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On enumerating factorizations in reflection
groups

Theo Douvropoulos

Abstract We describe an approach, via Malle’s permutation Ψ on the set of irreducible char-
acters Irr(W ) of a reflection group W , that gives a uniform derivation of the Chapuy–Stump
formula for the enumeration of reflection factorizations of a Coxeter element c ∈ W . It also
recovers its weighted generalization by delMas, Reiner, and Hameister, and further produces
structural results for factorization formulas of arbitrary regular elements.

1. Introduction
A famous theorem of Cayley states that there are nn−2 vertex-labeled trees on n
vertices. The same number,(1) as Hurwitz knew [27] already by the end of the 19th

century, enumerates the set of shortest length factorizations t1 · · · tn−1 = (12 · · · n) ∈
Sn of the long cycle into transpositions ti. A natural generalization of this problem,
that Hurwitz himself had also considered and later returned to [28], is to enumerate
such factorizations of arbitrary length.

It took almost a hundred years for the community to rediscover this question, but
by the end of the 80’s Jackson [29, Corol. 4.2] had computed an explicit answer.
If FACSn

(t) denotes the exponential generating function for the number of arbitrary
length factorizations of the long cycle in transpositions (see (9)), then Jackson’s result
can be reinterpreted as follows:

(1) FACSn
(t) = et(n

2)
n!

(
1 − e−tn

)n−1
.

As it often happens with some of the most fascinating properties of the symmetric
group, the previous statements are special cases of theorems that hold for more general
(in this case, the complex, well-generated) reflection groups W . A natural analog of
the long cycle is the Coxeter element c ∈ W , while transpositions are replaced by
reflections. Then, if W is of rank n, R denotes its set of reflections, and h is the order
of c, Bessis [5, Prop. 7.6] proved the following enumeration:

(2) #
{

(t1, . . . , tn) ∈ Rn | t1 · · · tn = c
}

= hnn!
|W |

.
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(1)The two objects are naturally related via a satisfying overcounting argument due to Dénes [18].
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The W -analog of Jackson’s formula (1) regarding arbitrary length factorizations
was discovered (and proved) by Chapuy and Stump [13] soon after. If FACW (t) de-
notes the corresponding exponential generating function, they showed that

(3) FACW (t) = et|R|

|W |
(
1 − e−th

)n
.

The reduced case (2), which can easily be derived by calculating the leading term
of FACW (t), has a long history and appears in connection to many a mathematical
endeavour. It originated in singularity theory [36, Conj. (3.5)],[16, 31], in combina-
torics it appeared as the number of maximal chains in the noncrossing lattice NC(W )
[12, Prop. 9], and more importantly it was essential in Bessis’ proof of the K(π, 1)-
conjecture [5] (see [20, § 1] for a detailed presentation).

A uniform argument. Neither (3) nor (2) are well understood. Although the state-
ments are uniform for all well-generated groups, the proofs of Bessis and Chapuy–
Stump have relied on the Shephard–Todd classification (a common misfortune for
theorems regarding finite reflection groups). As it happens, the main goal of this
paper is to provide a case-free explanation for these formulas.

The standard approach towards results like (1) and (3) is via the Frobenius lemma
(Thm. 3.1), which involves summing over all irreducible characters of a group W . For
that matter, one of the main obstacles to producing a conceptual proof for (3) lies
in that we have no nice, uniform construction of irreducible characters for complex
reflection groups. Only for Weyl groups there is Springer’s correspondence [48], which
is however technically difficult for computations.

In this work we also start with the Frobenius Lemma, but instead of explicitly
computing the characters χ ∈ Irr(W ), we group them together with respect to an
invariant called the Coxeter number cχ (see Defn. 3.3). Then, Malle’s cyclic action Ψ
on Irr(W ) allows us to cancel the contribution of those χ for which cχ is not a multiple
of h. The resulting expression is very rigid (Thm. 3.7) and the mere knowledge of
bounds for the cχ allows us to complete the proof.

Ours is not the first approach towards a uniform proof of (3). In [41], Michel also
considers a grouping of the characters; the partition given by Lusztig’s families. This
is finer (and much more technologically advanced) and although the argument gives a
very satisfying connection between (1) and (3), it requires the existence of the elusive
“spets” [9] when W is not a Weyl group.

Moreover, our strategy applies in further generality and produces structural results
for any regular element g ∈ W (see § 2.3 for definitions). Our main theorem is given
below.
Theorem 3.7. For an irreducible complex reflection group W with set of reflections R
and set of reflecting hyperplanes A, and for a regular element g ∈ W , the exponential
generating function FACW,g(t) of reflection factorizations of g takes the following
form:

FACW,g(t) = et|R|

|W |
·
[
(1 − X)lR(g) · ΦW,g(X)

]∣∣∣
X=e−t|g|

.

Here lR(g) is the reflection length of g and ΦW,g(X) is a polynomial in C[X] that has
degree |R|+|A|

|g| − lR(g), is not divisible by (1 − X), and has constant term equal to 1.

The imposed conditions on the polynomials ΦW,g(X) above force them to be equal
to 1 in the case of Coxeter elements (proving (3)) but also whenever the order of
g equals the highest degree invariant of W ; in this way the structural formula of
Thm. 3.7 becomes explicit for a larger class of groups than the well-generated ones,
see Corol. 3.10. In addition, our Thm. 5.5, a refined version of the above, recovers
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(uniformly) and extends the main result of [17] on a weighted version of the Chapuy–
Stump formula (3).

When W is a real reflection group, all our theorems are completely case-free. In
the complex case, although our approach is indeed uniform, it relies on the BMR-
freeness theorem, a property of the Hecke algebra H(W ) that is currently proven in
a case-by-case way (see § 4.5 for details).

Summary. The main results of this paper (Thm. 3.7 and Thm. 5.5) are presented in
§ 3 and § 5 which can be read essentially independently of the rest. They rely on a key
technical lemma (Prop. 4.20) that describes how Malle’s permutation Ψ (Defn. 4.18)
affects character values on regular elements. The material in § 2 and § 4 essentially
builds up to the proof of that lemma.

In particular, the two theorems are valid for all regular elements g ∈ W due to a
characterization of the latter ones as those that have lifts in the braid group B(W )
that are roots of the full twist π ∈ B(W ) (see Prop. 2.9). The full twist is a central
element in B(W ) and therefore its image Tπ is also central in the Hecke algebra
H(W ). Because of this it is easy to evaluate characters of H(W ) on roots of Tπ; this
is the key ingredient behind the proof of Prop. 4.20.

For this reason, we have reviewed in some detail in § 2 the various statements about
the topological definition of the braid group and its abelianization, the full twist and
the lifts of regular elements. Similarly in § 4, building towards the technical lemma, we
recall the definition of the Hecke algebras given in [10], and recall some key character
calculations from [11]. The reader who is comfortable with these concepts might skip
the bulk of these sections, but we hope the presentation will prove sufficient for those
unfamiliar with Hecke algebras.

2. Complex reflection groups and regular elements
Given a complex vector space V ∼= Cn, we call a finite subgroup W ⩽ GL(V ) a
complex reflection group if it is generated by unitary reflections. These are C-linear
maps t whose fixed spaces V t := ker(t − id) are hyperplanes (i.e. codim(V t) = 1). We
further say that W is irreducible if V has no W -stable linear subspaces apart from
V and {0}. Shephard and Todd [46] classified irreducible complex reflection groups
into an infinite 3-parameter family G(r, p, n) and 34 exceptional cases indexed G4 to
G37. The reader may consult the classical references [8, 30, 33] for the material in this
section.

We denote by R the set of reflections of W and we write A for the associated
arrangement of fixed hyperplanes. For such a hyperplane H, let WH be its pointwise
stabilizer. It consists of the identity and the reflections that fix H. Furthermore,
because unitary reflections are semisimple, WH is cyclic.

Now, if eH := |WH | is the size of this cyclic group and tH is one of its generators,
the set of reflections R can be partitioned as:
(4) R =

⋃
H∈A

{tH , . . . , teH −1
H }.

The reflection group W acts on A determining orbits of hyperplanes which we will
denote by C ∈ A/W . The size ωC of an orbit C is given by ωC := [W : NW (H)] (for
any H ∈ C). All elements H ∈ C have conjugate stabilizers WH and we write eC for
their common order.

With this notation, the cardinalities of the set of reflections R and of the set of
reflecting hyperplanes A are given by

|R| =
∑

C∈A/W

ωC(eC − 1) and |A| =
∑

C∈A/W

ωC .
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Notice that if some eC ̸= 2, then |R| and |A| are not equal.

2.1. Braid groups and braid reflections. We say that a vector v ∈ V is regular
if it is not contained in any reflection hyperplane and we write V reg := V ∖A for the
set of regular vectors. We define the pure braid group P (W ) := π1(V reg) to be the
fundamental group of the regular space V reg. It is a theorem of Steinberg that the
action of W on V is free precisely on V reg.

Steinberg’s theorem [8, § 4.2.3] implies that the restriction of the quotient map
ρ : V → V/W to V reg is a Galois covering. We define the braid group B(W ) :=
π1(V reg/W ) to be the fundamental group of the base of this covering and use the
following short exact sequence [10, (2.10)] to obtain a surjection π : B(W ) ↠ W :

(5) 1 → π1(V reg)

: =

P (W )

↪
ρ∗−−−→ π1(V reg/W )

: =
B(W )

π
−−↠ W → 1.

