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Abstract For any convex preorder on the set of positive roots of affine type A, we classify and
construct all associated cuspidal and semicuspidal skew shapes. These combinatorial objects cor-
respond to cuspidal and semicuspidal skew Specht modules for the Khovanov-Lauda-Rouquier
algebra of affine type A. Cuspidal skew shapes are ribbons, and we show that every skew shape
has a unique ordered tiling by cuspidal ribbons. This tiling data provides an upper bound, in
the bilexicographic order on Kostant partitions, for labels of simple factors of Specht modules.

1. Introduction
We begin by briefly describing the combinatorial data studied herein, referring the
reader to the body of the paper for detailed exposition and to Example 1.1 for demon-
strative visuals.

Fix e > 1, and let Φ+ = Φre
+ ⊔ Φim

+ be the positive root system of type A(1)
e−1;

I = {α0, . . . , αe−1} be the set of simple roots; Q+ = Z⩾0I be the root lattice; Φre
+

be the set of real roots; Φim
+ = {mδ | m ∈ N} be the set of imaginary roots, and

δ = α0 + · · · + αe−1 be the null root. We fix a convex preorder ⪰ on Φ+, see §3.
This root system data is fundamental in the representation theory of the Kac-Moody
Lie algebra ŝle [12], and convex preorders determine PBW bases for the associated
quantum group [4].

A skew shape τ is a set difference of Young diagrams. Nodes in τ have residue in
Ze, and the skew shape τ has content cont(τ) ∈ Q+, see §2, §4.1. We say a set Λ of
non-overlapping skew shapes is a tiling of a skew shape τ provided that τ =

⊔
λ∈Λ λ,

and we refer to elements of Λ as tiles. A Λ-tableau t = (λ1, . . . , λ|Λ|) is an ordering
of the tiles in Λ such that no node in λi is (weakly) southeast of any node in λj when
1 ⩽ i < j ⩽ |Λ|, see §2.6. This is a generalization of the notion of Young tableaux, in
which each λi consists of a single node. Young tableaux and their associated residue
sequences correspond to bases and associated weight spaces for Specht modules over
cyclotomic Hecke algebras, and the symmetric group in particular, see [15,21].

Of particular interest in this paper are tilings whose constituent tiles are ribbons—
connected skew shapes that contain no 2 × 2 boxes. Ribbon tilings and tableaux are
well-studied combinatorial objects connected to many areas of algebra and geometry,
such as the theory of symmetric functions, the representation theory of finite groups,
Lie algebras and quantum groups, and the geometry of flag varieties, see [7, 19, 25]
for a few examples. The majority of research done on this topic concerns r-ribbon
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tableaux, in which all tiles are ribbons of a given cardinality r. We do not include
that restriction here, as we are interested in cuspidal ribbons, which have varying and
unbounded cardinality.

1.1. Cuspidality. Motivated by the representation theory of Khovanov-Lauda-
Rouquier (KLR) algebras studied in [16, 18, 22], we introduce the notion of cuspidal
and semicuspidal skew shapes. Let τ be a skew shape such that cont(τ) = mβ for
some m ∈ N and β ∈ Φ+. We say that τ is semicuspidal provided that whenever
(λ1, λ2) is a tableau for τ , we may write cont(λ1) as a sum of positive roots ⪯ β,
and cont(λ2) as a sum of positive roots ⪰ β. We say that τ is cuspidal provided that
m = 1 and the comparisons above may be made strict, see Definition 5.1. We give
a complete classification of cuspidal and semicuspidal skew shapes in Theorems 6.13
and 7.18, summarized (in a slightly weaker form) as Theorems A and B below.

Theorem A. Every cuspidal skew shape is a ribbon. There exists a unique cuspidal
ribbon ζβ of content β for all β ∈ Φre

+ , and e distinct cuspidal ribbons ζ0, . . . , ζe−1 of
content δ.

Theorem B. Let m ∈ N. There exists a unique semicuspidal skew shape ζmβ of
content mβ, for all β ∈ Φre

+ . The set of connected semicuspidal skew shapes of content
mδ is in bijection with Ze × Sc(m), where Sc(m) is the set of connected skew shapes
of cardinality m.

The uniqueness statements in Theorems A and B refer to uniqueness up to cer-
tain residue-preserving translations, see §4.2. In §5.1 and §7 we provide explicit con-
structions of all cuspidal and semicuspidal skew shapes. Imaginary semicuspidal skew
shapes are constructed via an e-dilation process which is in some sense an inversion
of the e-quotients defined in [20].

1.2. Kostant tilings. Let Λ be a tiling for τ . We say a Λ-tableau t = (λ1, . . . , λ|Λ|)
is Kostant if there exist m1, . . . ,mk ∈ N, β1 ⪰ . . . ⪰ βk ∈ Φ+ such that cont(λi) =
miβi for all 1 ⩽ i ⩽ |Λ|. We say it is strict Kostant if the comparisons above are
strict. We say Λ is a (strict) Kostant tiling if a (strict) Kostant Λ-tableau exists. We
say that a tiling is cuspidal (resp. semicuspidal) if every constituent tile is a cuspidal
(resp. semicuspidal) skew shape.

If cont(τ) = θ, then a Kostant tiling Λ of τ may naturally be associated with
a Kostant partition κΛ of θ, see §6. The convex preorder ⪰ naturally induces a
bilexicographic partial order ⊵ on the set Ξ(θ) of Kostant partitions of θ. Our main
theorem on Kostant tilings is the following, which appears as Theorems 6.14 and 7.19
in the text:

Theorem C. Let τ be a nonempty skew shape.
(i) There exists a unique cuspidal Kostant tiling Γτ for τ .
(ii) There exists a unique semicuspidal strict Kostant tiling Γscτ for τ .
(iii) If Λ is any Kostant tiling for τ , then we have κΛ ⊴ κΓτ = κΓsc

τ .

We establish existence in Theorem C(i),(ii) constructively; in §6.3 we show the
cuspidal Kostant tiling Γτ may be constructed via progressive removal of minimal
ribbons.

1.3. Application to representation theory. The combinatorial study of cus-
pidality and Kostant tilings for skew shapes discussed in §1.1, §1.2 is motivated by
a connection to the theory of cuspidal systems and Specht modules over Khovanov-
Lauda-Rouquier (KLR) algebras, and has application in that setting.
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For any field k and θ ∈ Q+, there is an associated KLR k-algebra Rθ. This family
of algebras categorifies the positive part of the quantum group Uq(ŝle), see [13,14,24].
Associated to any skew shape τ of content θ is a (skew) Specht Rθ-module Sτ , as
defined in [17, 23]. As discussed in §8.4, these Specht modules are key objects in the
representation theory of cyclotomic KLR algebras, Hecke algebras and symmetric
groups, via the connection between these objects proved in [5].

Under some restrictions on the ground field characteristic (see [18]), the category of
finitely generated Rθ-modules is properly stratified, with strata labeled by Ξ(θ) and
simple modules labeled L(κ,λ), where κ ∈ Ξ(θ) and λ is an (e − 1)-multipartition
of the coefficient of δ in the Kostant partition κ. Cuspidal and semicuspidal Rβ-
modules associated to every β ∈ Φ+ are the building blocks of this stratification
theory, see [16,18,22].

An interesting objective is to find a combinatorial rule connecting the cellular struc-
ture in cyclotomic KLR algebra representation theory—built on Specht modules with
simple modules labeled via multipartitions—to the stratified representation theory
of the affine KLR algebra—built on cuspidal modules with simple modules labeled
via Kostant partitions. Theorems A, B, C describe a rough step in this direction. In
Proposition 8.3, we show that Theorems A and B give a complete classification of all
cuspidal and semicuspidal Specht modules over KLR algebras. In Proposition 8.4 we
leverage this connection to give a presentation of all simple cuspidal and semicuspidal
modules associated to real positive roots. This generalizes a result proved in [23] from
balanced convex preorders to arbitrary convex preorders.

Finally, in the following theorem (which appears as Theorem 8.5 in the paper) we
show that cuspidal Kostant tiling Γτ of Theorem C provides a tight upper bound, in
the bilexicographic order on Kostant partitions, for the simple factors which occur in
the skew Specht module Sτ .

Theorem D. Let τ be a skew shape. Then the Specht module Sτ has a simple factor
of the form L(κΓτ ,λ) for some λ, and for every simple factor L(κ,µ) of Sτ , we have
that κΓτ ⊵ κ.

This result is somewhat analogous to, but distinct from, James’ regularization
theorem, as discussed in §8.7.2.

Example 1.1. We conclude the introduction with a demonstrative example of the
combinatorial objects studied in this paper. Take e = 3. Following Proposition 3.2,
we may define a convex preorder on Φ+ as follows. Set a total lexicographic order on
Q2 via

(x, y) ⩾ (x′, y′) ⇐⇒ x > x′ or x = x′ and y ⩾ y′,

for all (x, y), (x′, y′) ∈ Q2. Then define a map h : Φ+ → Q2 by setting

h(α0) = (2, 1), h(α1) = (−1, 0), h(α2) = (−1,−1),

and extending by Z-linearity to all of Φ+. For β, γ ∈ Φ+, set

β ⪰ γ ⇐⇒ h(β)
ht(β) ⩾

h(γ)
ht(γ) ,

where ht(β) is the height of β, the sum of the coefficients of simple roots in β.
At the maximum end of the preorder ⪰, we have the real positive roots:

α0 ≻ α0 + α1 ≻ δ + α0 ≻ α2 + α0 ≻ 2δ + α0 ≻ δ + α0 + α1 ≻ · · ·

Cuspidal ribbons ζβ associated to these roots, as constructed in §5.1, appear in Fig-
ure 1, with residues depicted within each node.
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Figure 1. Real cuspidal ribbons ζα0 ; ζα0+α1 ; ζδ+α0 ; ζα2+α0 ; ζ2δ+α0 ; ζδ+α0+α1
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Figure 2. Real cuspidal ribbons ζ2δ+α1+α2 ; ζδ+α2 ; ζδ+α1+α2 ; ζα1 ; ζα1+α2 ; ζα2
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Figure 3. Imaginary cuspidal ribbons ζ0; ζ1; ζ2
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Figure 4. 2-dilation of λ ∈ Sc(9) into a semicuspidal skew shape
dil2(λ) of content 9δ

At the minimum end of the preorder ⪰, we have the real positive roots:
· · · ≻ 2δ + α1 + α2 ≻ δ + α2 ≻ δ + α1 + α2 ≻ α1 ≻ α1 + α2 ≻ α2.

Cuspidal ribbons ζβ associated to these roots appear in Figure 2.
Smack in the middle of the preorder ⪰ we have the imaginary roots mδ, all of

which are equivalent under ⪰. We have an imaginary cuspidal ribbon ζt of content δ
associated to each t ∈ Z3, as shown in Figure 3.

If β ∈ Φre
+ , then the unique semicuspidal skew shape of content mβ has m connected

components, each of which is identical to the ribbon ζβ , per Theorem 7.18. On the
other hand, semicuspidal connected skew shapes of content mδ are in bijection with
Z3 × Sc(m) via the dilation map, per Proposition 7.14. Roughly speaking, for t ∈ Z3,
one ‘t-dilates’ the skew shape λ ∈ Sc(m) by replacing every node in λ with the cuspidal
ribbon ζt, see §7.2. In Figure 4 an example of this dilation process is depicted.

By Theorem 6.14, every skew shape has a unique cuspidal Kostant tiling. In Fig-
ure 5, we take τ0, τ1, τ2 to be the Young diagrams associated with the partition
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0 1 2 0 1 2
2 0 1 2 0
1 2 0 1 2
0 1 2 0 1
2 0 1 2 0
1 2
0 1
2

1 2 0 1 2 0
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2
0 1 2 0 1
2 0
1 2
0

2 0 1 2 0 1
1 2 0 1 2
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2
0 1
2 0
1

Figure 5. Cuspidal Kostant tilings for τ0, τ1, τ2

(6, 54, 22, 1) and charges 0, 1, 2 respectively (see §4.3). The unique cuspidal Kostant
tiling is shown for each. Per Theorem 7.19, the unique semicuspidal strict Kostant
tiling is achieved by choosing tiles to be unions of same-content cuspidal tiles.

The Kostant partitions associated with these tilings are:

κτ0 = (α0 |2δ + α0 |2δ + α0 + α1 | δ2 | δ + α1 + α2 |α1 + α2 |α2
2);

κτ1 = (α0 + α1 |α2 + α0 | δ + α0 + α1 | δ + α2 + α0 |2δ + α0 + α1 | δ2 |α1 + α2 |α2);
κτ2 = (δ + α0 |3δ + α0 | δ3 | δ + α2 |α3

1 |α2).

By Theorem 6.14, these Kostant partitions are bilexicographically maximal amongst
all Kostant partitions induced by Kostant tilings for τ0, τ1, τ2, respectively.

1.4. ArXiv Version. In order to keep the paper from becoming overlong we chose to
relegate several of the more routine calculations to the arXiv version of the paper. The
reader interested in seeing these additional details can download the LATEX source file
from the arXiv. Near the beginning of the file is a toggle which allows one to compile
the paper with these calculations included.

2. Ribbons and skew shapes
We introduce the main combinatorial objects in this section. Many results in this
section are well known, but we include full proofs for clarity, as some of our termi-
nology and setup is new. We denote the set of integers by Z, the natural numbers
N = {1, 2, . . . , }, and use the shorthand [a, b] = {a, a+ 1, . . . , b} for all a ⩽ b ∈ Z.

2.1. Nodes. Let N = Z×Z. We refer to elements of N as nodes. By convention, we
visually represent nodes as boxes in a Z × Z ‘matrix’, so that the node (i, j) is a box
in the ith row and jth column of the array. In this orientation, positive increase in the
first component corresponds to a southward move in the array, and positive increase
in the second component corresponds to an eastward move in the array. For u ∈ N ,
we will write u1, u2 for the components of u, so that u = (u1, u2). We treat N as a
Z-module, so that

n(u1, u2) = (nu1, nu2), and (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2).

2.2. Translation. For c ∈ N , we define the translation by c map Tc : N → N by
Tcu = u + c for all u ∈ N . If τ ⊂ N , we define Tcτ = {Tcu | u ∈ τ}. We define the
special single-unit north, east, south and west translations N,E,S,W by setting

N := T(−1,0), E := T(0,1), S := T(1,0), W := T(0,−1).

