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On plethysms and Sylow branching
coefficients

Stacey Law & Yuji Okitani

Abstract We prove a recursive formula for plethysm coefficients of the form aµ
λ,(m), encom-

passing those which arise in a long-standing conjecture of Foulkes. This also generalises results
on plethysms due to Bruns–Conca–Varbaro and de Boeck–Paget–Wildon. From this we de-
duce a stability result and resolve two conjectures of de Boeck concerning plethysms, as well
as obtain new results on Sylow branching coefficients for symmetric groups for the prime 2.
Further, letting Pn denote a Sylow 2-subgroup of Sn, we show that almost all Sylow branching
coefficients of Sn corresponding to the trivial character of Pn are positive.

1. Introduction
Symmetric groups lie at the intersection of a number of central topics of research in
the representation theory of finite groups. In this article, we focus on two key themes:
plethysms and Sylow branching coefficients.

Plethysm coefficients form an important family of numbers arising in the theory
of symmetric functions as the multiplicities aµλ,ν appearing in the decompositions
of plethystic products of Schur functions sλ ◦ sν into non-negative integral linear
combinations of Schur functions sµ. The setting can be translated to the character
theory of symmetric groups using the characteristic map: see Section 2 below, for
example.

Finding a combinatorial rule for plethysm coefficients remains a major open prob-
lem in algebraic combinatorics [30, Problem 9], as does resolving the long-standing
conjecture of Foulkes [10] that the induced module 1Sn≀Sm

xSmn is a direct summand of
1Sm≀Sn

xSmn whenever m ⩽ n. Here 1 denotes the trivial representation, and Foulkes’
Conjecture may equivalently be stated as aµ(n),(m) ⩾ aµ(m),(n) for all partitions µ.

Our first main result below is a recursive formula for plethysm coefficients of the
form aµλ,(m) for arbitrary partitions µ and λ. We extend the notation for plethysm coef-
ficients from being indexed by partitions to being indexed by general skew shapes: see
(4) for the full definition in terms of Littlewood–Richardson coefficients and plethysms
indexed by bona fide partitions.
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Theorem A. Fix n ∈ N. Let m ∈ N, k ∈ {0, 1, . . . , n − 1} and λ ⊢ n. Let µ ⊢ mn
with l(µ) = n− k, and set µ̂ := µ− (1n−k) ⊢ (m− 1)n+ k. Then

aµλ′,(m) =
k∑
i=0

(−1)k+i ·
∑

α⊢k+(m−1)i
β⊢i

a
α/(k−i)
β′,(m) · a

µ̂/α
λ/β,(m−1).

Here λ′ denotes the conjugate partition of λ, and we note that Theorem A only
concerns partitions µ ⊢ mn with l(µ) ⩽ n, since aµλ′,(m) = 0 whenever l(µ) > n

(Lemma 2.12). We further remark that the case of k = 0 in Theorem A coincides
with [4, Proposition 1.16], and also with the µ = (1m) and r = 1 special case of [7,
Theorem 1.1], although our full Theorem A is a generalisation in a different direction.

We prove Theorem A as a consequence of a striking factorisation result concern-
ing characters of symmetric groups (Theorem B below). In order to state this, we
note that the irreducible characters of the symmetric group Sn are naturally indexed
by partitions of n, and for a partition λ the corresponding character will be de-
noted by χλ. This extends more generally to a useful class of characters χλ/µ indexed
by skew shapes λ/µ, whose decompositions into irreducible constituents gives the
Littlewood–Richardson coefficients (see (2)). For any partition β and any character
ϕ of a symmetric group Sn, we let ϕ/χβ =

∑
α⊢n⟨ϕ, χα⟩ · χα/β . For θ a character of

Sm we also write ϕ ⊠ θ := (ϕ × θ)
xSn+m

Sn×Sm
. Finally, for any skew shape α/β of size

n we let ρα/βm := χα/β
xSmn

Sm≀Sn
, where here χα/β also denotes its inflation from Sn to

the imprimitive wreath product Sm ≀ Sn. Then we may factorise such characters as
follows.

Theorem B. Let m,n, k ∈ N with m ⩾ 2 and k ∈ {0, 1, . . . , n− 1}. Let λ ⊢ n. Then

ρλm/χ
(1n−k) =

∑
β⊢k

ρβm ⊠ ρ
λ′/β′

m−1 .

We apply our Theorem A to deduce a new stability result for plethysm coefficients
investigated in [1], and in the course of our work also resolve two conjectures of de
Boeck [6]. In addition to applications to plethysm coefficients, Theorem A allows us
to deduce several new results on Sylow branching coefficients for symmetric groups.
Motivated by connections to the McKay Conjecture [12, 18] and the study of the
relationship between characters of a finite group and those of its Sylow subgroups [26,
16], Sylow branching coefficients describe the decomposition of irreducible characters
restricted from a finite group to their Sylow subgroups. Specifically, let Irr(G) denote
the set of (ordinary) irreducible characters of a finite group G. Then for χ ∈ Irr(G)
and ϕ ∈ Irr(P ), where P is a Sylow p-subgroup of G for some given prime p, the
Sylow branching coefficient Zχϕ denotes the multiplicity ⟨χ

y
P
, ϕ⟩.

Divisibility properties of Sylow branching coefficients were recently shown in [15,
Theorem A] to characterise whether a Sylow subgroup of a finite group is normal.
Furthermore, the positivity of Sylow branching coefficients Zχϕ for symmetric groups
and linear characters ϕ was determined in the case of odd primes p in [13, 14]. However,
relatively little is known about these coefficients when p = 2.

Using Theorem A, we are able to explicitly calculate several families of Sylow
branching coefficients when p = 2. In fact, we show that when p = 2, there are very
few Sylow branching coefficients of the symmetric group Sn which take value zero as
n tends to infinity, countering a prediction made in [13].

Theorem C. For n a natural number, let Pn denote a Sylow 2-subgroup of the sym-
metric group Sn. Then almost all irreducible characters χ of Sn have positive Sylow
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branching coefficient Zχ
1Pn

. That is,

lim
n→∞

|{χ ∈ Irr(Sn) | Zχ
1Pn

> 0}|
| Irr(Sn)| = 1.

The structure of the article is as follows. In Section 2, we record the necessary back-
ground and notation. In particular, letting Pn denote a Sylow 2-subgroup of Sn, we
abbreviate Zχ

λ

1Pn
to Zλ. In Section 3 we collect together a number of elementary results

on Sylow branching coefficients for symmetric groups. Specifically, in Section 3.1 we
compute Zλ for various ‘special’ shapes of partitions λ, and the primary tools in this
section will be the Littlewood–Richardson rule and Mackey’s theorem for induction
and restriction between subgroups. Theorem C is then proved in Section 3.2.

In the second half of the article (Sections 4–6), we focus primarily on plethysm
coefficients, motivated by the connections between plethysms and Sylow branching
coefficients via wreath product groups. In Section 4 we recall some useful results on
plethysms in the literature. In particular, we give a proof of the k = 0 case of Theorem
A in the language of character deflations introduced by Evseev–Paget–Wildon in [9],
and resolve two conjectures of de Boeck on plethysm coefficients involved in Foulkes’
Conjecture in Section 4.1. We then illustrate some applications of Theorem A to
plethysms in Section 5 before proving Theorems A and B in full in Section 5.1. For ease
of reference, Theorem A is numbered as Theorem 5.1 and Theorem B as Theorem 5.13
below. Finally, in Section 6 we apply Theorem A to deduce further results on Sylow
branching coefficients for the prime 2.

2. Preliminaries
Throughout, we use N to denote the set of natural numbers, and N0 for the set of
non-negative integers. As stated in the introduction, for a finite group G we use Irr(G)
to denote a complete set of the ordinary irreducible characters of G. Further, we use
Char(G) to denote the set of all ordinary characters of G, and 1G to mean the trivial
character of G (omitting the subscript when the meaning is clear from context). For
a subgroup H ⩽ G and ϕ ∈ Irr(H), we let Irr(G | ϕ) denote the set of χ ∈ Irr(G)
such that the restriction of χ to H contains ϕ as a constituent.

For g ∈ G and H ⩽ G, let Hg := gHg−1. Given ϕ ∈ Char(H), the character
ϕg ∈ Char(Hg) is defined by ϕg(x) = ϕ(g−1xg). Mackey’s Theorem allows us to
describe restrictions and inductions between subgroups of a finite group (see [17,
Chapter 5], for example).
Theorem 2.1 (Mackey). Let G be a finite group and H,K ⩽ G. Let ϕ ∈ Char(H).
Then

ϕ
xG
H

y
K

=
∑

g∈K∖G/H

ϕg
xK
Hg∩K ,

where the sum runs over a set of (K,H)-double coset representatives.
2.1. Representation theory of symmetric groups. Next, we recall some key
facts concerning the representation theory of symmetric groups, and refer the reader
to [20, 19] for further detail. It is well known that Irr(Sn) is naturally in bijection
with the set P(n) of all partitions of n. By convention, P(0) = {∅} where ∅ denotes
the empty partition. The irreducible character of Sn corresponding to the partition
λ ⊢ n will be denoted by χλ. In particular, χ(n) = 1Sn

, the trivial character of Sn,
and χ(1n) = sgnSn

, the sign character of Sn. If α is a (finite) sequence of integers but
is not a partition, then we interpret χα to be the zero function.

