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Rowmotion on fences

Sergi Elizalde, Matthew Plante, Tom Roby & Bruce E. Sagan

ABSTRACT A fence is a poset with elements F = {z1,x2,...,%n} and covers
1 <x2<...]Tq D Ta41 D> ... Dxpy Japgpr -

where a, b, ... are positive integers. We investigate rowmotion on antichains and ideals of F'. In
particular, we show that orbits of antichains can be visualized using tilings. This permits us
to prove various homomesy results for the number of elements of an antichain or ideal in an
orbit. Rowmotion on fences also exhibits a new phenomenon, which we call homometry, where
the value of a statistic is constant on orbits of the same size. Along the way, we prove a general
homomesy result for all self-dual posets. We end with some conjectures and avenues for future
research.

1. INTRODUCTION

The purpose of this work is to initiate the study of the dynamical algebraic combina-
torics of fence posets. A fence is a poset with elements F = {x1, 2, ...,2,}, partial
order <, and covers

(1) 1 <hx2 ... <DL D> Tay1 D> Dxp ITpyr -+

where a,b, ... are positive integers. The maximal chains of F' are called segments.
A fence with seven elements and three segments is shown in Figure 1. Throughout
we will often use n for the cardinality of F', which we denote by #F. We also let
[n] ={1,2,...,n}.

There are a number of different conventions for indicating the size of the segments of
a fence F' in the literature depending on the application being considered. Our results
will be simplest if described in terms of unshared elements. Call x € F' shared if it is
the intersection of two segments; otherwise x is unshared. In Figure 1, the elements
23 and xg are shared and all other elements unshared. Let a@ = (a1, aq,...,q;) be
a composition (a sequence of positive integers called parts) with aq,a; > 2. The
corresponding fence is

F=F(a) = F(ay,as, ..., o)
where
a; = 1+ (number of unshared elements on the ith segment)

for i € [t]. The fence in Figure 1 is F' = F(S, 3,2). Note that for any fence,
#F=a1+as+---+a; — 1.
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FIGURE 1. The fence F = [(3,3,2)

Fences have been of recent interest because of their connections with cluster al-
gebras, g-analogues, and unimodality. Let P be a poset with partial order <. Recall
that I C P is a (lower order) ideal of P if x € I and y < x implies y € I. Upper
order ideals, U, are defined by reversing the inequality. When merely writing “ideal,”
we always mean a lower order ideal. Let Z(P) and U(P) be the set of (lower order)
ideals and upper order ideals of P, respectively. The set of ideals of a finite poset
forms a distributive lattice under inclusion. The lattice Z(F') of ideals of a fence F
can be used to compute mutations in a cluster algebra on a surface with marked
points [2, 17, 19, 21, 22, 23, 29, 30].

Let ¢ be a variable and r(F'; ¢) be the rank generating function for Z(F'). Mourier-
Genoud and Ovsienko [14] were able to define g-analogues of rational (and even real)
numbers which are certain rational functions of g. The numerators and denominators
of these fractions are exactly the polynomials r(F';¢). In addition, they conjectured
the following result. Progress on this question was made in [2, 7, 9, 13, 15] until a
proof was provided by Oguz and Ravichandran.

THEOREM 1.1 ([18]). The polynomial r(F; q) is unimodal.

Our focus is going to be on fences from the viewpoint of dynamical algebraic
combinatorics and, in particular, on rowmotion. A subset A of a finite poset (P, <) is
an antichain if no two elements of A are comparable. Let A(P) be the set of antichains
of P. Ideals of both types and antichains are related by the maps A : Z(P) — A(P)
where

A(I) = {x € T | z is a maximal element of I},
and V : U(P) — A(P) where
V(U) ={x € U | « is a minimal element of U}.

We also let ¢ : P — P be the complement operator ¢(S) = P — S. Rowmotion on
antichains is the group action on A(P) generated by the map

p=VocoA™!

where we always compose functions from right to left. We will also consider rowmotion
on ideals, which is generated by

p=A"1oVoec.

There is clearly a bijection between the orbits of p and those of p. We will call the
number of elements (that is, the number of antichains or, equivalently, the number of
ideals) in an orbit either its size or its length. Rowmotion and its generalizations have
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FIGURE 2. Part of the horizontal strip Hy

been investigated by many authors [4, 5, 6, 8, 10, 11, 12, 16, 25, 26, 27, 28|. See, in
particular, the survey articles of Roby [20] and Striker [24]. We will let

I(a) = I(F(a))

and similarly for &/ and A.
In addition to describing the orbits of rowmotion on fences, we will also consider
properties of various statistics. If S is a finite set, then a statistic on S is a map
st : S — N where N is the set of nonnegative integers. If G is a group acting on S,
then the statistic st is d-mesic if there is a constant d such that every orbit O of the

action has average
stO

#0O
where st O = ), stz and #0 is the size of the orbit. We say that st is homomesic
if it is d-mesic for some d. Homomesy is a well-studied property of rowmotion. The
reader will find more information about this notion in the survey articles just cited.
Rowmotion on fences displays a new and interesting phenomenon. We say that st is
homometric if st O is constant over all orbits of the same cardinality. Equivalently,
for any two orbits O and Oy we have

#01 = #02 — st 01 = st 02.

Note that homomesy implies homometry, but not conversely. In the sequel we will see
many homometries which are not homomesies.

The rest of this paper is structured as follows. In the next section we introduce our
principal tool in this work, which is a representation of rowmotion orbits of antichains
of fences in terms of certain tilings. Section 3 is devoted to applying this model to
prove various homomesy results for fences with any number of segments. We also
define, for any self-dual poset, a new orbit structure which is coarser than that of
rowmotion, and prove a homomesy on ideals in this setting. Section 4 is devoted to
examining orbits and homometries for certain fences having at most five segments.
We end with a section containing conjectures and future directions.

d,

2. TILINGS

It turns out that the orbits of A(«) can be nicely visualized in terms of tilings. This
will be our principal tool in proving homomesy and homometry results.