Given a choice of a basepoint x0 ∈ V reg, a loop b ∈ B(W ) lifts to a path that
connects x0 to b∗(x0) (we call this the Galois action of b). Then, we define w := π(b)
to be the unique element w ∈ W such that w · x0 = b∗(x0). The significance of (5) lies
in that it gives a topological interpretation of W as the group of deck transformations
of the covering map ρ : V reg 7→ V reg/W .

A reflection group W acts on the polynomial algebra C[V ] := Sym(V ∗) of the space
V by precomposition (i.e. w ∗f(v) := f(w−1 ·v)). The Shephard-Todd-Chevalley the-
orem [46, 14] states then that the algebra of invariant polynomials C[V ]W := {f ∈
C[V ] : w ∗ f = f ∀w ∈ W} is itself a polynomial algebra. We choose homoge-
neous generators for it, which we denote by fi and order them by increasing degree
deg(fi) =: di. The numbers di are independent of the choice of the fi’s and are called
the fundamental degrees of W .

In this setting, we can further understand the quotient morphism ρ : V → V/W
by studying its algebro-geometric structure. In particular (and this holds for any
finite subgroup of GL(V )) the map ρ is a finite morphism and the quotient V/W
can be realized as the affine variety Spec

(
C[V ]W

)
[21, Exer. 13.2-4 and Sec. 1.7].

The Shephard–Todd–Chevalley theorem states then that for reflection groups W , the
quotient V/W is itself an affine space, so that we may write:

(6) Cn ∼= V ∋ x := (x1, . . . , xn) ρ−−→ f(x) :=
(
f1(x), . . . , fn(x)

)
∈ V/W ∼= Cn

Now the hyperplane arrangement A (which is the zero set of a collection of linear
forms) is an affine variety, stable under the action of W . Another consequence of
the above is then that its image H := ρ(A) ⊂ V/W is itself a variety; we call it
the discriminant hypersurface of W . The braid group becomes thus the fundamental
group of a hypersurface complement B(W ) = π1(V/W − H).

Such groups have a special set of generators called generators of the monodromy
[10, Appendix 1]. These are loops that descend from the basepoint following a path γ,
approach a smooth point of an irreducible component of the hypersurface and make
a counterclockwise(2) loop around it, and finally return following the same path γ
backwards.

In our case, the irreducible components of H are the images ρ(C) of the hyper-
plane orbits C ∈ A/W (again a consequence of the discussion before (6)). We will
therefore denote the generators of the monodromy for B(W ) by sC,γ . They map (via

(2)Near a smooth point, an irreducible codimension 1 divisor in Cn looks like a line in R3; there
is a well-defined way to go around it.
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(5)) to a subset of reflections sH ∈ W which have determinant ζeC := exp(2πi/eC)
and are called distinguished reflections. In fact, for this reason, we follow the termi-
nology suggested by Broué, Malle, Rouquier, Michel, and Bessis, (see for instance [5,
Defn. 1.6]):

Definition 2.1. The generators of the monodromy of B(W ) are called braid reflec-
tions.

The powers seC
C,γ are generators of the monodromy for the pure braid group:

Proposition 2.2 ([10, Prop. 2.18]). After a choice of basepoint v ∈ V reg, we can lift
the sC,γ to paths in P (W ). Then the pure braid group P (W ) is generated by ⟨seC

C,γ⟩
(for all C, γ) and we have

W ∼= B(W )/⟨seC
C,γ⟩,

where the isomorphism is the same as the one induced by the choice of v via (5).

2.2. The full twist and the abelianization of B(W ). Broué–Malle–Rouquier
considered [10, Notation 2.3] a particular element of the pure braid group P (W ); it
is fundamental in what follows and for the results in § 3 and § 5. For an arbitrary
regular vector v ∈ V reg, we define πv ∈ π1(V reg, v) as the loop given by:
(7) [0, 1] ∋ t → e2πit · v.

If γ ⊂ V reg is any path between points v, v′ ∈ V reg, then the cylinder (or torus if
γ is a loop) S1 · γ lies completely inside V reg. This is because V reg, the complement
of a central hyperplane arrangement, is stable under multiplication by C× ⊃ S1. It is
immediate from this that:

Lemma 2.3 ([10, Lemma 2.5]). For v, v′, and γ as above, the loops γ−1 · πv′ · γ and
πv in P (W, v) are homotopic.

This in particular implies that πv is always central in P (W, v). Furthermore, if v
and v′ have the same image in V reg/W , and since ρ is quasihomogeneous (6), the
loops ρ∗(πv) and ρ∗(πv′) are identical. Now, this along with the previous lemma
immediately gives:

Corollary 2.4 ([10, from Lemma 2.22: (2)]). For any regular vector v ∈ V reg, the
element ρ∗(πv) ∈ B(W, ρ(v)) is central.

For any two basepoints v and v′ of V reg and a path γ between them, there are
canonical isomorphisms between the fundamental groups P (W, v) and P (W, v′), and
between B(W, ρ(v)) and B(W, ρ(v′)). Since πv and ρ∗(πv) are central, their images
will also be central and moreover independent of the path γ (in fact, the previous
lemma shows that they will be homotopic to πv′ and ρ∗(πv′) respectively). We there-
fore drop the basepoint from the notation, and for convenience we use the same symbol
for the image in B(W ) as well:

Definition 2.5 ([5, Defn. 6.12]). We call this element π defined in (7) the full twist.
It is central in B(W ) and lies in P (W ).

Broué–Malle–Rouquier also consider [10, Defn. 2.15] length functions lC : B(W ) →
Z, given as periods of the differential forms d Log(δC) associated to discriminant poly-
nomials δC that cut out the strata C of H [10, Defn. 2.15]. For a loop g ∈ B(W ), they
essentially record how many radians any of its lifts g′ ∈ P (W ) wraps around each
hyperplane in the orbit C ∈ A/W , and weigh the result by eC (see [ibid, Thm. 2.17: Re-
mark]). In particular, they satisfy [ibid, Prop. 2.16]

lC(sC′,γ) = δC,C′ ,
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which, since the sC,γ generate B(W ) (see discussion before Prop. 2.2), implies that
in fact these length functions completely determine the abelianization Bab of B(W ):

Theorem 2.6 ([10, Thm. 2.17:(2)]). If sab
C denotes the image of any sC,γ in the

abelianization Bab, then
Bab =

∏
C∈A/W

⟨sab
C ⟩,

where each ⟨sab
C ⟩ is infinite cyclic. Moreover, for an element g ∈ B(W ), we have

gab =
∏

C∈A/W

(sab
C

)lC(g)
.

By definition the full twist π rotates once around each of the ωC-many hyperplanes
in any orbit C:

Corollary 2.7 ([10, Cor. 2.26 and Lemma 2.22:(2)]). Let πab be the image in Bab

of the full twist π. Then we have

πab =
∏

C∈A/W

(
sab

C
)eC·ωC

.

2.3. Regular elements and roots of the full twist. Although our initial
purpose for this project was to give a uniform proof of the Chapuy–Stump formula (3)
which regards Coxeter elements, it soon became clear that the techniques developed
(see Lemma 3.6) apply to the larger class of Springer-regular elements. The crucial
property these elements share is that they lift to roots of (powers of) the full twist π
(Defn. 2.5). Starting from this section and for the rest of the paper we will assume
even if not explicitly stated that W is irreducible (but see § 5.1 for the general version
of our main theorem).

Definition 2.8 ([47]). Recall the space V reg of regular vectors; namely those that do
not lie in any hyperplane H ∈ A. We say that an element g ∈ W is ζ-regular if it has
a regular ζ-eigenvector; all ζ-regular elements are conjugate [33, Corol. 11.25]. The
order d of a ζ-regular element g is equal to the order of ζ [ibid] and is called a regular
number.

For irreducible real reflection groups W , the product c of the simple generators (in
any order) is called a Coxeter element, after Coxeter who first computed its order h
and eigenvalues [15]. In the same paper, Coxeter observed (and Steinberg later [49]
gave a uniform proof of the fact) that h determines the number of hyperplanes N via
the equation nh = 2N , where n is the dimension of the ambient space V . Steinberg’s
work easily implies also that c is an e2πi/h-regular element.

Building on that, Gordon and Griffeth (but see also the beginning of § 4.4) define
a Coxeter number(3) for all (irreducible) complex reflection groups as h = (|R| +
|A|)/n. Then, we define a Coxeter element as a e2πi/h-regular element in an irreducible
complex reflection group W . It turns out that Coxeter elements exist precisely when
W is well-generated; namely when it is generated by n reflections.

It is easy to produce lifts g ∈ B(W ) of regular elements g ∈ W . Indeed, let g
be a ζ-regular element, with ζ = exp(2πim/d), (m, d) = 1, and let x0 be one of its
ζ-eigenvectors. Consider now the path πx0,ζ in V reg that connects x0 and ζx0 and is
defined by

(8) [0, 1] ∋ t → e2πitm/dx0.

(3)It is not a priori clear that h is an integer; see Corol. 4.17.
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Since ζx0 = g · x0, this determines a loop in V reg/W that would lift the element
g ∈ W , if x0 was the basepoint for P (W ). We can easily adjust the construction to
deal with a basepoint that is not an eigenvector, and comparing (7) and (8) gives the
following.

Proposition 2.9 ([8, Prop. 5.24]). For an irreducible complex reflection group W ,
let ζ = exp(2πim/d) be a primitive dth root of unity, and let g ∈ W be a ζ-regular
element. Then, g has a lift g ∈ B(W ) such that gd = πm.

