(n) ≪ n as n → ∞). It seems that combined with a problem of time complex-
ity, our problem entails an super-exponential complexity in (memory) space. Hence,
although the time complexity of HNF could be polynomial in the data size, it would
remain O(n!). A more thorough discussion of the complexity of the algorithm for
construction the sub-lattice in Theorem 4.1 taking into account the group theoretic
characteristics of the integer matrix X is left for the future.

4.2. Combinatorial interpretations, algorithms and proofs. An interest-
ing question for a combinatorial construction of Kronecker coefficients posed in [90]
is whether it gives a new proof of the fact that these coefficients are non-negative
integers. It is of course obvious from representation theory that C(R1, R2, R3) is
non-negative-integer - it is the number of times R3 appears in the tensor product
decomposition R1 ⊗ R2 when viewed as a representation using the diagonal action of
permutations. The character formula

C(R1, R2, R3) = 1
n!
∑

σ∈Sn

χR1(σ)χR2(σ)χR3(σ)(124)

- although it can be derived from representation theory - can also be viewed as a
purely combinatorial formula, where the characters are given for example by the
Murnaghan–Nakayama combinatorial rule. From the purely combinatorial point of
view, the non-negative integer property is not manifest.

The sub-lattice interpretation of Kronecker coefficients (Theorem 4.1) makes it
manifest that they are non-negative integers. Algorithms for computing the HNFs are
combinatorial operations on lists of lattice vectors. Our proof of the interpretation and
of the validity of the algorithms has relied on an important input from representation
theory (Proposition 3.1). An interesting question is whether lattices of ribbon graphs
offer an avenue to provide a purely combinatorial understanding, with no represen-
tation theory input, for the non-negativity of C(R1, R2, R3), defined by the formula
(124) in terms of characters computable by the combinatorial Murnaghan–Nakayama
rule. To give some context to this question, consider the equality of n! with the sum of
squares of the dimensions of irreducible representations of Sn, which can be derived
using representation theory. This can also be derived purely combinatorially using the
Robinson-Schensted correspondence which gives a bijection between permutations in
Sn and pairs of standard Young tableaux having the same shape and n boxes (see for
example a textbook reference [38]).

This raises some questions on the non-negative integer matrices T
(i)
k , the rectan-

gular integer matrices in Section 3.2 and the square matrices of Hamiltonian matrix
elements in Section 3.3. The first step would be to derive formulae for the eigen-
values T

(i)
k recovering the Murnaghan–Nakayama combinatorics of these eigenvalues

directly from these matrices built using the reconnection matrices T
(i)
k . The second
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step would be to show that the eigenvalue degeneracies are given by (124), viewed as
an expression for the degeneracies in terms of the eigenvalues. Any integer matrix is
known to have a Smith normal form (SNF) which can be calculated by algorithms
generalizing to those for HNFs [20]. In the SNF for X, we have X = UDV , where the
matrix D is a diagonal matrix of singular values. The relation between these singular
values and the eigenvalues of an integer matrix X has been studied in [70]. Singular
values in the SNF are accessible to integer-matrix algorithms while eigenvalues enter
the link between the integer matrices at hand and the Kronecker coefficients. Better
understanding this link could potentially help towards a purely combinatorial proof
of the interpretation and algorithms for Kronecker coefficients based on Theorem 4.1.

4.3. Conjugation action and additional sub-lattices. In section (4.1), the
HNF of integer matrices to a C(R1, R2, R3)2 dimensional sublattice of ribbon graphs
and has provided a refinement of the counting of all ribbon graphs. We now describe
integer matrices which will lead us to a sublattice interpretation of C(R1, R2, R3).

In Section 2.2.2 we defined a conjugation operator S (24) which satisfies S2 = id.
The conjugation either maps a ribbon graph to itself S(Er) = Er, or distinct pairs
Es ̸= Et are related by S(Es) = Et; S(Et) = Es. We refer to the former as self-
conjugate ribbon graphs and the the latter as conjugate pairs.

In order to illustrate the action of S consider n = 3. Inversion of the permutation
pairs representing a ribbon graph leaves the pair unchanged unless one of the permu-
tations has a cycle of length 3. For this n = 3 case, all ribbon graph vectors Er are
self-conjugate : inversion maps any representative pair or permutations to another
pair within the same orbit. We list the orbits at n = 3 which involve a cycle of length
3, to illustrate this property

3 : [[(), (1, 2, 3)] , [(), (1, 3, 2)]]
7 : [[(2, 3), (1, 2, 3)], [(2, 3), (1, 3, 2)], [(1, 2), (1, 2, 3)]

[(1, 2), (1, 3, 2)], [(1, 3), (1, 2, 3)], [(1, 3), (1, 3, 2)]],
8 : [[(1, 2, 3), ()], [(1, 3, 2), ()]],
9 : [[(1, 2, 3), (2, 3)], [(1, 2, 3), (1, 2)], [(1, 2, 3), (1, 3)],

[(1, 3, 2), (2, 3)], [(1, 3, 2), (1, 2)], [(1, 3, 2), (1, 3)]],
10 : [[(1, 2, 3), (1, 2, 3)], [(1, 3, 2), (1, 3, 2)]],
11 : [[(1, 2, 3), (1, 3, 2)], [(1, 3, 2), (1, 2, 3)]],(125)

where the first column contains the labels (i.e 3,7,8, etc.) of ribbon graphs of Figure
1. As we will see shortly, this self-conjugation property can be understood using the
action of S on the Fourier basis of K(n).

The following statement holds:

Proposition 4.3. Under the conjugation action, we have
S(QR1,R2,R3

τ1,τ2
) = QR1,R2,R3

τ2,τ1
.(126)

Proof. Consider QR1,R2,R3
τ1,τ2

given by (14), then

S(QR1,R2,R3
τ1,τ2

) =
κR1,R2

∑
σ1,σ2∈Sn

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ1)DR2
i2j2

(σ2) σ−1
1 ⊗ σ−1

2

= κR1,R2

∑
σ1,σ2∈Sn

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ−1
1 )DR2

i2j2
(σ−1

2 ) σ1 ⊗ σ2

= κR1,R2

∑
σ1,σ2∈Sn

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
j1i1

(σ1)DR2
j2i2

(σ2) σ1 ⊗ σ2

= κR1,R2

∑
σ1,σ2∈Sn

∑
il,jl

CR1,R2;R3,τ1
j1,j2;i3

CR1,R2;R3,τ2
i1,i2;i3

DR1
i1j1

(σ1)DR2
i2j2

(σ2) σ1 ⊗ σ2
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= QR1,R2,R3
τ2,τ1

.
(127)
We used the fact that DR

ij(σ−1) = DR
ji(σ) and a relabelling of indices i1, i2 ↔ j1, j2.