Algebraic Combinatorics, Vol. 6 #2 (2023) 289



D. Abbasian, L. Difulvio, R. Muth, G. Pasternak, I. Sholtes & F. Sinclair

u

v

w

Figure 6. Nodes u, v, w, satisfying u ↗ v, v ↘ w, u ↗ w, u ↘ w

2.3. Relations between nodes. We define transitive relations ↘,⇒ ,↗, ⇒ on N
by

u ↘ v ⇐⇒ v = SkEℓu for some k, ℓ ∈ Z⩾0.

u ⇒ v ⇐⇒ v = SkEℓu for some k, ℓ ∈ Z>0.

u ↗ v ⇐⇒ v = NkEℓu for some k, ℓ ∈ Z⩾0.

u ⇒ v ⇐⇒ v = NkEℓu for some k, ℓ ∈ Z>0.

We note that ↘,↗ are in fact partial orders on N , with ↘ being the product partial
order induced by Z on N . We extend ⇒ , ⇒ to subsets τ, ν ⊂ N , writing τ ⇒ν provided
u ⇒ v for all u ∈ τ, v ∈ ν. For u ∈ τ ⊂ N , we say u ∈ τ is maximally northeast (resp.
maximally southwest) in τ provided that does not exist any u ̸= v ∈ τ such that
u ↗ v (resp. v ↗ u).

For u, v ∈ N , a path from u to v is a sequence of nodes (zi)ki=1 such that z1 = u,
zk = v, and such that zi+1 ∈ {N(zi),E(zi),S(zi),W(zi)} for i ∈ [1, k− 1]. We say it is
moreover a N/E (resp. S/E) path if zi+1 ∈ {N(zi),E(zi)} (resp. zi+1 ∈ {S(zi),E(zi)})
for all i ∈ [1, k−1]. Defining dist(u, v) = |v1 +v2 −u1 −u2|, we have that dist(u, v)+1
is the length of the shortest path from u to v, and is thus the length of any N/E or
S/E path that connects u and v.

For u ∈ N , set diag(u) = u2 − u1 ∈ Z, and define the nth diagonal in N to be the
set

Dn = {u ∈ N | diag(u) = n}

= {(SE)k(0, n) | k ∈ Z⩾0} ∪ {(NW)k(0, n) | k ∈ Z>0}.

2.4. Skew shapes. Now we define the main combinatorial object of study in this
paper.

Definition 2.1. We say a finite subset τ of N is:
(i) a skew shape provided that for all u,w ∈ τ , v ∈ N , u ↘ v ↘ w implies

v ∈ τ .
(ii) thin if |Dn ∩ τ | ⩽ 1 for all n ∈ N .
(iii) connected if for all u, v ∈ τ , there exists a path from u to v contained in τ .
(iv) a ribbon provided that τ is a nonempty thin connected skew shape.
(v) cornered if there exists at most one u ∈ τ such that Su,Wu /∈ τ and at most

one v ∈ τ such that Nv,Ev /∈ τ .
(vi) diagonal-convex provided that for all n ∈ N, u,w ∈ Dn ∩ τ , and v ∈ Dn,

u ↘ v ↘ w implies v ∈ τ .
(vii) a Young diagram provided that τ = ∅ or τ is a skew shape containing a node

τNW such that τNW ↘ u for all u ∈ τ .
We write S (resp. Sc) for the set of all skew shapes (resp. nonempty connected skew
shapes), and S(n) (resp. Sc(n)) for the subset of those of cardinality n.
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Figure 7. Connected skew shape; disconnected skew shape; ribbon

Remark 2.2. Ribbons are also variously called skew hooks, rim hooks or edge hooks
in the literature. Every skew shape can be realized as a set difference λ/µ := λ\µ
of Young diagrams, and, in such context, are often called skew Young diagrams. We
discuss this connection further in §4.3.

2.5. Basic lemmas on skew shapes. We record some fundamental lemmas on skew
shapes in this section. The proofs are routine, so we omit them here. Full details can
be found in the arXiv version of the paper as explained in §1.4.

Lemma 2.3. Let τ be a skew shape. Then τ is cornered if and only if τ is connected.

Lemma 2.4. Let τ be a finite subset of N . Then τ is a connected skew shape if and
only if τ is cornered and diagonal-convex.

Lemma 2.5. Let τ be a finite subset of N . Then τ is a connected skew shape if and
only if every u, v ∈ τ satisfies:

(i) If u ↘ v, then every S/E path from u to v is contained in τ ;
(ii) If u ↗ v, then there exists a N/E path from u to v contained in τ .

2.5.1. Connected components. Any nonempty finite set τ ⊆ N may be decomposed
into connected components, i.e., nonempty connected sets τ1, . . . , τk for some k ∈ N,
such that there is no path from u to v contained in τ whenever u ∈ τi, v ∈ τj for i ̸= j.

Lemma 2.6. Let τ ∈ S, and u, v ∈ τ be such that u ↘ v. Then the nodes {w ∈ N |
u ↘ w ↘ v} belong to the same connected component of τ .

Lemma 2.7. Connected components of skew shapes are connected skew shapes.

Lemma 2.8. Let τ be a nonempty finite subset of N . Then τ ∈ S if and only if there
exists some k ∈ N and τk ⇒ · · · ⇒ τ1 ∈ Sc such that τ = τ1 ⊔ · · · ⊔ τk.

Lemma 2.9. Let τ be a nonempty skew shape. Then there exists a unique maximally
southwest node u ∈ τ , a unique maximally northeast node v ∈ τ , and u ↗ w ↗ v for
all w ∈ τ .

In view of Lemma 2.9, for a nonempty skew shape τ , we may give the unique
maximally southwest (resp. northeast) element the label τSW (resp. τNE).

2.5.2. Basic lemmas on ribbons.

Lemma 2.10. Let (zi)ki=1 be a N/E path. Then diag(zi) = diag(z1)+ i−1 for i ∈ [1, k].

Lemma 2.11. Let ξ be a finite subset of N . Then ξ is a ribbon if and only if there
exists a N/E path (zi)|ξ|

i=1 such that ξ = {zi}|ξ|
i=1.

Lemma 2.12. For a ribbon ξ, we have |ξ| = dist(ξSW, ξNE) + 1.
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Figure 8. A tiling Λ for a skew shape τ , and two Λ-tableaux—label i
indicates the tile t(i)

2.6. Tilings and tableaux. Let τ be a nonempty skew shape. A tiling of τ is a
set Λ of pairwise disjoint nonempty skew shapes such that τ =

⊔
λ∈Λ λ. We call

the members of Λ tiles. A Λ-tableau t is a bijection t : [1, |Λ|] → Λ such that
u ∈ t(i), v ∈ t(j) and u ↘ v imply i ⩽ j. We also refer to the pair (Λ, t), or
the tile sequence (t(1), . . . , t(|Λ|)), as a tableau for τ . Roughly speaking, the ordering
condition means the tiles t(1), . . . , t(|Λ|) can be sequentially ‘slid into place’ from the
southeast without their constituent boxes colliding. For instance, in Figure 8, a tiling
Λ for a skew shape τ is shown, along with the (only) two possible Λ-tableaux.

Remark 2.13. If (Λ, t) is a tableau for τ with |λ| = 1 for all λ ∈ Λ, then (Λ, t) is
a Young tableau in the traditional sense. Young tableaux are important objects in
combinatorics, representation theory and algebraic geometry, and the definition above
can be viewed as a generalization of Young tableaux to larger tiles.

Lemma 2.14. Let (Λ, t) be a tableau for a skew shape τ . For 1 ⩽ h ⩽ ℓ ⩽ |Λ|, define
τh,ℓ =

⊔ℓ
i=h t(i). Then τh,ℓ is a skew shape.

Proof. Let u,w ∈ τh,ℓ, v ∈ N , with u ↘ v ↘ w. Then u ∈ t(i), w ∈ t(k) for some
i, k ∈ [h, ℓ]. As τ is a skew shape, we have v ∈ τ . Then v ∈ t(j) for some j ∈ [1, |Λ|].
Since u ↘ v we have h ⩽ i ⩽ j, and since v ↘ w we have j ⩽ k ⩽ ℓ. But then
j ∈ [h, ℓ], so v ∈ τh,ℓ. Thus τh,ℓ is a skew shape. □

2.7. Removable ribbons. We say that a skew shape µ ⊆ τ is SE-removable in τ
if µ = τ or (τ\µ, µ) is a tableau for τ . We likewise say that µ is NW-removable in
τ if µ = τ or (µ, τ\µ) is a tableau for τ . Roughly speaking, this means that µ is
SE-removable if it can be ‘slid away’ to the southeast without colliding with τ\µ. The
next lemma follows directly from definitions.

Lemma 2.15. Let µ ⊆ τ be skew shapes. Then µ is SE-removable in τ if and only if
there does not exist u ∈ µ, v ∈ τ\µ such that u ↘ v.

Let τ be a skew shape, and define Remτ to be the set of all pairs (u, v) ∈ τ such
that u, v are in the same connected component of τ , u ↗ v, and Su,Ev /∈ τ . Then for
(u, v) ∈ Remτ , define

ξτu,v := {w ∈ τ | u ↗ w ↗ v,SEw /∈ τ} ⊆ τ.

An example of the set ξτu,v for (u, v) ∈ Remτ is shown in Figure 9. The following
lemma is a routine check—full details can be found in the arXiv version of the paper
(see §1.4).

Lemma 2.16. Let τ be a skew shape. Then {ξτu,v | (u, v) ∈ Remτ} is a complete set of
SE-removable ribbons in τ .

Lemma 2.17. Let τ ′ ⊊ τ be skew shapes, let u, v, z, w be nodes in the same connected
component of τ , and assume (u, v) ∈ Remτ , τ ′ = τ\ξτu,v, and (z, w) ∈ Remτ ′ . Then
we have the following implications:
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Figure 9. SE-removable ribbon ξτu,v in skew shape τ
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Figure 10. Cases (i)–(vi) in Lemma 2.17

0

1 2 3 e−2 e−1
· · ·

Figure 11. Dynkin diagram of type A(1)
e−1

(i) u ↗ v ↗ z ↗ w =⇒ (u,w) ∈ Remτ ;
(ii) z ↗ w ↗ u ↗ v =⇒ (z, v) ∈ Remτ ;
(iii) u ↗ z ↗ v ↗ w =⇒ (SEz, w) ∈ Remτ ;
(iv) z ↗ u ↗ w ↗ v =⇒ (z,SEw) ∈ Remτ ;
(v) u ↗ z ↗ w ↗ v =⇒ (SEz,SEw) ∈ Remτ ;
(vi) z ↗ u ↗ v ↗ w =⇒ (z, w) ∈ Remτ ;

Proof. This is another routine check, with full details included in the arXiv version
of the paper (see §1.4). For ease of visualizing these relationships, examples of cases
(i)–(vi) are shown in Figure 10. □

3. Positive roots and convex preorders
We fix now and throughout the paper some choice of e ∈ Z>1. Associated to e is an
affine root system of type A(1)

e−1, corresponding to the affine Dynkin diagram shown
in Figure 11 (see [12, §4, Table Aff 1]). This root system plays a crucial role in the
representation theory of the Kac-Moody Lie algebra ŝle and its associated quantum
group, as well as modular representation theory of the symmetric group. We describe
the root system directly in the sequel.
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We write Ze = Z/eZ, and will indicate elements of Ze with barred integers, i.e.
t = t+eZ for t ∈ Z, freely omitting bars for t ∈ [0, e−1] when the context is clear. Let
ZI be the free Z-module of rank e, with basis I = {αi | i ∈ Ze}, and set Q+ = Z⩾0I.
For β =

∑
i∈Ze

ciαi ∈ Q+, we write ht(β) :=
∑
i∈Ze

ci ∈ Z⩾0 for the height of β. For
any t ∈ Ze, h ∈ N, we define α(t, h) ∈ Q+ via

α(t, h) := αt + αt+1 + · · · + αt+h−1.

We have then that ht(α(t, h)) = h. Of particular importance is the null root of height e:

δ := α0 + · · · + αe−1 = α(t, e) (t ∈ Ze).

It follows from definitions that

α(t, h1 + h2) = α(t, h1) + α(t+ h1, h2)(1)

for all t ∈ Ze, h1, h2 ∈ N. The element α(t, h) corresponds to the sum of simple roots
in a counterclockwise path of length h in the Dynkin diagram in Figure 11 which
begins at the vertex labeled t.

Definition 3.1.
(i) We say β ∈ Q+ is a positive root if β = α(t, h) for some t ∈ Z, h ∈ N. We

write Φ+ for the set of all positive roots, so we have

Φ+ = {α(t, h) | t ∈ Ze, h ∈ N} ⊂ ZI.(2)

(ii) We say β ∈ Φ+ is real if ht(β) ̸= 0. Writing Φre
+ for the set of all real positive

roots, we have

Φre
+ = {α(t, h) | t ∈ Ze, h ∈ N, h ̸= 0} ⊂ Φ+.(3)

(iii) We say β ∈ Φ+ is imaginary if ht(β) = 0. Writing Φim
+ for the set of imagi-

nary positive roots, we have

Φim
+ = {α(t, h) | t ∈ Ze, h ∈ N, h = 0} = {mδ | m ∈ N} ⊂ Φ+.(4)

(iv) We say a positive root β is divisible if there exists β′ ∈ Φ+, m ∈ Z>1 such
that β = mβ′, and indivisible if not. Writing Ψ for the set of indivisible roots,
we have

Ψ = Φre
+ ⊔ {δ}.(5)

(v) We define Φ′
+ to be the set of all positive integer multiples of positive roots,

so we have

Φ′
+ = {mβ | m ∈ N, β ∈ Φ+} = {mβ | m ∈ N, β ∈ Ψ} ⊂ Q+.(6)

3.1. Convex preorders. A convex preorder on Φ+ is a binary relation ⪰ on Φ+
which, for all β, γ, ν ∈ Φ+ satisfies the following:

(i) β ⪰ β (reflexivity);
(ii) β ⪰ γ and γ ⪰ ν imply β ⪰ ν (transitivity);
(iii) β ⪰ γ or γ ⪰ β (totality);
(iv) β ⪰ γ and β + γ ∈ Φ+ imply β ⪰ β + γ ⪰ γ (convexity);
(v) β ⪰ γ and γ ⪰ β if and only if β = γ or β, γ ∈ Φim

+ (imaginary equivalency).