Consider an infinite horizontal strip H; subdivided into unit squares with rows
numbered 1,2, ...t from top to bottom, and infinitely many columns. We display Hy4
together with its row numbering in Figure 2. In the following definition, an a x b tile
is a tile which covers a rows and b columns in H;.

DEFINITION 2.1. Let a = (o, g, ..., 1) be a composition with t parts. An a-tiling
is a tiling of Hy using yellow 1 x 1 tiles, red 2 x 1 tiles, and black 1 x (a; — 1) tiles in
row i, for 1 < i < t, such that the following hold for all rows.
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F1GURE 3. The three antichain orbits of length 17 and the orbit of
length 5 in F'(4,3,4).

(a) If a; > 1 and the red tiles are ignored, then the black and yellow tiles alternate
in Tow 1.

(b) There is a red tile in a column covering rows i and i + 1 if and only if either
the previous column contains two yellow tiles in those two rows when i is
even, or the next column contains two yellow tiles in those two rows when i

s odd.

When « is clear from the context, we will use the term tiling to refer to an a-tiling.
We consider two tilings to be the same if one is a horizontal translate of the other. It
will follow from the proof of Lemma 2.2 that all a-tilings are periodic and so can be
viewed as lying on a cylinder. When a tiling is displayed in a figure, we will draw a
bounded rectangle and assume that the two vertical edges are identified, and indicate
with a jagged edge where any black tile crosses this boundary. See Figure 3 for the
four possible (4,3,4)-tilings. Note that by considering tilings to be on a cylinder,
notions such as the number of tiles of each color make sense. For example, row 1 of
the top tiling in Figure 3 has four yellow tiles, four black tiles, and a red tile which
also intersects row 2.

In a tiling we will call a square of H; yellow, red, or black depending on whether
the tile covering the square has the corresponding color. The head of a red tile is the
square it covers in the higher of the two rows.

Given a = (a1, ...,a;) we will now construct a bijection

¢ :{O | O an orbit of A(a)} = {T' | T an a-tiling}

as follows. Let the ith segment of F'(a) be ;. Given O, we build T' = ¢(O) column-
by-column. Pick any A € O and any column C of H; to correspond to A. Color the
square in row ¢ of C' yellow, red or black depending upon whether S; N A is empty,
a shared element, or an unshared element, respectively. For example, the antichain
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A = {x4,29} in F’(473,4) corresponds to the first column of the uppermost tiling
in Figure 3. Now color the column to the right of C' in H; in the same way using
the antichain following A in O, and similarly for the column to the left and the
antichain preceding A. Continue this process until all of H; is colored. Clearly this
is a periodic tiling and so can be wrapped onto a cylinder. The tilings for the four
antichain orbits in F'(4,3,4) are displayed in Figure 3. For example, the tiling with
five columns corresponds to the orbit

{9, {z1, 27}, {22, 76,28}, {73,705, 20}, {24,710}}-
LEMMA 2.2. For every «, the map ¢ is a bijection.

Proof. We must first prove that ¢ is well defined in the sense that if O is an orbit of
antichains, then T' = ¢(0O) is an a-tiling. To start, we need to show that the colored
squares can be partitioned into tiles of the appropriate sizes. Every individual yellow
square is clearly a 1 x 1 tile. And the red squares form 2 x 1 tiles since any shared
element of F' = F(«) is in two adjacent segments. The black tiles will take more work.

Suppose z,y are unshared elements with x covered by y. We claim that « € A for
some antichain A if and only if y € p(A). This will ensure that in row 7, any set of
consecutive black squares will be of length at least a; — 1, since that is the number of
unshared elements in the ith segment S;. If z € A, then y is in the complement U of
the lower order ideal generated by A since y > x. And since y is an unshared cover, y
is a minimal element of U. This implies y € p(A). The reverse implication is similar
and left to the reader.

For the rest of the proof there are two cases depending on whether 7 is even or
odd. We will just give details for the former, as the other case is very similar. From
the previous paragraph, to show that sets of consecutive black squares have length
exactly a; — 1, it suffices to prove that, if z € A is the smallest (respectively largest)
unshared element on S;, then the square before (respectively after) the one for z is
yellow or red. Suppose that = is the largest unshared element of .S;. There are two
subcases depending on whether z € A or z ¢ A, where z is the largest unshared
element of segment S;_1. In the first subcase, the maximal element S; N .S;_; is in
p(A), and so the square after the one for x is covered by a red tile with its head in
row i — 1. If 2 ¢ A, then U contains an element of S;_; below its maximal element.
It follows that p(A) N S; = @, and so the square after z is a yellow tile. In much the
same way, one sees that if x is the smallest unshared element of .S; then the square
before it is covered by a red tile with its head in row ¢ or a yellow tile depending on
whether w € A or w ¢ A, where w is the smallest unshared element of S; 1.

We now verify the condition in Definition 2.1(b), postponing condition (a) until
the next paragraph. First suppose the column for A contains a red tile covering rows
i and ¢ 4+ 1. Since ¢ is even, this corresponds to the minimal element S; N S;;1 being
in A. But this forces the intersections of S; and S;;1 with p=*(A) to be empty. It
follows that the previous column contains yellow squares in those rows as desired. All
these implications are reversible, proving the converse statement.