The Young diagram of a partition λ will be denoted by [λ], and that of a skew
shape λ/µ by [λ/µ] := [λ]∖ [µ] for µ a subpartition of λ (written µ ⊆ λ). The boxes in
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a Young diagram will sometimes be referred to as nodes, and we refer to skew shapes
and skew diagrams interchangeably when the meaning is clear. We denote the length
of the partition λ by l(λ), and the conjugate partition of λ by λ′. Note

(1) χλ
′

= sgnSn
· χλ

for all λ ⊢ n (see [19, 2.1.8]).
We record some operations on partitions. Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . )

be two partitions. Then + denotes component-wise addition, i.e. λ+µ = (λ1+µ1, λ2+
µ2, . . . ), and λ ⊔ µ denotes the partition obtained by taking the disjoint union of the
parts of λ and µ and reordering so that parts are in non-increasing order. When clear
from context, we abbreviate (ab) := (a, a, . . . , a) where there are b parts of size a; in
general we will specify (ab) ⊢ ab to avoid confusion with the single part partition of
ab.

We also make use of skew characters for symmetric groups, i.e. those indexed by
skew shapes. For partitions µ and λ such that |µ| ⩽ |λ|, the skew character χλ/µ of
S|λ|−|µ| satisfies

(2) ⟨χλ/µ, χν⟩ = ⟨χλ, (χµ × χν)
xS|µ|+|ν|

S|µ|×S|ν|
⟩ ∀ ν ⊢ |λ| − |µ|.

Note if µ ̸⊆ λ then χλ/µ = 0. This can be seen from the Littlewood–Richardson
rule, which gives an explicit combinatorial description of the decomposition into irre-
ducibles of the induced character appearing in the above expression, with Littlewood–
Richardson coefficients arising as the multiplicities. These appear in many contexts,
so we shall now fix the notation which will be used throughout this article (see [20]).

Definition 2.2. Let n ∈ N, λ = (λ1, . . . , λk) ⊢ n and C = (c1, c2, . . . , cn) be a sequence
of positive integers. We say that C is of type λ if

|{i ∈ {1, 2, . . . , n} | ci = j}| = λj

for all j ∈ {1, 2, . . . , k}. Moreover, we say that an element cj of C is good if cj = 1 or
if

|{i ∈ {1, 2, . . . , j − 1} | ci = cj − 1}| > |{i ∈ {1, 2, . . . , j − 1} | ci = cj}|.
Finally, we say that C is good if cj is good for all j ∈ {1, . . . , n}.

Theorem 2.3 (Littlewood–Richardson rule). Let m,n ∈ N0. Let µ ⊢ m and ν ⊢ n.
Then

(χµ × χν)
xSm+n

Sm×Sn
=

∑
λ⊢m+n

cλµ,ν · χλ

where the Littlewood–Richardson coefficient cλµ,ν equals the number of ways to replace
the nodes of the skew Young diagram of λ/µ by natural numbers such that

(i) the sequence obtained by reading the numbers from right to left, top to bottom
is good of type ν;

(ii) the numbers are non-decreasing (weakly increasing) left to right along rows;
and

(iii) the numbers are strictly increasing down columns.

We call the order in Theorem 2.3(i) the reading order of a skew shape. Let ν be a
partition and γ be a skew shape of size |ν|. We call a way of replacing the nodes of γ
by numbers satisfying conditions Theorem 2.3(i)–(iii) a Littlewood–Richardson (LR)
filling of γ of type ν. Clearly cλµ,ν = cλν,µ. Using Littlewood–Richardson coefficients, we
can also rephrase (2) as χλ/µ =

∑
ν c

λ
µ,ν · χν . Moreover, we can extend this notation
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to generalised Littlewood–Richardson coefficients cλµ1,...,µr describing the constituents
of

(χµ
1
× · · · × χµ

r

)
xSn1+···+nr

Sn1 ×···×Snr
,

for any r ∈ N and ni ∈ N0, and partitions µi ⊢ ni and λ ⊢ n1 + · · · + nr. Similarly,
cλµ1,...,µr = cλ

µσ(1),...,µσ(r) for any σ ∈ Sr. Furthermore, for A ⊆ P(n) and B ⊆ P(m)
we define the operation ⋆ as follows:

A ⋆ B := {λ ⊢ m+ n | ∃ µ ∈ A, ν ∈ B s.t. cλµ,ν > 0}.
We note that ⋆ is both commutative and associative.

Finally, for a partition λ = (λ1, λ2, . . . , λk) ⊢ n, we let Sλ ∼= Sλ1 ×· · ·×Sλk
denote

the corresponding Young subgroup of Sn. The permutation module 1Sλ

xSn induced
by the action of Sn on the cosets of Sλ will be denoted by Mλ. Young’s Rule (see
[19, 2.8.5]) tells us the decomposition of these permutation modules into irreducibles.
Denoting the character of Mλ by ξλ, we have that ⟨ξλ, χα⟩ equals the number of
semistandard Young tableaux of shape α and content λ, for any α ⊢ n. Moreover, this
multiplicity is positive if and only if α ⊵ λ, where ⊵ denotes the dominance partial
order on partitions.

2.2. Wreath products and Sylow subgroups of symmetric groups. In or-
der to describe the Sylow subgroups of symmetric groups, we briefly introduce some
notation for wreath products. Let G be a finite group and let H ⩽ Sn for some
n ∈ N. The natural action of Sn on the factors of the direct product G×n induces
an action of Sn (and therefore of H) via automorphisms of G×n, giving the wreath
product G ≀H := G×n⋊H. As in [19, Chapter 4], we denote the elements of G ≀H by
(g1, . . . , gn;h) for gi ∈ G and h ∈ H. Let V be a CG–module and suppose it affords
the character ϕ. Let V ⊗n be the corresponding CG×n–module. The left action of G≀H
on V ⊗n defined by linearly extending

(g1, . . . , gn;h) : v1 ⊗ · · · ⊗ vn 7−→ g1vh−1(1) ⊗ · · · ⊗ gnvh−1(n)

turns V ⊗n into a C(G ≀H)–module, which we denote by Ṽ ⊗n (see [19, (4.3.7)]), and
we denote its character by ϕ̃. For any ψ ∈ Char(H), we define X (ϕ;ψ) as follows:

X (ϕ;ψ) := ϕ̃ · InflG≀H
H (ψ) ∈ Char(G ≀H).

The inflation InflG≀H
H (ψ) of ψ from H to G ≀ H (identifying H with the quotient

(G ≀H)/G×n) is sometimes abbreviated to simply ψ, for convenience.

Lemma 2.4. Let G, H and ϕ be as above. Let L ⩽ H and τ ∈ Char(L). Then
X (ϕ; τ)

xG≀H
G≀L = X (ϕ; τ

xH
L

).

Proof. For any α ∈ Char(H) and β ∈ Char(L), it is easy to check that α · (β
xH) =

(α
y
L
· β)
xH . Hence

X (ϕ; τ)
xG≀H
G≀L :=

(
ϕ̃
yG≀H
G≀L · InflG≀L

L τ
)xG≀H

G≀L = ϕ̃ ·
(

InflG≀L
L (τ)

)xG≀H
G≀L .

But induction and inflation of characters commute, so
(

InflG≀L
L (τ)

)xG≀H
G≀L =

InflG≀H
H (τ

xH
L

). Thus X (ϕ; τ)
xG≀H
G≀L = ϕ̃ · InflG≀H

H (τ
xH
L

) = X (ϕ; τ
xH
L

), as claimed. □

Furthermore, if ϕ ∈ Irr(G) then Gallagher’s Theorem [17, Corollary 6.17] gives
Irr(G ≀H | ϕ×n) = {X (ϕ;ψ) | ψ ∈ Irr(H)}, where Irr(G ≀H | ϕ×n) := {χ ∈ Irr(G ≀H) |
⟨χ
y
G×n , ϕ

×n⟩ ̸= 0}. For a full description of Irr(G ≀ H), we refer the reader to [19,
Chapter 4]; in the case H = S2, we use the notation below.
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Notation 2.5. Let G be a finite group and suppose Irr(G) = {χi | i ∈ I}. Then

Irr(G ≀ S2) = {ψi,j | i ̸= j ∈ I} ⊔ {ψi,i+ , ψi,i− | i ∈ I}

where

ψi,j := (χi × χj)
xG≀S2

G×G = ψj,i, ψi,i+ := X (χi;1S2) and ψi,i− := X (χi; sgnS2).

It will be useful to describe the decomposition of the permutation character
1H≀S2

xG≀S2 , for finite groups H ⩽ G.

Lemma 2.6. Let G be a finite group and let Irr(G) and Irr(G≀S2) be as in Notation 2.5.
Let H ⩽ G and let π := 1H

xG. Then π̃ := 1H≀S2

xG≀S2 decomposes into irreducible
constituents with multiplicities given by

⟨π̃, ψi,j⟩ = ⟨π, χi⟩ · ⟨π, χj⟩ and ⟨π̃, ψi,i± ⟩ = 1
2 ·
(
⟨π, χi⟩2 ± ⟨π, χi⟩

)
.