Proof. Let v ∈ V reg be the basepoint of P (W ) and γ an arbitrary path in V reg that
connects v with a ζ-eigenvector x0 of g. We view g as a deck transformation of the
covering ρ : V reg → V reg/W and consider the path (g · γ−1) · πx0,ζ · γ. It connects
the points v and g · v and hence determines the following element of the braid group
B(W ):

g := ρ(γ)−1 · ρ(πx0,ζ) · ρ(γ).

Because g acts on the line C · x0 as multiplication by ζ, we can see that the loop
ρ(πx0,ζ)d lifts to the element πm

x0
= πζd−1·x0,ζ · · · πx0,ζ (recall the definition of πx0 in

(7)). This immediately gives

gd = ρ(γ)−1 · ρ(πx0)m · ρ(γ),

which after the discussion before Defn. 2.5 completes the proof. □

Remark 2.10. The converse of the previous theorem is still true; that is, dth roots of
the full twist exist precisely when d is a regular number [5, Thm. 12.4]. Moreover, as
with Springer-regular elements, Bessis has shown [ibid] that all dth roots of πm are
conjugate. Such results essentially “lift” Springer theory to braid groups; they rely on
Garside-like structures in [4].

However, we should warn the reader that this does not imply the existence of nice
sections from W to B(W ). Moreover, even for Coxeter groups, where the existence of
simple systems allows us to lift W in B+(W ), these lifts do not satisfy the previous
properties. That is, conjugate regular elements (in particular, Coxeter elements) lift
to not necessarily conjugate elements in B(W ).

If g is a dth root of the full twist, Thm. 2.6 and Corol. 2.7 imply that lC(g)·d = eCωC .
This proves the following as in [17, Thm. 3.2] (but see also [8, Prop. 5.17:(2)]):

Corollary 2.11. For any orbit C ∈ A/W , a regular number d always divides the
quantity eC · ωC.

In § 3 and § 5 we prove some structural results for factorization enumeration
formulas for arbitrary regular elements. When the order of these elements equals
the highest fundamental degree dn, this structural information is in fact sufficient to
determine explicit formulas. We list here the corresponding types:

Proposition 2.12 ([3, Prop. 4.1]). Let W be an irreducible complex reflection group
and let dn be its largest degree. Then, dn is a regular number precisely when W is a
Coxeter group, or G(r, 1, n), G(r, r, n) and G(2r, 2, 2), or any exceptional group other
than G15.

Remark 2.13. We have tried to carefully show in this section that the choice of
the basepoint v ∈ V reg does not affect the theorems regarding the full twist, the
abelianization, and the regular elements. At this point we choose a basepoint v, once
and for all, and in what follows we consider the surjection B(W ) ↠ W in (5) fixed.
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3. Frobenius lemma via Coxeter numbers
The lemma of Frobenius, which does in fact go back to Frobenius and 1896 [23], gives
a representation theoretic formula for enumerating factorizations of group elements,
when the factors belong to given (unions of) conjugacy classes:

Theorem 3.1 ([32, App. A.1.3]). Let G be a finite group and Ai ⊂ G, i = 1, . . . , l,
subsets that are closed under conjugation. Then the number of factorizations t1 · · · tl =
g of an element g ∈ W , where each factor ti belongs to Ai, is given by

1
|G|

∑
χ∈Ĝ

χ(1) · χ(g−1) · χ(A1)
χ(1) · · · χ(Al)

χ(1) ,

where Ĝ denotes the (complete) set of irreducible characters of G and χ(A) :=∑
g∈A χ(g).

For a reflection group W , the set of reflections R is indeed closed under conjugation.
This lemma of Frobenius implies then a simple finite-sum form for the exponential
generating function of reflection factorizations of elements of W . If we write FactW,g(l)
for the number of such factorizations of length l, i.e.:

FactW,g(l) := #{(t1, . . . , tl) ∈ Rl | t1 · · · tl = g},

then the lemma of Frobenius implies that

FactW,g(l) = 1
|W |

∑
χ∈Ŵ

χ(1) · χ(g−1) ·
[χ(R)

χ(1)

]l

.

After this, the exponential generating function for reflection factorizations of g is given
by:

(9) FACW,g(t) :=
∑
l⩾0

FactW,g(l) · tl

l! = 1
|W |

∑
χ∈Ŵ

χ(1) · χ(g−1) · exp
[
t · χ(R)

χ(1)

]
.

Notice that, remarkably, this observation that such generating functions will be
expressible as finite sums of exponentials appears already in Hurwitz’s paper [28,
§ 3:(15)].

Now, a priori the evaluations χ(R) are complex numbers, but the special structure
of the set of reflections R forces them to in fact be integers (recall that A denotes the
set of fixed hyperplanes):

Proposition 3.2. Let W be a complex reflection group with set of reflections R and
let χ denote an arbitrary irreducible character of W . The numbers χ(R) are integers,
and they further satisfy:

−|A| · χ(1) ⩽ χ(R) ⩽ |R| · χ(1).

Both bounds are achieved; the higher only for the trivial representation, and the lower
at least for the det representation.

Proof. Recall the decomposition of the set of reflections with respect to their fixed
hyperplanes H ∈ A as described in (4). Keeping that notation, we choose a generator
tH for each of the cyclic groups WH and write eH := |WH | for its order.

For each eigenvalue λ of tH in the representation Uχ associated to χ, the con-
tribution of the set of reflections {tH , . . . , teH −1

H } in the evaluation of χ(R) equals∑eH −1
k=1 λk. Since λeH = 1, this quantity is either eH − 1 or −1 depending on whether

λ itself is 1 or not.
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This implies the first two statements of the proposition, after noticing that the
multiset of eigenvalues of tH acting on Uχ has χ(1)-many elements. In particular, in
order to recover the second inequality we use that

∑
H∈A(eH − 1) = |R| which is

immediate after the partitioning (4).
For the last statement, the higher bound is achieved when each eigenvalue of each

tH equals 1; of course this happens only in the trivial representation. For the lower
bound, we need all λ ̸= 1, which happens for instance in the (1-dimensional) det
representation. □

The character values χ(R) on the sum of reflections are related to a statistic of the
associated representation called the Coxeter number and denoted by cχ. We postpone
to § 4.4 the discussion about its origin and for now we only give the definition:

Definition 3.3 ([26, § 1.3]). We define the Coxeter number cχ associated to the ir-
reducible character χ, as the normalized trace of the central element

∑
t∈R(1 − t) of

the group algebra of W (over the complex numbers C and with 1 denoting the identity
element). That is,

cχ := 1
χ(1) ·

(
|R|χ(1) − χ(R)

)
= |R| − χ(R)

χ(1) .

After Prop. 3.2 the numbers cχ are rational, but since R forms a union of conjugacy
classes they are also algebraic integers [45, Corol. 1, p. 52]; the combination of these
implies that they are in fact integers, see also a refinement in Corol. 4.17.

Remark 3.4. The inequalities of Prop. 3.2, in terms of the Coxeter numbers cχ become
now

0 ⩽ cχ ⩽ |R| + |A|.
The higher bound is achieved only for the trivial representation, and the lower bound
at least for the det representation.

It is easy now to reinterpret formula (9) in terms of the Coxeter numbers cχ. We
record the following as a corollary of Thm. 3.1:

Corollary 3.5. The exponential generating function FACW,g(t) for arbitrary length
reflection factorizations of an element g ∈ W is given by:

(10) FACW,g(t) = et|R|

|W |
∑

χ∈Ŵ

χ(1) · χ(g−1) · e−t·cχ .

The following lemma is the main technical ingredient for the proof of Thm. 3.7.
Its derivation, which we postpone until § 4 (see after Prop. 4.20), relies on a cyclic
action on the set Irr(W ) of irreducible representations of W which is induced by a
Galois action (see Defn. 4.18) on the modules of the Hecke algebra. Recall Defn. 2.8
for the concept of a regular element.

Lemma 3.6. For a complex reflection group W , and a regular element g ∈ W , the
total contribution in (10) of those characters χ ∈ Ŵ for which cχ is not a multiple of
|g| is 0.

The following is an essentially immediate application of Lemma 3.6. We state it
as a theorem as all explicit formulas that come after (3.9–3.13) are derived as its
corollaries:

Theorem 3.7. For an irreducible complex reflection group W with set of reflections R
and set of reflecting hyperplanes A, and for a regular element g ∈ W , the exponential
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generating function FACW,g(t) of reflection factorizations of g takes the following
form:

FACW,g(t) = et|R|

|W |
·
[
(1 − X)lR(g) · ΦW,g(X)

]∣∣∣
X=e−t|g|

.

Here lR(g) is the reflection length of g and ΦW,g(X) is a polynomial in C[X] that has
degree |R|+|A|

|g| − lR(g), is not divisible by (1 − X), and has constant term equal to 1.

Proof. After Lemma 3.6 we only need to consider terms of the form χ(1) ·
χ(g−1) · e−t·k|g|, k ∈ Z in the evaluation of (10). Furthermore, Remark 3.4 forces
k ∈ {0, . . . , |R|+|A|

|g| }. This means that if we set X = e−t|g|, we can rewrite (10) as

FACW,g(t) = et|R|

|W |
· Φ̃W,g(X),

where Φ̃W,g(X) is a priori a polynomial in C[X] of degree (|R| + |A|)/|g|. The last
statement of Remark 3.4 implies also that the constant term of Φ̃W,g(X) is equal to
χtriv(1) · χtriv(g−1) = 1.