□

Remark Proposition 4.3 implies that at n = 3, where C(R1, R2, R3) is ether 1 or
0, the only possible eigenvalue of S is 1. Considering then the action of S on the
geometric basis, we deduce that all the ribbon graphs must be self-conjugate. This is
indeed confirmed by (125).

On the geometrical ribbon graph basis for K(n), the action of S can leave a ribbon
basis element Er invariant, or it can pair the ribbon with another ribbon. Let us denote
by E

(s)
r the self-conjugate ribbons, which stay invariant under conjugation. The non-

self conjugate pairs are (E(n)
r , E

(n̄)
r ). The +1 eigenspace of S in K(n) is spanned by

{E
(s)
r , (E(n)

r + E
(n̄)
r )}. The −1 eigenspace of S is spanned by {(E(n)

r − E
(n̄)
r )}. Let us

denote the vector space of ribbon graphs, which is the underlying vector space of the
algebra K(n) by V Rib(n). V Rib(n) has a decomposition according to the eigenvalues of
S

V Rib(n) = V
Rib(n)

S=1 ⊕ V
Rib(n)

S=−1 .(128)
The S = 1-eigenspace is the direct sum

V
Rib(n)

S=1 = V
Rib(n)

pairs+ ⊕ Vsinglets(129)

where V
Rib(n)

pairs+ is spanned by {(E(n)
r + E

(n̄)
r )} and Vsinglets by {E

(s)
r }, whereas the

S = (−1)-eigenspace is

V
Rib(n)

S=−1 = V
Rib(n)

pairs− .(130)

Using the Wedderburn–Artin decomposition of K(n) we also have

V Rib(n) =
⊕

R1,R2,R3

V Rib(n): R1,R2,R3(131)

where V Rib(n): R1,R2,R3 has dimension C(R1, R2, R3)2 and is spanned by the QR1,R2,R3
τ1,τ2

for all τ1 and τ2. The projection of V Rib(n) to a fixed R1, R2, R3 commutes with the
operator S. This is evident from Proposition 4.3. Using this proposition, it is also
obvious that the S = 1 subspace of V Rib(n): R1,R2,R3 is given by

V
Rib(n): R1,R2,R3

S=1 = Span{QR1,R2,R3
τ,τ : 1 ⩽ τ ⩽ C(R1, R2, R3)}

⊕ Span{QR1,R2,R3
τ1,τ2

+ QR1,R2,R3
τ2,τ1

: 1 ⩽ τ1 < τ2 ⩽ C(R1, R2, R3)}
(132)
and its S = −1 subspace is
(133)

V
Rib(n): R1,R2,R3

S=−1 = Span{QR1,R2,R3
τ1,τ2

− QR1,R2,R3
τ2,τ1

: 1 ⩽ τ1 < τ2 ⩽ C(R1, R2, R3)}.

Then V Rib(n): R1,R2,R3 = V
Rib(n): R1,R2,R3

S=1 ⊕ V
Rib(n): R1,R2,R3

S=−1 . Combining this with
(131) we then have

(134) V Rib(n) =
⊕

R1,R2,R3

(
V

Rib(n):R1,R2,R3
S=1 ⊕ V

Rib(n):R1,R2,R3
S=−1

)
.

From (133) we deduce that

Dim
(

V
Rib(n):R1,R2,R3

S=−1

)
= C(R1, R2, R3)(C(R1, R2, R3) − 1)

2
= Dim

(
P R1,R2,R3V

Rib(n)
pairs−

)
(135)
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with P R1,R2,R3 the projector onto V Rib(n):R1,R2,R3 . Similarly from (132) we have

Dim
(

V
Rib(n):R1,R2,R3

S=+1

)
= C(R1, R2, R3)(C(R1, R2, R3) + 1)

2
= Dim

(
P R1,R2,R3V

Rib(n)
pairs+

)
+ Dim

(
P R1,R2,R3V

Rib(n)
singlets

)
.

(136)

Note that we do not have separate expressions for the two terms in the sum above
in terms of Kronecker coefficients, since we do not expect the P R1,R2,R3 to commute
with the projection of V

Rib(n)
S=1 into the separate summands V

Rib(n)
singlets and V

Rib(n)
pairs+ .

If we do the sum over R1, R2, R3, we have

Dim
(

V
Rib(n)

S=+1

)
=

∑
R1,R2,R3

C(R1, R2, R3)(C(R1, R2, R3) + 1)
2

= Dim
(

V
Rib(n)

pairs+

)
+ Dim (Vsinglets)(137)

and
(138)

Dim
(

V
Rib(n)

S=−1

)
=

∑
R1,R2,R3

C(R1, R2, R3)(C(R1, R2, R3) − 1)
2 = Dim

(
V

Rib(n)
pairs−

)
.

Since

Dim
(

V
Rib(n)

pairs+

)
= Dim

(
V

Rib(n)
pairs−

)
(139)

we have

Dim
(

V
Rib(n)

pairs+

)
=

∑
R1,R2,R3

C(R1, R2, R3)(C(R1, R2, R3) − 1)
2 ,(140)

Dim
(

V
Rib(n)

singlets

)
=

∑
R1,R2,R3

C(R1, R2, R3).(141)

While the sum over triples of Young diagrams with n boxes of the square of Kronecker
coefficients gives the number of ribbon graphs with n edges, the sum of the Kronecker
coefficients gives the number of singlet ribbon graphs.

The sequence of sums of the Kroneckers for n = 1, . . . , 10 is

1, 4, 11, 43, 149, 621, 2507, 11174, 49972, 237630(142)

that coincide with the number of self-conjugate ribbon graphs for n = 1, . . . , 6

1, 4, 11, 43, 149, 621.(143)

For n ⩾ 7 our current GAP program for enumerating the self-conjugate ribbons is no
longer very efficient, but by the derivation we have given of (141) these two sequences
will agree.

The projection from K(n) to V
Rib(n):R1,R2,R3

S=1 can be done by using the T
(i)
k for

i ∈ {1, 2, 3}; k ∈ {2, 3, · · · , k̃∗} to build a rectangular matrix as in (72) which projects
to R1, R2, R3 and further stacking the matrix S − 1. This gives an integer matrix
of size (3(k̃∗ − 1) + 1)|Rib(n)| × |Rib(n)| with null space spanning V

Rib(n):R1,R2,R3
S=1 .