Proof. The first part follows from Mackey’s theorem applied to the subgroups G×G
and H ≀S2 of G ≀S2: since (G×G) · (H ≀S2) = G ≀S2 and (G×G)∩ (H ≀S2) = H ×H,
we have

⟨π̃, ψi,j⟩ = ⟨1H≀S2

xG≀S2
y
G×G, χ

i × χj⟩ = ⟨1H×H
xG×G

, χi × χj⟩ = ⟨π, χi⟩ · ⟨π, χj⟩.

Next, we use the wreath product character formula [19, Lemma 4.3.9] to obtain

ψi,i± (g1, g2; 1) = χi(g1) ·χi(g2) and ψi,i±
(
g1, g2; (1, 2)

)
= ±χi(g1g2) ∀ g1, g2 ∈ G.

Hence

⟨π̃, ψi,i± ⟩ = ⟨1H≀S2 , ψ
i,i
±
y
H≀S2
⟩

= 1
|H ≀ S2|

∑
h1,h2∈H

(
χi(h1) · χi(h2)± χi(h1h2)

)
= 1

2
(
⟨π, χi⟩2 ± ⟨π, χi⟩

)
as claimed. □

To describe Sylow subgroups of symmetric groups, fix a prime p and let n ∈ N.
Let Pn denote a Sylow p-subgroup of Sn. Clearly P1 is trivial while Pp is cyclic of
order p. More generally, Ppk = (Ppk−1)×p ⋊ Pp = Ppk−1 ≀ Pp ∼= Pp ≀ · · · ≀ Pp (k-fold
wreath product) for all k ∈ N. Now suppose n ∈ N and let n =

∑k
i=1 aip

ni be its
p-adic expansion, i.e. n1 > · · · > nk ⩾ 0 and ai ∈ {1, 2, . . . , p − 1} for all i. Then
Pn ∼= (Ppn1 )×a1 × · · · × (Ppnk )×ak .

To fix a convention for denoting such wreath products involving Sylow subgroups
of symmetric groups more generally, we have the following.

Notation 2.7. Let G be a finite group and p a prime. We use the convention that Pn
will always be viewed as a subgroup of Sn in the notation G ≀ Pn, that is, G ≀ Pn is a
semi-direct product G×n ⋊ Pn.

Remark 2.8. Suppose p = 2 and n = 2n1 + · · · + 2nk for some n1 > · · · > nk ⩾ 0.
With the convention of Notation 2.7, we observe that

P2n ∼= P2n1+1 × · · · × P2nk+1 ∼= (P2 ≀ P2n1 )× · · · × (P2 ≀ P2nk )
∼= P2 ≀ (P2n1 × · · · × P2nk ) ∼= P2 ≀ Pn,

viewing P2n1 × · · · × P2nk
∼= Pn naturally as a subgroup of Sn. Inductively, we also

have P2tn
∼= P2t ≀ Pn for all t ∈ N. On the other hand, we clarify for example that

P2 ≀ P3 ̸∼= P2 ≀ P2 in this notation, even though P3 ∼= P2.
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We now return to an arbitrary prime p. Following the notation introduced in [14],
given χ ∈ Irr(Sn) and ϕ ∈ Irr(Pn), the Sylow branching coefficient Zχϕ denotes the
non-negative integer

Zχϕ := ⟨χ
y
Pn
, ϕ⟩.

In this article, we will be particularly interested in the case where ϕ = 1Pn
, and

abbreviate Zχ
1Pn

to Zχ. Moreover, if χ = χλ for a partition λ, then we shorten Zχ
λ

to Zλ.
We record one more lemma which will be useful later.

Lemma 2.9. Let A and B be finite groups, and let n ∈ N. Then

1

xA≀Sn×B≀Sn

(A×B)≀Sn
=

∑
ϕ∈Irr(Sn)

X (1A;ϕ) · X (1B ;ϕ).

Proof. Let ϕ ∈ Irr(Sn). By Frobenius reciprocity,

⟨1
xA≀Sn×B≀Sn

(A×B)≀Sn
,X (1A;ϕ) · X (1B ;ϕ)⟩ = ⟨1,

(
X (1A;ϕ) · X (1B ;ϕ)

)y
(A×B)≀Sn

⟩

= 1
|(A×B)≀Sn|

∑
X (1A;ϕ)(x) · X (1B ;ϕ)(x),

where the sum runs over all x ∈ (A×B) ≀Sn. But this equals |A|n·|B|n

|(A×B)≀Sn|
∑
g∈Sn

ϕ(g)2

by [19, Lemma 4.3.9]. As symmetric group characters are real-valued (in fact, integer-
valued), this simplifies to 1

|Sn|
∑
g∈Sn

ϕ(g) · ϕ(g) = ⟨ϕ, ϕ⟩ = 1. □

2.3. Plethysms and deflations. When ϕ and ψ are characters of symmetric
groups, the characters X (ϕ;ψ) introduced above are closely related to plethysms of
Schur functions: we give a brief description here and refer the reader to [7, 23, 29]
for further detail. Let sλ denote the Schur function corresponding to the partition λ,
and ◦ the plethystic product of symmetric functions. Using the characteristic map
(see e.g. [29, Chapter 7]) between class functions of finite symmetric groups and the
ring of symmetric functions, we have the correspondence

X (χν ;χλ)
xS|ν|·|λ|

S|ν|≀S|λ|
←→ sλ ◦ sν

for all partitions λ and ν. Therefore the plethysm coefficient aµλ,ν satisfies

(3) aµλ,ν = ⟨sλ ◦ sν , sµ⟩ = ⟨X (χν ;χλ)
xS|ν|·|λ|

S|ν|≀S|λ|
, χµ⟩

for all partitions µ (and note that this is zero if |µ| ̸= |ν| · |λ|). We also introduce
plethysm coefficients indexed by skew shapes: for partitions β ⊆ α, δ ⊆ γ and ν,

(4) a
α/β
γ/δ,ν

:=
∑

η⊢|γ|−|δ|
ζ⊢|α|−|β|

cγη,δ · c
α
ζ,β · aζη,ν .

In other words, if ϕ and θ are skew shapes and ν is any partition, then aϕθ,ν =
⟨X (χν ;χθ)

xS|ν|·|θ|

S|ν|≀S|θ|
, χϕ⟩, extending the equality in (3). We also remark that if ζ and η

are partitions, then aζη,∅ = 1 if ζ = ∅ and η = (n) for some n, and aζη,∅ = 0 otherwise.
A well known symmetry property of plethysm coefficients involving the conjugation

involution is the following (see e.g. [23, Ex. 1, Ch. I.8]):

Lemma 2.10. Let λ, µ and ν be partitions. Then

aνλ,µ = aν
′

λ∗,µ′ , where λ∗ :=
{
λ if |µ| is even,
λ′ if |µ| is odd.
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Character deflations were introduced in [9, Definition 1.1], and used to prove re-
sults generalising the Murnaghan–Nakayama rule for computing symmetric group
character values and (special cases of) the Littlewood–Richardson rule, as well as to
verify new cases of the long-standing Foulkes’ Conjecture. We observe that they give
another language in which to describe certain plethysm coefficients. We first record
the definition of these deflations in notation which we have introduced thus far.

Definition 2.11. Let m,n ∈ N and θ ∈ Irr(Sm). Let ξ ∈ Irr(Sm ≀ Sn). Then

DefθSn
(ξ) :=

{
χν if ξ = X (θ;χν) for some ν ⊢ n,
0 otherwise,

which then extends linearly to all class functions of Sm ≀ Sn. If χ is a class function
of Smn then set

DefresθSn
(χ) := DefθSn

(χ
y
Sm≀Sn

).
When n ∈ N is fixed and γ ⊢ mn for some m ∈ N, we use the notation

δγ := Defres1Sm

Sn
(χγ) = Def1Sm

Sn
(χγ
ySmn

Sm≀Sn
).

In this article, we will sometimes refer to δγ as the deflation of γ with respect to Sn
(where the m is understood from |γ|/n and we suppress m from the notation).

In particular, if λ ⊢ n then we have that aγλ,(m) = ⟨δγ , χλ⟩. This relation between
plethysm coefficients and deflations can immediately be extended to skew shapes
using Littlewood–Richardson coefficients. Namely, if α, β, ν, λ are partitions such that
|α| − |β| = n and |ν| − |λ| = mn, then we may define δν/λ := Defres1Sm

Sn
(χν/λ) =

Def1Sm

Sn
(χν/λ

ySmn

Sm≀Sn
). Then χα/β =

∑
σ c

α
β,σ · χσ and δν/λ =

∑
τ c

ν
λ,τ · δτ give

(5) a
ν/λ
α/β,(m) = ⟨δν/λ, χα/β⟩.

The following is a straightforward result on plethysm coefficients involving ‘tall’
partitions. We include a proof for convenience.

Lemma 2.12. Let m,n ∈ N, λ ⊢ mn and ν ⊢ n. If l(λ) > n, then aλν,(m) = 0.

Proof. Let a := aλν,(m) = ⟨χλ
ySmn

Sm≀Sn
,X (χ(m);χν)⟩. Let Y := (Sm)×n ⩽ Sm ≀ Sn. Let

X := X (χ(m);χν) and write χλ
y
Sm≀Sn

= aX + ∆ for some ∆ ∈ Char(Sm ≀ Sn). Since
X
y
Y

= χν(1) · (χ(m))n = χν(1) · 1Y , it follows that ⟨χλ
y
Y
,1Y ⟩ ⩾ ⟨a · X

y
Y
,1Y ⟩ =

a · χν(1). But by the Littlewood–Richardson rule, l(λ) > n implies ⟨χλ
y
Y
,1Y ⟩ = 0

since 1Y = (χ(m))n, which gives a = 0. □

Finally, we record the following result of Thrall [31]. We note that a partition is
even if all of its parts are of even size.