We write β ≻ γ if β ⪰ γ and γ ̸⪰ β. Then (iii) and (v) together imply that ≻ restricts
to a total order on Ψ. We also write β ≈ γ if β ⪰ γ and γ ⪰ β, so (v) and (4) imply
that β ≈ γ, β ̸= γ if and only if β = mδ, γ = m′δ, for some m ̸= m′ ∈ N.
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3.2. Examples of convex preorders. Convex preorders are known to exist for
any choice of e, and a classification and general method of construction of convex
preorders is given in [9]. The below proposition, lightly paraphrased from [3, Exam-
ple 2.14(ii)] and [22, Example 3.5], provides a low-tech way to generate many distinct
convex preorders on Φ+.
Proposition 3.2. Let (V,⩾) be a totally ordered Q-vector space. Let h : ZI → V be
a Z-linear map such that β 7→ h(β)

ht(β) is injective on Ψ ⊆ ZI. Then the relation

β ⪰ γ ⇐⇒ h(β)
ht(β) ⩾

h(γ)
ht(γ)

defines a convex preorder on Φ+.
One straightforward method (exemplified in [22, Example 3.6]) for generating such

maps h as in Proposition 3.2 is to take V = Rn under the lexicographic order ⩾ for
some n, and Z-linearly extend some set map h : I → V such that h(δ) = 0 and h is
generic in the sense that h(γ) /∈ Q>0h(β) for distinct β, γ ∈ Φ+ with ht(β),ht(γ) < e.
An example of this approach in the case e = 3 appears in Example 1.1. A simpler
example is shown next.
Example 3.3. Take e = 2. Let V = R under the standard ordering. Define h : ZI → V
by setting h(α1) = 1, h(α0) = −1, and extending by Z-linearity. Then Proposition 3.2
yields the following preorder on Φ+:

α1 ≻ δ + α1 ≻ 2δ + α1 ≻ · · · ≻ Z>0δ ≻ · · · ≻ 2δ + α0 ≻ δ + α0 ≻ α0.

This is one of two convex preorders on Φ+; the other is the reverse preorder (see §6.4).
3.3. Implications of convexity. The next lemma follows immediately from defi-
nitions:
Lemma 3.4. Let β, β′ ∈ Φ+, Then we have:

(i) If β ≈ β′ and ht(β) > ht(β′), then β, β′ ∈ Φim
+ ;

(ii) If β ∈ Ψ and ht(β) > ht(β′), then β ̸≈ β′;
(iii) If β, β′ ∈ Ψ, then β ≈ β′ if and only if β = β′.

We have the following useful generalization of the convexity property:
Lemma 3.5. [3, 16] Let γ, β1, . . . , βk ∈ Φ+, m ∈ N be such that β1 + · · · + βk = mγ.
Then we have the following:

(i) If γ ∈ Φre
+ , and βi ⪰ γ for all i ∈ [1, k] or γ ⪰ βi for all i ∈ [1, k], then

γ = βi for all i ∈ [1, k].
(ii) If γ ∈ Φim

+ , and βi ⪰ γ for all i ∈ [1, k] or γ ⪰ βi for all i ∈ [1, k], then
βi ∈ Φim

+ for all i ∈ [1, k].
(iii) If β1 ⪰ · · · ⪰ βk, then β1 ⪰ γ ⪰ βk.
(iv) If β1 ⪰ · · · ⪰ βk and β1 ≻ βk, then β1 ≻ γ ≻ βk.

Proof. Claims (i) and (ii) appear as the properties [16, (Con1), (Con3)], which fol-
low from [16, Lemma 3.1], which utilizes [3, Lemma 2.9]. Claims (iii) and (iv) are
contrapositive reformulations implied by (i) and (ii). □

Lemma 3.6. The function N × Ψ → Φ′
+, (n, β) 7→ nβ is a bijection.

Proof. Surjectivity is clear by (6). For injectivity, assume nβ = n′β′ for some n, n′ ∈
N, β, β′ ∈ Ψ. Then by Lemma 3.5 we have β ≈ β′. As β, β′ ∈ Ψ, this implies that
β = β′ and thus n = n′. □

By Lemma 3.6 we have well-defined functions m : Φ′
+ → N and ψ : Φ′

+ → Ψ such
that γ = m(γ)ψ(γ) for all γ ∈ Φ′

+.
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Figure 12. Residues for e = 3. Skew shape of content 6α0 + 6α1 +
4α2; ribbon of content 4α0 + 3α1 + 3α2 = α(0, 10)

4. Content and cuspidal skew shapes
4.1. Content. We define the residue of a node u ∈ N to be res(u) = u2 − u1 =
diag(u). The map res : N → Ze is a Z-module homomorphism, so we have

res(nu) = n res(u) and res(u+ v) = res(u) + res(v),

for all n ∈ Z, u, v ∈ N . For t ∈ Ze, we write

Nt := {u ∈ N | res(u) = t}.

The content of a skew shape τ is defined as

cont(τ) =
∑
u∈τ

αres(u) ∈ Q+.

For θ ∈ Q+, we write S(θ) (resp. Sc(θ)) for the set of skew shapes (resp. nonempty
connected skew shapes) of content θ. It is clear from definitions then that if Λ is any
tiling of τ , we have cont(τ) =

∑
λ∈Λ cont(λ). In our visual representation, we label

each node with its associated residue. See Figure 12 for examples.

4.2. Similarity. If τ, ν ∈ Sc are such that Tdτ = ν for some d ∈ N , then we will
write τ ∼ ν, and say that τ, ν are similar.

We now consider a refinement of this similarity condition which takes into account
the e-modular residues. If c ∈ N0, then we have res(Tcu) = res(u) for all u ∈ N .
If ν, ω are skew shapes such that Tcν = ω for some c ∈ N0, then we say ω is a
residue-preserving translation of ν.

Let µ = (µ1, . . . , µℓ) ∈ Sℓc . We then define the e-similarity class [µ]e =
[µ1, . . . , µℓ]e ⊂ S as follows. Let τ be a nonempty skew shape, with connected
component decomposition τ = τ1 ⊔ · · · ⊔ τk with τk ⇒ · · · ⇒ τ1 as in Lemma 2.8.
We say τ ∈ [µ]e provided that k = ℓ and τi is a residue-preserving translation of
µi for all i ∈ [1, ℓ]. We write ν ∼e ω and say that ν, ω are e-similar if ν, ω ∈ [µ]e
for some µ. Roughly speaking, e-similar skew shapes ν ∼e ω consist of the same
connected ‘shapes’, in the same top-to-bottom order, with corresponding nodes
in each having the same residue; only the absolute position and spacing between
connected components in each may differ. Clearly ν ∼e ω implies cont(ν) = cont(ω).
As N is infinite and residues are cyclic, it is easy to see that [µ]e is nonempty for
every sequence of nonempty connected skew shapes µ.

For classification purposes, we treat skew shapes in the same e-similarity class as
identical (importantly, they have isomorphic associated Specht modules up to grading
shift, see §8.4). When we display a skew shape τ with residues, as in Figure 12, we are
generally displaying the e-similarity class of the skew shape, disregarding the absolute
position of τ in N .
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Figure 13. Skew Young diagram λτ/µτ with charge 2; Skew
shape τ ; Level two skew Young diagram λ/µ with multicharge (2, 1);
all are associated as in §4.3

4.3. Other combinatorial formulations. The combinatorial setup for skew
shapes, residues, and contents outlined in this paper is convenient for present
purposes, but bears slight differences with other approaches to the subject. Our
formulation fixes a residue function, and allows the position of diagrams to vary,
while in some other formulations, the position of diagrams is fixed and the residue
function varies. We explain how we translate between formulations for the benefit of
readers familiar with the subject.

It is common to define Young diagrams λ as subsets of N×N, where λNW = (1, 1);
see Remark 2.2. In this setting, a charge c ∈ Ze is chosen, residues of nodes in λ
are given by res(u) = u2 − u1 + c, and a skew shape (better called a skew Young
diagram here) is defined via set difference λ/µ := λ\µ for some Young diagrams λ, µ.
One may transport the skew Young diagram λ/µ defined thusly into a skew shape
in this paper’s combinatorial setting by placing the nodes of λ\µ in N and suitably
translating this shape as needed in order to match residues (e.g., shifting c units to
the east to account for the charge c). All such choices of placement are equivalent up
to e-similarity.

More generally, we may consider a level ℓ skew Young diagram λ/µ =
(λ(1)/µ(1), . . . , λ(ℓ)/µ(ℓ)), with multicharge c = (c1, . . . , cℓ) ∈ Zℓe, as in [8, 17, 23].
We associate this with a sequence τ = (τ1, . . . , τℓ) of skew shapes in N as in
the previous paragraph, such that τℓ ⇒ · · · ⇒ τ1, thereby associating λ/µ with
τ := τ1 ⊔ · · · ⊔ τℓ, see Figure 13. Again, any such choice of τ is equivalent up to
e-similarity.

In the other direction, we may associate a skew shape τ in our combinatorial setting
to a skew Young diagram and charge in a straightforward manner. There exists some
Young diagrams λτ , µτ such that (µτ , τ) is a tableau for λτ . For instance, one may
take

λτ = {u ∈ N | ((τNE)1, (τSW)2) ↘ u ↘ v, for some v ∈ τ}, and µτ = λτ\τ.
Then we may associate τ with the skew Young diagram λτ/µτ with charge c =
res(λτNW); see Figure 13.

4.4. Ribbons and roots. The following lemma establishes that the content of a
ribbon depends only on the positions of the southwest/northeast end nodes, and not
on the nodes in between.
Lemma 4.1. If ξ is a ribbon, then cont(ξ) = α(res(ξSW),dist(ξSW, ξNE) + 1).

Proof. There is a N/E path (zi)|ξ|
i=1 such that ξ = {zi}|ξ|

i=1 by Lemma 2.11. We
have then that z1 = ξSW and z|ξ| = ξNE. Then by Lemma 2.12 we have that |ξ| =
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dist(ξSW, ξNE) + 1, and so

cont(ξ) =
|ξ|∑
i=1

αres(zi) =
dist(ξSW,ξNE)∑

i=0
αres(ξSW)+i = α(res(ξSW),dist(ξSW, ξNE) + 1),

as desired. □

Corollary 4.2. Let β ∈ Q+. Then β ∈ Φ+ if and only if β = cont(ξ) for some
ribbon ξ.

Proof. We have by Lemma 4.1 that cont(ξ) ∈ Φ+ for all ribbons ξ. Now let β =
α(t, h) ∈ Φ+. Let z ∈ Nt, and define nodes zi = (z1, z2 + i − 1) for i ∈ [1, h]. Then
(zi)hi=1 is a N/E path, and so ξ = {zi}hi=1 is a ribbon by Lemma 2.11. By construction,
ξSW = z, ξNE = (z1, z2 + h − 1), so dist(ξSW, ξNE) = h − 1. Then by Lemma 4.1 we
have cont(ξ) = α(res(z), h) = α(t, h) = β, as desired. □

5. Cuspidality
Recall that we have fixed a convex preorder ⪰ on Φ+.

Definition 5.1. Let τ ∈ S(β) for some β ∈ Φ+. We say that τ is cuspidal provided
that, for every tableau (λ1, λ2) of τ , the following conditions hold:

(i) There exist γ1, . . . , γk ∈ Φ+ such that cont(λ1) = γ1 + · · · + γk and β ≻ γi
for all i ∈ [1, k], and;

(ii) There exist ν1, . . . , νℓ ∈ Φ+ such that cont(λ2) = ν1 + · · · + νℓ and νi ≻ β for
all i ∈ [1, ℓ].

Definition 5.2. Let τ ∈ S(mβ) for some m ∈ N, β ∈ Φ+. We say that τ is semicus-
pidal provided that, for every tableau (λ1, λ2) of τ , the following conditions hold:

(i) There exist γ1, . . . , γk ∈ Φ+ such that cont(λ1) = γ1 + · · · + γk and β ⪰ γi
for all i ∈ [1, k], and;

(ii) There exist ν1, . . . , νℓ ∈ Φ+ such that cont(λ2) = ν1 + · · · + νℓ and νi ⪰ β for
all i ∈ [1, ℓ].

It follows from definitions that cuspidality is invariant under e-similarity:

Lemma 5.3. Let τ, ν be skew shapes, with τ ∼e ν. Then τ is cuspidal (resp. semicus-
pidal) if and only if ν is cuspidal (resp. semicuspidal).

Lemma 5.4. If τ is a cuspidal (resp. semicuspidal) skew shape, then for every SE-
removable ribbon ξ ⊊ τ we have cont(ξ) ≻ cont(τ) (resp. cont(ξ) ⪰ cont(τ)).

Proof. Let τ be cuspidal. If ξ is an SE-removable ribbon in τ , then (τ\ξ, ξ) is a skew
decomposition for τ . Then by the cuspidality property, we have cont(ξ) = γ1 + · · · +
γk, for some positive roots γ1, . . . , γk ≻ cont(τ). Then it follows by Corollary 4.2
and Lemma 3.5(iii) that cont(ξ) ≻ cont(τ). The proof in the semicuspidal case is
similar. □

Lemma 5.5. Let ξ be a ribbon. Then ξ is cuspidal if and only if for every SE-removable
ribbon ν ⊊ ξ, we have cont(ν) ≻ cont(ξ).

Proof. The ‘only if’ direction is provided by Lemma 5.4, so we focus on the ‘if’ direc-
tion. Assume that ξ is a ribbon with the property that cont(ν) ≻ cont(ξ) for every
SE-removable ribbon ν in ξ. We have that cont(ξ) ∈ Φ+ by Corollary 4.2. We will
show that ξ is cuspidal.

Let (ε, µ) be any tableau of ξ. Let µ1, . . . , µt be the connected components of µ.
Since each µi is connected and a subset of a ribbon, and (ε, µ) is a tableau, we have that
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each µi is an SE-removable ribbon in ξ. Thus, by assumption, cont(µi) ≻ cont(ξ) for all
i. But then cont(µ) =

∑t
i=1 cont(µi), and so ξ satisfies condition (ii) in Definition 5.1.

Let ε1, . . . , εu be the connected components of ε. Again, each εi is a ribbon. Assume
by way of contradiction there is some i such that cont(εi) ⪰ cont(ξ). Since (ε, µ) is a
tableau, we have that (εi, ξ\εi) is a tableau. By the previous paragraph, we have that
cont(ξ\εi) can be written as a sum of positive roots γ1 + · · · + γs, where γj ≻ cont(ξ)
for all j ∈ [1, s]. If cont(εi) ≈ cont(ξ), then we have that cont(εi), cont(ξ) ∈ Φim

+
by Lemma 3.4. But this implies that cont(ξ\εi) = cont(ξ) − cont(εi) ∈ Φim

+ , and so
cont(ξ\εi) ≈ cont(ξ). But since cont(ξ\εi) ∈ Φ+, we have by Lemma 3.5(iii) that
cont(ξ\εi) = γ1 + · · · + γs ≻ cont(ξ), a contradiction. Therefore cont(εi) ≻ cont(ξ).
But then we have by Lemma 3.5(iii) that

cont(ξ) = cont(ξ\εi) + cont(εi) = γ1 + · · · + γs + cont(εi) ≻ cont(ξ),

another contradiction. Therefore cont(εi) ≺ cont(ξ) for all i ∈ [1, u]. Since cont(ε) =∑u
i=1 cont(εi), we have that ξ satisfies condition (i) in Definition 5.1. Thus ξ is cusp-

idal. □

5.1. Constructing cuspidal ribbons. For β ∈ Ψ, we write init(β) ⊆ N for the
set of nodes b ∈ N such that β = α(res(b),ht(β)). Note then that init(δ) = N , and if
β ∈ Φre

+ then init(β) = Nt for some t ∈ Ze.