We can also use the Hamiltonian square matrix construction (80) along with the
S − 1 matrix to build an integer matrix of size 2|Rib(n)| × |Rib(n)| which projects
to V

Rib(n):R1,R2,R3
S=1 . By replacing (S − 1) with (S + 1) in these constructions we can

obtain the subspace V
Rib(n):R1,R2,R3

S=−1 of K(n) as null spaces of integer rectangular or
square matrices.
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As in Section 4.1 the HNF construction of V
Rib(n):R1,R2,R3

S=±1 determines sub-lattices
of Z|Rib(n)|. Thus, on one hand, we have lattice constructions for

C(R1, R2, R3)(C(R1, R2, R3) − 1)
2(144)

as the dimension of V
Rib(n):R1,R2,R3

pairs− and, on the other, we also have a construction of

C(R1, R2, R3)(C(R1, R2, R3) + 1)
2(145)

as the dimension of V
Rib(n):R1,R2,R3

S=1 . The difference of these is the number
C(R1, R2, R3). By choosing an injection between the smaller sub-lattice and the
larger sub-lattice, we can get a constructive interpretation of C(R1, R2, R3). It will
be interesting to investigate if there is a canonical choice of such an injection.

We summarise the outcome of the above discussion as a theorem

Theorem 4.4. For every triple of Young diagrams (R1, R2, R3) with n boxes,
there are three constructible sub-lattices of Z|Rib(n)| of respective dimensions
C(R1, R2, R3)(C(R1, R2, R3) + 1)/2, C(R1, R2, R3)(C(R1, R2, R3) − 1)/2, and
C(R1, R2, R3).

As an illustration, there are two interesting cases at n = 5 with C(R1, R2, R3) = 2,
(R1, R2, R3) = ([3, 2], [3, 1, 1], [3, 1, 1]) and (R1, R2, R3) = ([3, 1, 1], [3, 1, 1], [2, 2, 1]),
their permutations. We have ([3, 2], [3, 1, 1], [3, 1, 1]):

Dim
(

V Rib(n):R1,R2,R3
)

= 4

Dim
(

V
Rib(n):R1,R2,R3

S=+1

)
= 3

Dim
(

V
Rib(n):R1,R2,R3

S=−1

)
= 1.(146)

The same equations hold for ([3, 1, 1], [3, 1, 1], [2, 2, 1]).

5. Conclusions
We give a summary of our main results and outline important directions for future
research. Section 5.2 uses the link between bi-partite ribbon graphs and Belyi maps.
Section 5.3 outlines quantum algorithms motivated by links between the algebra K(n)
and Kronecker coefficients. Section 5.4 describes physically motivated generalizations
of the present work based on algebras related to K(n) which also have interesting
geometric interpretations.

5.1. Summary. In this paper we have developed quantum mechanics on a class of
state spaces which are also algebras (in the present case the algebras K(n)), and
have a distinguished geometrical/combinatorial basis associated with combinatorial
objects (in the case at hand bipartite ribbon graphs). The combinatorial objects have
a description in terms of equivalence classes defined using permutations and the alge-
bra can be realised as a subspace of a tensor product of group algebras (in this case
C(Sn) ⊗ C(Sn) - and there is a gauge equivalent formulation in terms of C(Sn)⊗3 as
explained in [9]. By exploiting the algebra structure, we are able to relate the eigen-
values of Hermitian Hamiltonians on these state spaces to characters of symmetric
groups, and the multiplicities to group theoretic multiplicities (in this case Kronecker
coefficients). The integrality structure of the algebra when expressed in terms of the
geometrical basis means that the solving the Hamiltonians is a problem that can draw
on techniques from the mathematics of integer matrices and lattices. It follows that

Algebraic Combinatorics, Vol. 6 #2 (2023) 578



Quantum mechanics of bipartite ribbon graphs

the square of Kronecker coefficients (C2) can be realised as the dimension of a sub-
lattice in the lattice generated by ribbon graphs. The algebra has an involution which
is inherited from the inversion of permutations and commutes with the Hamiltonians
considered here. The involution is used to define sub-lattices of dimensions C(C +1)/2
and C(C − 1)/2. Choosing an injection of the set of sub-lattice basis vectors of the
smaller sub-lattice, selected by the HNF construction of integer matrices we built,
into the set of sub-lattice basis vectors of the larger sub-lattice also fixed by the HNF
construction, leads to a sub-lattice of dimension C.

5.2. Belyi maps and quantum membrane interpretation of quantum me-
chanics on K(n). Bipartite ribbon graphs have a rich geometrical structure related
to Belyi maps and number theory. In this section, we use this connection to Belyi
maps to give an interpretation of quantum mechanical evolution in the ribbon graph
quantum mechanics in terms of membranes : the covering surfaces arising in Belyi
maps appear at fixed time and can be interpreted as string worldsheets in topologi-
cal strings - the quantum mechanical time is an additional coordinate which can be
viewed as part of a membrane worldvolume.

Bipartite ribbon graphs with n edges are in 1-1 correspondence with holomorphic
maps f (branched covers) from a Riemann surface Σg to two-dimensional Riemann
sphere with degree n and 3 branch points :

f : Σg → CP1.(147)
These branch points can be taken to be {0, 1, ∞} (see Chapter 2 of [66]). If we label the
inverse images of a generic point on the sphere as {1, 2, · · · , n}, then the branching at
the three branch points are described by the three permutations σ1, σ2, σ3 = (σ1σ2)−1.
The genus g of the covering surface is given by the Riemann-Hurwitz formula

(2g − 2) = n − Cσ1 − Cσ2 − Cσ3(148)
where Cσ is the number of cycles of the permutation σ. Branched covers with exactly
three branch points, also called Belyi maps, have the property that the covering
surface Σg as well as the covering map can be defined in terms of equations with
coefficients which are algebraic numbers, complex numbers which are solutions of
polynomials with integer coefficients [6]. Conversely any such algebraic surface can be
realised as a branched cover of the sphere with 3 branch points. The inverse image
of the interval [0, 1] on the Riemann sphere defines a graph embedded in the surface
Σg, also called a map. These maps were called Dessins d’Enfants by Grothendieck
who proposed their combinatorial study as a tool to understand representations of
the absolute Galois Group, an object of fundamental importance in number theory
[45]. A survey of mathematical work in this area is in [87]. It is interesting that the
conjugation operation S which has played an important role in this paper (Section
4.3) has previously appeared in the study of “operations on maps”. The self-conjugate
graphs correspond to reflexible Belyi maps in the terminology of [56]. The number of
distinct terms in Er, when expanded as a sum in C(Sn) ⊗ C(Sn) is n! divided by the
order of the automorphism group of the Belyi map, i.e. the number of holomorphic
invertible maps ϕ : Σg → Σg obeying f ◦ ϕ = f .