Proposition 2.13. Let n ∈ N. Then
(i) s(n) ◦ s(2) =

∑
λ sλ where the sum runs over all even partitions λ ⊢ 2n, and

(ii) s(2) ◦ s(n) =
∑
µ sµ where the sum runs over all even partitions µ ⊢ 2n with

at most two parts.

In other words, aλ(n),(2) = 1 if λ ⊢ 2n is even and aλ(n),(2) = 0 otherwise, while
aµ(2),(n) = 1 if µ ⊢ 2n is even and l(µ) ⩽ 2, and aµ(2),(n) = 0 otherwise.

3. Sylow branching coefficients for the prime 2
Throughout Section 3, we fix p = 2 and consider Sylow branching coefficients Zλ =
Zχ

λ

1Pn
for symmetric groups for the prime 2.
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3.1. Special shapes. In this section we provide a survey of facts involving Zλ for
partitions λ of various ‘special’ shapes: namely when λ is an even partition; when l(λ)
is large; when λ has at most 2 columns; when λ is a hook; and when λ is of the form
(a, 2, 1b).

In general, the strategy is to first consider the case when λ ⊢ n = 2k and to
induct on k, before considering the case of general n ∈ N. The results follow from a
combination of elementary applications of the Littlewood–Richardson rule, Mackey’s
theorem and known results on character restrictions for symmetric groups. We include
full proofs for the convenience of the reader.
Lemma 3.1. Let λ be any partition. Then Z2λ > 0.
Proof. Suppose λ ⊢ n. Then Z2λ ⩾ ⟨χ2λ

y
S2≀Sn

,1S2≀Sn⟩ = 1 since P2n ∼= P2 ≀ Pn ⩽

S2 ≀ Sn, where the equality follows from 1

xS2n

S2≀Sn
=
∑
µ⊢n χ

2µ by Proposition 2.13. □

Lemma 3.2. Let n ∈ N and λ ⊢ n. If n is even and l(λ) > n
2 , then Zλ = 0. If n is odd

and l(λ) > n+1
2 , then Zλ = 0.

Proof. (i) First we consider the case n = 2k and proceed by induction on k, noting
that the claim is clear for small k ∈ N. Suppose µ ⊢ 2k with l(µ) > 2k−1 and Zµ > 0.
Let S := S2k , P := P2k = P2k−1 ≀ P2 ⩽ S and Q = P2k−1 × P2k−1 ⩽ P . Let Y be the
subgroup of S isomorphic to S2k−1 × S2k−1 containing Q.

Since Zµ > 0, then considering χµ
y
Q

= (χµ
y
P

)
y
Q

gives ⟨χµ
y
Q
,1Q⟩ > 0. On the

other hand, by considering χµ
y
Q

= (χµ
y
Y

)
y
Q

we obtain

⟨χµ
y
Q
,1Q⟩ =

∑
α,β⊢2k−1

cµα,β · Z
α · Zβ .

If cµα,β > 0, then by the Littlewood–Richardson rule we must have l(µ) ⩽ l(α) + l(β),
and so either l(α) > 2k−2 or l(β) > 2k−2. But then by the inductive hypothesis
Zα = 0 or Zβ = 0 for each such cµα,β > 0, giving ⟨χµ

y
Q
,1Q⟩ = 0, a contradiction.

(ii) Now consider general n ∈ N. Suppose n = 2n1 + · · ·+ 2nk with n1 > · · · > nk ⩾ 0
and λ ⊢ n. Then

Zλ =
∑

µi⊢2ni

cλµ1,...,µk · Zµ
1
· · ·Zµ

k

.

But cλµ1,...,µk > 0 implies l(λ) ⩽ l(µ1) + · · · + l(µk). If n is even and l(λ) > n
2 , then

there exists 1 ⩽ i ⩽ k such that l(µi) > 2ni−1, and so Zλ = 0 follows from case (i) as
Zµ

i = 0. If n is odd and l(λ) > n+1
2 , then l(µ1) + · · ·+ l(µk−1) + 1 ⩾ n+1

2 + 1 and so
there exists 1 ⩽ i ⩽ k − 1 such that l(µi) > 2ni−1. That Zλ = 0 follows from case (i)
similarly. □

Remark 3.3. The bounds on the number of parts of λ cannot be improved. For
instance, from Lemma 3.4 below we see that λ = (2, 2, . . . , 2, ε) ⊢ n where ε ∈ {0, 1}
satisfies Zλ = 1 and l(λ) = n

2 if n is even, respectively l(λ) = n+1
2 if n is odd.

Lemma 3.4. Let λ be a partition with at most two columns. Then Zλ = 0 unless
λ = (2, 2, . . . , 2, ε) where ε ∈ {0, 1}, in which case Zλ = 1.
Proof. First suppose |λ| = 2k where k ∈ N0 and proceed by induction on k. Clearly
the claim holds for small k, so now suppose λ ⊢ 2k+1 and λ1 ⩽ 2. We immediately
deduce from Lemma 3.2 that if λ ̸= (22k ) then Zλ = 0, so we may suppose λ = (22k ).
We have that

Zλ ⩽ ⟨χλ
y
P2k ×P2k

,1P2k ×P2k
⟩ =

∑
µ,ν⊢2k

cλµ,ν · Zµ · Zν .
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Let α := (22k−1) ⊢ 2k. If cλµ,ν > 0, then µ1, ν1 ⩽ λ1 ⩽ 2. By the inductive hypothesis,
Zµ = δµ,α and Zν = δν,α (here δ denotes the Kronecker delta). Also cλα,α = 1, so
we have shown that Zλ ⩽ 1. On the other hand, Zλ > 0 by Proposition 2.13, so we
conclude that Zλ = 1.

Next, we consider the general case, i.e. suppose λ ⊢ n = 2n1 + · · · + 2nk with
n1 > · · · > nk ⩾ 0 and λ1 ⩽ 2. Then

Zλ =
∑

µi⊢2ni

cλµ1,...,µk · Zµ
1
· · ·Zµ

k

.

If cλµ1,...,µk > 0 then each µi also has at most two columns, in which case Zµi = 1
if µi = (22ni−1), or µi = (1) if ni = 0, or Zµi = 0 otherwise. Hence Zλ = 1 if
λ = (2, . . . , 2, ε) where ε = δnk,0, and Zλ = 0 otherwise, as claimed. □

We deduce the values of Zλ for hooks λ from [11].

Proposition 3.5. Let n ∈ N and let λ = (n− t, 1t) for some 0 ⩽ t ⩽ n− 1. Suppose
n = 2n1 + · · ·+ 2nk where n1 > · · · > nk ⩾ 0. Then Zλ =

(
k−1
t

)
.

Proof. The case of n = 2j for j ∈ N0 follows immediately from [11, Theorem 1.1],
since Irr2′(S2j ) := {χλ ∈ Irr(S2j ) | 2 ∤ χλ(1)} consists precisely of those χλ where
λ ⊢ 2j is a hook. In particular, Z(n) = 1 and Zλ = 0 for all hooks λ ̸= (n) when
n = 2j . Thus for arbitrary n ∈ N and λ = (n− t, 1t) we have that

Zλ =
∑

µi⊢2ni

cλµ1,...,µk · Zµ
1
· · ·Zµ

k

= cλ(2n1 ),...,(2nk ) =
(
k−1
t

)
where the final equality follows from Theorem 2.3. □

Lemma 3.6. Let k ∈ N⩾2. If λ = (2k − i, 2, 1i−2) ⊢ 2k with 2 ⩽ i ⩽ 2k − 2, then
Zλ =

(
k−1
k−i
)
.

Proof. We proceed by induction on k, and observe that the assertion holds for small
k by direct computation. Now suppose k > 2 and let λ = (2k+1 − i, 2, 1i−2) ⊢ 2k+1

for some 2 ⩽ i ⩽ 2k+1 − 2. Call S := S2k+1 and P := P2k+1 ⩽ S. Let W := S2k ≀ S2
be such that P ⩽ W ⩽ S and set Y := S2k × S2k and Q := P2k × P2k such that
Q ⩽ Y ⩽W and Q ⩽ P . Then

Zλ = ⟨χλ
yS
W
,1P

xW ⟩ =
∑

ψ∈Irr(W )

⟨χλ
yS
W
, ψ⟩ · ⟨1P

xW , ψ⟩.
Using Notation 2.5 with G = S2k and I = P(2k), we have that

Irr(W ) = {ψµ,ν = ψν,µ | µ ̸= ν ∈ P(2k)} ⊔ {ψµ,µ± | µ ∈ P(2k)}.

Suppose ψ ∈ Irr(W ) is such that ⟨χλ
yS
W
, ψ⟩ · ⟨1P

xW , ψ⟩ ≠ 0.