Now, since Φ̃W,g(X) essentially encodes the generating function FACW,g(t), the
combinatorial properties of the latter impose restrictions on its structure. In particu-
lar, consider the root factorization (over the complex numbers) of Φ̃W,g(X),

Φ̃W,g(X) = a(α1 − X)(α2 − X) · · · (αr − X).

If we revert to X = e−t|g|, each of the linear terms above has a Taylor expansion that
starts with (αi − 1) + t|g| + · · · . This means that it contributes to the leading term of
FACW,g(t) either by a factor of (αi − 1) or by a factor of t|g|, depending on whether
αi equals 1 or not.

On the other hand, the combinatorial definition of FACW,g(t) in (9) implies that
its leading term is a multiple of tlR(g). Therefore, exactly lR(g)-many of the roots of Φ̃
must be equal to 1 and this completes the proof. The statements about the degree and
the constant term follow from the analogous results for Φ̃ described previously. □

Remark 3.8. In the previous argument, the existence of a reflection length and there-
fore the knowledge that the first few terms of the generating function FACW,g(t) are
zero, came for free but was very useful nonetheless. This sort of reasoning has ap-
peared already in [39, end of proof of Thm. 2]. It is hoped that similar ideas might
apply to other groups with natural length functions, such as GLn(Fq) (see [34, 35]).
Moreover, one might construct special length functions to support different enumer-
ative questions (as we pursue in Prop. 3.12 and in Defn. 5.3).

Corollary 3.9. For a complex reflection group W , and a regular element g ∈ W , the
number of reduced reflection factorizations of g is an integer multiple of the quantity

|g|lR(g)(lR(g))!
|W |

.

Proof. The leading coefficient of FACW,g(t) is given, after Thm. 3.7, by

ΦW,g(1) · |g|lR(g)(lR(g))!
|W |

.

It suffices then, to show that ΦW,g(1) is an integer. By definition, the coefficients of
the polynomial Φ̃W,g(X) are algebraic integers and so the same is true for ΦW,g(X).
The quantity ΦW,g(1) is thus an algebraic integer, and since it also has to be a rational
number (because an integer multiple of it enumerates factorizations), it must be an
integer. □
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Corollary 3.10. For a complex reflection group W and a regular element g ∈ W of
order |g| = dn, the exponential generating function for reflection factorizations of g
is given by:

FACW,g(t) = et|R|

|W |
·
(
1 − e−t|g|)lR(g)

.

Proof. After Thm. 3.7 it is sufficient to show that for such an element g, the polyno-
mial ΦW,g(X) is equal to the scalar 1, or equivalently that its degree is 0 (notice that
then, ΦW,g(X) cannot be any other scalar since, again by Thm. 3.7, its constant term
is always 1).

The degree of ΦW,g(X) is also given in the theorem; it equals |R|+|A|
|g| − lR(g).

Now, Bessis has shown [3, Prop. 4.2] that when dn is a regular number, the quantity
(|R| + |A|)/dn is equal to the minimum number of reflections needed to generate W
(either n or n+1). Therefore, if the degree of ΦW,g(X) is not 0, the dn-regular element
g must live in a reflection subgroup W ′ of W .

If this were indeed the case, g would still be regular in W ′ and Springer’s theorem
[30, §32-2] would allow us to list its eigenvalues in two ways:

{ζ1−d1 , . . . , ζ1−dn} = {ζ1−d′
1 , . . . , ζ1−d′

n},

where the d′
i are the invariant degrees of W ′ and ζ is a primitive dn-th root of unity.

This would force the two (multi-)sets of residues {di mod(dn)} and {d′
i mod(dn)} to

be equal, but since 0 ⩽ di ⩽ dn and
∏n

i=1 di = |W | > |W ′| =
∏n

i=1 d′
i, this is

impossible. □

Remark 3.11. When W is a well-generated group and c a Coxeter element of W ,
we always have |c| = dn. The previous corollary therefore completes a proof of the
Chapuy–Stump formula (3) and extends it to the groups listed in Prop. 2.12.

In Thm. 3.7 the knowledge of the reflection length of an element provides structural
information for a factorization enumeration formula. Here, we show an example where
we can push this slightly further by considering a different length function, namely
the transitive length. We say that a factorization in Sn is transitive, if its factors act
transitively on the ambient set {1, . . . , n}, or equivalently if they generate the full
group Sn. We define the transitive length of any element g ∈ Sn as the minimum
length of a transitive factorization of g in transpositions.

Proposition 3.12. The exponential generating function for transitive reflection fac-
torizations of the regular element g = (12 · · · n − 1)(n) ∈ Sn is given by

TR-FACSn,g(t) = et(n
2)

n! ·
(
1 − e−t(n−1))n

.

Proof. Since Sn−1 is the only reflection subgroup of Sn that contains the element g,
we can enumerate the transitive reflection factorizations of the latter by subtracting
from all possible factorizations, those that live in Sn−1:

TR-FACSn,g(t) = FACSn,g(t) − FACSn−1,g(t).

If we apply Thm. 3.7 and Corol. 3.10 to the two terms above, we get for X = e−t(n−1):
FACSn,g(t) − FACSn−1,g(t) =

= et(n
2)

n! ·
(
1 − e−t(n−1))n−2 · ΦSn,g(X) − et(n−1

2 )
(n − 1)! ·

(
1 − e−t(n−1))n−2

= et(n
2)

n! ·
(
1 − e−t(n−1))n−2 ·

(
ΦSn,g(X) − nX

)
,
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where ΦSn,g(X) has degree 2 = 2(n
2)

n−1 − (n − 2) and constant term equal to 1.
Notice now that the leading term of the generating function TR-FACSn,g(t) needs

to be a multiple of tn. Indeed, n is a lower bound for the length of transitive reflection
factorizations of g, since at least n−1 reflections are needed to generate Sn, but since
also g cannot be written as a product of n − 1 reflections as it has parity (−1)n−2.

Of course,
(
1−e−t(n−1))n−2 contributes a factor of tn−2 to the leading term of the

generating function, so
(
ΦSn,g(X) − nX

)
must contribute a multiple of t2. As in the

proof of Thm. 3.7, and because deg(ΦSn,g(X)) = 2, this implies that

ΦSn,g(X) − nX = (1 − X)2,

which completes the argument. □

Corollary 3.13. For the regular element g = (12 · · · n−1)(n) in the symmetric group
Sn, the polynomial ΦSn,g(X) from Thm. 3.7 is given by:

ΦSn,g(X) = 1 + (n − 2)X + X2.

Remark 3.14. It is not clear whether one should expect a nice formula for the poly-
nomials Φg(X). They don’t seem to factor in small order terms and their coefficients,
although integers, are not always positive (an example being the class of regular el-
ements of order 3 in E6). It might be however that a better answer exists for the
infinite family G(r, p, n) (or even just the symmetric group Sn), where the regular
elements have simple cycle types.

Question 3.15. For Weyl groups W , one can easily see [47, Prop. 4.10] that any
regular element of order d divides the set of roots in orbits of size d. Perhaps this
could be used in a fashion similar to the recursion in [16, 44] and, possibly assuming
the Lemma of Frobenius (10), give a combinatorial proof of our technical Lemma 3.6.

4. Hecke algebras and the technical lemma
This section builds up the necessary material to prove our key technical lemma in
Prop. 4.20, which explains how a permutation Ψ introduced by Malle on the irre-
ducible characters of a complex reflection group W affects their values on regular
elements. The proof relies on known formulas relating the evaluations of characters of
the Hecke algebra H(W ) and characters of the group W on regular elements g ∈ W
(see § 4.2).

Iwahori–Hecke algebras associated to Weyl groups W appear naturally as endo-
morphism algebras of certain induced modules in the representation theory of finite
groups of Lie type. They can also be seen as deformations of the corresponding group
ring Z[W ]. This second interpretation has been extended to all complex reflection
groups:

Let C ∈ A/W denote an orbit of hyperplanes, and eC the common order of the
pointwise stabilizers WH (for H ∈ C). Consider now a set of

∑
C∈A/W eC many vari-

ables u := (uC,j)(C∈A/W ),(0⩽j⩽eC−1) and write Z[u, u−1] for the Laurent polynomial
ring on the uC,j ’s.

Definition 4.1 ([10, Defn. 4.21]). The generic Hecke algebra H(W ) associated to W
is the quotient of the group ring Z[u, u−1]B(W ) of the braid group, over the ideal
generated by the elements of the form
(11) (s − uC,0)(s − uC,1) · · · (s − uC,eC−1),
which we call deformed order relations (see (12)). Here s runs over all possible braid
reflections (see § 2.1) around the stratum C of H. Notice that for each orbit C one
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such relation is in fact sufficient since all corresponding elements sC,γ are conjugate
in B(W ).
Notation 4.2. For an element g of the braid group B(W ), we denote the correspond-
ing element in the Hecke algebra by Tg.

Any ring map θ : Z[u, u−1] → R defines an R-module structure on the Hecke
algebra. We write HR(W ) := H(W ) ⊗Z[u,u−1] R and call HR(W ) a specialization of
H(W ). The map θ induces thus a canonical map θ̃ : H(W ) → HR(W ) via Tg 7→ Tg ⊗1.