Each ribbon graph defines an element Er ∈ K(n) = C(Sn) ⊗ C(Sn). The quantum
mechanical evolution of such a state produces

Er(t) = e−iHtEr.(149)
At generic t, this is a superposition of different basis elements Es ∈ K(n). Such a
superposition determines a linear combination of Belyi curves and Belyi maps. The
evolution over all t ⩾ 0 determines a quantum membrane worldvolume mapping to
S2 × R+ which restricts to a single Belyi map at t = 0 and subsequent periodic
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intervals, but is generically a superposition of covering surfaces mapping to S2. Belyi
maps have been linked to matrix models and topological strings [26, 42]. The discrete
spin states of a particle such as an electron (two-dimensional state space) which are
the subject of the quantum mechanics of spin are being generalized in the quantum
mechanics of ribbon graphs to discrete states of a two-dimensional surface. These
discrete states have the rich structure of an algebra, at each n the algebra K(n), and
they have the rich geometrical structure in terms of an algebraic number realization
as Belyi curves. The additional time direction of the quantum mechanics forms the
2 + 1 dimensional worldvolume of a membrane generalizing the 0 + 1 dimensional
worldline of a particle. It would be interesting to develop the realisations of such
quantum mechanical evolutions using worldvolume membrane actions (see for example
[35, 29, 40, 13, 51]) in a topological and non-relativistic limit.

The link to tensor models also leads to other quantum mechanical systems which
can be viewed as generalizations of the systems discussed here. Our quantum systems
have been discussed in terms of state spaces K(n) for a fixed n. We can generalize,
somewhat trivially, to the infinite dimensional state space

K(∞) =
⊕

n=0
K(n)(150)

where K(0) is defined to be the one-dimensional vector space C. We can use a Hamil-
tonian of the form H =

∑∞
n=0 H(n), were H(n) is a Hamiltonian of the form we

discussed at fixed n. This Hamiltonians generates time evolutions which mix ribbon
graphs with a given number of edges, or Belyi maps with a given degree. Generic
Hamiltonians for tensor models, when expressed in terms of K(∞) would be expected
to generate interactions which mix different values of n. Some recent literature solving
quantum mechanical Hamiltonians for tensor models is in [65, 62].

5.3. Quantum computing and Kronecker coefficients. In this section we de-
scribe how quantum mechanical systems on ribbon graphs, hypothetically engineered
in the laboratory, can be used to detect the non-vanishing of Kronecker coefficients.
It has been shown [52] that the question of deciding the positivity of the Kronecker
coefficient for a triple of Young diagrams is NP-hard. The question of whether a quan-
tum computer can outperform classical computers on some chosen task of interest is
the problem of quantum supremacy. For recent progress, on specific tasks of gener-
ating random number sequences, see [3]. A quantum mechanical system of ribbon
graphs can conceivably be engineered directly by identifying physical objects with
the properties of ribbon graphs, or perhaps more realistically for the near future, we
may consider the idea of quantum simulation where an experimentally controllable
quantum system, such as superconducting circuits, is used to simulate another quan-
tum system of interest. A recent review on quantum simulators is [82]. A physical or
simulated quantum mechanical system of ribbon graphs would allow, using the con-
nections we have developed here between ribbon graphs and Kronecker coefficients
for any specified triple of Young diagrams, the possibility of detecting non-vanishing
Kronecker coefficients by observing the time evolution of ribbon graphs. We refer to
[10] for further details and scenarios inspecting this question.

An important role is played in our construction of integer matrices with integer
null spaces of ribbon graph vectors by the number k∗(n) defined in Section 2.4. To
get precise estimates of the computational complexity of our algorithms viewed as a
way to calculate Kronecker coefficients at large n, it is desirable to find estimates of
the growth of this number with n as n tends to infinity. As discussed in [57, 5] this
asymptotic behaviour is also relevant to understanding information loss in toy models
of black holes arising in AdS/CFT.

Algebraic Combinatorics, Vol. 6 #2 (2023) 580



Quantum mechanics of bipartite ribbon graphs

5.4. Generalizations. Permutation equivalence classes provide a general approach
to the counting of a variety of combinatorial objects of interest in theoretical physics,
e.g. Feynman diagrams [28, 27, 43, 19], gauge invariants in matrix and tensor models
(see a review in [85]), and frequently these equivalence classes have an algebra struc-
ture. The development of quantum mechanical systems where these combinatorial
objects become quantum states, their associated permutation algebras are used to
express quantum mechanical problems in terms of representation theoretic objects is
a promising avenue for further fruitful investigations. We expect the integrality struc-
ture of the algebras, when expressed in terms of the geometric basis, to be generic.
This will allow a realisation of the representation theoretic quantities in terms of
sub-lattices of the lattice generated by the combinatorial objects. An example of such
combinatorial algebra studied in detail in [73] is associated with colored necklaces
having m beads of one colour and n beads of another color.

Another interesting direction for research is the generalization of the present study
to real tensor invariants in particular the O(N)3 invariants [18, 17]. In this case,
the ribbon graphs are not bipartite and their counting gives the sum of Kronecker
coefficients with Young diagram restricted to even partitions [4, 7].

Although our investigations of K(n) were motivated by the study of correlators
of tensor models in [8, 9] the 3-index tensor variables have not played a direct role
in this paper. The space of all gauge invariants constructed from complex tensors
Φijk, Φ̄ijk is isomorphic as a vector space to K(∞) defined in 150. On this space the
operators T

(i)
k we used in this paper should be expressible in terms of differential

operators. The map between permutation algebra elements analogous to T
(i)
k and

differential operators was given in the context of multi-matrix invariants in [61]. The
operators T

(i)
k are also related to the cut-and-join operators considered in tensor

model context in [32, 53]. An interesting problem is to use the connection between
differential operators and the reconnection operators T

(i)
k to develop Hamiltonian

and Lagrangian formulations of the quantum mechanical systems discussed here. The
link between such Lagrangian formulations in terms of tensor variables and possible
membrane world-volume Lagrangians connecting with the membrane interpretation
based on Belyi maps (discussed in Section 5.2) would be illuminating.