• If ψ = ψµ,ν for some µ ̸= ν, then ⟨χλ
yS
W
, ψ⟩ = ⟨χλ

yS
Y
, χµ×χν⟩ = cλµ,ν . Then

cλµ,ν ̸= 0 implies that µ, ν ⊆ λ, and hence each of µ and ν is either a hook or
of the form (a, 2, 1b) ⊢ 2k for some a ⩾ 2 and b ⩾ 0. Moreover, at least one of
µ and ν must be a hook, so without loss of generality we may assume that µ
is a hook.

If ν = (2k−j, 2, 1j−2) for some 2 ⩽ j ⩽ 2k−2, then by Lemma 2.6 we have
⟨1P

xW , ψ⟩ = Zµ · Zν . By assumption, ⟨1P
xW , ψ⟩ ≠ 0 and hence Zµ ̸= 0,

from which we deduce that µ is the trivial hook (2k) ⊢ 2k and Zµ = 1 using
Proposition 3.5. If ν and µ are both hooks then similarly we deduce from
Zµ · Zν ̸= 0 that µ = ν = (2k) ⊢ 2k, a contradiction.
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• If ψ = ψµ,µ± for some µ and choice of sign ±, then ⟨χλ
yS
W
, ψ⟩ =

⟨χλ
yS
W
,X (χµ; θ)⟩ for some θ ∈ {χ(2), χ(12)}. In either case ⟨χλ

yS
W
,X (χµ; θ)⟩ ≠

0 implies that cλµ,µ ̸= 0, hence µ must be a hook. By Lemma 2.6,
⟨1P

xW , ψ⟩ = 1
2 · ((Z

µ)2 ± Zµ). By assumption, ⟨1P
xW , ψ⟩ ≠ 0 and hence

Zµ ̸= 0, from which we deduce that µ = (2k) ⊢ 2k using Proposition 3.5.
Then from cλ(2k),(2k) ̸= 0 we deduce that i = 2, and also since Z(2k) = 1 we
must have θ = χ(2).

As a result, for i ⩾ 3 we observe from the inductive hypothesis that

Zλ =
2k−2∑
j=2

cλ(2k),(2k−j,2,1j−2) · Z
(2k−j,2,1j−2) =

∑
j∈{i−1,i}

Z(2k−j,2,1j−2)

=
(

k−1
k−(i−1)

)
+
(
k−1
i−1
)

=
((k+1)−1

(k+1)−i
)
.

Finally, suppose i = 2 so λ = (2k+1 − 2, 2). From above, we observe that

Zλ =
2k−2∑
j=2

cλ(2k),(2k−j,2,1j−2) · Z
(2k−j,2,1j−2) + ⟨χλ

yS
W
,X (χ(2k);χ(2))⟩

= Z(2k−2,2) + ⟨χλ
yS
W
,X (χ(2k);χ(2))⟩.

By the inductive hypothesis, Z(2k−2,2) =
(
k−1
k−2
)

= k − 1, while by [7, Theorem 1.2],

⟨χ(2k+1−2,2)yS
W
,X (χ(2k);χ(2))⟩ = ⟨χ(2,2)yS4

S2≀S2
,X (χ(2);χ(2))⟩ = 1,

and so Zλ = k =
((k+1)−1

(k+1)−2
)

as required. □

Remark 3.7. In Section 6, we give an alternative proof of Lemma 3.6 using plethysms
(see Corollary 6.17), and discuss the case of general |λ| ∈ N in Remark 6.18.

3.2. Positivity of Sylow branching coefficients. The main aim of this section
is to prove Theorem C. We recall the definition of the operation ⋆ was given in
Section 2.1.

Lemma 3.8. Let n ∈ N. Suppose A1, A2 ⊆ {λ ⊢ n | Zλ ⩾ 3}. Then A1 ⋆ A2 ⊆ {µ ⊢
2n | Zµ ⩾ 3}.

Proof. We follow the notation of Lemma 2.6, letting G = Sn, H = Pn, π := 1Pn

xSn

and π̃ = 1P2n

xSn≀S2 . The irreducible characters of G are indexed by I = P(n). Let
µ ∈ A1 ⋆A2 and take λ1 ∈ A1, λ2 ∈ A2 such that cµλ1,λ2

> 0. By Frobenius reciprocity,

Zµ = ⟨π̃, χµ
yS2n

Sn≀S2
⟩.

Suppose first that λ1 ̸= λ2. In this case, ψλ1,λ2 = (χλ1 × χλ2)
xSn≀S2 is an irreducible

constituent of χµ
yS2n

Sn≀S2
, because ⟨ψλ1,λ2 , χµ

yS2n

Sn≀S2
⟩ = cµλ1,λ2

. Thus by Lemma 2.6,

Zµ = ⟨π̃, χµ
yS2n

Sn≀S2
⟩ ⩾ ⟨π̃, ψλ1,λ2⟩ = ⟨π, χλ1⟩ · ⟨π, χλ2⟩ = Zλ1 · Zλ2 ⩾ 9 > 3.

Now suppose that λ1 = λ2 =: λ. Then at least one of ψλ,λ+ and ψλ,λ− is a constituent
of χµ

yS2n

Sn≀S2
, since ⟨ψλ,λ+ + ψλ,λ− , χµ

yS2n

Sn≀S2
⟩ = cµλ,λ. Thus by Lemma 2.6,

Zµ ⩾ ⟨π̃, ψλ,λ+ ⟩ = 1
2
(
(Zλ)2 + Zλ

)
or Zµ ⩾ ⟨π̃, ψλ,λ− ⟩ = 1

2
(
(Zλ)2 − Zλ

)
and so Zµ ⩾ 3 in either case as Zλ ⩾ 3. □
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Definition 3.9. Let n,w, h ∈ N. We define Bw,h(n) := {λ ⊢ n | λ1 ⩽ w, l(λ) ⩽ h}.

In other words, Bw,h(n) consists of those partitions of n whose Young diagram is
contained inside a w×h rectangle, i.e. the Young diagram of (wh), a rectangle of width
w and height h. Below, we let ⋆k denote a k-fold ⋆-product. That is, A⋆k = A⋆A⋆· · ·⋆A
(k times).

Proposition 3.10. Let n ⩾ 4 and k ⩾ 2 be natural numbers. Then
{(2n− 2, 2)}⋆k ⊇ B(k+1)n,k(2kn).

The following observation will be used throughout the proof of Proposition 3.10.

Lemma 3.11. Let n ⩾ 2 be a natural number and suppose that a skew shape λ/µ of
size 2n is such that

• no two nodes of [λ/µ] lie in the same column, and
• [λ/µ] is not (a translation of ) [(2n)], nor a disjoint union of [(2n − 1)] and

[(1)].
Then, [λ/µ] has a Littlewood–Richardson filling of type (2n− 2, 2).

Proof of Proposition 3.10. We proceed by induction on k, with base cases k = 2 and
k = 3 holding by direct application of the Littlewood–Richardson (LR) rule. For the
inductive step, suppose k ⩾ 4 and let µ = (µ1, µ2, . . . , µl(µ)) ∈ B(k+1)n,k(2kn). It
suffices to show that there exist either

(a) µ̃ ∈ Bkn,k−1(2(k − 1)n) such that µ̃ ⊆ µ and an LR filling of [µ/µ̃] of type
(2n− 2, 2), or

(b) µ̃ ∈ B(k−1)n,k−2(2(k−2)n) such that µ̃ ⊆ µ and an LR filling of [µ/µ̃] of some
type ν ∈ {(2n− 2, 2)} ⋆ {(2n− 2, 2)}.

Observe first that µ cannot be a hook as |µ| = 2kn and µ1 ⩽ (k + 1)n, l(µ) ⩽ k.
Moreover, we must have µ2 ⩽ kn and so the number of nodes of [µ] lying outside of
the rectangle [(kn)k−1] equals max{µ1 − kn, 0} + µk and is at most 2n. Indeed, this
is immediate if µ1 ⩽ kn, and if µ1 > kn then we use the inequalities µ1 ⩽ (k + 1)n
and µ1 + (k − 1)µk ⩽ 2kn to obtain
µ1−kn+µk = k−2

k−1 ·µ1 + 1
k−1 (µ1 + (k− 1)µk)−kn ⩽ k−2

k−1 · (k+ 1)n+ 2kn
k−1 −kn = 2n.

In order to show that there exist an appropriate partition µ̃ and an LR filling as
in either (a) or (b), we consider the following four cases (i)–(iv), depending on the
manner in which [µ] lies outside of the rectangle [(kn)k−1] (if at all). Examples of
each of the four cases are illustrated in Figures 1 to 4, for n = k = 4. In each figure,
the shaded nodes indicate [µ/µ̃], the dotted lines outline the rectangle [((k + 1)n)k],
and the dashed lines outline the rectangle [(kn)k−1].
Case (i): µ1 ⩽ kn and l(µ) ⩽ k − 1. The assumptions imply that (2n − 2, 2) ⊆ µ,
and so [µ/(2n − 2, 2)] has an LR filling of some type µ̃ ∈ Bkn,k−1(2(k − 1)n). Since
cµµ̃,(2n−2,2) = cµ(2n−2,2),µ̃ > 0, we conclude that (a) holds. An example of case (i) is
illustrated in Figure 1.
Case (ii): µ1 > kn and l(µ) ⩽ k−1. Since it must be that µ2 < kn, the nodes of [µ]
lying outside of the rectangle [(kn)k−1] all lie in the first row. We choose µ̃ ⊢ |µ| − 2n
with µ̃ ⊆ µ so that the skew shape [µ/µ̃] contains these µ1−kn nodes. It is clear that
µ̃ can be chosen such that the conditions of Lemma 3.11 are also satisfied, since µ is
not a hook. Hence we obtain µ̃ ∈ Bkn,k−1(2(k − 1)n) as required in (a); see Figure 2,
for example.
Case (iii): µ1 ⩽ kn and l(µ) > k − 1. In this case, the nodes of [µ] outside of the
rectangle [(kn)k−1] are precisely the µk nodes in the kth row. Letting m = µk, we
have that 1 ⩽ m ⩽ 2n as |µ| = 2kn.
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Figure 1. Example of case (i) with n = k = 4 and µ = (14, 11, 7) ⊢ 32. The
dotted lines outline the rectangle [((k+ 1)n)k] = [(20)4], the dashed lines outline
the rectangle [(kn)k−1] = [(16)3], and the shaded nodes indicate [µ/µ̃] where we
have chosen µ̃ = (9, 9, 6).

