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k-positivity of dual canonical basis elements
from 1324- and 2143-avoiding
Kazhdan–Lusztig immanants

Sunita Chepuri & Melissa Sherman-Bennett

Abstract In this note, we show that certain dual canonical basis elements of C[SLm] are
positive when evaluated on k-positive matrices, matrices whose minors of size k ×k and smaller
are positive. Skandera showed that all dual canonical basis elements of C[SLm] can be written
in terms of Kazhdan–Lusztig immanants, which were introduced by Rhoades and Skandera.
We focus on the basis elements which are expressed in terms of Kazhdan–Lusztig immanants
indexed by 1324- and 2143-avoiding permutations. This extends previous work of the authors
on Kazhdan–Lusztig immanants and uses similar tools, namely Lewis Carroll’s identity (also
known as the Desnanot-Jacobi identity).

1. Introduction
For a function f : Sn → C, the immanant associated to f , Immf X : Matn×n(C) → C,
is the function

(1) Immf X :=
∑

w∈Sn

f(w) x1,w1 · · · xn,wn
,

where the xi,j are indeterminates. We evaluate Immf X on a matrix M = (mi,j) by
specializing xi,j to mi,j for all i, j.

Immanants are a generalization of the determinant, where f(w) = (−1)ℓ(w), and
the permanent, where f(w) = 1. Positivity properties of immanants have been studied
since the early 1990’s [11–13, 20]. One of the main results in this area is that when
f is an irreducible character of Sn, then Immf (X) is nonnegative on totally nonneg-
ative matrices, that is, matrices with all nonnegative minors [19]. In this note, we
will investigate positivity properties of functions closely related to Kazhdan–Lusztig
immanants, introduced by Rhoades and Skandera [16].

Definition 1.1. The Kazhdan–Lusztig immanant Immv X : Matn×n(C) → C, for a
permutation v ∈ Sn, is given by

(2) Immv X :=
∑

w∈Sn

(−1)ℓ(w)−ℓ(v)Pw0w,w0v(1) x1,w1 · · · xn,wn

where Px,y(q) is the Kazhdan–Lusztig polynomial associated to x, y ∈ Sn, w0 ∈ Sn

is the longest permutation, and we write permutations w = w1w2 . . . wn in one-line
notation. (For the definition of Px,y(q) and their basic properties, see e.g. [1].)
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Our interest in Kazhdan–Lusztig immanants stems from their connection to the
dual canonical basis of C[SLm]. Using work of Du [9], Skandera [18] showed that the
dual canonical basis elements of C[SLm] are exactly Kazhdan–Lusztig immanants
evaluated on matrices of indeterminates with repeated rows and columns.

Let X = (xij) be the m×m matrix of variables xij and let
(([m]

n

))
denote the set of

n-element multisets of [m] := {1, . . . , m}. For R, C ∈
(([m]

n

))
with R = {r1 ⩽ · · · ⩽ rn}

and C = {c1 ⩽ · · · ⩽ cn}, we write X(R, C) to denote the matrix (xri,cj
)n
i,j=1 (see

Definition 2.8).
Proposition 1.2 ( [18, Theorem 2.1]). The dual canonical basis of C[SLm] consists
of the nonzero elements of the following set:{

Immv X(R, C) : v ∈ Sn for some n ∈ N and R, C ∈
((

[m]
n

))}
.

The positivity properties of dual canonical basis elements have been of interest
essentially since their definition, and are closely related to the study of total positivity.
In 1994, Lusztig [14] defined the totally positive part G>0 of any reductive group G.
He also showed that all elements of the dual canonical basis of O(G) are positive
on G>0. Fomin and Zelevinsky [10] later proved that for semisimple groups, G>0 is
precisely the subset of G where all generalized minors are positive. Generalized minors
are dual canonical basis elements corresponding to the fundamental weights of G and
their images under Weyl group action.

Here, we study signs of dual canonical basis elements on a natural generalization
of G>0. Let S be some subset of generalized minors and GS

>0 the subset of G where
all elements of S are positive. Which dual canonical basis elements are positive on all
elements of GS

>0? In this note, we consider the case where G = SLm and S consists
of the generalized minors corresponding to the first k fundamental weights and their
images under the Weyl group action. In this situation, GS

>0 is the set of k-positive
matrices, matrices where all minors of size k and smaller are positive. Cluster algebra
structures, topology, and variation diminishing properties of these matrices have been
previously studied in [2, 4, 7, 8].

We call a matrix functional k-positive if it is positive when evaluated on all k-
positive matrices. Our main result is as follows:
Theorem 1.3. Let v ∈ Sn be 1324-, 2143-avoiding and suppose that for all i < j
with vi < vj, we have j − i ⩽ k or vj −vi ⩽ k. Let R, C ∈

(([m]
n

))
. Then Immv X(R, C)

is identically zero or it is k-positive.
We also characterize precisely when the functions Immv X(R, C) appearing in The-

orem 1.3 are identically zero (see Theorem 3.1).
Theorem 1.3 extends the results of [5], in which we showed the function

Immv X([m], [m]) is k-positive under the assumptions of Theorem 1.3. Our techniques
here are similar to [5]. Note that Theorem 1.3 does not follow from [5, Theorem 1.4]
because for M k-positive, M(R, C) is k-nonnegative rather than k-positive.