The Hecke algebra is by construction a deformation of the group algebra of W .
Indeed, the specialization (recall ζn := exp(2πi/n))

(12) uC,j
σ7−−→ ζj

eC

transforms the defining relations (11) to order relations of the form seC = 1. Then, by
Prop. 2.2 H(W ) reduces to the group ring Z[(ζeC )](C∈A/W )[W ] and the map σ̃ agrees
with the fixed (see Rem. 2.13) surjection B(W ) ↠ W . That is, if g ∈ W is the image
of g ∈ B(W ) under (5), then

σ̃(Tg) = g.

Definition 4.3. A specialization θ will be called admissible if it factors through (12);
in other words if there is a map f : R → Z[(ζeC )] such that f ◦ θ(uC,j) = ζj

eC
.

Two particular specializations are fundamental in what follows. We first pick a set
of parameters x := (xC)C∈A/W and the single parameter x and define the following
ring maps:

θx : Z[u, u−1] → Z[x, x−1] and θx : Z[u, u−1] → Z[x, x−1]

θx(uC,j) =
{

xC if j = 0
ζj

eC
if j ̸= 0

θx(uC,j) =
{

x if j = 0
ζj

eC
if j ̸= 0

(13)

Both θx and θx are admissible specializations (as seen by further sending xC or x to
1). We write Hx(W ) and Hx(W ) for the corresponding Hecke algebras, while noting
that the latter is a natural analogue of the 1-parameter Iwahori-Hecke algebra of real
reflection groups W .

Artin-like presentations and the BMR-freeness theorem. Bessis [3] has shown that the
braid groups B(W ) always have “Artin-like” presentations. These are presentations
of the form

⟨s1, . . . , sn | pj(s1, . . . , sn) = qj(s1, . . . , sn)⟩,
where the si’s are braid reflections (so they equal sC,γ for suitable C and γ) and
their images sH ∈ W form a minimal generating set of (distinguished) reflections.
Furthermore, the relations (pj , qj) encode positive words of equal length in the si’s
and are such that by adding the order relations s

eHi
i = 1, one obtains a presentation

of the group W .
By now, such Artin-like presentations have been found for all braid groups B(W )

(see [8, Appendix A.2]). With access to these, one can write down explicit presenta-
tions for the Hecke algebras and with them attempt to study their various structural
properties and invariants.
Example 4.4. The generic Hecke algebra of G26 (over the ring Z[x±1

0 , . . . , y±1
2 ]) is:

H(G26) = ⟨ s, t, u | stst = tsts, su = us, tut = utu,

(s − x0)(s − x1) = 0
(t − y0)(t − y1)(t − y2) = 0
(u − y0)(u − y1)(u − y2) = 0 ⟩
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The braid reflections t and u are conjugate (this is immediate from the relation
tut = utu), so we use the same set of variables for their deformed order relations.
After the specializations (x0, x1) = (1, −1), (y0, y1, y2) = (1, ζ3, ζ2

3 ), we obtain the
following Coxeter-like presentation of G26:

G26 = ⟨s, t, u | stst = tsts, su = us, tut = utu, s2 = t3 = u3 = 1 ⟩.

This definition of Hecke algebras, which recovers the usual Iwahori–Hecke algebras
when W is a Coxeter group, is due to Broué, Malle, and Rouquier, and was introduced
in their seminal paper [10]. There, they also made various conjectures about these
Hecke algebras, the most important of which was until recently known as “The BMR
freeness conjecture” :

Theorem (see [22] for a survey of the proof over C and in general [7, after Thm. 3.5]).
The algebra H(W ) is a free Z[u, u−1]-module of rank |W |.

4.1. Tits’ deformation theorem for admissible specializations. For this
work, the first important consequence of the BMR-freeness theorem is that it de-
termines, via Tits’ deformation theorem, a bijection between the irreducible complex
representations of W (up to isomorphism) and those of the Hecke algebra. The reader
might refer to [25, § 7] for proofs and terminology.

To apply Tits’ deformation theorem, we first have to move to split extensions of
H(W ) and of the group algebra of W . For the latter, we could simply work over C[W ],
but it takes little effort to describe its minimal splitting field. To begin with, it is easy
to see [2, Corol. 3.2] that the reflection representation V of W can be realized over
the field K generated by the traces of the elements of W on V . It is a theorem of
Benard and Bessis [1, 2] that in fact all representations of W can be realized over K.

We henceforth call K the field of definition of W ; it equals Q when W is a Weyl
group and satisfies K ⩽ R when W is a finite Coxeter group. One might then hope
that K(u) is a splitting field for H(W ). Although this is not the case, the answer is
only slightly more complicated. Assuming the BMR-freeness conjecture, Malle proved
(with further case-specific arguments, but see § 4.5):

Proposition 4.5 ([38, Thm. 5.2]). Let K be the field of definition of W as above.
Then, there exists a number NW such that if we are given a family of parameters
v := (vC,j)(C∈A/W ),(0⩽j⩽eC−1) that satisfy

vNW

C,j = ζ−j
eC

uC,j ,

then the field K(v) is a splitting field for H(W ). We will write HK(v)(W ) for the
tensor product H(W ) ⊗Z[u,u−1] K(v).

Of course, after the BMR-freeness conjecture, HK(v)(W ) will also be a free
K[v, v−1]-module and we may extend the specialization (12) to a map K[v, v−1] → K,
which we also call σ and is given by

(14) vC,j
σ7−−→ 1.

Notice that, just as in (12), the induced map σ̃ : HK(v)(W ) → K[W ] agrees with
the fixed surjection B(W ) ↠ W . The freeness over Z[v, v−1], the fact that K(v)
and K are splitting fields for H(W ) and W respectively, and the semisimplicity of
K[W ], constitute the assumptions of Tits’ deformation theorem (see [25, §7.3-4]). Its
conclusion is then:

Theorem 4.6. The algebra HK(v)(W ) is also semisimple and the specialization map
σ induces a bijection

dσ : Irr
(
HK(v)(W )

) ∼−→ Irr
(
K[W ]

)
,
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between the irreducible modules of the two algebras, that respects the spectra of el-
ements. That is, if U and dσ(U) are irreducible modules matched by dσ, then the
following diagram commutes:

(15)
HK(v)(W ) ∋ Tg K[v, v−1][X]

K[W ] ∋ g K[X]

pU

σ̃ tσ
pdσ(U)

The horizontal maps pM send an element Tg or g to its characteristic polynomial
under the representation M , while the vertical maps are naturally induced by σ. In
particular, since character values are determined by the spectra of elements, if χv and
χ are the characters associated to U and dσ(U) respectively, we will have
(16) χ(g) = σ

(
χv(Tg)

)
.

Remark: It is not a priori clear that the characteristic polynomials of elements Tg

live in K[v, v−1][X] (instead of just K(v)[X]); this is shown in [25, Prop. 7.3.8]. The
existence of the map dσ and that it respects spectra is proved in [ibid, Thm. 7.4.3],
and the fact that it is a bijection in [ibid, Thm. 7.4.6]. □

We can apply Tits’ deformation theorem on any admissible (see Defn. 4.3) spe-
cialization of H(W ) by first moving to a splitting field as prescribed by Prop. 4.5. In
particular, for the algebras Hx(W ) and Hx(W ) from (13), the corresponding splitting
fields have to be K(y) and K(y) respectively for parameters y := (yC)C∈A/W and y

that satisfy yNW

C = xC and yNW = x.
Now Thm. 4.6 implies that we can simultaneously index the characters of H(W ),

Hx(W ), and Hx(W ) by characters χ ∈ Ŵ . Indeed, if say fx is the factoring morphism
of Defn. 4.3, we have

(17) Irr
(
H(W )

) dθx−−−−→ Irr
(
Hx(W )

) dfx−−−−→ Irr
(
K[W ]

)
,

where dθx and dfx are bijections which satisfy dσ = dθx ◦ dfx and moreover respect
spectra as in (15). We will therefore denote the characters of the three Hecke algebras
by χv, χy, and χy respectively, using the parameters v, y, y that define the splitting
fields.

Definition 4.7. We say that a character of the Hecke algebra H(W ) is rational with
respect to the specializations θx or θx (respectively generically rational) if its values lie
in K(x) or K(x) (respectively in K(u)), as opposed to the splitting fields. Similarly
we talk of a rational spectrum of some element Tg for a given representation and
specialization.

Remark 4.8. Notice that a character might be rational for the specialization θx but
not for θx. This is for instance the case when a monomial of the form

√
xC,0 xC′,0

appears as its value (which is not rational for θx but becomes x for θx). For example,
the group G6 has 6 characters that are not generically rational (see [38, Table 8.1])
but a CHEVIE [24, 40] calculation shows only 2 irrational characters for θx.

4.2. Character values on roots of the full twist. For a character χv of
the generic Hecke algebra HK(v)(W ), let mχv

C,j denote the multiplicity of uC,j as an
eigenvalue of any braid reflection sC,γ in the representation U associated with χv.
After Tits’ deformation theorem (in particular, after (15)) this equals the multiplicity
of ζj

eC
= σ(uC,j) as an eigenvalue of any distinguished reflection sH , H ∈ C, in the

representation dσ(U).
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The same is true for any admissible specialization θ (notice that since f ◦θ(uC,j) =
ζj

eC
, the elements θ(uC,j) cannot be equal), so for the analogously defined numbers

m
χy

C,j , m
χy

C,j , mχ
C,j , we have

mχv

C,j = m
χy

C,j = m
χy

C,j = mχ
C,j .