Definition 5.6. Let β ∈ Ψ and b ∈ init(β). Define a N/E path (zi)ht(β)
i=1 by setting

z1 = b, and

zi =
{

Nzi−1 if α(res(b), i− 1) ≻ β;
Ezi−1 if β ≻ α(res(b), i− 1),

for i = 2, . . . ,ht(β). Then define ζ(β,b) = {zi}ht(β)
i=1 .

Lemma 5.7. The set of nodes ζ(β,b) is a cuspidal ribbon of content β, with ζ(β,b)
SW = b.

Proof. First, note that the path (zi)ht(β)
i=1 is well-defined, which follows from

Lemma 3.4(ii). We have that ζ(β,b) is a ribbon by Lemma 2.11, and cont(ζ(β,b)) = β
by Lemma 4.1.

It remains to show that ζ = ζ(β,b) is cuspidal. Let ν ⊊ ζ be an SE-removable ribbon
in ζ. By Lemma 5.5, it will be enough to show that cont(ν) ≻ β. By Lemma 2.16, we
have ν = ξζzi,zj for some 1 ⩽ i ⩽ j ⩽ h, where Szi,Ezj /∈ ζ.

First assume i = 1, j < h. Since Ezj /∈ ζ, it follows from the construction of ζ that
zj+1 = Nzj , and thus α(res(b), j) ≻ β. But then by Lemma 4.1 we have

cont(ν) = cont(ξζz1,zj ) = α(res(b), j) ≻ β,

as desired.
Now assume 1 < i. Since Szi /∈ ζ, we have zi = Ezi−1 and thus β ≻ α(res(b), i−1).

If j < h, then since Ezj /∈ ζ, it follows from the construction of ζ that zj+1 = Nzj ,
and thus α(res(b), j) ≻ β. On the other hand, if j = h, then α(res(b), j) = β, so in
any case we have α(res(b), j) ⪰ β. Therefore, applying Lemma 4.1, we have

α(res(b), j) = cont(ξζz1,zj ) = cont(ξζz1,zi−1 ⊔ ξζzi,zj )

= cont(ξζz1,zi−1) + cont(ξζzi,zj ) = α(res(b), i− 1) + cont(ν).

If β ⪰ cont(ν), we would have by Lemma 3.5(iii) that β ≻ α(res(b), j), a contradiction.
Thus cont(ν) ≻ β, as desired. □
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Lemma 5.8. Let ν be a ribbon of content β ∈ Ψ. Then ν is cuspidal if and only if
ν = ζ(β,νSW).

Proof. The ‘if’ direction is proved in Lemma 5.7. Now we prove the ‘only if’ direction.
Let b = νSW, and h = ht(β). By Lemma 4.1 we must have β = α(res(b), h). Consider
the skew shape ζ = ζ(β,b), and let (zi)hi=1 be the N/E path constructed in Definition 5.6
so that ζ = {zi}hi=1. By Lemma 2.11, there is a N/E path (wi)hi=1, with w1 = b
and ν = {wi}hi=1. Assume by way of contradiction that ν ̸= ζ. Then there exists
2 ⩽ t ⩽ h such that wi = zi for i < t, and wt ̸= zt. Note that by Lemma 3.4, we have
β ̸≈ α(res(b), t− 1).

First assume β ≻ α(res(b), t−1). Then zt = Ezt−1. We have wt ∈ {Nwt−1,Ewt−1} =
{Nzt−1,Ezt−1}, but wt ̸= zt, so wt = Nzt−1. Then Ewt−1 /∈ ν, and Ewh /∈ ν, so
ξνw1,wt−1 is SE-removable in ν by Lemma 2.16. By cuspidality of ν and Lemma 5.5
we have that

α(res(ν1), t− 1) ≻ cont(ξννt,νh
) ≻ β,

a contradiction.
Now assume α(res(b), t − 1) ≻ β. Then zt = Nzt−1, and we have wt ∈

{Nwt−1,Ewt−1} = {Nzt−1,Ezt−1}, but wt ̸= zt, so wt = Ezt−1. Then Swt /∈ ν,
and Ewh /∈ ν, so ξνwt,wh is SE-removable in ν by Lemma 2.16. By cuspidality of ν and
Lemma 5.5 we have that

α(res(wt), h− t+ 1) = cont(ξνwt,wh) ≻ β.

But then by convexity and (1) we have

β = α(res(b), h) = α(res(b), t− 1) + α(res(wt), h− t+ 1) ≻ β,

a contradiction. Thus, in any case we derive a contradiction, so we must have ν = ζ
as desired. □

5.2. Distinguished cuspidal ribbons. For each β ∈ Φre
+ , we make a distinguished

choice of bβ ∈ init(β). For each t ∈ Ze, we make a distinguished choice of bt ∈ Nt.
Then we define the distinguished cuspidal ribbons, for all β ∈ Φre

+ and t ∈ Nt:

ζβ := ζ(β,bβ), ζt := ζ(δ,bt)

By construction, the path associated with ζ(β,b) in Definition 5.6 relies only on
res(b) and β, and not on the specific location of b. Thus by Lemmas 5.7 and 5.8 we
have the following result:

Proposition 5.9. For all β ∈ Φre
+ , t ∈ Ze, we have

[ζβ ] = {ζ(β,b) | b ∈ init(β)}, and [ζt] = {ζ(δ,b) | b ∈ Nt}.

The set {ζβ | β ∈ Φre
+} ∪ {ζt | t ∈ Ze} represents a complete and irredundant set of

cuspidal ribbons with content in Ψ, up to e-similarity.

We will show in Theorem 6.13 that this in fact describes all cuspidal skew shapes
up to e-similarity.

Example 5.10. Take the case e = 2 and the convex preorder as defined in Example 3.3.
In this case we have a highly regular stairstep pattern for all real cuspidal ribbons,
and a pair of two-node dominoes for the imaginary cuspidal ribbons, see Figure 14.

We refer the reader to Example 1.1 for a preorder in the e = 3 case with more
irregular cuspidal ribbon shapes.
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Figure 14. Cuspidal ribbons, e = 2 case: ζnδ+α1 ; ζnδ+α0 ; ζ0; ζ1

5.3. Minimal ribbons. Let τ be a skew shape, and ξ be an SE-removable ribbon in
τ . We say ξ is a minimal SE-removable ribbon (resp. maximal) provided that for every
SE-removable ribbon ν in τ we have cont(ν) ⪰ cont(ξ) (resp. cont(ν) ⪯ cont(ξ)). We
extend these notions as well to NW-removable ribbons in the obvious way.

Lemma 5.11. Let ξ be a minimal SE-removable ribbon in a skew shape τ , with
cont(ξ) ∈ Ψ. Then ξ is cuspidal.

Proof. Take any SE-removable ribbon ν ⊊ ξ in ξ. Since ξ is SE-removable in τ , we
have that ν is SE-removable in τ . By the minimality of ξ, we have cont(ν) ⪰ cont(ξ),
and by Lemma 3.4(ii) we have cont(ν) ̸≈ cont(ξ), so cont(ν) ≻ cont(ξ). Thus ξ is
cuspidal by Lemma 5.5. □

Lemma 5.12. If ν is a ribbon of content mδ, then ν has an SE-removable ribbon of
content δ.

Proof. We go by induction on m. The base case m = 1 is trivial, so assume m > 1 and
make the induction assumption on m′ < m. By Lemma 2.11 there exists a N/E path
(zi)mei=1 such that ν = {zi}mei=1. If ze+1 = Nze, it follows by Lemma 2.16 that ξνz1,ze is
SE-removable in ν, and we have cont(ξνz1,ze) = δ by Lemma 4.1. On the other hand,
if ze+1 = Eze, it follows by Lemma 2.16 that ξνze+1,zme is SE-removable in ν, and we
have cont(ξνze+1,zme) = (m − 1)δ by Lemma 4.1. Then by induction there exists an
SE-removable ribbon ω in ξνze+1,zme of content δ. As ω is SE-removable in ξνze+1,zme , it
is SE-removable in ν. This completes the induction step, and the proof. □

Lemma 5.13. If τ is a skew shape, then τ has a minimal SE-removable ribbon ξ such
that cont(ξ) ∈ Ψ.

Proof. Let ν be a minimal SE-removable ribbon in τ . Then cont(ν) ∈ Φ+ by
Lemma 4.1. If cont(ν) ∈ Φre

+ , we are done by (5), so assume otherwise. Then by (4),
we have cont(ν) = mδ for some m ∈ N. Then by Lemma 5.12, ν has an SE-removable
ribbon ξ of content δ ∈ Ψ. But then ξ is SE-removable in τ , and δ ≈ mδ, so ξ is
minimal in τ as well. □

The next key lemma establishes that consecutively SE-removed minimal ribbons
are non-decreasing in the convex preorder.

Lemma 5.14. Let τ be a skew shape. Let ξ1 be a minimal SE-removable ribbon in τ ,
and let ξ2 be a minimal SE-removable ribbon in τ ′ = τ\ξ1. Then cont(ξ2) ⪰ cont(ξ1).

Proof. First, note that if ξ1 ⊔ ξ2 is disconnected, then ξ2 is an SE-removable ribbon
in τ , so by minimality of ξ1, we would have cont(ξ2) ⪰ cont(ξ1), as desired. Thus we
may assume ξ1 ⊔ξ2 is a connected skew shape, and therefore ξ1, ξ2 belong to the same
connected component of τ . We have ξ1 = ξτu,v for some (u, v) ∈ Remτ , and ξ2 = ξτ

′

z,w

for some (z, w) ∈ Remτ ′ , where u, v, z, w belong to the same connected component of
τ . We consider the six possible cases of arrangements of the nodes u, v, z, w separately.
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Case 1: Assume u ↗ v ↗ z ↗ w. First, note that since ξ1 ⊔ ξ2 is connected, we
must have z ∈ {Nv,Ev}. But, since (u, v) ∈ Remτ , we have Ev /∈ τ , so z = Nv. By
Lemma 2.17(i) we have that (u,w) ∈ Remτ and ξτu,w is an SE-removable ribbon in τ
by Lemma 2.16.

We have

dist(u,w) = dist(u, v) + dist(v, z) + dist(z, w) = dist(u, v) + dist(z, w) + 1

and

res(z) = res(Ev) = res(v) + 1 = res(u) + dist(u, v) + 1.

It follows by (1) and Lemma 4.1 that

cont(ξτu,w) = α(res(u),dist(u,w) + 1) = α(res(u),dist(u, v) + dist(z, w) + 2)

= α(res(u),dist(u, v) + 1) + α(res(u) + dist(u, v) + 1,dist(z, w) + 1)
= α(res(u),dist(u, v) + 1) + α(res(z),dist(z, w) + 1)
= cont(ξ1) + cont(ξ2).

Assume by way of contradiction that cont(ξ1) ≻ cont(ξ2). Then we have cont(ξ1) ≻
cont(ξτu,w) ≻ cont(ξ2) by Lemma 3.5. But, since ξτu,w is SE-removable in τ , this con-
tradicts ξ1 being a minimal SE-removable ribbon in τ . Therefore cont(ξ2) ⪰ cont(ξ1),
as desired.

Case 2: Assume w ↗ u. Note that since ξ1 ⊔ ξ2 is connected, we must have w ∈
{Su,Wu}. But, since (u, v) ∈ Remτ , we have Su /∈ τ , so w = Wu. We have by
Lemma 2.17(ii) that (z, v) ∈ Remτ . Therefore ξτz,v is an SE-removable ribbon in τ by
Lemma 2.16. It can be shown along the lines of Case 1 that cont(ξτz,v) = cont(ξ1) +
cont(ξ2). Thus if cont(ξ1) ≻ cont(ξ2), we derive a contradiction along the same lines
as Case 1 as well, so we have cont(ξ2) ⪰ cont(ξ1), as desired.

Case 3: Assume u ↗ z ↗ v ↗ w. It follows from Lemma 2.17(iii) that (SEz, w) ∈
Remτ . Therefore ξτSEz,w is an SE-removable ribbon in τ by Lemma 2.16. We have
dist(SEz, w) = dist(z, w), and res(SEz) = res(z), so by Lemma 4.1 it follows that

cont(ξτSEz,w) = α(res(SEz),dist(SEz, w) + 1)
= α(res(z),dist(z, w) + 1) = cont(ξ2).

As ξ1 is a minimal SE-removable ribbon in τ , we have then that cont(ξ2) =
cont(ξτSEz,w) ⪰ cont(ξ1), as desired.

Case 4: Assume z ↗ u ↗ w ↗ v. It follows from Lemma 2.17(iv) that (z,SEw) ∈
Remτ . Therefore ξτz,SEw is an SE-removable ribbon in τ by Lemma 2.16. As in Case 3,
it is straightforward to show that cont(ξτz,SEw) = cont(ξ2), and thus by the minimality
of ξ1 we have cont(ξ2) = cont(ξτz,SEw) ⪰ cont(ξ1), as desired.

Case 5: Assume u ↗ z ↗ w ↗ v. It follows from Lemma 2.17(v) that (SEz,SEw) ∈
Remττ . Then ξτSEz,SEw is an SE-removable ribbon in τ .

We have dist(SEz,SEw) = dist(z, w), and res(SEz) = res(z), so it follows by
Lemma 4.1 that

cont(ξτSEz,SEw) = α(res(SEz),dist(SEz,SEw) + 1)
= α(res(z),dist(z, w) + 1) = cont(ξ2).

As ξ1 is a minimal SE-removable ribbon in τ , it follows that cont(ξ2) = cont(ξτSE(z),w) ⪰
cont(ξ1), as desired.

Case 6: Assume z ↗ u ↗ v ↗ w. It follows from Lemma 2.17(vi) that (z, w) ∈
Remττ . Thus ξτz,w is an SE-removable ribbon in τ . But then by Lemma 2.16 and the
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minimality of ξ1 we have cont(ξ2) = cont(ξτz,w) ⪰ cont(ξ1), as desired, completing the
proof. □

6. Kostant partitions and tilings
6.1. Kostant partitions. For θ ∈ Q+, a Kostant partition of γ is a tuple of non-
negative integers κ = (κβ)β∈Ψ such that

∑
β∈Ψ κββ = θ. If β1 ≻ · · · ≻ βk are the

members of Ψ such that κβ1 ̸= 0, then it is convenient to write κ in the form

κ = (βκβ1
1 | . . . | βκβk

k ).