Rephrasing Theorem 1.3 in terms of dual canonical basis elements, we have the
following corollary.
Corollary 1.4. Let F (X) = Immv X(R, C) be an element of the dual canonical
basis of C[SLm]. Suppose v is 1324-, 2143-avoiding and for all i < j with vi < vj, we
have j − i ⩽ k or vj − vi ⩽ k. Then F (X) is k-positive.

The paper is organized as follows. Section 2 gives background on the objects we
will be using to prove Theorem 1.3. It includes several useful lemmas proven in [5].
Section 3 contains the proof of Theorem 1.3. We conclude with a few thoughts on
future directions in Section 4.
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2. Background
In an abuse of notation, we frequently drop curly braces around sets appearing in
subscripts and superscripts.

2.1. Background on 1324 and 2143-avoiding Kazhdan–Lusztig immanants.
For integers i ⩽ j, let [i, j] := {i, i + 1, . . . , j − 1, j}. We abbreviate [1, n] as [n].
For v ∈ Sn, we write vi or v(i) for the image of i under v. We use the notation < for
both the usual order on [n] and the Bruhat order on Sn; it is clear from context which
is meant. To discuss non-inversions (or occasionally inversions) of a permutation v,
we will write ⟨i, j⟩v to avoid confusion with a matrix index or point in the plane. In
the notation ⟨i, j⟩v, we always assume i < j.

We are concerned with two notions of positivity, one for matrices and one for
immanants.
Definition 2.1. Let k ⩾ 1. A matrix M ∈ Matn×n(C) is k-positive if all minors of
size at most k are positive.

An immanant Immf X : Matn×n(C) → C is k-positive if it is positive on all k-
positive matrices.

Note that k-positive matrices have positive 1 × 1 minors, i.e. entries, and so are
real matrices.
Example 2.2. The matrix

M =


22 18 6 3
8 7 3 2
2 2 1 2
1 2 2 6


is 2-positive but the upper left 3 × 3 submatrix has negative determinant, so is not
3-positive or 4-positive (totally positive).

Our results on k-positivity of Kazhdan–Lusztig immanants involve pattern avoid-
ance.
Definition 2.3. Let v ∈ Sn, and let w ∈ Sm. Suppose v = v1 · · · vn and w = w1 · · · wm

in one-line notation. The pattern w occurs in v if there are 1 ⩽ i1 < · · · < im ⩽ n
such that vi1 · · · vim are in the same relative order as w1 · · · wm. Additionally, v avoids
the pattern w if it does not occur in v.

Certain Kazhdan–Lusztig immanants have a very simple determinantal formula,
which involves the graph of an interval.
Definition 2.4. For v ∈ Sn, the graph of v, denoted Γ(v), refers to its graph as a
function. That is, Γ(v) := {(1, v1), . . . , (n, vn)}. For v, w ∈ Sn, the graph Γ[v, w] of
the Bruhat interval [v, w] is the subset of [n]2 defined as

Γ[v, w] := {(i, ui) : u ∈ [v, w], i = 1, . . . , n}.

We think of an element (i, j) ∈ Γ[v, w] as a point in row i and column j of an
n × n grid, indexed so that row indices increase going down and column indices
increase going right (see Example 2.6). A square or square region in Γ[v, w] is a subset
of Γ[v, w] which forms a square when drawn in the grid.

We will also need the following notion on matrices.
Definition 2.5. Let P ⊂ [n]2 and let M = (mij) be an n × n matrix. The restriction
of M to P , denoted M |P , is the matrix with entries

m′
ij =

{
mij (i, j) ∈ P

0 else.
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Example 2.6. Consider v = 2431 in S4. We have [v, w0] = {2431, 4231, 3421, 4321},
and so Γ[v, w0] is as follows.

1 4

1

4

If M is the matrix from Example 2.2, then

M |Γ[v,w0] =


0 18 6 3
0 7 3 2
0 2 1 0
1 0 0 0

 .

Note that v avoids patterns 1324 and 2143.

We can now state a simple determinantal formula for certain Kazhdan–Lusztig
elements. This follows from results of [17].

Proposition 2.7 ( [5, Corollary 3.6]). Let v ∈ Sn avoid 1324 and 2143. Then

(3) Immv X = (−1)ℓ(v) det(X|Γ[v,w0]).

Using Proposition 2.7, we can similarly obtain a simple determinantal formula for
certain dual canonical basis elements of C[SLm]. Recall from Proposition 1.2 that
every dual canonical basis element can be expressed as a Kazhdan–Lusztig immanant
evaluated on a matrix of indeterminates with repeated rows and columns.

Definition 2.8. Let R = {r1 ⩽ r2 ⩽ · · · ⩽ rn} and C = {c1 ⩽ c2 ⩽ · · · ⩽ cn} be
elements of

(([m]
n

))
and let M = (mij) be an m×m matrix. We denote by M(R, C) the

matrix with (i, j)-entry equal to mri,cj
. We call ri the label of row i; similarly, cj is the

label of column j. We view X(R, C) as a function from Matm×m(C) to Matn×n(C),
which takes M to M(R, C).