In view of this, we will only use the latter notation mχ
C,j from now on. Notice finally

that by the defining relations (11), the only possible eigenvalues for any sC,γ are
precisely the uC,j ’s. We therefore have (for any C ∈ A/W )

(18)
eC−1∑
j=0

mχ
C,j = χ(1).

The following proposition is essential for the proof of our technical lemma
(Prop. 4.20). To simplify its statement we first introduce the following notation
(recall also that ωC = |C| for an orbit C ∈ A/W ):

Definition 4.9. Consider(4) the element of K[u1/|W |] given as

zχv (π) :=
∏

C∈A/W

eC−1∏
j=0

u
(1/χ(1))mχ

C,j
eCωC

C,j ,

and, for a regular number d (see Defn. 2.8), write

zχv (π)1/d :=
∏

C∈A/W

eC−1∏
j=0

u
(1/dχ(1))mχ

C,j
eCωC

C,j .

Finally, denote by N(χ) the quantity

N(χ) :=
∑

C∈A/W

ωC ·
eC−1∑
j=0

jmχ
C,j .

Remark 4.10. N(χ) usually denotes the sum of the χ∗-exponents (see [33, Chap-
ter 4: §4]) of the representation that affords χ. This in fact agrees with the definition
above (see [11, Prop. 4.1], or [33, Lemma 10.15 and Remark 10.12] which includes
Gutkin’s theorem). We are only going to use it as a symbol (but see also Remark 4.16).

As we have mentioned earlier, the reason that we have nice, explicit character
evaluations on the full twist Tπ and its roots is that π is central in B(W ). Take for
instance the determinant character detχv associated to χv. It is linear and therefore
factors through the abelianization Bab so that Corol. 2.7 implies that its values on
powers of the full twist are given by

detχv (T l
π) =

∏
C∈A/W

eC−1∏
j=0

u
mχ

C,j
ωCeCl

C,j = zχv (π)χ(1)l.

Now, since T l
π is central, it acts on irreducible representations as a scalar. That is,

its spectrum is given by
Specχv

(T l
π) = {ξzχv (π)l (χ(1)-many times)},

where ξ is a χ(1)-th root of unity. This works similarly for roots of Tπ and with Tits’
deformation theorem and little more work we get the following.

(4)We move to a larger ring, so that the roots u
1/χ(1)
C,j are well defined. Shortly however, Prop. 4.11

will show that these monomials actually live in K[v].
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Proposition 4.11 ([11, Prop. 4.16]). For a character χv of the generic Hecke algebra,
the values on the full twist Tπ are given by

χv(Tπ) = χ(1)e−2iπN(χ)/χ(1)zχv (π).
Moreover, if w is a d-th root of some power πl and its image in W under the fixed
surjection (5) is w, we have

χv(Tw) = χ(w)e−2iπlN(χ)/dχ(1)zχv (π)l/d.

Remark 4.12. In [11] the Hecke algebras are introduced formally by deforming the
Artin-like presentations of the generalized braid groups, while we have used the topo-
logical interpretation of [10]. This does not affect the proof of the previous proposition
which only relies on the centrality of the full twist π and Corol. 2.7.

By applying the specialization θx from (13) to the previous proposition, we easily
get:
Corollary 4.13. Let w be a d-th root of some power πl as above and let χy be a
character of the specialization Hx(W ) as in (17). We have

(1)
χy(Tπ) = χ(1)

∏
C∈A/W

x
(1/χ(1))mχ

C,0eCωC

C .

(2)
χy(Tw) = χ(w)

∏
C∈A/W

x
(l/dχ(1))mχ

C,0eCωC

C .

4.3. Local Coxeter numbers. We are now going to define a local version of Cox-
eter numbers (see Defn. 3.3) and study how they are precisely related to the exponents
that appear in the character calculation of the previous Corol. 4.13.
Definition 4.14. We define the local Coxeter number cχ,C associated to the character
χ and the hyperplane orbit C ∈ A/W , as the normalized trace

cχ,C := 1
χ(1) · χ

( ∑
V t∈C

(1 − t)
)

.

Here, the sum is taken over all reflections t whose fixed hyperplane H = V t belongs
to the orbit C. Notice that these numbers are a refinement of the Coxeter numbers in
the sense that cχ =

∑
cχ,C

Proposition 4.15. The local Coxeter numbers satisfy

cχ,C = eC · ωC ·
(

1 −
mχ

C,0

χ(1)

)
.

Proof. As we saw in (4), because the parabolic groups for hyperplanes are cyclic, the
set of reflections can be partitioned into sets of the form {tH , . . . , teH −1

H }. Moreover,
recalling the definition of mχ

C,j from the beginning of this section, we see that the
spectrum of tk

H (for H ∈ C) is given by
Specχ(tk

H) = {ζjk
eC

(mχ
C,j-many times) | 0 ⩽ j ⩽ eC − 1}.

We can then pick an H ∈ C and a generator tH of WH , and start the evaluation by
computing ∑

V t∈C

χ(1 − t) = χ(1)(eC − 1)ωC − ωC

eC−1∑
k=1

χ(tk
H)

= χ(1)(eC − 1)ωC − ωC

eC−1∑
k=1

eC−1∑
j=0

mχ
C,jζjk

eC
.
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Now, notice that the sum
∑eC−1

k=1 ζjk
eC

equals eC − 1 or −1 depending on whether j = 0
or not. So, after changing the order of summation, we have

∑
V t∈C

χ(1 − t) = χ(1)(eC − 1)ωC +
eC−1∑
j=1

ωCmχ
C,j − (eC − 1)ωCmχ

C,0

= χ(1)eCωC − eCωCmχ
C,0,

where the second equality is because of (18). This completes the proof. □

We can now rewrite the character calculation from Corol. 4.13 replacing the quan-
tities in the exponents with equivalent ones in terms of the Coxeter numbers cχ,C

(and via Prop. 4.15). With the notation being the same as in the statement of the
Corollary, we have:

(19) χy(Tπ) = χ(1)
∏

C∈A/W

x
eCωC−cχ,C
C and χy(Tw) = χ(w)

∏
C∈A/W

x
(eCωC−cχ,C )l/d

C .

Moreover, after the further specialization xC 7→ x of θx from (13) and for the
characters χy of Hx(W ) as in (17), we have (recalling that

∑
eCωC = |R| + |A| and

that
∑

cχ,C = cχ):

(20) χy(Tπ) = χ(1) · x|R|+|A|−cχ and χy(Tw) = χ(w) · x(|R|+|A|−cχ)l/d.

Remark 4.16. This last equation is precisely what appears in [11, Prop. 4.18] but
with an equivalent expression for the Coxeter numbers:

cχ = N(χ) + N(χ∗)
χ(1) ,

where the numbers N(χ) are given in Defn. 4.9 (see also Rem. 4.10). This expression
also appears in [41, Lemma 1] but the statement of that lemma might be misleading
as it holds regardless of the values eC . For completeness, we include the calculation:

χ(1)cχ = χ(1)
∑

C∈A/W

cχ,C =
∑

C∈A/W

ωC

eC−1∑
j=1

eCmχ
C,j = N(χ) + N(χ∗).

In fact, Michel later on [41, Rem. 2] notes that for all groups W one has (see Defn. 4.18
for Malle’s permutation Ψ on the set of irreducible characters χ of W )

cχ = N(χ) + N(Ψ(χ∗))
χ(1) ,

which is equivalent to the first statement as N(Ψ(χ)) = N(χ) after Prop. 4.19.

The following generalizes Rem. 3.4 and is a direct corollary of Prop. 4.15.

Corollary 4.17. The Coxeter numbers cχ,C are integers and they satisfy

0 ⩽ cχ,C ⩽ eC · ωC .

Proof. The inequalities are immediate from Prop. 4.15, since 0 ⩽ mχ
C,0 ⩽ χ(1). For

the integrality property, notice first that the collection of reflections t ∈ R such that
V t ∈ C, is a union of conjugacy classes, so that the numbers cχ,C are in fact algebraic
integers [45, Corol. 1, p. 52]. After Prop. 4.15 they are also clearly rational numbers
and the result follows. □
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4.4. Malle’s character permutations and the technical lemma. The fake
degree Pχ(q) :=

∑
qei(χ) of an irreducible character χ ∈ Ŵ is a polynomial that

records the exponents ei(χ) of the character (see [33, §4.4]). Beynon and Lusztig [6,
Prop. A] had observed a remarkable reciprocity property for these polynomials for
Weyl groups. They satisfy

Pχ(q) = qcχPι(χ)(q−1),

where cχ is the Coxeter number(5) as given in Defn. 3.3 and ι is a permutation of the
irreducible characters that for Weyl groups is the identity apart from two characters
of E7 and four of E8.

Malle later on [38, Thm. 6.5] extended this reciprocity result to all complex reflec-
tion groups, defining a permutation Ψ of the characters that is induced by a Galois
action on the irreducible characters of the Hecke algebra (the two permutations satisfy
ι(χ) = Ψ(χ∗)). This permutation of Malle is exactly the missing ingredient for the
proof of Lemma 3.6; the characters χ for which cχ is not a multiple of |g| are grouped
together by Ψ and their contributions cancel.