We write Ξ(θ) for the set of all Kostant partitions of θ. The convex preorder ⪰ on
Φ+ restricts to a total order ≻ on Ψ, which induces a right lexicographic total order
▷R on Ξ(β), where
κ ▷R κ′ ⇐⇒ there exists β ∈ Ψ such that κβ > κ′

β and κν = κ′
ν for all β ≻ ν.

We also have a left lexicographic total order ▷L on Ξ(β), where
κ ▷L κ′ ⇐⇒ there exists β ∈ Ψ such that κβ > κ′

β and κν = κ′
ν for all β ≺ ν.

Then the orders ▷R, ▷L induce a bilexicographic partial order ⊵ on Ξ(β), given by
κ ⊵ κ′ ⇐⇒ κ ⊵R κ′ and κ ⊵L κ′.

For a sequence β = (βi)ki=1 of elements of Φ′
+, we say β is a Kostant sequence if

ψ(βi) ⪰ ψ(βj) whenever i ⩽ j. To any Kostant sequence β = (βi)ki=1 we may associate
a Kostant partition κβ by setting

κβ
ν =

∑
i∈[1,k],ψ(βi)=ν

m(βi) (ν ∈ Ψ).

6.2. Kostant tilings. We say a tiling Λ of a skew shape τ is a ribbon (resp. cuspidal,
semicuspidal) tiling if λ is a ribbon (resp. cuspidal skew shape, semicuspidal skew
shape) for all λ ∈ Λ. We are particularly interested in such tilings whose constituent
skew shapes are arranged in a way that respects the convex preorder ⪰, as follows.

Definition 6.1. Assume that Λ is a tiling of a skew shape τ such that cont(λ) ∈ Φ′
+

for all λ ∈ Λ, and there exists a Λ-tableau t such that (cont(t(i)))|Λ|
i=1 is a Kostant

sequence. Then we say Λ is a Kostant tiling, and that (Λ, t) is a Kostant tableau
for τ .

If (Λ, t) is a Kostant tableau for τ , then we have an associated Kostant sequence
βt := (cont(t(i)))|Λ|

i=1, and associated Kostant partition κΛ = κβt . The Kostant par-
tition κΛ depends only on Λ and not on the choice of Λ-tableau t.

Definition 6.2. Let τ be a skew shape, and let (Λ, t) be a tableau for τ . We say
(Λ, t) is a minimal SE-removable ribbon tableau of τ provided that cont(λj) ∈ Ψ and
λj is a minimal SE-removable ribbon in

⊔j
i=1 λi for all j ∈ [1, |Λ|]. We say Λ is a

minimal SE-removable ribbon tiling of τ if there exists a Λ-tableau t such that (Λ, t)
is a minimal SE-removable ribbon tableau.

We have the following dual notion as well:

Definition 6.3. Let τ be a skew shape, and let (Λ, t) be a tableau for τ . We say
(Λ, t) is a maximal NW-removable ribbon tableau of τ provided that cont(λj) ∈ Ψ
and λj is a maximal NW-removable ribbon in

⊔|Λ|
i=j λi for all j ∈ [1, |Λ|]. We say Λ

is a maximal NW-removable ribbon tiling of τ if there exists a Λ-tableau t such that
(Λ, t) is a maximal NW-removable ribbon tableau.
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Figure 15. Kostant tiling for τ ; cuspidal Kostant tiling for τ

Example 6.4. Take e = 2 and recall the convex preorder ⪰ from Example 3.3 and
the cuspidal ribbons from Example 5.10. We show two tilings for a skew shape τ
in Figure 15. The tiling Λ1 on the left is Kostant for this preorder, with associated
Kostant partition

κΛ1 = (3δ + α1 | δ3 | δ + α0).

The tiling Λ2 on the right in Figure 15 is a cuspidal Kostant tiling for τ , which is (not
coincidentally, per Theorem 6.14) a minimal SE-removable ribbon tiling, and maximal
NW-removable ribbon tiling as well. The associated Kostant partition is

κΛ2 = (α2
1 | δ + α1 | δ3 | δ + α0 | α2

0).

6.3. Results on Kostant tilings.

Lemma 6.5. Every nonempty skew shape τ has a minimal SE-removable ribbon tableau
(Λ, t).

Proof. We go by induction on |τ |. If |τ | = 1, then we trivially take Λ = {τ} and
t(1) = τ . Now let |τ | > 1 and make the induction assumption on skew shapes τ ′

with |τ ′| < |τ |. By Lemma 5.13, τ has a minimal SE-removable ribbon ξ such that
cont(ξ) ∈ Ψ. Let τ ′ = τ\ξ. If τ ′ = ∅, we are done, taking Λ = {ξ}, t(1) = ξ. Assume
τ ′ ̸= ∅. Then τ ′ is a skew shape by Lemma 2.14, which by the induction assumption
has a minimal SE-removable ribbon tableau (Λ′, t′). But then taking Λ = Λ′ ∪ {ξ},
t(i) = t′(i), t(|Λ|) = ξ, for all i ∈ [1, |Λ′|], we have that (Λ, t) is a minimal SE-
removable ribbon tableau for τ . □

Lemma 6.6. If (Λ, t) is a minimal SE-removable ribbon tableau for a skew shape τ ,
then (Λ, t) is a cuspidal Kostant tableau for τ .

Proof. By Lemma 5.11, every λ ∈ Λ is cuspidal, so it remains to verify that
(cont(t(i)))|Λ|

i=1 is a Kostant sequence by showing that cont(t(j)) ⪰ cont(t(j + 1))
for all j ∈ [1, |Λ| − 1]. Indeed, t(j + 1) is a minimal SE-removable ribbon
tableau in

⊔j+1
i=1 t(i), and t(i) is a minimal SE-removable ribbon tableau in⊔j

i=1 t(i) = (
⊔j+1
i=1 t(i))\t(j + 1), so the result follows by Lemma 5.14. □

Lemma 6.7. Every cuspidal skew shape is a ribbon.

Proof. Let τ be a cuspidal skew shape, so that cont(τ) ∈ Φ+, and assume by way
of contradiction that τ is not a ribbon. By Lemma 6.5, there exists a minimal SE-
removable ribbon tableau for τ . As τ is not itself a ribbon, it must be that |Λ| > 1.
By Lemma 6.6 we have

cont(t(1)) ⪰ · · · ⪰ cont(t(|Λ|)).

As cont(t(1)) + · · · + cont(t(|Λ|)) = cont(τ), we have by Lemma 3.5 that
cont(t(1)) ⪰ cont(τ) ⪰ cont(t(|Λ|)).
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But t(|Λ|) is a minimal SE-removable ribbon in τ , so cont(t(|Λ|)) ≻ cont(τ) by
Lemma 5.4, giving the desired contradiction. □

Lemma 6.8. If ξ is a cuspidal skew shape, then cont(ξ) ∈ Ψ.

Proof. By Lemma 6.7 we have that ξ is a ribbon. If cont(ξ) ∈ Φ+\Ψ, then cont(ξ) =
mδ for some m > 1. But then ξ has an SE-removable skew hook ν ⊊ ξ of content
cont(ξ) ⪰ δ, a contradiction of Lemma 5.5, so cont(ξ) ∈ Ψ. □

Lemma 6.9. Let Λ be a minimal SE-removable ribbon tiling for τ , and Λ′ be a Kostant
tiling for τ . Then κΛ ⊵R κΛ′ , and κΛ = κΛ′ if and only if every λ′ ∈ Λ′ is a union
of tiles λ ∈ Λ with ψ(cont(λ′)) = cont(λ).

Proof. For sake of space, if Λ,Λ′ are such that every λ′ ∈ Λ′ is a union of tiles λ ∈ Λ
with ψ(cont(λ′)) = cont(λ), we will refer to this as the ‘union condition’. It is clear
from the definition of κΛ, κΛ′ that κΛ = κΛ′ when Λ,Λ′ satisfy the union condition.

We prove the claim by induction on |τ |, the base case |τ | = 1 being trivial. Assume
that |τ | > 1, and the claim holds for all τ ′ with |τ ′| < |τ |. There exists some ν ∈ Λ′

which is SE-removable in τ and ψ(cont(ν′)) ⪰ ψ(cont(ν)) for all ν′ ∈ Λ′.
For all λ ∈ Λ, set νλ = ν ∩ λ. Set Λ0 = {λ ∈ Λ | νλ = λ} and Λ1 = {λ ∈ Λ | νλ ̸=

∅, λ}. By Lemma 6.6, each λ ∈ Λ is cuspidal, and νλ is SE-removable in each λ because
ν is SE-removable in τ . Thus, for all λ ∈ Λ1, we have cont(νλ) = βλ,1 + · · · + βλ,rλ

for some cont(λ) ≺ βλ,1, · · · , βλ,rλ ∈ Φ+. Then we have

cont(ν) =
∑
λ∈Λ0

cont(λ) +
∑

Λ∈Λ1

βλ,1 + · · · + βλ,rλ .

If there exists λ ∈ Λ0 such that ψ(cont(ν)) ≻ cont(λ), then Λ,Λ′ do not satisfy the
union condition, and we have κΛ ▷R κΛ′ . If there exists λ ∈ Λ1, j ∈ [1, rλ] such that
ψ(cont(ν)) ⪰ βλ,j , then Λ,Λ′ do not satisfy the union condition, and we again have
ψ(cont(ν)) ≻ cont(λ), so κΛ ▷R κΛ′ .

We may assume then that cont(λ) ⪰ ψ(cont(ν)) for all λ ∈ Λ0 and βλ,j ≻
ψ(cont(ν)) for all λ ∈ Λ1, j ∈ [1, rλ]. By Lemma 3.5, this implies that Λ1 = ∅,
and cont(λ) = ψ(cont(ν)) for all λ ∈ Λ0. If τ ′ := τ\ν = ∅, then we are done, as Λ,Λ′

satisfy the union condition and κΛ = κΛ′ . Assume then that τ ′ ̸= ∅. Then we have
that Λ\Λ0 is a minimal SE-removable ribbon tiling for τ ′, and Λ′\{ν} is a Kostant
tiling for τ ′. By the induction assumption, we have κΛ\Λ0 ⊵R κΛ′\{ν}, with equality
if and only if Λ\Λ0, Λ′\{ν} satisfy the union condition. But since ν =

⊔
λ∈Λ0

λ and
cont(λ) = ψ(cont(ν)) for all λ ∈ Λ0, it follows that κΛ ⊵R κΛ′ , with equality if and
only if Λ\Λ0, Λ′\{ν} satisfy the union condition, which occurs if and only if Λ,Λ′

satisfy the union condition. This completes the induction step, and the proof. □

Corollary 6.10. Every skew shape has a unique minimal SE-removable ribbon tiling.

Proof. Existence is established in Lemma 6.5. If Λ,Λ′ are minimal SE-removable rib-
bon tilings of τ , then by Lemma 6.9 we have κΛ ⊵R κΛ′ and κΛ′

⊵R κΛ, so κΛ = κΛ′

and thus every λ ∈ Λ is a union of tiles in λ′ ∈ Λ′, and vice versa. It follows that
Λ = Λ′. □

Lemma 6.11. Every cuspidal Kostant tiling is a minimal SE-removable ribbon tiling.

Proof. We prove the claim by induction on |τ |, the base case |τ | = 1 being clear.
Assume that |τ | > 1, and the claim holds for all τ ′ with |τ ′| < |τ |. Let (Λ, t) be
a cuspidal Kostant tableau for τ . Then by Lemma 6.7, each λ ∈ Λ is a ribbon, so
t(j) is an SE-removable ribbon in

⊔j
i=1 t(i) for all j ∈ [1, |Λ|]. We also have that

cont(t(j)) ∈ Ψ for all j ∈ [1, |Λ|] by Lemma 6.8. If |Λ| = 1, the claim is clearly true,
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so assume |Λ| > 1. Note that Λ\t(|Λ|) is a cuspidal Kostant tiling for τ ′ := τ\t(|Λ|),
so if t(|Λ|) is a minimal for τ , the claim follows by induction.

Assume by way of contradiction that t(|Λ|) is not minimal for τ . There exists a
minimal SE-removable skew hook ξ in τ , and cont(t(j)) ⪰ cont(t(|Λ|)) ≻ cont(ξ) for
all j ∈ [1, |Λ|]. Let ξj = ξ ∩ t(j) for all j ∈ [1, |Λ|], and set J = {j ∈ [1,Λ] | ξj ̸= ∅}.
Since ξ is SE-removable in τ , ξj is SE-removable in t(j) for all j ∈ J . But then, since
t(j) is cuspidal, we have that cont(ξj) = βj,1 + · · · + βj,rj for some cont(t(j)) ⪯
βj,1, . . . , βj,rj ∈ Φ+. Then by Lemma 3.5 we have

cont(ξ) =
∑
j∈J

cont(ξj) =
∑
j∈J

βj,1 + · · · + βj,rj ⪰ cont(t(|Λ|)) ≻ cont(ξ),

the desired contradiction. This completes the induction step and the proof. □

6.4. Reversal. There is an inherent symmetry to much of the combinatorial data
considered herein. For u ∈ N , define the reversal urev := (−u2,−u1) and extend this
to τ rev := {urev | u ∈ τ} for τ ⊂ N . Reversal preserves residue and content, and sends
skew shapes to skew shapes and ribbons to ribbons.

If (Λ, t) is a tableau for τ , then we may define a tableau (Λrev, trev) for τ rev by
setting Λrev := {λrev | λ ∈ Λ} and trev(i) = t(|Λ| − i+ 1)rev for i ∈ [1, |Λ|].

For a convex preorder ⪰, we may also define the reversal convex preorder ⪰rev by
setting β ⪰rev β′ if and only if β′ ⪰ β.

The following proposition is straightforward to verify from definitions. To avoid
confusion, we label here the terms ‘cuspidal’ and ‘Kostant’, and the bilexicographic
partial order ◁ which depend upon a chosen convex preorder with the symbol for that
preorder.

Proposition 6.12. Let m ∈ N , β ∈ Φ+, θ ∈ Q+, ξ ∈ S(β), µ ∈ S(mβ), τ ∈ S(θ).
(i) ξ is ⪰-cuspidal if and only if ξrev is ⪰rev-cuspidal.
(ii) µ is ⪰-semicuspidal if and only if µrev is ⪰rev-semicuspidal.
(iii) ξ is a ⪰-minimal SE-removable ribbon in τ if and only if ξrev is a ⪰rev-

maximal NW-removable ribbon in τ rev.
(iv) (Λ, t) is a ⪰-Kostant tableau for τ if and only if (Λrev, trev) is a ⪰rev-Kostant

tableau for τ rev.
(v) For κ,ν ∈ Ξ(β), we have κ ▷⪰

R ν if and only if κ ▷⪰rev

L ν.