Next we verify condition (a). It follows from the two previous paragraphs that any
black tile is bounded on the left and on the right by yellow tiles if one ignores the red
ones. Using similar arguments, one sees that between any two yellow tiles there must
be a black tile as long as a; > 2, so that black tiles can exist in row . So (a) follows
and we have shown that the map ¢ is well defined.

To show that ¢ is a bijection, we describe its inverse. Given an a-tiling, T, we
construct a family O of subsets of I as follows. Each column C' of T corresponds to
an element A € O. If the square in row i of C' is yellow, then we let A contain none
of the elements of S;. If this square is a part of a red tile which covers row i — 1 or
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i+ 1, then we let S;_1 NS; or S; NS;4+1 be in A, respectively. Finally, if the square is
the jth element of a black tile, then we put the jth smallest unshared element of S;
in A. Verifying that A is an antichain and that the sequence of antichains forms an
orbit does not involve any new ideas and so is left to the reader. The fact that this is
the inverse of ¢ is clear since the first part of the proof shows that this is true on the
level of the individual columns of the tiling and antichains of the orbit. O

Using the tiling model it is easy to read off various statistics about orbits which
will be useful in proving homomesy and homometry results. For = € F, consider the
indicator function on antichains x, : A(F) — {0,1} defined by

Xm(A)Z{llfxEA’

0 else.
For an orbit O of antichains, x,(O) = >_ 4.0 Xz(A) is the number of times  occurs
in an antichain of the orbit. We also define

X(4) = #4= 3" x.(4),
el

so that x(O) is the total number of antichain elements in an orbit. As usual, we add
a hat for the corresponding functions on ideals I. For example, X, : Z(F) — {0,1} is
defined by

lifxel,

0 else.

wn={

To state our first result in this regard we will need some additional notation for
fences and tilings. In F', we let

S; = the set of unshared elements of segment S;,

s;,; = the jth smallest element of S'Z-,

s; = the unique element of S; N S; 1.

Note that s; is a minimal or maximal element of ' depending on whether i is even
or odd, respectively. For the fence F'(4,3,4) in Figure 3 we have

T1 = S1,1, T2 = 51,2, L3 = S1,3, T4 = S1, T5 = 52,2,
Te = 82,1, T7 = S2, T = 53,1, T9g = $3,2, T10 = 53,3.
In an a-tiling we let

b; = the number of black tiles in row 1,

r; = the number of red tiles whose head is in row 1.

So, in the first tiling of Figure 3,

We let b; = r; = 0 if i & [t], where ¢ is the number of rows of the tiling. Finally, we
need the Kronecker function which, given a statement R, evaluates to

1if R is true,
o(R) = {O if R is false.

LEMMA 2.3. Let o = (o, a2, . . ., ) with corresponding fence F = F(a). Let O be an
orbit of antichains A with tiling T = ¢(O). We denote by I the ideal generated by A.
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(a) For any i € [t] with a; > 2 we have
#0O = b + i +ri-1.

(b) Considering O as an orbit of antichains,

b, ifxze S'Z',
X:C(O) :{ /

r; if x=s;.
(¢) Considering O as an orbit of ideals,

bi(ai - j) + Ti—6(i even) fo = Si,j,
)A(l’(o) = 3§ T2i-1 fo = S82;—1,
#O*Tzi ZfI:Sm
(d) Considering O as an orbit of antichains,
¢
x(0) = Z(biai —bi +13).
i=1

(e) Considering O as an orbit of ideals,
t—1 ! o
X(0) = {2J -#O + Z; |:bi ( 21> +rai-1(agi-1 + g — 1) — 7o

Proof. (a) Since every black tile in row ¢ has a; — 1 squares, the number of black
squares in that row is b;(c; — 1). From Definition 2.1(a), the number of yellow tiles
in row ¢ is also b; as long as «; > 2. Finally, there are red squares in row ¢ from both
red tiles whose head is in row ¢ — 1 and those whose head is in row i. Since the size
of the orbit is the number of squares in row 4, we have

#O =bi(a; — 1) +b; +riq1 + 1,
which simplifies to the given quantity.

(b) From the proof of Lemma 2.2, we see that if z € S; then a square of T
corresponding to = appears exactly once in each black tile in row i. So the first case
follows. On the other hand, the appearances of x = s;, the unique element of S;NS; 41,
in O are in bijection with red tiles covering rows ¢ and ¢ + 1. But that is exactly what
is counted by r;.

(¢) An element x will appear in an ideal I if and only if  Qy for some element y
of the antichain of maximal elements of I. So

(2) %(0) =) xy(0).
ybx

First consider the case when z = s; ;. Then y > z if and only if y = s, for k > j
or y is the maximal element of S;. And the latter occurs if y = s; when 7 is odd or
y = s;—1 if 7 is even. Since s, corresponds to the kth black square of a black tile,
there are (a; — 1) — (j — 1) = a; — j elements in a given black tile satisfying the first
possibility when y &> x. And for the second, we have a unique tile with its head in the
appropriate row each time y appears. Combining this with equation (2) and part (b)
gives the first case of the desired formula.

When z is shared, it is either a maximal element and thus of the form = = s9;_1,
or a minimal element and so x = so; for some ¢. Maximal elements of F' are only in an
ideal when they are in the corresponding antichain. These correspond to the red tiles
counted by 79;_1. A minimal element x = s9; will be in every ideal, of which there
are #0O, except the ones whose antichain contains no elements in either So; or So;41.
In T this corresponds to having yellow tiles in a given column in both rows 2 and
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2i + 1. But by part (b) of the definition of a-tilings, these pairs of yellow tiles are in
bijection with red tiles having their head in row 2i. This accounts for the —ry; term
in the expression we wished to obtain.