A Galois action on the characters. Recall (see (13) and (17)) the specializations of
the Hecke algebra Hx(W ) and Hx(W ) that have coefficient fields K(x) and K(x),
and splitting fields K(y) and K(y) respectively. Recall also that, after Prop. 4.5 the
parameters satisfy yNW

C = xC and yNW = x.

Definition 4.18. We consider the permutations ΨC and Ψ acting on the sets
Irr(Hx(W )) and Irr(Hx(W )) that are respectively induced by the Galois automor-
phisms ΣC (for C ∈ A/W ) and Σ:

ΣC ∈ Gal
(
K(y)/K(x)

)
Σ ∈ Gal

(
K(y)/K(x)

)
yC 7→ e2πi/NW · yC y 7→ e2πi/NW · y

In particular, they are defined via ΨC(χy)(Tg) := ΣC
(
χy(Tg)

)
and similarly for Ψ.

By Tits’ deformation theorem, they induce permutations on the set Ŵ of irreducible
characters of W , which we also denote by ΨC and Ψ.

The permutations ΨC and Ψ satisfy a set of properties with respect to the Coxeter
numbers and other statistics of the characters χ ∈ Ŵ :

Proposition 4.19. For any character χ ∈ Ŵ and orbits C, C′ ∈ A/W , the following
are true:

ΨC(χ)(1) = χ(1)1. m
ΨC(χ)
C′,j = mχ

C′,j2. cΨC(χ),C′ = cχ,C′3.

Proof. Since ΨC is induced by a Galois automorphism, it has to respect the degree
of the character χy, hence also of χ; this proves part 1. The spectrum of any braid
reflection sC′,γ is generically rational (see Defn. 4.7) by the defining relations (11).
This means that the eigenvalues of any sC′,γ in the representation that affords χy live
in the coefficient field K(x) and are therefore fixed by ΨC . This proves part 2. after
recalling the definition of mχ

C,j from the start of § 4.2 and also part 3. after Prop. 4.15.
The same results are of course true for Ψ. □

The following is the key technical lemma that we have been building towards
through all of § 4. The character calculations of Prop. 4.11 were included just so that
the argument presented here is self-contained.

(5)However, Beynon and Lusztig, and later Malle, did not assign an epithet for these numbers;
the mathematical godfathers were Gordon and Griffeth [26] who named them after Coxeter.
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Proposition 4.20 (The key technical lemma). Let g be a ζ-regular element of W ,
χ ∈ Ŵ an irreducible character, and C ∈ A/W an orbit of hyperplanes. Then, we
have

ΨC(χ)(g) = ζ−cχ,C · χ(g) and Ψ(χ)(g) = ζ−cχ · χ(g).

Proof. Assume that ζ = e2πil/d with (l, d) = 1. Then, by Prop. 2.9, we can lift g to
some element g ∈ B(W ) that is commensurable with the full twist (i.e. it satisfies
gd = πl). Now, replacing xC with yNW

C we can rewrite the character evaluations from
(19) as

χy(Tg) = χ(g) ·
∏

C′∈A/W

y
NW (eC′ ωC′ −cχ,C′ )l/d

C′ ,

which, after applying the Galois automorphism ΣC , becomes

ΨC(χy)(Tg) = χ(g) · e2πi(eCωC−cχ,C )l/d ·
∏

C′∈A/W

y
NW (eC′ ωC′ −cχ,C′ )l/d

C′ .

Now, this is really

ΨC(χy)(Tg) = e2πi(eCωC−cχ,C )l/d · χy(Tg),
which completes the proof after applying Tits’ deformation theorem and recalling that
eCωC is a multiple of d by Corol. 2.11. The same argument of course works for Ψ. □

We are now ready to prove Lemma 3.6. Only Malle’s permutation Ψ is sufficient
for that, while the “local” version ΨC will be used in § 5 to deduce similar results for
generating functions of weighted reflection factorizations.

Lemma 3.6. For a complex reflection group W , and a regular element g ∈ W , the
total contribution in the sum ∑

χ∈Ŵ

χ(1) · χ(g−1) · e−t·cχ ,

of those characters χ ∈ Ŵ for which cχ is not a multiple of |g| is 0.

Proof. We consider the partition of the set of irreducible characters χ ∈ Ŵ into orbits
under the action of Ψ. After Prop. 4.19 all characters in such an orbit have the same
Coxeter number. We will show that if this Coxeter number is not a multiple of |g|,
then the total contribution of the characters of the orbit is 0.

If χ(g) = 0 for some irreducible character χ, then after Prop. 4.20, all characters
in the Ψ-orbit of χ evaluate g to 0. We now deal with the remaining Ψ-orbits of
characters χ for which χ(g) ̸= 0.

Consider a character χ in such an orbit and let k be the smallest number such
that Ψk(χ) = χ. Assume further that g is ζ-regular for an eigenvalue ζ = e2πil/d

with (l, d) = 1 (i.e. d = |g| and ζ is a primitive d-th root of unity). Now, after
Prop. 4.20 again, we must have that k is a multiple of the number m := d

gcd(cχ,d)
(since Ψk(χ)(g) = ζ−kcχ · χ(g)). Moreover, by Prop. 4.19 the degrees χ(1) as well
as the Coxeter numbers cχ are not affected by Ψ, so that to prove the lemma, it is
sufficient to show that if cχ is not a multiple of |g|, then

k∑
j=1

Ψj(χ)(g−1) = 0.

But if ξ = ζ−cχ , we have by Prop. 4.20 that Ψj(χ)(g−1) = ξjχ(g−1) after which the
above is immediate (indeed, we have that m ̸= 1 and ξ is a primitive m-th root of
unity; therefore ξ is also a k-th root of unity different from 1, so that

∑k
j=1 ξj = 0). □
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Remark 4.21. Notice that Prop. 4.20 gives some insight on why in Weyl groups the
orbits under Ψ can have at most two elements. Indeed, every regular element g will
come with (at least) a pair of regular eigenvalues ζ±1 = e±2πil/d. Then, the only way
the proposition is valid for both eigenvalues is if ζ−cχ,C = ζcχ,C (i.e. gcd(cχ,C , d) ⩽ 2)
or χ(g) = 0.

More generally, for a given χ and C, Prop. 4.20 implies that if χ(g) ̸= 0, then
l · cχ,C (mod d) is constant for all l such that ζ = e2πil/d is a regular eigenvalue of g.

4.5. On the uniformity of the proofs. Our proofs rely so far mainly on two
properties that are known in a case-by-case fashion; the BMR-freeness theorem and
the structure of the splitting fields for the Hecke algebras. Both of those are known
uniformly for real reflection groups ([25, Thm. 4.4.6] and [42, Thm. 5]).

In fact, we could do away with the second reliance. Opdam’s work [43, Thm. 6.7]
is sufficient information for the structure of the group Gal

(
C(v)/C(u)

)
which in turn

is all we need to define the permutations ΨC ∈ Perm
(

Irr(W )
)
. In fact Opdam’s

elements gC,0 of this Galois group correspond precisely to our ΣC of Defn. 4.18 (see
[ibid, Prop. 7.1] and the discussion before [ibid, Prop. 7.4]). We have chosen not to
follow Opdam’s presentation here (which involves the KZ-connection, a much more
complicated beast) even if it is more uniform, as it does not eventually illuminate
Prop. 4.20 much better.

As far as the BMR-freeness theorem goes, and again because we are really interested
in the “geometric” Galois group Gal

(
C(v)/C(u)

)
, it is possible that we could replace

it by Losev’s weaker but uniform theorem [37]. We hope to be able to clarify this in
the future.

5. The weighted enumeration
The following section studies the weighted enumeration of reflection factorizations as
considered in [17], where each reflection t ∈ R is weighted by the orbit C ∈ A/W of
its fixed hyperplane V t. It provides a uniform proof of their result and extends it in
a similar fashion as with the Chapuy–Stump formula (3). Again we assume that W
is irreducible (but see § 5.1).

Definition 5.1. Consider a set of variables w := (wC)(C∈A/W ) and a weight function

wt : R → {wC | C ∈ A/W},

such that wt(t) = wC if C is the orbit that contains the fixed hyperplane V t. Then, the
weighted enumeration of reflection factorizations of some element g ∈ W is encoded
via the following generating function:

FACW,g(w, z) :=
∑

(t1,··· ,tN )∈RN

t1···tN =g

wt(t1) · · · wt(tN ) · zN

N ! .

Because the sets Cref := {t ∈ R | V t ∈ C} are closed under conjugation, the
Lemma of Frobenius can again be used to express FACW,g(w, z) as a finite sum of
exponentials. Notice first, that the order of the subsets Ai in Thm. 3.1 does not affect
the enumeration as the different sets of factorizations have the same size. Indeed, one
can easily construct a bijective map by considering a sequence of Hurwitz moves:

(t1, t2, . . . , tk, tk+1, . . . , tl) → (t1, t2, . . . , tktk+1t−1
k , tk, . . . , tl).
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Having said that, and assuming there are r = |A/W | different orbits of hyperplanes,
denoted C1, . . . , Cr, Thm. 3.1 now implies that

FACW,g(w, z) =
∑
N⩾0

l1+···+lr=N

(
N

l1, . . . , lr

)
wl1

C1
· · · wlr

Cr

zN

N ! ×

× 1
|W |

∑
χ∈Ŵ

χ(1) · χ(g−1) ·
[χ(Cref

1 )
χ(1)

]l1
· · ·

[χ(Cref
r )

χ(1)

]lr

.