Example 2.9. Let R = {1, 1, 3} and C = {2, 3, 4}. Then

X(R, C) =

x12 x13 x14
x12 x13 x14
x32 x33 x34

 .

If M is the matrix from Example 2.2, then

M(R, C) =

18 6 3
18 6 3
2 1 2

 .

We will focus on the dual canonical basis elements Immv X(R, C) where v is 1324-
and 2143-avoiding. Proposition 2.7 immediately gives a determinantal formula for
these immanants.

Lemma 2.10. Let R, C ∈
(([m]

n

))
and let v ∈ Sn be 1324- and 2143-avoiding. Then

(4) Immv X(R, C) = (−1)ℓ(v) det X(R, C)|Γ[v,w0].
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We are interested in the sign of Immv X(R, C) on k-positive matrices, so long as
Immv X(R, C) is not identically zero. Clearly, the function in (4) is identically zero
when the matrix X(R, C)|Γ[v,w0] has two identical rows or columns. We make the
following definitions to discuss this situation.

Definition 2.11. Let P ⊆ [n]2. The support of row r of P is the set of columns c ∈ [n]
such that (r, c) ∈ P . The support of a column is defined analogously.

Definition 2.12. Let P ⊆ [n]2, and let R, C ∈
(([m]

n

))
. Then P is (R, C)-admissible

if no two rows or columns with the same labels have the same support.

Example 2.13. Let P = Γ[v, w0] where v = 2431, as in Example 2.6. Rows 1 and 2
have support {2, 3, 4}, row 3 has support {2, 3} and row 4 has support {1}. Col-
umn 1 has support {4}, columns 2 and 3 have support {1, 2, 3}, and column 4 has
support {1, 2}. This means P is (R, C)-admissible if and only if r1 ̸= r2, and c2 ̸= c3.
For example, let A = {1, 2, 2, 3} and B = {1, 2, 3, 3}. Then P is (A, B)-admissible
but, since a2 = a3 = 2, P is not (A, A)-admissible.

For v avoiding 1324 and 2143, Immv X(R, C) is identically zero if Γ[v, w0] is not
(R, C)-admissible. In the subsequent sections, we will show the converse holds as well
(see Theorem 3.10).

Finally, we introduce some notation that will be useful in proofs. For I ∈
([n]

k

)
,

define δI : [n] ∖ I → [n − k] as

δI(j) := j − |{i ∈ I : i < j}|

That is, δI is the unique order-preserving map from [n] ∖ I to [n − k].

Definition 2.14. For I, J ∈
([n]

k

)
and P ⊆ [n]2, let P J

I ⊆ [n − k] × [n − k] be P

with rows I and columns J deleted. That is, P J
I = {(δI(a), δJ(b)) : (a, b) ∈ P}.

The labels of rows and columns are preserved under deletions; to be more precise,
if R = {r1 ⩽ · · · ⩽ rn} is the multiset of row labels of P , the multiset of row labels
of P J

I is {r′
1 ⩽ · · · ⩽ r′

n−k} where r′
j = rδ−1

I
(j).

2.2. Combinatorics of graphs of upper intervals. We will now take a closer
look at the graphs Γ[v, w0] that appear in Lemma 2.10. We begin by giving an alter-
nate definition for Γ[v, w0].

Definition 2.15. Let v ∈ Sn and (i, j) ∈ [n]2 ∖ Γ(v). Then (i, j) is sandwiched by a
non-inversion ⟨k, l⟩v if k ⩽ i ⩽ l and vk ⩽ j ⩽ vl. In this case, we also say ⟨k, l⟩v

sandwiches (i, j).

In other words, (i, j) is sandwiched by ⟨k, l⟩v if and only if (i, j) ∈ [n]2 lies inside
the rectangle with diagonal corners (k, vk) and (l, vl).

Lemma 2.16 ( [5, Lemma 3.4]). Let v ∈ Sn. Then

Γ[v, w0] = Γ(v) ∪ {(i, j) : (i, j) is sandwiched by a non-inversion of v}.

Using this alternate characterization, one can translate the assumptions of Theo-
rem 1.3 into a condition on Γ[v, w0].

Lemma 2.17 ( [5, Lemma 4.1]). Let v ∈ Sn. The graph Γ[v, w0] has a square of size k+1
if and only if for some non-inversion ⟨i, j⟩v we have j − i ⩾ k and vj − vi ⩾ k.

We now introduce some notation and a proposition that we will need to prove our
main result.
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1

1 red

blue

green

purple

Figure 1. An example of Γ[v, w0], with v = 64789312. The bounding
boxes are blue, red, blue, green, and purple, listed in the order of their
northmost row. The spanning corners of Γ[v, w0] are (2, 4), (5, 9),
(7, 3), (8, 1), and (9, 2).