(d) Using the counts from (b) we obtain

X(0) =) x.(0)

zeF
t
D ITD
=1 $€§i r=s;

= Z[bi(ai — 1) +ri

as desired.

(e) This equation follows from (c) in much the same way that (d) was obtained
from (b). So the details are omitted. O

3. HOMOMESIES FOR ARBITRARY AND SELF-DUAL FENCES

We now use Lemma 2.3 to demonstrate various homomesy results that hold for arbi-
trary fences. We also prove a lemma about rowmotion on an arbitrary self-dual poset
which will be useful in the sequel.

THEOREM 3.1. Let o = (a1, @a, . . ., ) with corresponding fence F = F(a) and let O
be any rowmotion orbit of F'.

(a) If x,y € S; for some i, then xu — Xy s 0-mesic.
) If z € 5'2-, Yy =38; and z = 8;_1, then o;Xz + Xy + X» @5 1-mesic.
(c) If v =s1; and y = s1,k, then kXo — jXy s (k — j)-mesic.
) Let x = s9i—1 and y = saj. If ro;_1 = 195 for all orbits O, then Xz + Xy is
1-mesic.
(e) Ift is odd and all the o; are even, then #O is even for all orbits O.
(f) If oy =2 for alli € [t], then x is t/2-mesic.
Proof. (a) By Lemma 2.3(b) we have x,(0) = b; = x,,(O), and the result follows.
(b) Using Lemma 2.3(a) and (b), we obtain
@iXz(0) + xy(0) + x2(0) = a;bi + 1 + 1521 = #0O,
which is equivalent to what we wished to prove.
(¢) From Lemma 2.3(a) and (c) we see that

kXz(0) = Xy (O) = k[bi (a1 — j) + 1] — j[br (1 — k) + 1]
= (k= j)brox + 7]
= (k—J) - #0.
(d) By Lemma 2.3(a) and (c) again, as well as the assumption on red tiles,
Xz(0) + Xy (O) =121 + (#O —roj) = #O.

(e) We will calculate the number of squares in the tiling 7' = ¢(O) in two different
ways. Since all the «; are even, we have that a; —1 > 1 for all 4. This implies that there
are black tiles in every row. From Definition 2.1(a) we see that there is a matching
between the black tiles and the yellow tiles in row 4 for all i. And a matched pair
covers «; squares, which is an even number. By definition, red tiles cover two squares.
So the total number of squares in 7" is even.
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FIGURE 4. The ideal complement map

But since T lies on an t x #0 cylinder, the number of squares in T is also ¢ - #0O.
The fact that ¢ is odd forces #O to be even.

(f) From Lemma 2.3(a) and the assumption on o we have
2b; + 1 + i1 = #0O

for all orbits O and all ¢ € [t]. Summing these equations and using Lemma 2.3(d)
gives

t~#0222bi+zri+zn‘_1 =2 (ZbiJrZTi) =2-x(0)

from which the desired homomesy follows. O

We now prove a general result about the y statistic in orbits of self-dual posets
which we will use later. To state it, we need some definitions. Suppose our poset P is
self-dual. In particular, this will be true if P = F(«) where « is a palindrome (that
is, equal to its reversal) with an odd number of parts. So there is an order-reversing
bijection k : P — P. Note that I € Z(P) if and only if x(I) € U(P). This permits us
to define the ideal complement (with respect to ) of I € Z(P) as

I=roc(l).
See Figure 4 for an example in a (3,3,3), where circles are black or white depending
on whether they are in the ideal or not, respectively. The relationship with rowmotion
is as follows.

LEMMA 3.2. Let P be self-dual and fiz an order-reversing bijection k : P — P. Then
for all I € Z(P) we have

p=HI) = (D),
where the ideal complements are with respect to k.

Proof. Since k and ¢ commute, they can be applied to get the ideal complement in
either order. And p = A~ oV oc, so it suffices to show that the following diagram
commutes:

v AA*J

U
L
I-2,B YLV _ K
To see that the first square of the diagram commutes, recall that x is an order-
reversing bijection. Thus it sends the minimal elements of any subset S C P bijectively

to the maximal elements of k(.5). The proof of commutativity for the second square
is similar and so omitted. O

I C

COROLLARY 3.3. Let P be self-dual with n = #P, and fix an order-reversing bijection
k:P — P. Let I € Z(P).
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(a) If I,I € O for some orbit O, then

X(0) _n
#0O 2’
(b) If I € O and I € O for some orbits O and O with O # O, then #0O = #O

and

X(O)+x(O) _n

#O+H#0O 2
Proof. (a) We claim that the hypothesis on O implies that, for any J € O, we must
have J € O. Indeed, J = p’(I) for some integer j. So, by Lemma 3.2,

J=p(I)=p"(I) €0,

since I € O. Thus O can be partitioned into pairs {I,I} with I # I, and singletons
{I} with I = I. In each pair and singleton, the average of X is n/2, so the same is
true of the orbit.

(b) Suppose O = {I1, ..., I;}. Similar reasoning as in the proof of (a) shows that
the hypothesis on I, T implies that O = {I,...,I;}. Now the average of ¥ in each
pair {I;, I;} is equal to n/2, which implies the same is true of O & O. O

To turn this last result into a homomesy, take a self-dual P with a given order-
reversing bijection x : P — P. Consider the group generated by the action of p and
the ideal complement map I — I. The orbits of this action will be called dihedral
group orbits. Note that from the proof of Corollary 3.3, each dihedral group orbit is
either an orbit of the action of p or a union of two such orbits. The next result follows
immediately from Corollary 3.3.