Using standard properties of exponential generating functions, we can rewrite the sum
as

FACW,g(w, z) = 1
|W |

∑
χ∈Ŵ

χ(1) · χ(g−1) · exp
[
zwC1

· χ(Cref
1 )

χ(1)

]
· · · exp

[
zwCr

· χ(Cref
r )

χ(1)

]
.

Finally, notice that by Defn. 4.14 we can rewrite the quantities in the exponentials in
terms of local Coxeter numbers. Indeed, we have cχ,C = |Cref | − χ(Cref)/χ(1) and if
we define wt(R) :=

∑
t∈R wt(t), the previous expression becomes a direct analog of

(10):

(21) FACW,g(w, z) = ez·wt(R)

|W |
∑

χ∈Ŵ

χ(1) · χ(g−1) ·
(
e

−zwC1
)cχ,C1 · · ·

(
e−zwCr

)cχ,Cr .

Lemma 5.2. For a complex reflection group W , and a regular element g ∈ W , the
total contribution in (21) of those characters χ ∈ Ŵ for which any cχ,C is not a
multiple of |g| is 0.

Proof. The proof is essentially the same as for Lemma 3.6. However, we first need to
order the orbits C ∈ A/W (arbitrarily) and then apply the same idea sequentially.

We start by partitioning the set of irreducible characters χ ∈ Ŵ into orbits under
the action of ΨC1 . By Prop. 4.19 all characters in such an orbit have the same local
Coxeter numbers. Pick a character χ whose local Coxeter number cχ,C1

is not a mul-
tiple of |g|; by Prop. 4.20 we may further assume that χ(g) ̸= 0. Let k be the smallest
number such that Ψk

C1
(χ) = χ; again we will have by Prop. 4.20 that k must be a

multiple of m := |g|
gcd(cχ,C1

,|g|) . Now, since by Prop. 4.19 the degrees of characters and
the local Coxeter numbers are respected by ΨC1 , it is enough to show that

k∑
j=1

Ψj
C1

(χ)(g−1) = 0.

Indeed, this follows immediately from Prop. 4.20 as Ψj
C1

(χ)(g−1) = ξjχ(g−1) for
the primitive m-th root of unity ξ := ζ

−cχ,C1 (and since m ̸= 1 divides k). Notice
now that we can continue like this, eventually disregarding all characters with local
Coxeter number cχ,C1

not a multiple of |g|. Then we may proceed with the remaining
characters and the orbit C2 and since, by Prop. 4.19, ΨC2 also respects the numbers
cχ,C1

(which now for all remaining characters are multiples of |g|) we do not have to
worry that we might eventually cancel the same character twice. We go on like this
with all orbits Ci and the proof is complete. □

Before we proceed with our structural result for weighted enumeration formulas,
we introduce the following combinatorial generalizations of the length function lR(g):
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Definition 5.3. For an arbitrary element g ∈ W and an orbit C ∈ A/W , we define
nC(g) to be the smallest number of reflections in Cref that may appear in any reflection
factorization of g (i.e. not necessarily reduced).

Remark 5.4. Notice that it is not always true that
∑

nC(g) = lR(g). Indeed, the
element g := (121̄2̄) = −1 in B2 (which is the square of the Coxeter element) can be
written both as g = (12)(12̄) and as g = (11̄)(22̄), so that n1(g) = n2(g) = 0.

Theorem 5.5. For a complex reflection group W and a regular element g ∈ W , the
exponential generating function FACW,g(w, z) of weighted reflection factorizations of
g takes the form:

FACW,g(w, z) = ez·wt(R)

|W |
·
[
Φ(X) ·

∏
C∈A/W

(1 − XC)nC(g)
]∣∣∣

XC=e−zwC|g|
.

Here, Φ(X) is a polynomial of degree (eC · ωC)/|g| − nC(g) in each of its variables XC,
it has constant term Φ(0) = 1, and it is not divisible by (1 − XC) for any XC. For all
C, the exponents satisfy

eCωC

|g|
⩾ nC(g) ⩾ lR(g) − |R| + |A| − eCωC

|g|
.

Proof. The proof is very similar to that of Thm. 3.7. After Lemma 5.2, we need only
consider in (21) those characters χ for which all cχ,C are multiples of |g|. This allows
us to write the exponential function as

FACW,g(w, z) = ez·wt(R)

|W |
· Φ̃(X),

for a polynomial Φ̃ in variables X := (XC)C∈A/W , by setting XC =
(
e−zwC

)|g|. By
Corol. 4.17 the polynomial Φ̃(X) has degree (eCωC)/|g| in each of its variables XC ,
and it has constant term 1 since all cχ,C can be simultaneously 0 only for the trivial
representation.

To find the largest power of (1 − XC) that divides Φ̃(X), we view Φ̃ as a poly-
nomial in the single variable XC and treat the other XC′ ’s as complex scalars. This
is equivalent to assigning arbitrary values to all variables wC′ ̸= wC of the weight
function in Defn. 5.1. If we further fix z = 1, the enumerative interpretation of
(ewt(R)/|W |) · Φ̃(XC) is then that it counts weighted reflection factorizations of g
keeping track only of the number of reflections that fix a hyperplane in C.

Now, as in Thm. 3.7 consider the root factorization of Φ̃(XC):

Φ̃(XC) = a(α1 − XC)(α2 − XC) · · · (αr − XC),

with r = (eCωC)/|g|. We see again that by plugging back XC = e−wC|g| each root
contributes a factor of either (αi − 1) or wC |g| to the leading term of the generating
function. Since by Defn. 5.3 this must be a scalar multiple of w

nC(g)
C , we have that

(1 − XC)nC(g) divides Φ̃(XC) and is the largest power that does so (this furthermore
proves the first inequality). Since this is true for a dense set of the complex values
XC′ , we in fact have that (1 − XC)nC(g) is a maximal factor of Φ̃(X).

The only thing left to show is the second inequality for the nC(g)’s. To see this, we
now identify all weights wC′ , C′ ̸= C to a single weight w, set again z = 1, and treat Φ̃
as a polynomial in two variables X = e−w|g| and XC = e−wC|g|. The general argument
about Φ̃(X) implies that we can consider the polynomial Φ′(X, XC) defined by

Φ′(X, XC) := Φ̃(X, XC)
(1 − XC)nC(g) .
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Now, the generating function
ewt(R)

|W |
· Φ′(X, XC) · (1 − XC)nC(g)

counts reflection factorizations of g weighing reflections in Cref by wC and the rest by
w. We want to enumerate factorizations that have exactly the minimal number nC(g)
of reflections of type C. Since the term (1 − XC)nC(g) always contributes a factor of
(wC |g|)nC(g) to the Taylor expansion, the answer to the previous question would be
given by

|g|nC(g)

|W |
· ewt(R)

∣∣∣
wC=0

· Φ′(X, XC)

∣∣∣∣∣XC=1
X=e−w|g|

.

The leading term of this exponential generating function should clearly be a multiple
of wfC(g)−nC(g), where fC(g) is the smallest length of a reflection factorization of g with
exactly nC(g)-many reflections of type C. As in the previous argument, this implies
that Φ′(X, 1) is a multiple of (1 − X)fC(g)−nC(g), but since by construction its degree
is equal to

∑
C′ ̸=C(eC′ωC′)/|g|, which is in turn equal to (|R| + |A| − eCωC) /|g|, we

must have
fC(g) − nC(g) ⩽ |R| + |A| − eCωC

|g|
,

which completes the proof, since fC(g) ⩾ lR(g). □

Corollary 5.6. For a complex reflection group W and a regular element g ∈ W of
order |g| = dn, the weighted reflection factorizations of g are counted by the formula:

FACW,g(w, z) = ez·wt(R)

|W |
·

∏
C∈A/W

(
1 − e−zwC |g|)nC(g)

,

where the exponents are explicitly given by nC(g) = (eCωC)/|g|.

Proof. As we showed in the proof of Corol. 3.10, when g is some dn-regular element we
must have lR(g) = (|R| + |A|)/|g|. Then the previous theorem implies that nC(g) =
(eCωC)/|g|, which further forces the equality Φ(X) = 1 and hence completes the
argument. □

Remark 5.7. For well-generated groups W , we always have |c| = dn so that the
previous Corollary recovers the main theorem of [17] and extends it to the groups of
Prop. 2.12. Notice that while in well-generated groups we have at most two orbits
of hyperplanes, the exceptional groups G7, G11, G15, G19 have three orbits. For all of
them but G15, dn is regular.

5.1. When W is reducible. So far to simplify the arguments, we have assumed
everywhere that W is irreducible. This is not a real restriction though and in fact the
statement of Thm. 5.5 remains true essentially as is.

Indeed, assume that W = W1×· · ·×Wk acts on the space V = V1⊕· · ·⊕Vk, with Wi

acting irreducibly on Vi. Then, a regular eigenvector v = (v1, . . . , vk) must have all vi’s
regular in their respective spaces too and hence a regular element W ∋ g = g1 · · · gk

must have all gi’s regular in the Wi’s. Moreover since reflections from different Wi’s
commute, the corresponding weighted generating function is just the product

FACW,g(w, z) =
k∏

i=1
FACWi,gi

(w, z).

Since the hyperplane orbits C ∈ A/W are the disjoint union of the orbits C′ ∈ Ai/Wi

the statement of Thm. 5.5 remains valid if we only change the evaluation of XC from
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e−zwC|g| to e−zwC|gi|, where gi is the regular element in the group Wi that contains
the orbit C.
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