Appendix

Appendix A. Reconnection operators T
(i)
2 as matrices at n = 3

In this appendix, we work at n = 3 and give the construction of the matrices for
reconnection operators T

(i)
2 , i = 1, 2, 3. In this case there are 11 bipartite ribbon

graphs. The matrix elements (M(i)
2 )s

r of the reconnection operators in the geometric
ribbon graph basis are 11 × 11 integer matrices and can be used to determine the
Young diagram triples with non-vanishing Kronecker coefficient. Each of these non-
vanishing Kronecker coefficients is 1 and we construct the corresponding integer vector
in the ribbon graph lattice which generates a one-dimensional sub-lattice.

A.1. T
(i)
2 matrices. Note that we have provided a code to produce all entries

(M(i)
k )s

r, see Code2 in appendix C. For T
(1)
2 , T

(2)
2 and T

(3)
2 , we have the following
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non-negative integer matrices, respectively,

M(1)
2 =



0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 3 0 0 0
0 1 0 0 0 0 0 0 1 0 0
0 2 0 0 0 0 0 0 2 0 0
0 0 3 0 0 0 0 0 0 3 3
0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0


(151)

M(2)
2 =



0 1 0 0 0 0 0 0 0 0 0
3 0 3 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
0 0 0 2 0 0 2 0 0 0 0
0 0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 3 0 3 3
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0


(152)

M(3)
2 =



0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 3 0
0 0 3 0 0 0 0 3 0 0 3
0 2 0 0 0 0 0 0 2 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 2 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0


(153)

A.2. Nullspace at n = 3. In this section we give, for n = 3, the common nullspace
of all operators (T (i)

2 − χRi
(T2)/d(Ri)), for all i = 1, 2, 3 at fixed Ri ⊢ n. This is the

rectangular construction of Section 3.2.
The vector v generating the null space for each triple of Young diagram (R1, R2, R3)

with non-vanishing Kronecker coefficient is :
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(R1, R2, R3) v
1 ( [1,1,1],[1,1,1], [3] ) ( 1, -3, 2, -3, 3, 6, -6, 2, -6, 2, 2 )
2 ( [1,1,1],[2,1],[2,1] ) (-2, 0, 2, 6, 0, 0, -6, -4, 0, 2, 2 )
3 ( [1,1,1],[3],[1,1,1] ) ( 1, 3, 2, -3, -3, -6, -6, 2, 6, 2, 2 )
4 ( [2,1],[1,1,1],[2,1] ) ( -2, 6, -4, 0, 0, 0, 0, 2, -6, 2, 2 )
5 ( [2,1],[2,1],[1,1,1] ) ( -2, 0, 2, 0, 6, -6, 0, 2, 0, -4, 2 )
6 ( [2,1],[2,1 ],[2,1] ) ( 1, 0, -1, 0, 0, 0, 0, -1, 0, -1, 2 )
7 ( [2,1],[2,1 ],[3] ) ( -2, 0, 2, 0, -6, 6, 0, 2, 0, -4, 2 )
8 ( [2,1],[3],[2,1] ) ( -2, -6, -4, 0, 0, 0, 0, 2, 6, 2, 2 )
9 ( [3],[1,1,1 ],[1,1,1] ) ( 1, -3, 2, 3, -3, -6, 6, 2, -6, 2, 2 )
10 ( [3],[2,1],[2,1] ) ( -2, 0, 2, -6, 0, 0, 6, -4, 0, 2, 2 )
11 ( [3],[3],[3] ) ( 1, 3, 2, 3, 3, 6, 6, 2, 6, 2, 2 )

One recognizes that the last vector (1, 3, 2, 3, 3, 6, 6, 2, 6, 2, 2) is
∑

r |Orb(r)|Er,
where |Orb(r)| is the orbit size of the r’th ribbon graph equivalence class. All
C(R1, R2, R3) = 1 for the triples (R1, R2, R3) given above. For a each triple, we
actually see that the null space is one dimensional at n = 3. For n > 4, there are
C(R1, R2, R3) > 1 and therefore the nullspace become of dimension higher than 1 as
expected.

Appendix B. Geometric and Fourier basis
This appendix elaborates on the transformation between the Fourier basis and the
geometric basis of K(n). We check that the Fourier base {QR1,R2,R3

τ,τ ′ } expands in terms
of ribbon graph base {Er} and vice-versa. We also give a proof of Proposition 3.1.

B.1. Change of basis. Ribbon graph expansion of QR1,R2,R3
τ,τ ′ . Start with the

base QR1,R2,R3
τ,τ ′ (14) that we re-expand using the orbit decomposition in the same way

as in (10) as:

QR1,R2,R3
τ1,τ2

= 1
n!κR,S

∑
r

∑
a∈Orb(r)

∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

×DR1
i1j1

(σ(r)
1 (a))DR2

i2j2
(σ(r)

2 (a)) σ
(r)
1 (a) ⊗ σ

(r)
2 (a)

(154)

where (σ(r)
1 (a), σ

(r)
2 (a)) is a representative pair in the orbit Orb(r) that defines the

ribbon graph r.
Therefore, we can reorganize the sum and collect for each ribbon graph base ele-

ment, its coefficient in the above expansion

QR1,R2,R3
τ1,τ2

=
κR,S

∑
r

[ ∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ(r)
1 )DR2

i2j2
(σ(r)

2 )
]
|Orb(r)|Er

(155)

where DR1
i1j1

(σ(r)
1 (a))DR2

i2j2
(σ(r)

2 (a)) has been replaced with DR1
i1j1

(σ(r)
1 )DR2

i2j2
(σ(r)

2 )
where (σ(r)

1 , σ
(r)
2 ) is any representative pair in Orb(r). This can be done because the

coefficient in square brackets is invariant under simultaneous conjugation of σ1, σ2
by a permutation γ.
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Fourier expansion of Er. Consider the following expansion of some Er (9) in terms
of the basis QR1,R2,R3

τ1,τ2
:

Er =
∑

Ri,τi

CR1,R2,R3(σ(r)
1 , σ

(r)
2 ) QR1,R2,R3

τ1,τ2
,(156)

where = (σ(r)
1 , σ

(r)
2 ) form a permutation pair in the orbit r, and the coefficient

CR1,R2,R3(σ(r)
1 , σ

(r)
2 ) is to be determined. Use the orthogonality relation (17) and

evaluate CR1,R2,R3(σ(r)
1 , σ

(r)
2 ):

δ2(Er, QR1,R2,R3
τ1,τ2

) =
∑

R′
i
,τ ′

i

CR′
1,R′

2,R′
3
(σ(r)

1 , σ
(r)
2 ) δ2(QR′

1,R′
2,R′

3
τ ′

1,τ ′
2

, QR1,R2,R3
τ1,τ2

)

= CR1,R2,R3(σ(r)
1 , σ

(r)
2 )κR1,R2d(R3).(157)

On the other hand, using (14), we also compute

δ2(Er, QR1,R2,R3
τ1,τ2

) = κR1,R2

∑
γ1,γ2∈Sn

∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

×DR1
i1j1

(γ1)DR2
i2j2

(γ2) δ2(σ(r)
1 ⊗ σ

(r)
2 , γ1 ⊗ γ2)

= κR1,R2

∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ(r)
1 )DR2

i2j2
(σ(r)

2 )

(158)
from which we conclude
(159)

CR1,R2,R3(σ(r)
1 , σ

(r)
2 ) = 1

d(R3)
∑
il,jl

DR1
i1j1

(σ(r)
1 )DR2

i2j2
(σ(r)

2 )CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

.