THEOREM 3.4. Let P is self-dual with n = #P, and fix an order-reversing bijection
k: P — P. Then X is (n/2)-mesic on dihedral group orbits. O

4. FENCES WITH FEW SEGMENTS

In this section we will consider fences with at most 5 segments. For certain composi-
tions a, we will completely describe the orbit sizes and the number of orbits. We will
also calculate the values of x and ¥, revealing a number of homometries.

We will need an expression for the number of ideals (equivalently, antichains) in
F= F’(a). This is provided by the next lemma and its corollary.

LEMMA 4.1. Let @ = (v, ..., ) where t > 2. Then
#T(a) = ap - #I(on, ... on—1) + #L(ag, ..., q2).

Proof. We will assume that t is odd; the proof in the case where ¢ is even is similar.
With this assumption, s;_ is a minimal element of F = F(«). For any I € Z(«) we
have s;_1 € I or s;_1 & I. Since s;_1 is minimal, the ideals with s;_; € [ are in
bijection with the ideals of F' — {s;_1} = F(ay,..., 1) W F(ay). Since for any two
posets P, Q we have Z(P W Q) = Z(P) x Z(Q), this accounts for the first term of the
recursion. On the other hand, if s;_; ¢ I, then I does not contain any element on
either of the last two segments of F'. So these ideals contribute the second term, and
we are done. O

The following corollary is easy to obtain from Lemma 4.1, and so it is given without
proof.
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FIGURE 5. The orbit O of length 21 in F(5,4), with x(0) = 32
antichain elements.

COROLLARY 4.2. Let a = (a1, ..., o) where t > 1. Then
#I(o) =D w(r),

where the sum is over all tilings 7 of a 1 X t rectangle using 1 x 2 dominoes and 1 x 1
squares, and w(T) =[], a;, where i ranges over the positions of the 1 x 1 squares in
T.

For example, we have #Z (a1, as) = ajas+1 and #Z(ay, a2, a3) = ajasas +ag +
Qas.

We start with the case of two segments. Note that parts (c¢) and (d) of the next
result are homometries which are not homomesies.

THEOREM 4.3. Rowmotion on F(a,b) has the following properties.
(a) All orbits O have size £ = lem(a,b) except for one, O', which is the orbit of
the empty set and has size £ + 1.
(b) The number of orbits is ged(a, b).
(c) For any orbit of size ¢,
(0) = 2ab—a—b —m
X\ = ged(a,b) —
For the orbit of size £ + 1,

X(O)=m+1.
(d) For any orbit of size £,
R lla+b—2
X(0) = Hatb-2) 5 )
For the orbit of size £ + 1,
£+ 2 b—2

2

Proof. (a) There is only one antichain containing the unique shared element s; of
F(a,b). So there is a unique tiling 7”7 with a red tile and all other tilings 7" consist
only of yellow and black tiles. Figure 5 displays 7" for F (5,4).

Consider a tiling T of the second type. From Definition 2.1(a), the first row can
be partitioned into pairs consisting of a black tile and a yellow tile which together
cover a squares. Similarly the second row has a partition into blocks of b squares. So
T must have ¢ = lem(a, b) columns. In the same manner we see that 77 must have
one more column for the red tile. This implies the desired orbit lengths.

(b) Let k be the number of orbits. Using part (a) and Corollary 4.2,
ab+1=#T(a,b) = (k— 1)+ (£ +1) =kl + 1.
It follows that k = ged(a, b).
(¢) From the description of the tilings in (a), for all orbits we have
by — lem(a, b) _ b ‘
a ged(a, b)
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Similarly b = a/ ged(a,b). Finally 71 = 0 or 1 for the orbits O and O, respectively.
The result now follows by substitution into Lemma 2.3(d), using that a; = a and
g = b.

(d) These equations follow from (a) and Lemma 2.3(e) in much the same way as
the derivation in part (c). We leave the details to the reader. 0

In the next result we consider certain fences with three segments. We do not ex-
plicitly state the values of the y statistic for the homometries, but these can be
computed from the numbers of tiles of each color, which are given in the proof. An
example follows the demonstration.

THEOREM 4.4. Consider ﬁ'(a, b,a) and define
g =gcd(a,b), a=alg, b=0b/g, {£=Ilecm(a,b).
Since @, b are relatively prime, there exists a smallest positive integer m such that
ma =qb+ 1
for some positive integer q. Then the orbits of rowmotion on F(a,b, a) can be par-

titioned by length into three sets S, M, L, which we call small, medium, and large,
having the following properties.

(a) We have
#826(971)23 #M:qv #ﬁza*(b

and
/ if OeS,
#O=<al2b—2b+m)+g ifOe€M,
a2b—b+m)+g ifOE€L.

(b) For rowmotion on antichains, x is homometric.
(¢) For rowmotion on ideals, § is n/2-mesic where n = #F(a,b,a) =2a+b— 1.

Proof. (a) We will construct the corresponding tilings, where we will number the
columns from left to right starting with column 0. We can use any integer to refer to
a column by using its standard representative modulo #0O, the number of columns.
Figure 3 gives an example of the tilings for F (4,3,4), where S = & because g = 1.
We first construct the tilings 7" for the orbits in S. We also standardize these tilings
so that the first row begins with a yellow tile. The first row of T will consist of £/a
copies of a pair consisting of a yellow tile followed by a black tile of length a — 1. So
T has length ¢. We now tile the second row with £/b copies of a paired yellow tile
and black tile of length b — 1 positioned in such a way that no two yellow tiles from
the first two rows are in the same column. Finally tile the third row with alternating
yellow and length a — 1 black tiles, requiring that no two yellow tiles from the last
two rows are in the same column. Clearly this is a valid tiling of length £. So, for this
case, it remains to calculate the number of rotationally different tilings obtained.
The first square of a black tile in the second row could be placed under any one
of the a squares of the union of a yellow tile and an adjacent black tile in the first
row. Since there are ¢/b black tiles in the second row, any placement of the first black
tile will be rotationally equivalent to that many other placements. So the number of
nonequivalent placements is a/(¢/b) = g. But one of these will be the rotation class
which has two yellow tiles in the same column. Thus the count for the placement
of the second row is really g — 1. Similarly one sees that the number of inequivalent
placements for the third row is a(g — 1), giving a(g — 1)? as the final total.