Definition 2.18. Let v ∈ Sn. Define Bi,vi to be the square region of [n]2 with corners
(i, vi), (i, n − i + 1), (n − vi + 1, vi) and (n − vi + 1, n − i + 1). In other words, Bi,vi is
the square region of [n]2 with one corner at (i, vi) and two corners on the antidiagonal
of [n]2. We say Bi,vi

is a bounding box of Γ[v, w0] if there does not exist some j such
that Bi,vi

⊊ Bj,vj
. If Bi,vi

is a bounding box of Γ[v, w0], we call (i, vi) a spanning
corner of Γ[v, w0]. (See Figure 1 for an example.)

The name “bounding boxes” comes from the following lemma.

Lemma 2.19 ( [5, Lemma 4.12]). Let v ∈ Sn. Then

Γ[v, w0] ⊆
⋃

(i,vi)∈S

Bi,vi .

We also color the bounding boxes.

Definition 2.20. A bounding box Bi,vi
is said to be red if (i, vi) is below the antidiag-

onal, green if (i, vi) is on the antidiagonal, and blue if (i, vi) is above the antidiagonal.
If Bi,vi and Bn−vi+1,n−i+1 are both bounding boxes, then Bi,vi = Bn−vi+1,n−i+1 is
both red and blue. We say such a box is purple. (See Figure 1 for an example.)

Proposition 2.21 ( [5, Proposition 4.14]). Suppose v ∈ Sn avoids 2143 and w0v is not
contained in a maximal parabolic subgroup of Sn. Order the bounding boxes of Γ[v, w0]
by the row of the northwest corner. If Γ[v, w0] has more than one bounding box, then
they alternate between blue and red and there are no purple bounding boxes.

3. Positivity of basis elements
In this section, we prove our main result.
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Theorem 3.1. Let R, C ∈
(([m]

n

))
, let v ∈ Sn be 1324-, 2143-avoiding and suppose

that the largest square region in Γ[v, w0] has size at most k. If Γ[v, w0] is not (R, C)-
admissible, then Immv X(R, C) is identically zero. Otherwise, Immv X(R, C) is k-
positive.

Theorem 1.3 easily follows from Theorem 3.1, using Lemma 2.17.
Our proofs rely heavily on Lewis Carroll’s identity (also known as the Desnanot-

Jacobi identity) which is key to the method of Dodgson condensation.

Proposition 3.2 (Lewis Carroll’s Identity). If M is an n × n square matrix and MB
A

is M with the rows indexed by A ⊂ [n] and columns indexed by B ⊂ [n] removed, then

det M det M b,b′

a,a′ = det M b
a det M b′

a′ − det M b′

a det M b
a′ ,

where 1 ⩽ a < a′ ⩽ n and 1 ⩽ b < b′ ⩽ n.

3.1. Young diagram case. We first consider the case where Γ[v, w0] is a Young
diagram or the complement of a Young diagram (using English notation). Recall that
the Durfee square of a Young diagram λ is the largest square contained in λ.

Proposition 3.3. Let λ ⊆ nn be a Young diagram with Durfee square of size at
most k and µ := nn/λ. Let M be a m × m k-positive matrix and R, C ∈

(([m]
n

))
. Then

(−1)|µ| det M(R, C)|λ ⩾ 0
and equality holds only if (n, n − 1, . . . , 1) ⊈ λ or if λ is not (R, C)-admissible.

Proof. Let A = M(R, C)|λ = {aij} and for σ ∈ Sn, let aσ := a1,σ(1) · · · an,σ(n).
If (n, n − 1, . . . , 1) ⊈ λ then there is some 1 ⩽ j ⩽ n where λn−j+1 < j. Thus boxes
in λ in the last j rows are in the southwest most j × (j − 1) rectangle. This means
that for every σ, aσ contains some zero entry, so det(A) = 0. It is clear that if λ is
not (R, C)-admissible then det(A) = 0.

Now we will assume that (n, n − 1, . . . , 1) ⊆ λ and that λ is (R, C)-admissible.
We proceed by induction on n to show that det(A) has sign (−1)|µ|. The base cases
for n = 1, 2 are easy to check.

Let a = max{i | λi = n} and b = λn = max{j | λ′
j = n} where λ′ denotes the

transpose of λ. In other words, a is the last row in λ with n boxes and b is the last
column in λ with n boxes. From the Desnanot-Jacobi identity, we have that
(5) det A det Ab,n

a,n = det Ab
a det An

n − det An
a det Ab

n.

Let us see what we know about the signs of these determinants using our inductive
hypothesis. Say I := {i1 < · · · < ik} and J := {j1 < · · · < jk}, and let λJ

I denote the
Young diagram obtained from λ by removing rows indexed by I and columns indexed
by J . Note that

AJ
I = M(R, C)J

I |λJ
I

= M(R ∖ {ri1 , . . . , rik
}, C ∖ {cj1 , . . . , cjk

})|λJ
I
.