6.5. Main theorems, cuspidal version. In the next theorem we show that, up
to e-similarity, there is a unique cuspidal skew shape associated to every real positive
root, and there are e distinct cuspidal skew shapes associated to the null root δ.

Theorem 6.13. The set {ζβ | β ∈ Φre
+} ∪ {ζt | t ∈ Ze} represents a complete and

irredundant set of cuspidal skew shapes, up to e-similarity.

Proof. Follows from Lemmas 6.7, 6.8, and Proposition 5.9. □

Parts (i), (iv) of the next theorem establish that every skew shape τ possesses a
unique cuspidal Kostant tiling, and the associated Kostant partition is bilexicographi-
cally maximal among all Kostant tilings for τ . Moreover, parts (ii), (iii) show that the
unique cuspidal Kostant tiling can be directly constructed via progressive minimal
(or maximal) ribbon removals. We refer the reader back to Examples 1.1 and 6.4 for
demonstrative examples of cuspidal Kostant tilings.

Theorem 6.14. Let τ be a nonempty skew shape. Then:
(i) There exists a unique cuspidal Kostant tiling Γτ for τ .
(ii) The tiling Γτ is the unique minimal SE-removable ribbon tiling for τ .
(iii) The tiling Γτ is the unique maximal NW-removable ribbon tiling for τ .
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(iv) For any Kostant tiling Λ for τ , we have κ(Γτ ) ⊵ κ(Λ), with κ(Γτ ) = κ(Λ) if
and only if every λ ∈ Λ is a union of tiles γ ∈ Γτ with ψ(cont(λ)) = cont(γ).

Proof. Uniqueness in (ii) is provided by Corollary 6.10, and the equality in (ii) is
provided by Lemmas 6.6 and 6.11. Existence in (i) follows from Lemma 6.5, and the
uniqueness in (i) from uniqueness in (ii). Then (iii) follows from (ii) and Proposi-
tion 6.12. Finally, (iv) follows from (ii) and Lemma 6.9 and Proposition 6.12. □

7. Semicuspidal tableaux
In this section we build on §6 to investigate semicuspidal skew shapes and tableaux.
Recall that every nonempty skew shape τ has a unique cuspidal Kostant tiling Γτ , as
in Theorem 6.14.

Lemma 7.1. Let τ be a skew shape of content θ ∈ Φ′
+. Then τ is semicuspidal if and

only if, for all γ ∈ Γτ , we have cont(γ) = ψ(θ).

Proof. Let (γi)ki=1 be a cuspidal Kostant tableau for τ . Then Γτ = {γi}ki=1, and γi is
a ribbon for all i ∈ [1, k].

( =⇒ ) Since τ is semicuspidal, we must have cont(γ1) ⪰ cont(γk) ⪰ ψ(θ) by
Lemma 5.4. Then by Lemma 3.5(i),(ii), we have that cont(γi) ≈ ψ(θ) for all i. But
cont(γi) ∈ Ψ for all i, so by Lemma 3.4, we have cont(γi) = ψ(θ) for all i ∈ [1, k].

( ⇐= ) Let (λ1, λ2) be any tableau for τ . Define:

Γ0
τ = {γ ∈ Γτ | γ ∩ λ1 ̸= ∅, γ ∩ λ2 ̸= ∅};

Γ1
τ = {γ ∈ Γτ | γ ⊆ λ1};

Γ2
τ = {γ ∈ Γτ | γ ⊆ λ2}.

Let γ ∈ Γ0
τ . Then (γ ∩ λ1, γ ∩ λ2) is a tableau for γ. As γ is cuspidal, we have that

cont(γ ∩ λ1) is a sum of positive roots less than ψ(θ), and cont(γ ∩ λ2) is a sum of
positive roots greater than ψ(θ). By assumption, cont(γ) = ψ(θ) for all γ ∈ Λ1,Λ2.
Then we have

cont(λ1) =
∑
γ∈Γ0

τ

cont(γ ∩ λ1) +
∑
γ∈Γ1

τ

ψ(θ);

cont(λ2) =
∑
γ∈Γ0

τ

cont(γ ∩ λ2) +
∑
γ∈Γ2

τ

ψ(θ),

so it follows that cont(λ1) can be written as a sum of positive roots greater than or
equal to cont(ψ(θ)), and cont(λ2) can be written as a sum of positive roots greater
than or equal to cont(ψ(θ)). Thus τ is semicuspidal. □

As all cuspidal shapes are (connected) ribbons by Theorem 6.13, any cuspidal tiling
of a skew shape is a union of cuspidal tilings of its connected components. Therefore
Lemma 7.1 implies the following

Corollary 7.2. Let m ∈ N and β ∈ Φ+. A skew shape τ ∈ S(mβ) is semicuspidal if
and only if every connected component of τ is a semicuspidal skew shape of content
m′β for some m′ ⩽ m.

7.1. Real semicuspidal skew shapes. First we focus on semicuspidal skew shapes
associated to real positive roots.

Lemma 7.3. Let τ be a connected skew shape of content mβ ∈ Φ′
+, where β ∈ Φre

+ .
Then τ is semicuspidal if and only if m = 1 and τ ∼e ζ

β.
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Proof. The ‘if’ direction is immediate by Lemma 6.13, as ζβ is cuspidal. Now assume
τ is semicuspidal. Then by Lemma 7.1 and Theorem 6.13 there exists a cuspidal
Kostant tableau (γi)mi=1 for τ such that γi ∼e ζ

β for all i ∈ [1,m]. If m = 1, we are
done.

Assume by way of contradiction that m > 1. By Theorem 6.14, every minimal SE-
removable ribbon in τ is a tile in Γτ . Let µ be the union of all minimal SE-removable
ribbons in τ . Then µ is a skew shape such that each of its connected components is e-
similar to ζβ . Let τ ′ = τ\µ. If τ ′ is empty, then µ = τ would consist of m disconnected
skew shapes, a contradiction, since τ is connected. Thus τ ′ is nonempty. Let γ′ be a
minimal SE-removable ribbon in τ ′. By Theorem 6.14, γ′ ∼e ζ

β is a tile in Γτ . As γ′

was not removable in τ , it follows that there is some minimal SE-removable ribbon
γ ∼e ζ

β in τ such that ν := γ ⊔ γ′ is a connected skew shape.
We now will derive a contradiction by focusing on this shape ν. Note that (γ′, γ)

is a cuspidal Kostant tableau for ν. For clarity, we write ν′ = γ′ = ν\γ. We have
γ = ξνu,v and γ′ = ξν

′

z,w, for some (u, v) ∈ Remτν, (z, w) ∈ Remτν
′. Since γ ∼e γ

′, the
nodes u, v, z, w must be arranged as in one of the following cases:

Case 1: u ↗ v ↗ z ↗ w. As ν is connected, this implies that z ∈ {Ev,Nv}, so
ν is a ribbon. But then mβ = cont(ν) ∈ Φ+ by Corollary 4.2, a contradiction since
m > 1.

Case 2: z ↗ w ↗ u ↗ v. As ν is connected, this implies that u ∈ {Ew,Nw}, so ν
is a ribbon, and we get a contradiction as in Case 1.

Case 3: u ↗ z ↗ v ↗ w. Then by Lemma 2.17(iii), we have that (SEz, w) ∈
Remτν. Thus ξν(SEz,w) is an SE-removable hook in ν. Note that cont(ξνSEz,w) = β =
cont(γ). Then ξν(SEz,w) is minimal in ν since γ is minimal by Theorem 6.14. Thus
ξνSEz,w is cuspidal by Lemma 5.11. But ξνSEz,w ̸∼e ξ

ν′

z,w = γ′ ∼e ζ
β , a contradiction of

Theorem 6.13.
Case 4: z ↗ u ↗ w ↗ v. Then by Lemma 2.17(iv), we have that (z,SEw) ∈

Remτν, so ξνz,SEw is an SE-removable hook in ν, which implies a contradiction along
the same lines as Case 3.

This exhausts the possibilities for arrangements of the nodes u, v, z, w, so we get a
contradiction in any case. Therefore m = 1, as desired. □

Recall the e-similarity classes defined in §4.2, and choose, for every m ∈ N and
β ∈ Φre

+ , a distinguished skew shape ζmβ ∈ [(ζβ)m]e.

Corollary 7.4. Let m ∈ N, β ∈ Φre
+ . Assume τ ∈ S(mβ). Then τ is semicuspidal if

and only if τ ∼e ζ
mβ.

Proof. For the ‘only if’ direction, assume τ is semicuspidal. Then by Corollary 7.2,
all connected components of τ are semicuspidal, and each of these is e-similar to ζβ
by Lemma 7.3, implying the result. The ‘if’ direction is granted by Lemma 7.1, since
any τ ∈ [(ζβ)m]e is trivially tiled by tiles e-similar to ζβ . □

7.2. The dilation map. In this subsection, fix some t ∈ Ze, and recall that [ζt]e =
{ζ(δ,b) | b ∈ Nt} by Proposition 5.9. Recall that ζt = ζ(δ,bt), where bt ∈ Nt. Set:

xt = E(ζtNE − bt), and yt = N(ζtNE − bt).

By construction, res(ζtNE) = t− 1, so it follows that res(xt) = res(yt) = 0. We define
a map φt : N → Nt by setting

φt(u) = bt + u1y
t + u2x

t,
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for all u ∈ N . Then we define the t-dilation map dilt : N → [ζt]e by setting:

dilt(u) = ζ(δ,φt(u)).

The following lemma establishes that that [ζt]e is a tiling of N .

Lemma 7.5. For all u ∈ N , there exists a unique b ∈ Nt such that u ∈ ζ(δ,b).

Proof. Let b′ ∈ Nt. Then, since cont(ζ(δ,b′)) = δ, we have that ζ(δ,b′) contains a node
v with res(v) = res(u). Then u = v + c some node c ∈ N0. Take b = b′ + c. Then
res(b) = t. We have u ∈ Tc(ζ(δ,b′)) = ζ(δ,b′+c) = ζ(δ,b) by Proposition 5.9, establishing
existence.

Now assume b′′ ∈ Nt, and u ∈ ζ(δ,b′′). Then b′′ = b + d for some d ∈ N0. Then
ζ(δ,b′′) = Td(ζ(δ,b)), so u = u′ + d for some u′ ∈ ζ(δ,b) with res(u′) = res(u). But, as
cont(ζ(δ,b)) = δ, the only node u′ ∈ ζ(δ,b) with residue res(u) is u, so u′ = u, and thus
d = (0, 0). Thus b′′ = b, establishing uniqueness. □

Lemma 7.6. The set N0 is a free Z-module with basis {xt, yt}.

Proof. We first show that Z{xt, yt} spans N0. Note that by definition we have xt =
SEyt, so (1, 1) = xt − yt ∈ Z{xt, yt}. Then xt −xt1(1, 1) = (0, xt2 −xt1) ∈ Z{xt, yt}. By
Lemma 2.12, we have

e = dist(ζtSW, ζ
t
NE) + 1 = dist(bt, ζtNE) + 1 = |(ζtNE)1 − bt1| + |(ζtNE)2 − bt2| + 1

= |xt1| + |xt2 − 1| + 1 = −xt1 + (xt2 − 1) + 1 = xt2 − xt1.

Thus (0, e) ∈ Z{xt, yt}. Let u ∈ N0. Then we have u = (u1, u1) + (0, ke) for some
k ∈ Z, so u = u1(1, 1) + k(0, e) ∈ Z{xt, yt}. Thus Z{xt, yt} = N0.

Now assume cxt + dyt = 0 for some c, d ∈ Z. Then we have
0 = cxt + dyt = cxt + dNWxt = c(xt1, xt2) + d(xt1 − 1, xt2 − 1)

= ((c+ d)xt1 − d, (c+ d)xt2 − d).

It follows that 0 = (c+d)(xt2−xt1) = (c+d)e, so c+d = 0, which implies that c = d = 0.
Thus {xt, yt} are linearly independent, and so constitute a basis for N0. □

Lemma 7.7. The map φt : N → Nt is a bijection.

Proof. First we show surjectivity. If b′ ∈ Nt, then b′ = bt+c for some c ∈ N0. Then by
Lemma 7.6, c = ryt+sxt for some r, s ∈ Z. Then we have φt((r, s)) = bt+ryt+sxt =
bt + c = b′, as desired.

Next we show injectivity. Assume φt(u) = φt(v). Then we have bt + u1y
t + u2x

t =
bt + v1y

t + v2x
t, so u1y

t + u2x
t = v1y

t + v2x
t. But then by Lemma 7.6, this implies

that u = v, as desired. □

Corollary 7.8. The t-dilation map dilt : N → [ζt] is a bijection.

Lemma 7.9. Let z ∈ N . Then
dilt(Ez) = Txt(dilt(z)); dilt(Nz) = Tyt(dilt(z)); dilt(SEz) = SE(dilt(z)).

Proof. We have
dilt(Ez) = dilt((z1, z2 + 1)) = ζ(δ,φt(z1,z2+1))

= ζ(δ,bt+z1y
t+z2x

t+xt) = Txt(ζ(δ,bt+z1y
t+z2x

t)) = Txt(dilt(z)).
The second equality is similar. The proof of the last equality follows from the first
two and the fact that xt − yt = (1, 1). □

Lemma 7.10. Let u, z ∈ N , with u ∈ dilt(z). Then we have:
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(i) u = (dilt(z))NE ⇐⇒ Eu = (dilt(Ez))SW ⇐⇒ Nu = (dilt(Nz))SW.
(ii) u ̸= (dilt(z))NE =⇒ Eu ∈ dilt(z) ⊔ dilt(SEz)
(iii) u = (dilt(z))SW ⇐⇒ Su = (dilt(Sz))NE ⇐⇒ Wu = (dilt(Wz))NE
(iv) u ̸= (dilt(z))SW =⇒ Su ∈ dilt(z) ⊔ dilt(SEz)

Proof. We have u = (dilt(z))NE if and only if u = φt(z) + xt − (0, 1), which occurs if
and only if

Eu = φt(z) + xt = φt(Ez) = ζ
(δ,φt(Ez))
SW = (dilt(Ez))SW,

proving claim (i). Claim (iii) is similar. For claim (ii), assume u ̸= (dilt(z))NE. If
Eu ∈ dilt(z), we are done. Assume not. Then we must have that Nu ∈ dilt(z) since
dilt(z) is a ribbon. But then Eu = SENu ∈ SE(dilt(z)) = dilt(SEz) by Lemma 7.9, as
desired. Claim (iv) is similar. □

7.3. Dilation of skew shapes. We extend the dilation map to subsets τ of N by
setting dilt(τ) =

⊔
u∈τ dilt(u). Roughly speaking, for t ∈ Ze, one ‘t-dilates’ the shape

τ by replacing every node in τ with the cuspidal ribbon ζt. See again Figure 4 for a
visual depiction.