Algebraic Combinatorics, Vol. 6 #1 (2023) 28



Rowmotion on fences

We will now construct @ tilings 77, ..., Tg, where the Ty for k < (am — 1)/b will
have a(2b — 2b +m) + g columns and correspond to orbits in M, and those for the
remaining values of k will have a(2b — b+ m) + g columns and correspond to orbits
in £. All these tilings will have g red tiles with their heads in row 1 and g red tiles
with their heads in row 2. For all k, the former tiles of T} will be in columns

0, +1,20+1), ..., (¢g—1(+1),
and the latter will be in columns
—kb, —kb—(L+1), —kb—2(0+1), ..., —kb—(¢g—1)({+1),

where the indices are taken modulo the number of columns of the tiling. It is now
a matter of simple arithmetic to check that these placements of red tiles can be
(uniquely) extended to full tilings. Also, these tilings are distinct, since the red tiles
with heads in the first row of all T} are fixed in this description, while the red tiles
with heads in the second row vary.

Finally we must verify that these tilings correspond to all orbits by adding up
the orbit sizes and making sure they sum to a(ab 4 2), which is the total number of
antichains in ' (a,b,a) by Corollary 4.2. This is a simple, if tedious, computation and
is left to the reader.

(b) We see from their descriptions in part (a) that these tilings have the following
parameters.

type of orbit| by = bs by rL=7T2
S b a 0
M 20 —2b+m2a—2a+q g
L 20—b+m 2a—a+q g

Since x only depends on these parameters by Lemma 2.3(d), and they are constant
on orbit sizes, this statistic is homometric.

(c) For the orbits O € S, using Lemma 2.3(e) and the previous table, we obtain

y((o)_“_zb(;) +a<;> :g+€(a_1)+f(b;1) _. 2a+2b—1 .

n
2
as desired.

For the orbits in O € M U L we will use Corollary 3.3(a). It suffices to find an
ideal I € O with I € O. Let I be the ideal corresponding to the zeroth column of the
corresponding tiling T'. We claim that the ideal J corresponding to column —kb — 1
satisfies J = I. By the choice of I, it must contain s;, the intersection of the first two
segments. Suppose I’s maximum element on the third segment is the rth unshared
element from the bottom, where » = 0 if I contains no such element.

The column for J comes just before the red tile in column —kb. So J can have no
elements in either the second or third segments. Furthermore, in the first row there
is an alternating sequence of black and yellow tiles, starting with a black tile whose
last square is in the last column and working backwards, because of the red tile in
column 0. Similarly, the red tile in column —kb guarantees a similar sequence of the
same length starting in column —kb+ 1 and going forwards in the third row. It follows
that J has the (a —r — 1)st unshared element on segment one as its maximal element.
But this matches the description of I given by applying ¢ and then applying . O

To illustrate the previous result, consider the fence F (2,6,2). So

g=ged(2,6) =2, a=2/2=1, b=6/2=3, ¢=1lm(2,6)=6.
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FIGURE 6. The two orbits of F(2,6,2).

So m@ = gb + 1 becomes m = 3¢ + 1, and the smallest m satisfying this relation for
some positive ¢ is when ¢ = 1 and m = 4. It follows that
#S=1-2-1* =1, #M=1, #L=1-1=0.

The single small and medium orbits are shown in Figure 6.
We next consider the case of a 4-segment fence with all parts of a equal. An example
of the orbits is given in Figure 7.

THEOREM 4.5. The orbits of rowmotion on F(a,a,a,a) can be partitioned into four
sets S, M, L, G called small, medium, large, and gigantic having the following prop-
erties.

(a) We have
#S=(a—1)° H#M=aqa, #L=1 #G=a—1,

and
a ifOeS,
a+1 if O e M,
a?+a+1 ifOcL,
3a%2 +a if O €g.
(b) The statistics x and ¥ are homometric under rowmotion, with values given

in the following chart:

| S M L g
x(0)| 4a —4 4a — 2 4a® —a 12a® —1la +2
£(0)|2a® —a 2a® +3a —12a® +3a — 1 6a® —a

#O =

Proof. (a) We will construct the corresponding tilings, labeling the columns starting
at 0. For 1 < ¢ < 4, let j; denote the smallest nonnegative number so that row ¢ of the
tiling has a yellow square in column j;. We set j; = 0, since one can always choose
the first antichain in the orbit to have a yellow square in the top row. Let us consider
four types of orbits as follows.

S: 0 # jo # j3 # ja. In such an orbit, each row simply consists of one yellow and
one black tile, and the orbit has length a. For 2 < i < 4, there are a — 1 possibilities
for j;, since it can be any integer between 1 and a other than j; ;. Thus, there are
(a — 1)3 such orbits.

M: 0 = jy # j3 = j4. In such an orbit, rows 1 and 2 both consist of a yellow tile in
column 0, followed by a black tile, followed by a red tile with its head in row 1. Rows
3 and 4 have the same configuration, shifted j3 positions to the right. Therefore, such
an orbit has length a + 1. Since j3 can be any integer between 1 and a, there are a
such orbits.