Figure 2. Example of case (ii) with n = k = 4 and µ = (18, 9, 5) ⊢ 32, where we
have chosen µ̃ = (16, 8).

Figure 3. Example of case (iii) with n = k = 4, µ = (10, 8, 7, 7) ⊢ 32 and
m = µk = 2n− 1, where we have chosen µ̃ = (8, 8).

We first assume that m ⩽ 2n− 2. It is straightforward to choose µ̃ ⊢ |µ| − 2n with
µ̃ ⊆ µ so that [µ/µ̃] contains the m nodes in the kth row and satisfies the conditions
in Lemma 3.11. We are then done as in case (ii), as this shows that (a) holds.

Now suppose instead that m = 2n − 1. Then the nodes of [µ] outside of the
rectangle [((k − 1)n)k−2] are precisely the x := µk−1 + µk nodes lying in the k − 1
and kth rows. In particular, µk−1 ∈ {2n − 1, 2n} since if µk−1 ⩾ 2n + 1 then |µ| ⩾
(k− 1)(2n+ 1) + 2n− 1 > 2kn, a contradiction. If µk−1 = 2n− 1 then we can choose
µ̃ ⊢ |µ| − 4n with µ̃ ⊆ µ so that [µ/µ̃] consists of the x = 4n − 2 ‘outside’ nodes,
and two more nodes which can be chosen to lie in different columns to the right of
column 2n− 1 as µ1 > 2n. If µk−1 = 2n then µ = (2n+ 1, (2n)k−2, 2n− 1), so we can
take µ̃ = ((2n)k−2). In both instances we observe that [µ/µ̃] has an LR filling of type
(2n+ 1, 2n− 1) ∈ {(2n− 2, 2)} ⋆ {(2n− 2, 2)}, and so (b) holds. An example is given
in Figure 3.

Finally, suppose m = 2n. Then µ = ((2n)k), for which we can take µ̃ = ((2n)k−2)
and [µ/µ̃] has a (unique) LR filling of type (2n, 2n) ∈ {(2n − 2, 2)} ⋆ {(2n − 2, 2)},
and so again (b) holds.
Case (iv): µ1 > kn and l(µ) > k − 1. The nodes of [µ] outside of the rectangle
[(kn)k−1] lie in the first and kth rows. As in case (ii), we can choose µ̃ ⊢ |µ| − 2n
with µ̃ ⊆ µ so that [µ/µ̃] contains all µ1 − kn + µk of these nodes and satisfies the
conditions of Lemma 3.11. Thus (a) holds, as desired (see Figure 4, for example). □

Corollary 3.12. For each k ∈ N⩾3, we have B8(k+1),k(16k) ⊆ {µ ⊢ 16k | Zµ ⩾ 3}.

Proof. We note that Z(14,2) = 3 and so iterated application of Lemma 3.8 shows that
for each r ∈ N0, (14, 2)⋆2r

⊆ {µ ⊢ 16 · 2r | Zµ ⩾ 3}. Now, suppose k = 2n1 + · · ·+ 2nt

where n1 > · · · > nt ⩾ 0. Since Pk ∼= P2n1 × · · · × P2nt , we obtain

(14, 2)⋆k ⊆ {µ ⊢ 16 ·2n1 | Zµ ⩾ 3}⋆ · · ·⋆{µ ⊢ 16 ·2nt | Zµ ⩾ 3} ⊆ {µ ⊢ 16k | Zµ ⩾ 3}.
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Figure 4. Example of case (iv) with n = k = 4 and µ = (19, 9, 3, 2) ⊢ 32, where
we have chosen µ̃ = (16, 6, 2).

The assertion then follows from Proposition 3.10. □

Proof of Theorem C. By [8, (1.4)], we have

lim
k→∞

|B8(k+1),k(16k)|
|P(16k)| = 1.

Now, for each n ∈ N, write n = 16k + r where k := ⌊ n16⌋ and 0 ⩽ r < 16. By
the Littlewood–Richardson rule, we have Zµ+(r) ⩾ Zµ for each µ ⊢ 16k. Hence
|{λ ⊢ n | Zλ > 0}| ⩾ |{µ ⊢ 16k | Zµ ⩾ 3}|.
Moreover, the partition function |P(n)| is subexponential, so

lim
n→∞

|P(16k)|
|P(n)| = 1.

Putting these together with Corollary 3.12,

|{λ ⊢ n | Zλ > 0}|
|P(n)| ⩾

|P(16k)|
|P(n)| ·

|{µ ⊢ 16k | Zµ ⩾ 3}|
|P(16k)| ⩾

|P(16k)|
|P(n)| ·

|B8(k+1),k(16k)|
|P(16k)| → 1

as n→∞. □

Example 3.13. We consider those partitions µ ⊢ 32 such that Zµ = 0. We note that
|P(32)| = 8349, and |{µ ⊢ 32 | Zµ = 0}| = 879. Of these 879 partitions, we can
identify the following using the results in Section 3.1 (note the different properties
are not mutually exclusive):

Property # of such µ ⊢ 32 Zµ = 0
l(µ) > 16 684 from Lem 3.2
µ has ⩽ 2 columns 16 i.e. µ = (2a, 132−2a), 0 ⩽ a ⩽ 15 from Lem 3.4
µ is a non-trivial hook 31 i.e. µ = (32− l, 1l), 1 ⩽ l ⩽ 31 from Prop 3.5
µ is of form (a, 2, 1b) 25 for 2 ⩽ a ⩽ 26 from Lem 3.6

In total, the above partitions cover 710 out of 879 of those µ ⊢ 32 such that Zµ = 0.
In the next section, we move on to the second half of this article centering on

plethysm coefficients. Using applications of plethysms to Sylow branching coefficients
in Section 6, we will in fact be able to identify almost all of the remaining 169 parti-
tions; see Example 6.19.

4. Plethysms and character deflations
We record a result of Briand–Orellana–Rosas on plethysm coefficients from which
we can deduce the k = 0 case of Theorem A (Theorem 4.4), as well as resolve two
conjectures of de Boeck in Section 4.1 (Theorems 4.5 and 4.6).

Definition 4.1. Let λ be a partition and w, h ∈ N0 such that λ ⊆ (wh). Then □w,h(λ)
denotes the partition of size wh−|λ| whose Young diagram is the 180◦ rotation of the
complement of the Young diagram of λ in a rectangle of width w and height h.
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Theorem 4.2 ([2, Theorem 12]). Let m,n ∈ N0 and let λ, µ and ν be partitions such
that µ ⊆ (wh) and l(ν) ⩽ h. If ν ⊆

(
(w|λ|)h

)
then

aνλ,µ = a
□w|λ|,h(ν)
λ,□w,h(µ) .

Otherwise aνλ,µ = 0.

Let m,n ∈ N and µ ⊢ mn. We recall the definition of δµ = Def1Sm

Sn
(χµ
ySmn

Sm≀Sn
), the

deflation of µ with respect to Sn, from Definition 2.11.

Proposition 4.3. Fix n ∈ N and m1,m2 ∈ N. Let µ1 ⊢ m1n and suppose µ1 ⊆(
(m1 +m2)n

)
. Set µ2 = □m1+m2,n(µ1) ⊢ m2n. Then

δµ1 =
{
δµ2 if m1 +m2 is even,
sgnSn

· δµ2 if m1 +m2 is odd,

where δµi refers to the deflation of µi with respect to Sn, for i ∈ {1, 2}.

Proof. Since (1m1) ⊆ (1m1+m2) and l(µ′
1) ⩽ m1 +m2, as well as µ′

1 ⊆
(
(1 · |λ|)m1+m2

)
,

we see from Theorem 4.2 that

a
µ′

1
λ,(1m1 ) = a

□n,m1+m2 (µ′
1)

λ,□1,m1+m2

(
(1m1 )

) = a
µ′

2
λ,(1m2 ) ∀ λ ⊢ n.

Applying Lemma 2.10 and observing that λ 7→ λ′ is an involution on the set of
partitions of n, we obtain

aµ1
λ,(m1) = aµ2

λ∗,(m2)

for all λ ⊢ n, where λ∗ denotes λ (resp. λ′) if m1 + m2 is even (resp. odd). Since
⟨δµ, χλ⟩ = aµλ,(m), we have shown that

⟨δµ1 , χλ⟩ =
{
⟨δµ2 , χλ⟩ if m1 +m2 is even,
⟨δµ2 , χλ

′⟩ if m1 +m2 is odd.