Also, λJ
I has Durfee square of size at most k. So we can use the inductive hypothesis

to compute the signs of all of the determinants in (5) other than det(A).
Let us consider which determinants in (5) are zero. The shape λb,n

a,n contains
the staircase (n − 2, . . . , 1) and the shapes λn

n, λn
a , and λb

n all contain the staircase
(n − 1, . . . , 1). However, λb

a may not contain the staircase (n − 1, . . . , 1) (e.g. con-
sider λ = (3, 3, 1)), so det Ab

a may be zero. Now we need to determine when λJ
I

is (R ∖ {ri1 , . . . , rik
}, C ∖ {cj1 , . . . , cjk

})-admissible. Consider Ab,n
a,n and pick two row

indices p, q /∈ {a, n} with p < q and rp = rq. Because λ is (R, C)-admissible, rows p, q
have different support, so λp > λq. Further, because R is listed in weakly increasing
order, p > a. We would like to argue that rows p′ := δa,n(p) and q′ := δa,n(q) of Ab,n

a,n
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have distinct support. Since p > a, we have (λb,n
a,n)p′ = λp − 1 and (λb,n

a,n)q′ = λq − 1,
so (λb,n

a,n)p′ > (λb,n
a,n)q′ . An analogous argument shows that columns of Ab,n

a,n with the
same index have distinct support. Similarly, λb

a is (R∖{ria
}, C∖{cjb

})-admissible, λn
a

is (R∖{ria
}, C∖{cjn

})-admissible, and λb
n is (R∖{rin

}, C∖{cjb
})-admissible. On the

other hand, λn
n may not be (R ∖ {rin

}, C ∖ {cjn
})-admissible (consider R = (1, 1, 2),

C = (1, 2, 3), λ = (3, 2, 1), for example).
Taking all of this together we find that the (det Ab

a det An
n) term in (5) may be

zero but that det Ab,n
a,n and (det An

a det Ab
n) are always nonzero. By induction, det Ab,n

a,n

has sign (−1)|µ|+a+b+1 and (det An
a det Ab

n) has sign (−1)a+b. If (det Ab
a det An

n) is
nonzero it has sign (−1)a+b+1. Thus, (det Ab

a det An
n − det An

a det Ab
n) always has

sign (−1)a+b+1 and det A is always nonzero with sign (−1)|µ|. □

Corollary 3.4. Let λ ⊆ nn be a Young diagram and let µ := nn/λ. Suppose µ has
Durfee square of size at most k, M is a k-positive m × m matrix, and R, C ∈

(([m]
n

))
.

Then

(−1)|λ| det M(R, C)|µ ⩾ 0
and equality holds if and only if (nn/(n − 1, n − 2, . . . , 1, 0)) ⊈ µ (or equivalently,
λ ⊈ (n − 1, n − 2, . . . , 1, 0)) or if µ is not (R, C)-admissible.

Proof. Let ẇ0 denote the matrix with ones on the antidiagonal and zeros elsewhere.
For a multiset J = {j1 ⩽ · · · ⩽ jn}, let J := {j1 ⩽ · · · ⩽ jn} where ji := n+1−jn+1−i.

Let M ′ be the antidiagonal transpose of M ; in symbols, M ′ = ẇ0MT ẇ0. Taking
antidiagonal transpose does not effect the determinant, so M ′ is also k-positive.

If we transpose M(R, C)|µ across the antidiagonal, we obtain the matrix

N := M ′(C, R)|ν ,

where ν is the Young diagram obtained from the skew-shape µ by reflecting across
the antidiagonal. Applying Proposition 3.3, we have that det N has sign (−1)|λ| if ν
is (C, R)-admissible and is zero otherwise. It is not hard to check that ν is (C, R)-
admissible if and only if µ is (R, C)-admissible. □

We can use Proposition 2.7 to rewrite Proposition 3.3 and Corollary 3.4 in terms
of immanants.

Corollary 3.5. Let v ∈ Sn avoid 1324 and 2143. Suppose Γ[v, w0] is a Young di-
agram λ with Durfee square of size at most k. If M is a k-positive m × m matrix
and R, C ∈

(([m]
n

))
such that λ is (R, C)-admissible, then Immv M(R, C) > 0.

Proof. Note that Γ(w0) ⊆ Γ[v, w0] implies λ contains the partition (n, n − 1, . . . , 1).
So, by Proposition 3.3, we know that (−1)|µ| det M(R, C)|Γ[v,w0] > 0 where µ = nn/λ.

Notice that if a box of µ is in row r and column c then v(r) < c and v−1(c) < r.
This means that ⟨v−1(c), r⟩v is an inversion. If ⟨a, b⟩v is an inversion and the box in
row b and column v(a) is not in µ, then (b, v(a)) is sandwiched by some non-inversion
⟨a, j⟩v for some j. But then 1 v(a) v(b) v(j) is an occurrence of the pattern 1324,
a contradiction. So (b, v(a)) is in µ. This means boxes in µ are in bijection with
inversions of v and (−1)ℓ(v) det M(R, C)|Γ[v,w0] = (−1)|µ| det M(R, C)|Γ[v,w0] > 0. By
Proposition 2.7, this means Immv M(R, C) > 0. □

Corollary 3.6. Let v ∈ Sn avoid 1324 and 2143. Suppose Γ[v, w0] is λ = nn/µ
for some partition µ and the largest square in λ is of size at most k. If M is a
k-positive m × m matrix and R, C ∈

(([m]
n

))
such that λ is (R, C)-admissible, then

Immv M(R, C) > 0.
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1

1

Figure 2. An example where Γ[v, w0] is block-antidiagonal. Here,
v = 6475132. In the notation of Proposition 3.7, j = 4, v1 = 3142,
and v2 = 132.