L: 0 = jo = j3 = j4. We will construct a unique orbit of this type where every
row intersects at least one red tile. So it suffices to specify the positions of these tiles.
There are two red tiles in column a(a + 1) (the rightmost column), with heads in
rows 1 and 3. Additionally, there are a red tiles with their head in row 2, in columns
1+ r(a+1) for 0 <r <a-—1. It is straightforward to check that these red tiles can
be extended to a full tiling.
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G: 0 = jy = j3 # ja4. Let us write j instead of jy for short. For each value of j
satisfying 1 < j < a — 1, we construct an orbit of length 3a% + a. Again, it suffices to
specify the positions of the red tiles, since every row intersects at least one red tile.
From left to right, the red tiles are in the following positions:

In columns 1+ r(a+ 1) for 0 < r < j — 1, with head in row 2.

In columns r(a + 1) for j <r < a+j — 1, with head in row 3.

In columns 2 +r(a+ 1) for a4+ j — 1 < r < 2a — 2, with head in row 2.
In columns 1+ 7(a+ 1) for 2a — 1 < r < 3a — 2, with head in row 1.

e o o o

It can be checked that this configuration of red tiles can be extended to a valid
tiling. Note that the a — 1 orbits obtained for the different values of j are all distinct.
This is because the positions of the red tiles with heads in row 1 are independent of
j, whereas the sets of positions of the other red tiles are different for each j.

Next we show that we have obtained tilings for all the orbits. The total number of
antichains in the orbits that we have constructed is

(a—1)3-a+a-(a+1)+(@®+a+1)+(a—1)-(3a®> +a) = a* + 3a* + 1,

which equals #Z(a,a,a,a) by Corollary 4.2.

(b) From the constructions in (a) we see that, for given i, the parameters b; and
r; are constant in each of the four classes of orbits. Homometry follows immediately.
To compute the statistics, we note the following specific values.

type of orbit‘bl =0bybo=b3 11 =713 712

S 1 1 0 0
M 1 1 1 0
L a+1 a 1 a
g 3a 3a-—1 a a
Now the formulas in Lemma 2.3(d) and (e) complete the proof. O

We end this section by considering certain fences with 5 segments. An example for

v

F(3,1,3,1,3) is given in Figure 8, where the notation is taken from the proof of the
following result.

THEOREM 4.6. The orbits of rowmotion on F(a, 1,a,1,a) can be partitioned into three
sets S, M, L called small, medium, and large having the following properties.
(a) We have

#S5=2a-2, #M=1, #L=a,
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FIGURE 8. The orbits S;, My, and L3 in F(3,1,3,1,3).

and
a+1 if O €S,
#O=¢3a+2 if OeM,
a’+2a ifOeL.

(b) For rowmotion on antichains, x is homometric with

3a ifO €S,
x(0)=<9a -3 if O € M,
3a2+3a—2 ifOcL.

(c) The dihedral group orbits are pairs of orbits in S and single orbits in M and
L.

Proof. (a) We label the columns of a tiling as usual. Since there will be no black
tiles in rows 2 and 4, every row will intersect at least one red tile. Thus it suffices
to specify the positions of these tiles. We will omit the straightforward check that
the given positions of the red tiles can be extended to a full tiling with no column
repeated, and that the orbits are distinct and have a total of a® + 4a? + 3a columns,
which is the total number of antichains of the fence by Corollary 4.2. We label the
orbits in £ by L; where 1 < k < a. We label the orbits in & which have no red tile
with a head in row 2 as Sy where 1 < k < a — 1. Similarly, the orbits in § with no
red tile with a head in row 3 are labeled as S,’c where 1 < k < a—1. Every tiling in §
satisfies exactly one of these two conditions, so these two subsets have disjoint union
S. Finally, the sole orbit in M will be labeled Mj.

We now give the column numbers for the red tiles in each orbit with their head
in each row. The orbits £; have r; = a for 1 < i < 4, and so the positions will be
parameterized by ¢ where 0 < ¢ < a — 1. The symbol NA (not applicable) in the
following table indicates that there are no red tiles for that orbit with their head in
the corresponding row.

orbit H Ly ‘ M ‘Sk ‘ Sllg
row 1 qla+1) 0,a+1]0]| O
row 2 qla+2)+2 —a |NAlk+1
row 3 q(a+2) a —1| NA

row 4|(g—k+1)(a+1) —k|0,—a—1| k| k
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(b) The following chart of the r; and b; values reduces this proof to a routine
computation.

orbit Ly M| Sk S;v

bi T bl T bz T bz T
row l{la+1ja|3|2|1|1|1|1
row 2| 0 |a|0[1]|0|0]|0|1
row 3| a |a|3|1|1|1]1]0
row 4| 0 |a|0[2]0]1]|0]|1
row 5|la+1|0|3|0[{1]{0|1|0

(c) First of all, the lone orbit of size 3a + 2 must also be a dihedral group orbit
since it has no other orbit with which it could be paired. To show that the orbits of
size a? + 2a are also dihedral group orbits, it suffices to find an ideal I € L with
I= k(I) € L. We take as I the ideal corresponding to column 0, which consists of
red tiles with their heads in rows 1 and 3, and the cell in row 5 covered by the kth
cell of a black tile for 1 < k < a — 1 or by a yellow tile for £ = a. One can now verify
that I corresponds to column (a — k — 1)(a 4+ 2) + 1 of Ly.