One checks that CR1,R2,R3(σ1, σ2) is invariant under diagonal conjugation
CR1,R2,R3(γσ1γ−1, γσ2γ−1) = CR1,R2,R3(σ1, σ2)

(this can be shown using the so-called DDC = CD relation and the orthogonality of
representation matrices, see appendix A.1 and A.2 of [9]).

An immediate consequence of these formulae is that

QR1,R2,R3
τ1,τ2

= κR,Sd(R3)
∑

r

CR1,R2,R3(σ(r)
1 , σ

(r)
2 )|Orb(r)|Er .(160)

Thus the orthogonal Fourier basis elements QR1,R2,R3
τ1,τ2

and expressible in terms of Er

and vice-versa.

B.2. Fourier basis as eigenvectors of reconnection operators T
(i)
k . To

prove Proposition 3.1, we start with some preliminary observations about the group
algebra of the symmetric group.

Let C(Sn) the group algebra of Sn. An inner product on the group algebra is
defined by specifying on basis elements σ, τ ∈ Sn, δ(σ; τ) = δ(στ−1). Consider the
Fourier basis set QR

ij ∈ C(Sn)

(161) QR
ij = κR

n!
∑

σ∈Sn

DR
ij(σ)σ , κ2

R = n!d(R)

where DR
ij(σ) are matrix elements of σ in an orthonormal basis for the irreducible

representation R. κR is fixed such that δ(QR
ij ; QR′

i′j′) = δRR′δii′δjj′ making {QR
ij} an

orthonormal basis of C(Sn). Furthermore, these elements also obey

(162) τ QR
ij =

∑
l

DR
li (τ) QR

lj , QR
ij τ =

∑
l

QR
il DR

jl(τ).
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The following statement holds:

Lemma B.1.

(163) TkQR
ij = χR(Tk)

d(R) QR
ij .

Proof. We let act Tk on QR
ij and using (162) we write:

TkQR
ij =

∑
σ∈Ck

σQR
ij =

∑
l

( ∑
σ∈Ck

DR
li (σ)

)
QR

lj .(164)

The sum
∑

σ∈Ck
DR

li (σ) may be also written DR
li (Tk). As Tk is central and commute

with all elements, DR
li (Tk) = αδli a constant diagonal matrix by Schur lemma. We

also have
∑

i DR
ii (Tk) = χR(Tk) = αd(R), that yields α = χR(Tk)/d(R). Then back

to our previous expression (164)

TkQR
ij =

∑
l

(χR(Tk)
d(R) δli

)
QR

lj = χR(Tk)
d(R) QR

ij(165)

which proves the lemma. □

Thus QR
ij is an eigenvector of Tk with eigenvalue χR(Tk)/d(R). We get back to our

main concern, namely the action of T
(i)
k on QR1,R2,R3

τ1,τ2
.

Proof of Proposition 3.1. We want to prove that QR1,R2,R3
τ1,τ2

define eigenvectors of
T

(i)
k . QR1,R2,R3

τ1,τ2
(14) can be written in terms of the Fourier basis set for C(Sn) as

(166) QR1,R2,R3
τ1,τ2

= κ′
R1,R2

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

QR1
i1j1

⊗ QR2
i2j2

,

where κ′
R,S is a normalization factor

κ′
R,S =

√
d(R)d(S)

n! .(167)

Then, it becomes obvious that, by Lemma B.1, (61) and (62) hold as T
(1)
k and T

(2)
k

are defined by the actions on Tk of the left or right factors of C(Sn) ⊗ C(Sn). The
third relation requires a bit more work. Use (162) to rewrite:

T
(3)
k QR1,R2,R3

τ1,τ2
= κ′

R1,R2

∑
σ∈Ck

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

σQR1
i1j1

⊗ σQR2
i2j2

= κ′
R1,R2

∑
σ∈Ck

∑
σ1,σ2∈Sn

∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

×
∑

m1,m2

DR1
m1i1

(σ)QR1
m1j1

⊗ DR2
m2i2

(σ)QR2
m2j2

.

(168)
We use the identity

(169)
∑
j1,j2

DR1
i1j1

(γ)DR2
i2j2

(γ)CR1,R2; R3, τ
j1,j2; j3

=
∑
i3

CR1,R2; R3, τ
i1,i2; i3

DR3
i3j3

(γ)

which holds for any γ ∈ Sn and expresses the fact that the Clebsch–Gordan coefficients
intertwine the action of γ in R1 ⊗ R2 with the action in R3. We re-express the above
as

T
(3)
k QR1,R2,R3

τ1,τ2
= κ′

R1,R2

∑
σ∈Ck

∑
σ1,σ2∈Sn

∑
ml,i3,jl

(
∑
i1,i2

DR1
m1i1

(σ)DR2
m2i2

(σ)CR1,R2;R3,τ1
i1,i2;i3

)

× CR1,R2;R3,τ2
j1,j2;i3

QR1
m1j1

⊗ QR2
m2j2

Algebraic Combinatorics, Vol. 6 #2 (2023) 585



J. Ben Geloun & S. Ramgoolam

= κ′
R1,R2

∑
σ∈Ck

∑
σ1,σ2∈Sn

∑
ml,i3,jl

(
∑
m3

CR1,R2;R3,τ1
m1,m2;m3

DR3
m3i3

(σ))

× CR1,R2;R3,τ2
j1,j2;i3

QR1
m1j1

⊗ QR2
m2j2

= κ′
R1,R2

∑
ml,i3,jl

(
∑
m3

CR1,R2;R3,τ1
m1,m2;m3

DR3
m3i3

(Tk))

× CR1,R2;R3,τ2
j1,j2;i3

QR1
m1j1

⊗ QR2
m2j2

= κ′
R1,R2

∑
σ1,σ2∈Sn

∑
ml,i3,jl

(
∑
m3

CR1,R2;R3,τ1
m1,m2;m3

χR2(Tk)
d(R3) δm3i3)

× CR1,R2;R3,τ2
j1,j2;i3

QR1
m1j1

⊗ QR2
m2j2

= χR3(Tk)
d(R3)

[
κ′

R1,R2

∑
ml,i3,jl

CR1,R2;R3,τ1
m1,m2;i3

CR1,R2;R3,τ2
j1,j2;i3

QR1
m1j1

⊗ QR2
m2j2

]
(170)

where, at an intermediate step, we use again DR3
m3i3

(Tk) = αδm3i3 (with α worked out
in Lemma 164). This ends the proof the proposition.