Since χλ′ = sgnSn
· χλ, we have δµ1 = δµ2 if m1 +m2 is even (resp. δµ1 = sgnSn

· δµ2

if m1 +m2 is odd), as required. □

The following result was first proven in [4, Proposition 1.16], and is a special case
of [7, Theorem 1.1]. It also forms the k = 0 case of Theorem A, since

∑
α,β⊢0

(
a
α/∅
β′,(m) ·

a
µ̂/α
λ/β,(m−1)

)
= aµ̂λ,(m−1). We give a short proof in the language of deflations.

Theorem 4.4. Let m,n ∈ N, λ ⊢ mn and ν ⊢ n. Then aλν,(m) = a
λ+(1n)
ν′,(m+1).

Proof. From Lemma 2.12, aλν,(m) = a
λ+(1n)
ν′,(m+1) = 0 if l(λ) > n, so we may now as-

sume l(λ) ⩽ n. Since χν′ = sgnSn
· χν , the assertion is equivalent to proving that

δλ = sgnSn
· δλ+(1n). Choose k ∈ N such that λ ⊆ (kn), say k = mn. Then by

Proposition 4.3,

δλ = s1 · δ□k,n(λ) = s1 · s2 · δ□1+k,n(□k,n(λ)) = s1 · s2 · δλ+(1n),

where {s1, s2} = {1Sn
, sgnSn

}. □
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4.1. Resolving conjectures on plethysm coefficients. In [32], Weintraub
conjectured that if m,n ∈ N with m even, and λ ⊢ mn is an even partition with
l(λ) ⩽ n, then aλ(n),(m) > 0. An asymptotic version of the conjecture was proven in
[24], and the conjecture was first proven in full in [5] using techniques from quantum
information theory, and reproven in [25] by considering highest weight vectors. The
following sharpening of Weintraub’s conjecture was posed in [6, Conjecture 6.5.1].

Theorem 4.5. Let m,n ∈ N and let λ ⊢ mn with l(λ) ⩽ n and λ1 = m+ 2.
(a) Suppose m is even. If λ has all parts even, then aλ(n),(m) = 1. Otherwise,

aλ(n),(m) = 0.
(b) Suppose m is odd. If λ has all parts odd, then aλ(1n),(m) = 1. Otherwise,

aλ(1n),(m) = 0.

Proof. Let ν := □m+2,n(λ).
(a) By Lemma 2.10 and Theorem 4.2, noting that (1m) ⊆ (1m+2), l(λ′) = m+ 2 and
λ′ ⊆ (nm+2),

aλ(n),(m) = aλ
′

(n),(1m) = a
□n,m+2(λ′)
(n),□1,m+2((1m)) = aν

′

(n),(12) = aν(n),(2).

Since m is even then λ is an even partition if and only if ν is an even partition.
Moreover, aγ(n),(2) = 1 when γ ⊢ 2n is an even partition by Proposition 2.13 and
aγ(n),(2) = 0 otherwise. The assertion follows.
(b) Similarly to case (a), we obtain from Lemma 2.10 and Theorem 4.2

aλ(1n),(m) = aλ
′

(n),(1m) = a
□n,m+2(λ′)
(n),□1,m+2((1m)) = aν

′

(n),(12) = aν(n),(2).

Since m is odd, λ has all parts odd if and only if ν has all parts even, whence the
assertion follows again from Proposition 2.13. □

The maximal and minimal partitions λ with respect to dominance labelling a Schur
function sλ in a plethysm of two arbitrary Schur functions were determined combi-
natorially using certain collections of tableaux in [28] and [7]. Below, we prove a
conjecture of de Boeck [6, Conjecture 6.5.2] describing certain minimal constituents
satisfying a parity restriction on the parts of the partition.

Theorem 4.6. Let m,n ∈ N⩾3.
(a) Suppose m is even. Then the lexicographically smallest partition λ ⊢ mn such

that aλ(n),(m) > 0 and λ has an odd part is λ = (m+ 3,mn−2,m− 3).
(b) Suppose m is odd. Then the lexicographically smallest partition λ ⊢ mn such

that aλ(1n),(m) > 0 and λ has an even part is λ = (m+ 3,mn−2,m− 3).

Proof. We note by Lemma 2.12 that aλ(n),(m) = aλ(1n),(m) = 0 whenever l(λ) > n.
(a) First, let λ := (m + 3,mn−2,m − 3). We show that aλ(n),(m) > 0. Applying
Lemma 2.10 and Theorem 4.2, noting that (1m) ⊆ (1m+3), l(λ′) = m + 3 and
λ′ ⊆ (nm+3), we obtain

aλ(n),(m) = aλ
′

(n),(1m) = a
□n,m+3(λ′)
(n),□1,m+3((1m)) = a

((n−1)3,13)
(n),(13) = a

(6,3n−2)
(1n),(3) .

But by [6, Theorem 5.1.1],

a
(6,3n−2)
(1n),(3) ⩾ a

(6,3n−3)
(1n−1),(3) ⩾ · · · ⩾ a

(6,3)
(13),(3) = 1.

Next, since (mn) itself has no odd parts, it remains to show that aλ(n),(m) = 0 for every
λ ⊢ mn lying strictly between (mn) and (m+3,mn−2,m−3) in lexicographical order
and containing an odd part. We may further assume that l(λ) ⩽ n, using Lemma 2.12
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as noted above. Such λ must satisfy one of the following: λ1 = m + 1; λ1 = m + 2;
λ = (m+ 3,mn−4, (m− 1)3) where n ⩾ 4; or λ = (m+ 3,mn−3,m− 1,m− 2).

We show that aλ(n),(m) = 0 in each of these cases when λ has an odd part:
• If λ1 = m+ 1, then similarly to above we have

aλ(n),(m) = aλ
′

(n),(1m) = a
□n,m+1(λ′)
(n),□1,m+1((1m)) = aγ

′

(n),(1),

where γ := □m+1,n(λ). But λ1 = m + 1 so γ ̸= (1n) and hence γ′ ̸= (n),
giving aγ

′

(n),(1) = 0.
• If λ1 = m+ 2, then aλ(n),(m) = 0 by Theorem 4.5 since λ has an odd part.
• If n ⩾ 4 and λ = (m+ 3,mn−4, (m− 1)3), then

aλ(n),(m) = aλ
′

(n),(1m) = a
□n,m+3(λ′)
(n),□1,m+3((1m)) = aν(n),(13)

where ν := ((n− 1)3, 3). But then applying Theorem 4.2 again gives

aν(n),(13) = a
□n,4(ν)
(n),□1,4((13)) = a

(n−3,13)
(n),(1) = 0.

• Finally, if λ = (m+ 3,mn−3,m− 1,m− 2) then

aλ(n),(m) = aλ
′

(n),(1m) = a
□n,m+3(λ′)
(n),□1,m+3((1m)) = aν(n),(13)

where ν := ((n− 1)3, 2, 1). But then

aν(n),(13) = a
□n,5(ν)
(n),□1,5((13)) = a

(n−1,n−2,13)
(n),(12) = a

(5,2n−3,1)
(n),(2) = 0

where the final equality holds by Proposition 2.13.
(b) Let λ := (m+ 3,mn−2,m− 3). Similarly to case (a), we have

aλ(1n),(m) = aλ
′

(n),(1m) = a
□n,m+3(λ′)
(n),□1,m+3((1m)) = a

((n−1)3,13)
(n),(13) = a

(6,3n−2)
(1n),(3) > 0

where we note the first equality holds since m is now odd. Since (mn) itself does not
contain an even part, it remains to consider all λ ⊢ mn strictly between (mn) and
(m + 3,mn−2,m − 3) in lexicographical order. By the same argument as in (a), we
obtain aλ(1n),(m) = aλ

′

(n),(1m) = 0 for such λ when λ has an even part, noting that λ
has an even part if and only if γ := □m+2,n(λ) has an odd part as m is now odd. □

Remark 4.7. In fact, we need not have used [6, Theorem 5.1.1] in the proof of The-
orem 4.6 to deduce that a(6,3n−2)

(1n),(3) > 0: we show that a(6,3n−2)
(1n),(3) = 1 for all n ⩾ 3 in

Example 5.2 below.

5. A recursive formula for plethysm coefficients
The main result of this article is Theorem A, a recursive formula for plethysm coeffi-
cients of the form aµλ,(m) for arbitrary m ∈ N and partitions µ and λ. Together with
Lemma 2.12, it describes the deflations δµ of µ ⊢ mn with respect to Sn, noting that
aµλ′,(m) = ⟨sgnSn

· δµ, χλ⟩ for λ ⊢ n. We restate Theorem A here as Theorem 5.1 for
ease of reference for the reader, and recall that plethysm coefficients indexed by skew
shapes were defined in (4):

Theorem 5.1 (Theorem A). Fix n ∈ N. Let m ∈ N, k ∈ {0, 1, . . . , n− 1} and λ ⊢ n.
Let µ ⊢ mn with l(µ) = n− k, and set µ̂ := µ− (1n−k) ⊢ (m− 1)n+ k. Then

(6) aµλ′,(m) =
k∑
i=0

(−1)k+i ·
∑

α⊢k+(m−1)i
β⊢i

a
α/(k−i)
β′,(m) · a

µ̂/α
λ/β,(m−1).
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We first illustrate some of the uses of our main theorem in Example 5.2 and in
proving a stability result (Proposition 5.3), before proving Theorem 5.1 in full in Sec-
tion 5.1. We present further applications to Sylow branching coefficients in Section 6.