Finally, we show that x pairs Sy with Sj,. Let I correspond to column a in Sk.
This column consists of the last cell of a black tile in row 1, a yellow tile in row 2, a
red tile in rows 3 and 4, and the (a — 1)st cell of a black tile in row 5. It is not hard
to see that I corresponds to column in S, which contains a red tile with its head in
row 4. 0

5. CONJECTURES AND AN OPEN PROBLEM

We now consider some conjectures and an open problem in the hopes that they
will spur future research. To state the first one, call a sequence of real numbers
a1,as, ..., a, palindromic if

a; = Qp4+1—4

for all 1 < ¢ < n. Associated with any fence F(al,ag, ..., ) we have the black tile
sequence by, ba, ..., b, and the red tile sequence ri,ro,...,7¢_1.
QUESTION 5.1. Let a = (e, 9, ..., 04) be palindromic and F = F’(a). Find neces-

sary and/or sufficient conditions on « for the black or the red tile sequences to be
palindromic for all rowmotion orbits.

From the proofs of Theorems 4.3, 4.4, and 4.5, we see that the black and red tile
sequences are palindromic for palindromic o with ¢ < 3, as well as for F((a*) where a'
denotes a repeated ¢ times. We have checked by computer that F'(a') has palindromic
tile sequences for all a +t < 12 except a = 4 and t = 8, where the orbit containing
the antichain {s1, 2,1} (equivalently, {1, 27} indexing the entries from left to right),
has black tile sequence

21,20, 18, 18, 19, 18, 19, 21
and red tile sequence
5,4,13,4,9,8,5.

The black and red tile sequences are related for palindromic «, as shown in the
next result.

PROPOSITION 5.2. Let o = (o, g, . . ., o) be palindromic where oi; = 2 for alli € [¢],
and let F = F(a). Then for any orbit O of F, the black tile sequence by, ba, ..., b is
palindromic if and only if the red tile sequence r1,7o,...,1r—1 s palindromic.
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Proof. We induct on i. Because all «; > 2, Lemma 2.3(a) implies that #O0 = b;«a; +
r; + ri—1 for any i € [t]. Using the fact that ro = r = 0 we obtain
bian + 11 = #0 = by + 1.
Since oy = oy, This can be rewritten as
O[l(bl — bt) =T¢—1 —T1.

It follows that b; = b; if and only if 71 = r;_1 which is the base case for our induction.

The induction step is similar. We have

bio; + 1 +ric1 = #0 = b 10441 +Te—ip1 + T
By induction, we can assume r;_1 = r_;4+1. And o; = a1, SO
Oti(bi, - bt—i+1) =Tt—i — T4.

Thus b; = by—; 41 is equivalent to r;_; = r;, which finishes the proof. O

The condition that a; > 2 for all 4 in this proposition is necessary. For example,
the proof of Theorem 4.6(b) shows that the black tile sequence of an orbit is always
palindromic, but that the red tile sequence is not necessarily so. Having palindromic
sequences yields certain homomesies for free.
PROPOSITION 5.3. Let a = (o, a,...,04) where a; = 2 for all i € [t]. Also let

F = ﬁ‘(a) and n = #F. If a as well as the black and red tile sequences are all
palindromic, then one has the following homomesies.

(a) For all k € [n] the statistic Xx — Xn—k+1 @5 0-mesic.
(b) Ift is odd, then for all k € [n] the statistic Xx + Xn—k+1 @S 1-mesic.

Proof. (a) First suppose zj, € S; for some i. Since « is palindromic, it follows that
Tp—k+1 € St—i+1. Now using Lemma 2.3 and the fact that the black tile sequence is
palindromic, we see that

Xk(O) =bi =bi—it1 = Xn—k+1(0)

for all orbits O. This proves the homomesy for our choice of xy. The proof when
) = s; for some ¢ is similar, using the palindromicity of the red tile sequence. The
details are omitted.

(b) If 25 = s; for some 4, then this follows from our assumptions and Theo-
rem 3.1(d). So assume that ), = s; ; for some 4, j. There are two similar cases de-
pending on whether ¢ is even or odd, so we will only give details for the former. From
Lemma 2.3(c), for any orbit O we have

Xk(0) = bi(o; — j) +ri-1.
Since xy is an unshared element on S;, we have that x,_r+1 is an unshared element
on S;_;y1. And since xy is the jth unshared element from the bottom, we have that
Tp—k41 is the jth unshared element from the top. So counting from the bottom of
the unshared elements in S;_; 1 we have that x,,_;y1 is element number o;_;11 — j.
Using Lemma 2.3(c) again, as well as the assumption that the b; and r; sequences are
palindromic, gives
Xn—k41(0) = bsiy1|s—iy1 — (—iy1 — J)| + Ta—iv1)—1 = jbi + 7.
Finally
Xk (O) + Xn—k41(0) = bi(a; — §) +ri1 + jbi +1ri = #O

by Lemma 2.3(a). This completes the proof of (b). O

We conjecture that even more homomesies are true for constant c.
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CONJECTURE 5.4. Let a = (a*) and let F = F(a).

(a) The statistic x is homometric.
(b) Ift is odd then the statistic { is n/2-mesic where n = #F.

Again, we have evidence for this conjecture from the results in Section 4, which
prove that it holds for ¢ < 4. Furthermore, computer calculations have verified the
truth of these statements for a + ¢ < 12. One might be tempted to try and prove
part (b) by showing that, under the given hypotheses, the dihedral group orbits and
orbits are the same, and then using Theorem 3.4. This would mean that for every ideal
I we would have I in the same orbit with I. But this is not always true. For example,
if o = (27) and F = F(«), then the ideal I = {xy, x4, 27} has T = {x1, 23,25}, which
is in a different orbit.

We also note that if a = 2 then Conjecture 5.4(a) is implied by the stronger result
in Theorem 3.1(f) that x is actually ¢/2-mesic. This result also follows from Corollary
3.11 in a paper of Chan, Haddadan, Hopkins, and Moci [1].

Finally we mention that Defant and Lin have conjectured that the down-degree
statistic is homometric in the v-Tamari lattice corresponding to a lattice path v.
See [3] for more information.
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