Proof. Note that Γ(w0) ⊆ Γ[v, w0] implies λ contains (nn/(n − 1, n − 2, . . . , 1, 0)). So,
by Corollary 3.4, we know that (−1)|µ| det M(R, C)|Γ[v,w0] > 0.

As in the proof of Corollary 3.5, there is a bijection between boxes of µ and inver-
sions of v. So, we know (−1)ℓ(v) det M(R, C)|Γ[v,w0] = (−1)|µ| det M(R, C)|Γ[v,w0] > 0.
By Proposition 2.7, this means Immv M(R, C) > 0. □

3.2. General Case. The following proposition will allow us to restrict to permu-
tations that are not elements of a maximal parabolic subgroup of Sn. To state the
lemma we temporarily denote the longest permutation in Sj by w(j).

Proposition 3.7 ( [5, Corollary 4.9]). Suppose v ∈ Sn is 1324-, 2143-avoiding and
Γ[v, w0] is block-antidiagonal. Let v1 ∈ Sj and v2 ∈ Sn−j be permutations such that
the upper-right antidiagonal block of Γ[v, w0] is equal to Γ[v1, w(j)] and the other an-
tidiagonal block is equal to Γ[v2, w(n−j)]. Then

Immv M = Immv1 M([j], [n − j + 1, n]) · Immv2 M([j + 1, n], [n − j]).

See Figure 2 for an example illustrating a block-antidiagonal Γ[v, w0] and the no-
tation of Proposition 3.7.

To analyze the determinants appearing in Lewis Carroll’s identity for computing
det X(R, C)|Γ[v,w0], we will use the following two propositions.

Proposition 3.8. Let v ∈ Sn be 2143- and 1324-avoiding, and i ∈ [n]. Let x ∈ Sn−1
be the permutation x : δi(j) 7→ δvi(vj) (that is, x is obtained from v by deleting vi

from v in one-line notation and shifting the remaining numbers appropriately). Then

(1) Γ[x, w0] =
(

Γ[v, w0] ∖
{

(p, q) : (p, q) is sandwiched only by
a non-inversion involving i

})vi

i
(2) If (i, vi) is not a spanning corner of Γ[v, w0], then Γ[x, w0] = Γ[v, w0]vi

i .
(3) For all i, det M |Γ[x,w0] = det M |Γ[v,w0]vi

i
.

Proof. Statement (1) follows from Lemma 2.16. Statements (2) and (3) are Proposi-
tion 4.17 from [5]. □
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Proposition 3.9. Let v ∈ Sn be 1324- and 2143-avoiding such that the last bound-
ing box of Γ[v, w0] is Bn,vn

, and the second to last box is Ba,va
for some a < n

with 1 < va < vn. Let b = v−1(1) and d = va. Suppose det(M(R, C)|Γ[v,w0])1
b ·

det(M(R, C)|Γ[v,w0])d
a is nonzero and has sign σ. Then

(1) If det(M(R, C)|Γ[v,w0])1
a · det(M(R, C)|Γ[v,w0])d

b ̸= 0, it has sign −σ.
(2) If det(M(R, C)|Γ[v,w0])1,d

a,b ̸= 0, it has sign σ · (−1)ℓ(v).

Proof. This follows from the proof of [5, Theorem 4.18]. □

We can now determine the sign of det X(R, C)|Γ[v,w0] on k-positive matrices.

Theorem 3.10. Let v ∈ Sn avoid 1324 and 2143 and let k be the size of the largest
square in Γ[v, w0]. Choose R, C ∈

(([m]
n

))
. For M a k-positive m × m matrix,

(−1)ℓ(v) det M(R, C)|Γ[v,w0] ⩾ 0

and equality holds if and only if Γ[v, w0] is not (R, C)-admissible.

Proof. First, if Γ[v, w0] is not (R, C)-admissible, the determinant in question is obvi-
ously zero. So we assume Γ[v, w0] is (R, C)-admissible.

We follow the proof of [5, Theorem 4.18], and proceed by induction on n. If Γ[v, w0]
is a partition, a complement of a partition, or block-antidiagonal, we are done by
Corollary 3.5, Corollary 3.6, or Proposition 3.7, respectively.

So we may assume that v has at least 2 bounding boxes and that adjacent bounding
boxes have nonempty intersection (where bounding boxes are ordered as usual by
the row of their northeast corner). Because v avoids 1324 and 2143, the final two
bounding boxes of Γ[v, w0] are of opposite color by Proposition 2.21 (that is, one is
red and one is blue). Without loss of generality, we assume the final box is red and
the second to last box is blue. Otherwise, we can consider the antidiagonal transpose
of M(R, C)|Γ[v,w0]. This is equal to (ẇ0MT ẇ0)(C, R)|Γ[w0v−1w0,w0] (using the notation
in the proof of Corollary 3.4) and has the same determinant as M(R, C)|Γ[v,w0].