□

Appendix C. GAP codes
In this appendix, we give several GAP functions that lead to the calculation of com-
mon nullspace of the operators T2 and T3 at rank 3 and for arbitrary n. This code
is computed with Sage calling the GAP package. Hence the %%gap appearing at the
beginning of each function. Such command could be replaced by a single %gap de-
pending on the environment. The comments, or lines starting by #, inside the code
are self-explanatory and help to understand of each part of the current function.

For n ⩽ 14, kmax ⩽ 3, here is the overall strategy of the calculation:
(1) generate the set of ribbon graphs (denoted as Rib(n) in the bulk of the paper)

as list with RibbSetFunction(n); their number is ℓ (this is |Rib(n)| in the
bulk of paper);

(2) construct T2 and T3, and their different action T
(i)
2 and T

(i)
3 , i = 1, 2, 3 acting

on different slots of pairs of permutation representing ribbon graphs ;
(3) calculate the number of time that a ribbon graph b appears in the expansion

of T
(i)
2 a or T

(i)
3 a, for all ribbon graph a;

(4) generate the ℓ × ℓ-matrix (L(i)
l )ab, l = 2, 3, i = 1, 2, 3, of all T

(i)
2 and T

(i)
3 ;

(5) introduce the list of normalized characters χ̂R(Tp) := χR(Tp)/d(R) using the
formulae from [67] for p := 2, 3;

(6) then solve the nullspace of the transpose of the stack of matrices M
(i)
ℓ (R) =

L
(i)
ℓ − χ̂R(Tp) ∗ Idℓ, Idℓ being the ℓ × ℓ-identity matrix. The dimension of this

space is C(R, S, T )2.
(7) Alternatively, we generate the sequence of prime numbers ai,k (97) used in

the construction of the Hamiltonian H :=
∑kmax

k=2
∑3

i=1 ai,kT
(i)
k as a matrix

sum; and solve the nullspace of the sum of matrices

(171) M
(1)
2 (R)+a1M

(1)
3 (R)+a2(M (2)

2 (S)+a1M
(2)
3 (S))+a3(M (3)

2 (T )+a1M
(3)
3 (T )) .

We compute the stack of matrices M
(i)
ℓ (R) in Gap and solve for its null space.

There is a corresponding equation for H that we also put in comments.

Code1: Generating all ribbons with n-edges. The function RibbSetFunction(n)
returns the list of bipartite ribbon graphs made n ribbon edges and at most n black
vertices, and at most n white edges. We use the PCA formulation where each ribbon

Algebraic Combinatorics, Vol. 6 #2 (2023) 586



Quantum mechanics of bipartite ribbon graphs

graph is represented by its equivalent class, namely an orbit under diagonal Sn group
action on a pair of Sn permutations (σ1, σ2).
%%gap

#-------------------------------------------------------------------------
# Function returning an ordered list of ribbon graphs - each ribbon
# graph represented as a set of permutations within
# an Sn orbit by diagonal conjugation of pairs of permutations

RibbSetFunction := function( n )
local G, Pairs, Ribb, RibbSets, a, b;
G := SymmetricGroup(n);
Pairs :=[];

for a in G do
for b in G do

Add (Pairs, [a, b]);
od;

od;

## In Gap, group G action on list and groups is always by conjugation
# Ribb list of ribbons as G orbits on pairs (tau_1, tau_2)
# OnPairs option of function Orbit means G acts diagonally on pairs
# (g tau_1 g^(-1), g tau_2 g^(-1))

Ribb := Orbits (G, Pairs, OnPairs);

# RibbSets is now list of sets of pairs within an orbit, the order within
# the set does not matter
RibbSets := [] ;
for a in [ 1 .. Length ( Ribb ) ] do

Add ( RibbSets , Set ( Ribb[a] ) ) ;
od ;
return RibbSets;

end;

Code2: Constructing T -operators. We contruct the operators T
(i)
l .

%%gap
#------------------------------------------------------------------------
# Given a number n, and kmax
# returns the (kmax -1)x3 arrays T( i )_{ a, b } - of size
# |RibSetLoc| * |RibSetLoc|.
# at fixed i and p fixed this is the matrix of the action of T^(p)_(i) ;
# |RibSetLoc | is the size of the set of ribbons generated
# by RibbSetFunction(n);
# for any a, a ribbon graph orbit RibbSetLoc[a] is represented
# by RibSetLoc[a][1].
# Depending on i, we operate on the first permutation, the second or both
# in RibSetLoc[a][1] and return b, namely the position in RibSetLoc
# of the outcome; RibbSetLoc[a][1] is the representative perm of
# the ribbon RibbSetLoc[a];
# RibbSetLoc[a][1][1] is first projection of the RibbSetLoc[a][1];
# RibbSetLoc[a][1][2] is second projection of the RibbSetLoc[a][1];
# Position ( list , obj ) returns the position of the first occurrence
# of obj in list.
# Positions ( list , obj ) returns the number of occurrences of obj in list;
#-------------------------------------------------------------------------
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ArrayTi := function (n, kmax)

local G, a, b, i, j, l, s, Cic, cc, RibSetLoc,
L, L1, L2, L3, pos1, pos2, pos3 ;

G := SymmetricGroup(n);
L := [];
Cic :=[];

# Construction of ribbon graphs
RibSetLoc := RibbSetFunction(n);
l := Length ( RibSetLoc );

for i in [ 2 .. kmax] do
# Construction of Ti
Add ( Cic, Orbit (G, CycleFromList([1 .. i]), OnPoints) );

# Construction of the k-1 lists of listsLpt;
# Lpt[i-1] is a list of 3 matrices Lpt[i-1][p] initialized at 0;
# Each Lpt[i-1][p] defines the operator Ti^p with action of
# Ti in the slot p
Add(L, []);
for j in [1 .. 3] do