Lemma 7.11. Let τ be a nonempty finite subset of N . Then:
(i) dilt(τ) is cornered if and only if τ is cornered;
(ii) dilt(τ) is diagonal convex if and only if τ is diagonal convex;
(iii) dilt(τ) is a connected skew shape if and only if τ is a connected skew shape;
(iv) dilt(τ) is a ribbon if and only if τ is a ribbon.

Proof. We begin with (i). If v ∈ dilt(τ), then v ∈ dilt(u) for some u ∈ τ . Since dilt(u) is
a ribbon, we have {Nv,Ev}∩dilt(τ) = ∅ only if v = dilt(u)NE, and {Sv,Wv}∩dilt(τ) =
∅ only if v = dilt(u)SW.

Now let u ∈ τ . Then it follows that (dilt(u))NE ∈ dilt(τ). By Lemma 7.10(i),
we have E(dilt(u))NE ∈ (dilt(Eu)) and N(dilt(u))NE ∈ (dilt(Nu)). Then u ∈ τ is a
node such that {Nu,Eu} ∩ τ = ∅ if and only if dilt(u)NE is a node in dilt(τ) such
that {N(dilt(u)NE),E(dilt(u)NE)} ∩ dilt(τ) = ∅. By a similar argument, u ∈ τ is a
node such that {Su,Wu} ∩ τ = ∅ if and only if dilt(u)SW is a node in dilt(τ) such
that {S(dilt(u)SW),W(dilt(u)SW)} ∩ dilt(τ) = ∅. From this, and the argument in the
previous paragraph, it follows that dilt(τ) is cornered if and only if τ is cornered.

Now we prove (ii). Assume τ is diagonal convex. Assume that n ∈ N is such that
u,w ∈ Dn ∩ dilt(τ), v ∈ Dn, and u ↘ v ↘ w. We have v = (SE)ku, w = (SE)ℓu, for
some 1 ⩽ k ⩽ ℓ. We have u ∈ dilt(z) for some z ∈ τ . Then, applying Lemma 7.9,
we have v ∈ (SE)k(dilt(z)) = dilt((SE)kz), w ∈ (SE)ℓ(dilt(z)) = dilt((SE)ℓz). Since
w ∈ dilt(τ), we have (SE)ℓz ∈ τ . By diagonal convexity of τ , it follows that (SE)kz ∈ τ .
Thus dilt((SE)kz) ⊆ dilt(τ), so v ∈ dilt(τ). Thus dilt(τ) is diagonal convex.

Now assume dilt(τ) is diagonal convex, and n ∈ N is such that u,w ∈ Dn ∩ τ ,
v ∈ Dn, and u ↘ v ↘ w. We have v = (SE)ku, w = (SE)ℓu, for some 1 ⩽ k ⩽ ℓ.
Let z ∈ dilt(u) ⊂ dilt(τ). Then by Lemma 7.9, we have that (SE)kz ∈ (SE)k dilt(u) =
dilt((SE)kz) = dilt(v), and similarly, (SE)ℓz ∈ dilt(w) ⊆ dilt(τ). But, as dilt(τ) is
diagonal convex, it follows that (SE)kz ∈ dilt(τ), which implies that v ∈ τ . Thus τ is
diagonal convex. This completes the proof of (ii).

With (i), (ii) in hand, (iii) follows by Lemma 2.4. With (iii) in hand, we need only
check that τ is thin if and only if dilt(τ) is thin. This follows easily from Lemma 7.9.

□

Lemma 7.12. Assume τ is a nonempty skew shape, and τ = τ1 ⊔ · · · ⊔ τk, where
τk ⇒· · · ⇒τ1 are the connected components of τ . Then dilt(τ) = dilt(τ1)⊔· · ·⊔dilt(τk) ∈
S, and dilt(τk) ⇒ · · · ⇒ dilt(τ1) are the connected components of dilt(τ).
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Proof. By definition of the dilation map, we have dilt(u) ⇒ dilt(v) whenever u ⇒ v,
so we have that dilt(τ1) ⇒ · · · ⇒ dilt(τk), and these are connected skew shapes by
Lemma 7.11, so dilt(τ) ∈ S, as desired. □

Lemma 7.13. Let τ be a nonempty skew shape. Then Γdilt(τ) = {dilt(u) | u ∈ τ}, and
dilt(τ) is semicuspidal.

Proof. By Lemma 7.12, we have that dilt(τ) is a skew shape, and if u is an SE-
removable node in u, then dilt(u) is an SE-removable hook in dilt(τ) by Lemmas 7.9
and 7.10. Then dilt(τ\{u}) = dilt(τ)\{dilt(u)}, and it follows by induction that
{dilt(u) | u ∈ τ} is a tiling of dilt(τ). The fact that dilt(τ) is semicuspidal follows by
Lemma 7.1. □

7.4. Connected imaginary semicuspidal skew shapes.

Proposition 7.14. Let τ be a connected skew shape with cont(τ) = mδ. Then τ is
semicuspidal if and only if there exists t ∈ Ze and µ ∈ Sc(m) such that τ = dilt(µ).

Proof. The ‘if’ direction is supplied by Lemma 7.13 and Lemma 7.11(iii). We focus
now on the ‘only if’ direction. By Lemma 7.1, we may assume (γ1, . . . , γm) is a cuspidal
Kostant tableau for τ , where γi = ζ(δ,ci) for some ci ∈ N . Write τ ′ := τ\γm. If τ ′ ̸= ∅,
then τ ′ is semicuspidal by Lemma 7.1.

We go by induction on m. The base case m = 1 is immediate, since then we have
that τ = γ1 is cuspidal. Assume m = 2. Assume first, by way of contradiction, that
res(c1) ̸= res(c2). By Lemma 2.16, there exist (u, v) ∈ Remττ such that ξτu,v = ζ(δ,c2).
Writing τ ′ := τ\ξτu,v = ζ(δ,c1), we have some (z, w) ∈ Remττ

′ such that ξτ ′

z,w =
ζ(δ,c1). As τ is connected, we have that u, v, z, w are trivially in the same connected
component of τ . As the two ribbons have the same cardinality, the nodes u, v, z, w
must be arranged as in one of the following cases:

Case 1: u ↗ v ↗ z ↗ w. As τ is connected, this implies that z ∈ {Ev,Nv}, and
thus

res(c2) = res(z) = res(v) + 1 = res(ζ(δ,c1)
NE ) + 1 = (res(c1) − 1) + 1 = res(c1),

a contradiction.
Case 2: z ↗ w ↗ u ↗ v. As ν is connected, this implies that u ∈ {Ew,Nw}, which

again forces res(c2) = res(c1), a contradiction as in Case 1.
Case 3: u ↗ z ↗ v ↗ w. Then by Lemma 2.17(iii), we have that (SEz, w) ∈

Remτν. Thus ξτ(SEz,w) is an SE-removable hook in τ . Note that cont(ξτSEz,w) = δ, so
ξν(SEz,w) is minimal in τ since γ2 is minimal by Theorem 6.14. Thus ξνSEz,w is cuspidal
by Lemma 5.11. We have res(SEz) = res(z) = res(c1). But then we must have by
Proposition 5.9 that ξτSEz,w = ζ(δ,SEz) = SE(ζ(δ,z)). But then

w = (ξτSE,w)NE = (SE(ζ(δ,z)))NE = SEw,
a contradiction.

Case 4: z ↗ u ↗ w ↗ v. Then by Lemma 2.17(iv), we have that (z,SEw) ∈
Remτν, so ξνz,SEw is an SE-removable hook in ν, which implies a contradiction along
the same lines as Case 3.

Thus, in any case we derive a contradiction, so res(c1) = res(c2) = t for some
t ∈ Ze. Then we have by Lemma 7.11 that τ = dilt(µ) for some connected skew shape
µ ∈ Sc(2), and we are done.

Now let τ be a connected, cuspidal shape with content mδ, where m ⩾ 3, and make
the induction assumption on all m′ < m. First assume that τ ′ is disconnected. Let
µ be any connected component of τ ′. Then µ = ⊔i∈Iγi for some I ⊂ [1,m − 1], and
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µ ⊔ γm = ⊔i∈I∪{m}γi is a connected semicuspidal skew shape by Lemma 7.1. Then
by the induction assumption we have res(ci) = res(cm) for all i ∈ I. Applying this
argument to all connected components of τ ′ gives the result.

Now assume that τ ′ is connected. By the induction assumption we have
res(ci) = res(cm−1) for all i ∈ [1,m − 1]. If γm−1 ⊔ γm is disconnected, then
(γ1, . . . , γm−2, γm, γm−1) is a cuspidal Kostant tableau for τ . If τ\γm−1 is dis-
connected, then it follows that res(ci) = res(cm−1) for all i ∈ [1,m], giving
the result. If τ\γm−1 is connected, then by the induction assumption we have
res(cm) = res(c1) = res(cm−1), so res(ci) = res(cm) for all i ∈ I.

Finally, assume γm−1 ⊔ γm is connected. By the case for m = 2 above, we have
that res(cm−1) = res(cm), so res(ci) = res(cm) for all i ∈ I, completing the proof. □

Lemma 7.15. Let t1, t2 ∈ Ze, µ, ν ∈ Sc. Then dilt1(µ) ∼e dilt2(ν) if and only if µ ∼ ν
and t1 = t2.

Proof. First, note that if t1 = t2 = t, then by the definition of the dilation map, there
exists c ∈ N such that Tc(µ) = ν if and only if Tc1yt+c2xt(dilt(µ)) = dilt(ν). The result
follows. If t1 ̸= t2, then we note that res(dilt1(µ)SW) = t1, and res(dilt2(ν)SW) = t2,
so dilt1(µ) ̸∼e dilt2(ν), completing the proof. □

7.5. Arbitrary imaginary semicuspidal skew shapes. Similarity is an equiva-
lence relation on Sc. Let S̃c ⊂ Sc be a set of distinguished representatives from each
similarity class. For k ⩽ m ∈ N, we write

S(k,m) := {(τ , ε) | ε ∈ Zke , τ ∈ S̃kc , |τ1| + · · · + |τk| = m};

S(m) :=
⊔
k∈N

S(k,m).

For each (τ , ε) ∈ S(k,m), we choose a distinguished skew shape ζ(τ ,ε) ∈ S(mδ)
from the e-similarity class:

ζ(τ ,ε) ∈ [dilε1(τ1), . . . ,dilεk
(τk)]e.

Lemma 7.16. Let m ∈ N. Then the set {ζ(τ ,ε) | (τ , ε) ∈ S(m)} is a complete and
irredundant set of semicuspidal skew shapes of content mδ, up to e-similarity.

Proof. Completeness of this set follows from Proposition 7.14 and Corollary 7.2. Ir-
redundancy follows from Lemma 7.15. □

Example 7.17. Let e = 2 and recall the imaginary cuspidal ribbons ζ0, ζ1 from Ex-
ample 5.10. In Figure 16, we give an example of an element (τ , ε) ∈ S(3, 15), and
display the corresponding dilated semicuspidal skew shape ζ(τ ,ε) ∈ S(15δ).

7.6. Main theorems, semicuspidal version.

Theorem 7.18. The set {ζmβ | m ∈ N, β ∈ Φre
+}∪{ζ(τ ,ε) | m ∈ N, (τ , ε) ∈ S(m)} rep-

resents a complete and irredundant set of semicuspidal skew shapes, up to e-similarity.

Proof. Follows from Corollary 7.4 and Lemma 7.16. □

Theorem 7.19. Let τ be a nonempty skew shape. Then there exists a unique semicus-
pidal strict Kostant tiling Γscτ for τ given by Γscτ = {⊔γ∈Γτ ∩S(β)γ | β ∈ Ψ, κΓτ

β > 0},
and κΓsc

τ = κΓτ .

Proof. Let β ∈ Ψ, κΓτ

β > 0. Then ⊔γ∈Γτ ∩S(β)γ is a nonempty skew shape by
Lemma 2.14, and is semicuspidal by Lemma 7.1. The fact that Γscτ is strict Kostant
follows from the definition of Γscτ and the fact that Γτ is Kostant. For uniqueness, as-
sume that Λ is any strict semicuspidal Kostant tiling of τ . Let λ ∈ Λ. By Lemma 7.1,

Algebraic Combinatorics, Vol. 6 #2 (2023) 312



Cuspidal ribbon tableaux in affine type A
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Figure 16. An element (τ , ε) ∈ S(3, 15); corresponding semicuspi-
dal shape ζ(τ ,ε) ∈ S(15δ)

every λ ∈ Λ is tiled by cuspidal ribbons of content ψ(cont(λ)), so we may refine
Λ to a cuspidal Kostant tiling of τ , which by Theorem 6.14 is equal to Γτ . By
strictness of Λ, it follows then that every λ ∈ Λ is a union of all γ ∈ Γτ of the same
content, so Λ = Γscτ , proving uniqueness. The final statement follows directly from
the construction of Γscτ . □

8. An application to representation theory of KLR algebras
The combinatorial study of cuspidality and Kostant tilings for skew shapes in this
paper is motivated by a connection to the theory of cuspidal systems and Specht
modules over KLR algebras. We explain the connection in this section.

8.1. KLR algebras. We continue with our choice of e ∈ Z>1, associated positive
root system Φ+ of type A(1)

e−1, and convex preorder ⪰. We additionally fix an arbitrary
ground field k. For every element in the positive root lattice θ ∈ Q+, there is an
associated Z-graded k-algebra Rθ, called a KLR algebra. This family of algebras
categorifies the positive part of the quantum group Uq(ŝle), see [13,14,24]. As we will
focus on the combinatorics surrounding these algebras and not the specifics of, say,
the presentation of Rθ, we refer the interested reader to the aforementioned papers
for such details.