This means the final box is Bn,vn , and the second to last box is Ba,va for some a < n
with 1 < va < vn. We analyze the sign of det M(R, C)|Γ[v,w0] using Lewis Carroll’s
identity on rows a, b := v−1(1) and columns 1, d := va. Note that a < b and 1 < d.

The proof of [5, Theorem 4.18] shows that each of the 5 known determinants in this
Lewis Carroll’s identity is equal to det M(R′, C ′)|Γ[v′,w0] for an appropriate choice of
multisets R′, C ′ and permutation v′. We first show that two of these determinants,
forming a single term on the right-hand side of the identity, are non-zero.

(1) Consider (M(R, C)|Γ[v,w0])1
b . By Proposition 3.8, the determinant of this ma-

trix is equal to the determinant of M(R′, C ′)|Γ[y,w0], where y is obtained
from v by deleting 1 from v in one-line notation and shifting appropriately,
R′ = R ∖ {rb} and C ′ = C ∖ {r1}.

We will check that Γ[y, w0] is (R′, C ′)-admissible. Note that because (1, b)
is not a spanning corner of Γ[v, w0], Γ[y, w0] = Γ[v, w0]1b by Proposition 3.8. So
we first check that removing column 1 and row b from Γ[v, w0] does not create
any rows i, j with both the same support and the same labels. By [5, Theo-
rem 4.18, pf. of (2)], rows b, . . . , n of Γ[v, w0] all have support {1, . . . , vn}. Note
that removing column 1 from Γ[v, w0] shortens rows b, . . . , n by one and does
not effect other rows, so it suffices to check that rows b−1, . . . , n−1 in Γ[y, w0]
have distinct labels. Since Γ[v, w0] is (R, C)-admissible and rows b, . . . , n
of Γ[v, w0] have the same support, we must have rb−1 ⩽ rb < rb+1 < · · · < rn.
So, letting r′

i denote the elements of R′, indexed in increasing order, we
have r′

b−1 < r′
b < · · · < r′

n−1.

Algebraic Combinatorics, Vol. 6 #1 (2023) 104



k-positivity of 1324- and 2143-avoiding dual canonical basis elements

1
1

7

7

1 8

1

8

red

blue

red

Q

Figure 3. On the left, Γ[v, w0] for v = 62785314. Elements of Γ[v]
are marked with crosses. On the right, Γ[z, w0] where z = 5674213
is the permutation obtained by deleting 2 from the one-line notation
of v and shifting remaining numbers appropriately. Note that Γ[z, w0]
is obtained from Γ[v, w0] by deleting row 2, column 2, and the shaded
region Q, consisting of elements sandwiched only by non-inversions
of the form ⟨2, i⟩v.

We now show there are no columns in Γ[y, w0] with both the same support
and same labels. Columns 1, . . . , vn of Γ[v, w0] have support containing [b, n],
and columns vn +1, . . . n have support contained in [1, b−1]. Removing row b
removes one element from the support of columns 1, . . . , vn and does not effect
other columns. Any two columns with the same support in Γ[y, w0] correspond
to two columns with the same support in Γ[v, w0], and thus they have distinct
labels by the (R, C)-admissibility of Γ[v, w0].

(2) Consider (M(R, C)|Γ[v,w0])d
a. By Proposition 3.8, the determinant of this ma-

trix is equal to the determinant of M(R′, C ′)d
a|Γ[z,w0], where z is obtained

from v by deleting va from v in one-line notation and shifting appropriately,
R′ = R ∖ {ra}, and C ′ = C ∖ {cd}. See Figure 3 for an example.

As (a, va) is a spanning corner of Γ[v, w0], Γ[z, w0] is obtained from Γ[v, w0]
by deleting row a, column d, and the subset Q ⊂ [n]2 consisting of all ele-
ments (p, q) which are sandwiched only by a non-inversion of the form ⟨a, i⟩v

(see Figure 3). Note that if (p, q) ∈ Q, then row p of Γ[v, w0] has sup-
port {d, d + 1, . . . , d + j} for some j and column q of Γ[v, w0] has support
{a, a + 1, . . . , a + ℓ} for some ℓ. Notice also that Q consists of some initial
chunk of each row and column of Γ[v, w0] it intersects; thus, deleting elements
of Q will not change the largest number in the support of any row or column.
Since all corners of Γ[v, w0] are elements of Γ[v] and (a, d) ∈ Γ[v], there are
no other corners in row a or column d. So a (resp. d) cannot be the largest
element in the support of a column (resp. row). So for row p in Γ[v, w0]da,
with ℓ the largest element in the support of p, δ−1

d (ℓ) is the largest element
in the support of row δ−1

a (p) in Γ[v, w0]. An analogous statement holds for
column q in Γ[v, w0]da.