Add( L[i-1], NullMat ( l , l ) ) ;;
od;

od;

for a in [ 1 .. l ] do
for i in [2 .. kmax] do

# empty the Li
L1 := [];
L2 := [];
L3 := [];
cc := Cic[i-1];
for s in cc do

pos1 := Position (RibSetLoc,Set(Orbit(G,[s*RibSetLoc[a][1][1],
RibSetLoc[a][1][2]],OnPairs))) ;

pos2 := Position (RibSetLoc,Set(Orbit(G,[RibSetLoc[a][1][1] ,
s*RibSetLoc[a][1][2]],OnPairs))) ;

pos3 := Position (RibSetLoc,Set(Orbit(G,[s*RibSetLoc[a][1][1],
s*RibSetLoc[a][1][2]],OnPairs))) ;

Add( L1 , pos1);
Add( L2 , pos2);
Add( L3 , pos3);

od;
for b in [ 1 .. l ] do

L[i-1][1][ b, a ] := Length ( Positions ( L1 , b ) ) ;
L[i-1][2][ b, a ] := Length ( Positions ( L2 , b ) ) ;
L[i-1][3][ b, a ] := Length ( Positions ( L3 , b ) ) ;

od;
od;

od;
return L ;

end ;
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Code3: Characters. The following function returns the table list of characters ac-
cording to Lassalle formulae [67].
%%gap
# Returns the list of characters of T2 (on the left) and T3 (on the right)
# via Lassalle formulae. These characters are the eigenvalues of T’s.

CharactersEigenvalues_of_Top := function( m )
local i, j, k, p, L, L2, L3, sum2, sum3;
p := Partitions( m ) ;
sum2 := 0;
sum3 := 0;
L2 := [];
L3 := [];
L := [];
for i in [ 1..Length(p) ] do

sum2 := 0;
sum3 := 0;
for j in [1..Length(p[i])] do

for k in [1..p[i][j]] do
sum2 := sum2 - j + k ;
sum3 := sum3 +(k-j)*(k-j);

od;
od;
sum3:= sum3 - Factorial( m )/( Factorial( m-2 )*2 ) ;
Add( L2, sum2 );
Add( L3, sum3 );
Add( L, [ L2[i], L3[i] ] );

od;
return L;

end;

Code4: Primes. The two functions returns either a couple (a1, a2) or a triple
(a1, a2, a3) of prime numbers are used in the construction of the total Hamilton-
ian and insure that it cannot vanishes outside of the required values. This follows the
sufficient conditions explained in Section 3.3.
%%gap
# The code produces a couple that makes the QM Hamiltonian not vanishing
# unless the triples (R1,R2,R3) = (R1’,R2’,R3’)

CouplePrime := function(m)
local p1, L;
p1 := NextPrimeInt( m*(m-1) );
L := [];
Add(L, p1);
Add(L, NextPrimeInt( (p1+1)*m*(m-1)));
return L ;

end;

# The code produces a tripe that makes the QM Hamiltonian not vanishing
# unless the triples (R1,R2,R3) = (R1’,R2’,R3’)

CouplePrime2 := function(n)
local p1, p2, p3, L;
p1 := NextPrimeInt( n*(n-1) );
p2 := NextPrimeInt( Int( (n/3)*(n-1)*(3 + 2*p1*(n-2))) ) ;
p3 := NextPrimeInt( Int( (n/3)*(n-1)*(1+p2)*( 3 + 2*p1*(n-2) )) ) ;
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L := [];
Add(L, p1);
Add(L, p2 );
Add(L, p3);
return L ;

end;

Code5: Matrices and null spaces. We are now in position to address the nullspace
of the multiple actions of T2 and T3. The following code constructs the stack of
matrices (note that, in comments, we also give instructions to construct the total
Hamiltonian calling prime numbers) made of 3 (resp. 6) matrices determined by three
Young Diagram R, S, T , given kmax = 2 (resp. kmax = 3). After the construct, it
returns the null space of the resulting matrix.
%%gap
MatForNullVectors := function(m, kmax, R, S,T)

local a, l, chi , M1, M2, M3, M5, M4, M6, Arr, Id;

# for the total Hamiltonian version uncomment the following
#local a, l, chi , M1, M2, M3, M5, M4, M6, Arr, Id, c, c2, Ham;

l:=Length(RibbSetFunction(m)); # cardinality of the ribbon set
chi := CharactersEigenvalues_of_Top(m);

# for the Hamiltonian uncomment the following
#c := CouplePrime(m);
#c2 := CouplePrime2(m);

#Constructing the matrices
Arr := ArrayTi(m , kmax );

if kmax > 3 then
Print ("kmax >3");
return 0;

fi;

if kmax = 2 then
M1 := Arr[1][1] - chi[R][1] * IdentityMat ( l );
M3 := Arr[1][2] - chi[S][1] * IdentityMat ( l );
Append(M1, M3);

# For the Hamiltonian uncomment the following
# Ham := M1 + c[1]*M3 ;

M5 := Arr[1][3] - chi[T][1] * IdentityMat ( l );
Append(M1, M5);

# For the Hamiltonian uncomment the following
#Ham := Ham + c[2]*M5 ;

fi;

if kmax = 3 then
M1 := Arr[1][1] - chi[R][1] * IdentityMat ( l );
M2 := Arr[2][1] - chi[R][2] * IdentityMat ( l );
Append(M1, M2);

Algebraic Combinatorics, Vol. 6 #2 (2023) 590



Quantum mechanics of bipartite ribbon graphs

# For the Hamiltonian uncomment the following
# Ham := M1 + c2[1]*M2 ;

M3 := Arr[1][2] - chi[S][1] * IdentityMat ( l );
Append(M1, M3);
M4 := Arr[2][2] - chi[S][2] * IdentityMat ( l );
Append(M1, M4);

# For the Hamiltonian uncomment the following
# Ham := Ham + c2[2]*(M3 + c2[1]*M4) ;

M5 := Arr[1][3] - chi[T][1] * IdentityMat ( l );
Append(M1, M5);
M6 := Arr[2][3] - chi[T][2] * IdentityMat ( l );
Append(M1, M6);

# For the Hamiltonian uncomment the following
# Ham := Ham + c2[3]*(M5 + c2[1]*M6) ;

fi;

return NullspaceIntMat(TransposedMat (M1) );
# For the total Hamiltonian uncomment the following
#return NullspaceMat(TransposedMat ( Ham) ) ;

end;
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