8.2. Representation theory of Rθ. We consider the category Rθ-mod of finitely
generated Z-graded Rθ-modules. We will use the ∼= symbol to indicate a (degree-
preserving) isomorphism of Rθ-modules, and ≈ to indicate an isomorphism of Rθ-
modules up to some grading shift. For θ1, . . . , θk ∈ Q+, there is an inclusion

Rθ1,...,θk
:= Rθ1 ⊗ · · · ⊗Rθk

→ Rθ1+···+θk
,

with accompanying induction and restriction functors
Indθ1+···+θk

θ1,...,θk
: Rθ1,...,θk

-mod → Rθ1+···+θk
-mod,

Resθ1+···+θk

θ1,...,θk
: Rθ1+···+θk

-mod → Rθ1,...,θk
-mod,

as defined, for instance, in [13].
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8.3. Cuspidal systems and classification of simple Rθ-modules. Follow-
ing [16, 18, 22, 26], for m ∈ N, β ∈ Φ+, we say an Rmβ-module M is semicuspidal
provided that for all 0 ̸= θ1, θ2 ∈ Q+ with θ1 + θ2 = mβ, we have Resmβθ1,θ2

M ̸= 0 only
if θ1 is a sum of positive roots ⪯ β and θ2 is a sum of positive roots ⪰ β. We say
moreover that M is cuspidal if m = 1 and the comparisons above are strict. Cuspidal
and semicuspidal modules are key building blocks in the representation theory of Rθ.

For θ ∈ Q+, we define a root partition π = (κ,λ) as the data of a Kostant partition
κ = (κβ)β∈Ψ ∈ Ξ(θ), together with an (e− 1)-multipartition λ of κδ. We set Π(θ) to
be the set of all root partitions of θ, and define the ‘forgetful’ map ρ : Π(θ) → Ξ(θ)
via ρ((κ,λ)) = κ. The partial order ⊵ on Ξ(θ) induces a partial preorder on Π(θ)
via ρ.

To each π ∈ Π(θ), one may associate a certain proper standard module ∆(π) which
is an ordered induction product of simple semicuspidal modules, see for instance [18,
(6.5)]. The module ∆(π) has a simple head L(π), and {L(π) | π ∈ Π(θ)} is a complete
and irredundant set of simple Rθ-modules up to isomorphism and grading shift, as
explained in [16,18,22,26].

8.4. Specht modules. It is shown in [5] that level ℓ cyclotomic quotients of KLR
algebras are isomorphic to blocks of level ℓ cyclotomic Hecke algebras associated to
complex reflection groups. Of particular interest is the case where e is prime and
char k = e; in this situation a level one quotient of

⊕
ht(θ)=nRθ is isomorphic to the

symmetric group algebra kSn.
Along the lines of this connection, Kleshchev-Mathas-Ram describe in [17], for any

ℓ-multipartition λ of multicharge c and content θ, the presentation of an associated
Specht module Sλ ∈ Rθ-mod. Specht modules are cell modules in the cellular struc-
ture for cyclotomic quotients of Rθ defined in [8], and hence are key objects in the
representation theory of these algebras. In [23], this construction was extended to
define skew Specht Rθ-modules which are of primary interest in this section.

8.4.1. Skew Specht modules. Let τ ∈ S(θ). We define the (row) skew Specht Rθ-
module Sτ using the presentation in [23, Definition 4.5]. We remark that, although
the definition in that paper is given by considering τ as the set difference of Young
diagrams λ/µ = τ , the presentation of the module depends only on the nodes in τ , and
the choices of Young diagrams λ, µ that realize τ only serve to determine the overall
grading shift of the module. As we are not invested in grading shifts in this paper,
we will simply assume that the generating vector of [23, Definition 4.5] is placed in
Z-degree zero. We note then that Sτ ∼= Sµ whenever τ ∼e µ.

Remark 8.1. Every (higher level) skew Specht module Sλ/µ is isomorphic (up to
grading shift) to some Sτ described herein. Indeed, one may associate λ/µ with a
skew shape τ as in §4.3. The resultant modules Sτ and Sλ/µ are then isomorphic up
to grading shift.

The specifics of the presentation of Sτ are not needed here, so we refer interested
readers to [17, 23] for more information. Our investigation of these modules will rely
primarily on the basic combinatorial tool provided in the next proposition, which
follows from [23, Theorem 5.12]. Some details are included in arXiv version of the
paper as explained in §1.4.

Proposition 8.2. Let 0 ̸= θ, θ1, . . . , θk ∈ Q+, with θ = θ1 + · · · + θk. Let τ ∈ S(θ).
Then Resθθ1,...,θk

Sτ ̸= 0 if and only if there exists a tableau (τ1, . . . , τk) for τ such that
τi ∈ S(θi) for all i ∈ [1, k].
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8.5. Cuspidal Specht modules. Our Definition 5.1 of cuspidality for skew shapes
is motivated by a connection with cuspidal Specht modules, as detailed in the following
proposition.

Proposition 8.3. Let τ be a skew shape. Then the Specht module Sτ is cuspidal (resp.
semicuspidal) if and only if the skew shape τ is cuspidal (resp. semicuspidal).

Proof. We prove the statement for cuspidality; the semicuspidality statement is sim-
ilar. Let β ∈ Φ+, and τ ∈ S(β).

( =⇒ ) Assume Sτ is cuspidal. Let (τ1, τ2) be a tableau for τ . Write θ1 = cont(τ1),
θ2 = cont(τ2). Then Resβθ1,θ2

Sτ ̸= 0 by Proposition 8.2. But then by cuspidality of
Sτ , we have that θ1 is a sum of positive roots ≺ β, and θ2 is a sum of positive roots
≻ β. Thus τ is cuspidal by Definition 5.1.

( ⇐= ) Assume τ is cuspidal. Let 0 ̸= θ1, θ2 ∈ Q+ with θ1 +θ2 = β. If Resβθ1,θ2
Sτ ̸=

0, then by Proposition 8.2 there must be a tableau (τ1, τ2) for τ with τ1 ∈ S(θ1) and
τ2 ∈ S(θ2). By the cuspidality of τ , we have that θ1 is a sum of positive roots ≺ β,
and θ2 is a sum of positive roots ≻ β. Thus Sτ is cuspidal. □

In view of Proposition 8.3 and Remark 8.1, Theorems 6.13 and 7.18 give a full
classification and construction (up to grading shift) of all cuspidal and semicuspidal
skew Specht modules for the KLR algebra.

8.5.1. Simple semicuspidal modules. Using representation-theoretic results, it is es-
tablished in [23, Proposition 8.5] that when ⪰ is a ‘balanced’ convex preorder, every
real simple cuspidal module is isomorphic to (a grading shift of) a certain ribbon
Specht module. We extend this result to arbitrary convex preorders in the following
proposition.

Proposition 8.4. Let m ∈ N, β ∈ Φre
+ . Then Sζ

β is the unique simple cuspidal
Rβ-module, and Sζ

mβ is the unique simple semicuspidal Rmβ-module, up to grading
shift.

Proof. By [18, Theorem 5.2], there is a unique simple cuspidal module L(β). By
Theorem 6.13, ζβ ∈ S(β) is cuspidal. By Proposition 8.3 then, Sζβ is cuspidal, so
every simple factor of Sζ

β must be cuspidal, and thus all are isomorphic to L(β)
up to some grading shifts. An extremal word argument, using [16, Lemma 2.28] as
in the proof of [23, Lemma 8.3] shows that this factor may occur only once. Thus
Sζ

β ≈ L(β).
Let m ∈ N. By [18, Theorem 5.2] there is a unique simple semicuspidal Rmβ-

module L(βm) up to grading shift. Moreover, we have L(βm) ∼= Indmββ,...,β(L(β)⊠m).
By Theorem 7.18, ζmβ is semicuspidal, and consists of m connected components,
each of which is e-similar to ζβ . By [23, Theorem 5.15], we have then that Sζmβ ≈
Indmββ,...,β((Sζβ )⊠m). Then it follows from the first paragraph that Sζβ ≈ L(βm), as
desired. □

8.6. Simple factors of skew Specht modules. One of the central open problems
in the representation theory of cyclotomic Hecke algebras, and by extension in the
representation theory of KLR algebras, is the determination of the simple factors and
decomposition numbers of Specht modules. The following theorem constitutes a tight
upper bound (in the bilexicographic order on root partitions) for the simple factors
of skew Specht modules.

Theorem 8.5. Let τ ∈ S(θ). Then the Specht module Sτ has a simple factor L(π)
with ρ(π) = κΓτ , and κΓτ ⊵ ρ(µ) for all simple factors L(µ) of Sτ .
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Figure 17. 2-regular Young diagrams (8); (7, 1); (6, 2); (5, 3); (5, 2, 1); (4, 3, 1).

Proof. Assume L(µ) is a simple factor of Sτ . By [18, Theorem 6.8(v)], Resρ(µ)S
τ ̸= 0.

Then by Proposition 8.2, there exists a Kostant tiling Λ for τ with κΛ = ρ(µ). But
then, by Theorem 6.14, κΓτ ⊵ ρ(µ).

By [18, Theorem 6.8(v)], if κΓτ ▷ ρ(µ) for all simple factors L(µ) of Sτ , then we
must have ResκΓτ Sτ = 0. But Γscτ is a tiling with κΓsc

τ = κΓτ by Theorem 7.19, so
ResκΓτ Sτ ̸= 0. Therefore Sτ has some simple factor L(π) with ρ(π) = κΓτ . □

8.7. Related questions and connections.

8.7.1. Simple labels. Simple Rθ-modules have two differing sets of labels, coming from
the stratified structure of the full affine KLR algebra, or alternatively from the cel-
lular structure of cyclotomic quotients of the KLR algebra. As noted in §8.3, simple
modules may be labeled by L(π) for π ∈ Π(θ) via the stratified structure of Rθ-mod.
Alternatively, Rθ-modules have labels of the form Dλ, where λ is a Kleshchev mul-
tipartition, and Dλ is a simple factor in the associated Specht module Sλ, see [1, 8].
Theorem 8.5 gives a bound on simple factors of Specht modules in terms of root
partitions, and is thus a rough step in the direction of understanding the connection
between these approaches. We expect a much more delicate combinatorial process is
required to match the Kleshchev multipartition λ with the root partition π which
labels the same simple module.

8.7.2. James’ regularization theorem. Readers may notice some resemblance of Theo-
rem 8.5 to James’ regularization theorem [10, Theorem A], so we include a brief remark
comparing these results. To a Young diagram λ, James associates an e-regular Young
diagram λR, shows that Sλ possesses simple factor DλR with multiplicity one, and
that all other simple factors Dµ in Sλ have labels µ which are greater than λR in
the dominance order on Young diagrams. (We remark that the row Specht modules
Sλ which are the focus of this paper are duals of James’ column Specht modules Sλ
(see [17]), but as the simples Dλ are self dual, we will freely use [10,11] in considering
simple factors of Sλ in this section).

Theorem 8.5 and regularization are related in spirit, but there is no clear con-
nection between these results. Beyond the fact that both results work with differing
sets of labels for simple modules, the bilexicographic order ⊵ (which depends on a
choice of convex preorder) is in general unconnected to the dominance order on Young
diagrams, and there is no multiplicity-one result implied in Theorem 8.5.

In situations where a correspondence between the differing labeling sets for simple
modules can be understood (as alluded to in §8.7.1), the information supplied by The-
orem 8.5 and regularization is generally distinct and complementary, as highlighted
in the following example.

Example 8.6. Take e = 2, char(k) = 2. We consider some Specht modules associated
to Young diagrams of size 8 and charge 0 in this example (which, as noted in §8.4
are modules over kS8). We have six 2-regular Young diagrams of size 8, as shown in
Figure 17.
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Figure 18. Young diagrams (32, 2) and (4, 2, 12), with cuspidal
Kostant tilings displayed. The associated Kostant partitions are
(δ + α1 | 2δ + α0) and (δ + α1 | 2δ | α0), respectively.

Taking the convex preorder ⪰ as in Example 3.3, it is possible to directly compute:
D(8) ∼= L((4δ), (14)) D(7,1) ∼= L((δ + α1 | 2δ | α0), (12))
D(6,2) ∼= L((δ + α1 | δ | δ + α0), (1)) D(5,3) ∼= L((δ + α1 | 2δ | α0), (2))
D(5,2,1) ∼= L((δ + α1 | δ | α3

0), (1)) D(4,3,1) ∼= L((δ + α1 | 2δ + α0),∅),

where Dλ is the simple socle of Sλ, and L(π) is the simple module associated to the
root partition π as described in §8.3. These comprise a complete list of simple factors
which may arise in Specht modules associated to Young diagrams with charge 0 and
size 8. We compare the implications of the regularization theorem and Theorem 8.5
on a pair of Specht modules in this setting:

(1) By the regularization theorem, S(32,2) must have simple factor D(4,3,1) with
multiplicity one, and James’ dominance criteria for other simple factors pro-
vides no further useful information, since all the other 2-regular Young dia-
grams dominate (4, 3, 1). On the other hand, by Theorem 8.5, S(32,2) must
have a factor L(π) with ρ(π) = (δ + α1 | 2δ + α0) (see Figure 18). So
S(32,2) is again seen to have simple factor L((δ + α1 | 2δ + α0),∅) ∼= D(4,3,1)
with nonzero multiplicity. But now the bilexicographic dominance criteria on
Kostant partitions for other simple factors implies that L((4δ), (14)) ∼= D(8)
is the only other simple factor that can arise. Indeed, one may see in [11]
that the simple factors of S(32,2) are D(4,3,1) once and D(8) twice.

(2) By the regularization theorem, S(4,2,12) is known to have simple factor
D(4,3,1) with multiplicity one, and again James’ dominance criteria provides
no useful constraints on other factors. On the other hand, by Theorem 8.5,
S(4,2,12) is known to have a factor L(π) with ρ(π) = (δ + α1 | 2δ | α0) (see
Figure 18). Hence at least one of L((δ + α1 | 2δ | α0), (12)) ∼= D(7,1) or
L((δ + α1 | 2δ | α0), (2)) ∼= D(5,3) is a factor of S(4,2,12) as well. One may
see in [11] that the simple factors of S(4,2,12) are D(4,3,1), D(5,3) once, and
D(6,2), D(7,1), D(8) twice.

8.7.3. Simple imaginary semicuspidal modules. In general, simple imaginary semicus-
pidal Rnδ-modules are not isomorphic to skew Specht modules, but do appear to arise
as heads (or socles) of imaginary semicuspidal skew Specht modules. For a balanced
convex preorder, evidence for this assertion appears in [6], which relates some semi-
cuspidal Rnδ-modules to RoCK blocks of Hecke algebras via Morita equivalence. For
arbitrary convex preorders, we expect a similar connection to hold with blocks which
are Scopes equivalent to RoCK blocks.

8.7.4. Other types. Cuspidal modules for KLR algebras of all untwisted affine types
were defined and studied in [16]. Specht modules, defined in the combinatorial setting
of Young diagrams, albeit with a different treatment for residues, have been defined for
the KLR algebra of affine type C in [2]. We expect that, with reasonable modifications,
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versions of Theorems 6.13 and 7.18 should hold in this combinatorial setting, allowing
for a presentation of cuspidal and semicuspidal modules via (skew) Specht modules
in affine type C.
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