Consider rows p < p′ of Γ[v, w0] with rp = r′
p and p, p′ ̸= a. Because R is

listed in weakly increasing order, rp = rp+1 = · · · = rp′ . By assumption, the
support of these rows in Γ[v, w0] must be distinct. Suppose rows s = δa(p),
s′ = δa(p′) have the same support in Γ[z, w0]; say ℓ is the largest number
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in their support. The reasoning in the above paragraph implies that δ−1
d (ℓ)

is the largest number in the support of rows p, p′ in Γ[v, w0], and thus also
in rows p, p + 1, . . . , p′ − 1, p′. So the smallest numbers in the support of
rows p, p+1, . . . , p′ must be distinct. On the other hand, after deleting column
d and the elements of Q, the supports should be the same. These deletions
remove the first element of a row only if that first element is in column d.
Putting these together, we must have p = a − 1, p′ = a + 1, and row a + 1
has support starting at d; otherwise we obtain rows of Γ[v, w0] with the same
label and same support. But now row a is among rows p, p + 1, p′, and rows a
and p′ = a + 1 have support starting at d, a contradiction.

An identical argument with columns in place of rows shows that no two
columns of Γ[z, w0] have the same support and the same label. So Γ[z, w0] is
(R′, C ′)-admissible.

So by the inductive hypothesis, one term on the right-hand side of the identity is
nonzero. Let σ denote the sign of this term. By Proposition 3.9, the other term on
the right-hand side has sign −σ if it is nonzero. In either case, the right-hand side has
sign σ, and in particular is nonzero. Thus, both determinants on the left-hand side
are non-zero. By Proposition 3.9, the determinant det(M(R, C)|Γ[v,w0])1,d

a,b has sign
σ · (−1)ℓ(v), so dividing through by that determinant shows that det M(R, C)|Γ[v,w0]
has sign ℓ(v).

□

Taking this theorem with Lemma 2.10, we can now prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 2.10,
Immv M(R, C) = (−1)ℓ(v) det M(R, C)|Γ[v,w0].

Let k′ ⩽ k be the size of the largest square in Γ[v, w0]. By Theorem 3.10, for M
k′-positive, the right hand side of this expression is positive. Any k-positive matrix is
also k′-positive, so we are done. □

4. Future Directions
The results in [5] and this paper were inspired by the following conjecture of
Pylyavskyy.

Conjecture 4.1 ([15]). Let 0 < k < n be an integer and let v ∈ Sn avoid the pattern
12 · · · (k + 1). Then Immv X is k-positive.

This conjecture remains open. The relation between pattern avoidance and k-
positivity of immanants is an interesting direction of further inquiry.

The results of this paper showcase an interesting phenomenon: the behavior of the
dual canonical basis element Immv X(R, C) on k-positive matrices is the same as the
behavior of the usual Kazhdan–Lusztig immanant Immv X. Based on this, we make
the following conjecture.

Conjecture 4.2. Suppose Immv X is k-positive. Then as long as Immv X(R, C) is
not identically zero, Immv X(R, C) is k-positive.

We also make a related conjecture based on the same phenomenon, which is some-
thing of an intermediate conjecture; it would imply Conjecture 4.1 and would be
implied by Conjectures 4.1 and 4.2 together.

Conjecture 4.3. Let 0 < k < n ⩽ m be integers and let v ∈ Sn avoid the pat-
tern 12 · · · (k + 1). Let R, C ∈

(([m]
n

))
. If Immv X(R, C) is not identically zero, then

Immv X(R, C) is k-positive.
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The compact determinantal formulas we give for certain dual canonical basis ele-
ments may be useful to understand the relationship between the dual canonical basis
of C[SLm] and its cluster algebra structure. Technically, the cluster algebra in ques-
tion is the coordinate ring of Gw0,w0 , the open double Bruhat cell in SLm; C[Gw0,w0 ]
differs from C[SLm] by localization at certain principal minors. The cluster mono-
mials of C[Gw0,w0 ] are expected to be dual canonical basis elements. One natural
question is: do the cluster monomials include the functions Immv X(R, C), where v
avoids 2143 and 1324? If so, can the k-positivity of these immanants be explained
from a cluster algebraic viewpoint?

Work related to these questions appeared in the manuscript [6]; the connection to
Kazhdan–Lusztig immanants is explained in [3, Section 3.3]. The results of [6] show
that Immv X(R, C) is a cluster variable for v avoiding 123, 2143, 1432, and 3214.
The immanants occurring in [6] have a determinantal form given by Lemma 2.10; the
authors further conjecture that all cluster variables of C[Gw0,w0 ] can be written as
± det X(R, C)|P for some P ⊂ [n2]. Conjecturally, the Kazhdan–Lusztig immanants
that can be written as ± det X(R, C)|P are the exactly Immv X(R, C) where v is 2143
and 1324 avoiding. This leads to the following conjecture.
Conjecture 4.4. Fix m and let Gw0,w0 denote the big open double Bruhat cell
in SLm.

(1) All cluster variables of C[Gw0,w0 ] are of the form Immv X(R, C) for some v
avoiding 2143 and 1324.

(2) For v ∈ Sn avoiding 2143 and 1342 and R, C ∈
(([m]

n

))
with Γ[v, w0] (R, C)-

admissible, Immv X(R, C) is a cluster variable in C[Gw0,w0 ] if it is irreducible
and a cluster monomial otherwise.
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