Example 5.2. We illustrate how to compute a(6,3n−2)
λ,(3) for all n ⩾ 6 and λ ⊢ n using

Theorem 5.1. Let µ = (6, 3n−2). Since l(µ) = n− 1, Theorem 5.1 gives

aµλ,(3) = −aµ̂/(1)
λ′,(2) + a

µ̂/(3)
λ′/(1),(2)

= −a(4,2n−2)
λ′,(2) − a(5,2n−3,1)

λ′,(2) + a
(2n−1)
λ′/(1),(2) + a

(3,2n−3,1)
λ′/(1),(2) + a

(4,2n−3)
λ′/(1),(2),

since a∅∅,(3) = 1 and aα(1),(3) = δα,(3). Applying Theorems 5.1 and 2.3, we obtain

a
(4,2n−2)
λ′,(2) =

{
1 if λ′ ∈ {(n), (n− 1, 1), (n− 2, 2)},
0 otherwise,

a
(5,2n−3,1)
λ′,(2) =

{
1 if λ′ ∈ {(n− 1, 1), (n− 2, 2), (n− 2, 12), (n− 3, 2, 1)},
0 otherwise.

Similarly, since aθλ′/(1),(2) =
∑
ε⊢n−1 c

λ′

ε,(1) · a
θ
ε,(2), we have that

a
(2n−1)
λ′/(1),(2) = cλ

′

(n−1),(1) =
{

1 if λ′ ∈ {(n), (n− 1, 1)},
0 otherwise,

a
(3,2n−3,1)
λ′/(1),(2) = cλ

′

(n−2,1),(1) =
{

1 if λ′ ∈ {(n− 1, 1), (n− 2, 2), (n− 2, 12)},
0 otherwise,

a
(4,2n−3)
λ′/(1),(2) = cλ

′

(n−2,1),(1) + cλ
′

(n−1),(1) + cλ
′

(n−3,2),(1)

=


2 if λ′ ∈ {(n− 1, 1), (n− 2, 2)},
1 if λ′ ∈ {(n), (n− 2, 12), (n− 3, 3), (n− 3, 2, 1)},
0 otherwise.

Putting this together, we obtain

aµλ,(3) =


2 if λ′ = (n− 1, 1),
1 if λ′ ∈ {(n), (n− 2, 2), (n− 2, 12), (n− 3, 3)},
0 otherwise.

In particular, this gives an alternative method for one of the steps in the proof of
Theorem 4.6 by showing that a(6,3n−2)

(1n),(3) = 1 for all n ⩾ 3 (note when n ⩽ 5 this follows
by direct computation).

A corollary of Theorem 5.1 is the stability of the following sequence of plethysm
coefficients, whose monotonicity was predicted in [1, Conjecture 1.2].

Proposition 5.3. Let λ and µ be partitions. For all j ∈ N0, define partitions λj :=
λ ⊔ (1j) and µj := (µ + (j)) ⊔ (1j). Then the sequence

(
aµ

j

λj ,(2)
)
j∈N0

is eventually
constant.

To prove Proposition 5.3, we first record a stability property of Littlewood–
Richardson coefficients. For convenience we include a proof in our present notation.

Lemma 5.4. Let α, β, γ and δ be partitions. Define γ(j) := γ+(j) and δ(j) := δ+(j) for
all j ∈ N0. Then the sequence

(
⟨χγ(j)/α, χδ(j)/β⟩

)
j∈N0

is non-decreasing and eventually
constant.
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Proof. For a skew shape ρ, let L(ρ) denote the set of all Littlewood–Richardson fillings
of ρ. Let fj : L(γ(j)/α) → L(γ(j + 1)/α) be the map given by filling the additional
box in γ(j+ 1)/α− γ(j)/α with the number 1. Clearly fj is well-defined and injective
for all j, and furthermore, bijective for all sufficiently large j (for example, j ⩾ α1 +γ2
will suffice). Similarly define gj : L(δ(j)/β)→ L(δ(j + 1)/β). For s ∈ L(γ(j)/α) and
t ∈ L(δ(j)/β), note that s and t have the same type if and only if fj(s) and gj(t) have
the same type. The assertion of the lemma follows since ⟨χγ(j)/α, χδ(j)/β⟩ = |{(s, t) ∈
L(γ(j)/α)× L(δ(j)/β) | s, t have the same type}|. □

Proof of Proposition 5.3. We may assume that λ ⊢ n, µ ⊢ 2n and l(µ) = n − k for
some n and k ∈ N0, else aµ

j

λj ,(2) = 0 for all j by Lemma 2.12. Since µj ⊢ 2n+ 2j and
l(µj) = (n+ j)− k, we have from Theorem 5.1 that

aµ
j

λj ,(2) =
k∑
i=0

(−1)k+i ·
∑
α⊢k+i
β⊢i

a
α/(k−i)
β′,(2) · aµ̂

j/α

λj ′/β,(1)

for all j, where µ̂j := µj − (1n+j−k). The proof is concluded by observing that
a
µ̂j/α

λj ′/β,(1) = ⟨χλj ′
/β , χµ̂

j/α⟩ and using Lemma 5.4 with γ := µ̂ and δ := λ′. □

Remark 5.5. A similar argument can be used to give a new proof that the sequence(
aµ

j

λj ,(2)
)
j

also stabilises where λj := λ+(j) and µj = µ⊔(2j); this sequence is already
known to be both non-decreasing and eventually constant by [3, §2.6 Corollary 1].

5.1. Proof of Theorem 5.1. We first introduce some notation in preparation for
the proofs to come.

Notation 5.6. (i) Let λ be a partition, n ∈ N0 and ϕ be a virtual character of
Sn. We define

ϕ/χλ :=
∑
µ⊢n

⟨ϕ, χµ⟩ · χµ/λ

where χµ/λ = 0 if λ ̸⊆ µ.
(ii) For m,n ∈ N and α/β a skew shape of size n, define

ρα/βm := X (1Sm ;χα/β)
xSmn

Sm≀Sn
.

(iii) For ϕ ∈ Char(Sn1) and θ ∈ Char(Sn2), define

ϕ⊠ θ := (ϕ× θ)
xSn1+n2
Sn1 ×Sn2

.

(iv) Let Sλ denote the Young subgroup Sλ1 × · · · × Sλl(λ) of Sn and let

ζλ := 1Sλ

xSn = χ(λ1) ⊠ · · ·⊠ χ(λl(λ))

denote the character of the permutation module Mλ. (Note ζµ = ζλ if µ is a
composition of n with the same parts as λ but in a different order.)

Recall that the irreducible decomposition of such a permutation character ζλ is
described by Young’s Rule [19, 2.8.5]. Equivalently,

(7) ζλ =
∑
γ⊢n

Kγ,λ · χγ

where the Kostka number Kγ,λ = ⟨ζλ, χγ⟩ = cγ(λ1),...,(λl(λ)) equals the number of
semistandard Young tableaux of shape γ and content λ. In particular, we therefore
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have

(8)
∑
γ⊢n

Kγ,λ · ργm = X (1Sm
; ζλ)

xSmn

Sm≀Sn
= ρ(λ1)

m ⊠ · · ·⊠ ρ
(λl(λ))
m .

We now precisely identify the i = k term of Theorem 5.1, in Theorem 5.7. We
then deduce Theorem 5.1 from Theorem 5.7. Following that, we prove Theorem 5.7,
during the course of which we will also prove Theorem B, which has been numbered
as Theorem 5.13 in this section for ease of reference.

Theorem 5.7. Fix n ∈ N. Let m ∈ N, k ∈ {0, 1, . . . , n−1} and λ ⊢ n. Let ν ⊢ mn+k
with l(ν) = n, and set ν̂ := ν − (1n) ⊢ (m− 1)n+ k. Then

a
ν/(1k)
λ′,(m) =

∑
α⊢mk
β⊢k

aαβ′,(m) · a
ν̂/α
λ/β,(m−1).

Proof of Theorem 5.1 from Theorem 5.7. We proceed by induction on k, observing
that the k = 0 case of Theorem 5.1 follows immediately from the k = 0 case of
Theorem 5.7. Now assume k > 0, and fix µ ⊢ mn with l(µ) = n− k. Let ν = µ⊔ (1k),
so l(ν) = n and ν̂ = µ̂.

We aim to evaluate aν/(1k)
λ′,(m), and compare it to Theorem 5.7. To do this, we will study

the constituents in the skew character χν/(1k). First, note that for any ω ⊢ |ν| − k, by
Theorem 2.3 we must have cνω,(1k) ∈ {0, 1}. Moreover, cνω,(1k) = 1 if and only if ω ⊆ ν
and all k boxes of [ν/ω] belong to different rows. We will denote by A the collection
of ω with cνω,(1k) = 1. In particular,∑

ω∈A
χω = χν/(1k).

We partition A as a disjoint union, A =
∐k
j=0Aj , where Aj is the collection of ω ∈ A

for which l(ω) = n− k + j. Notice that for each j, Aj bijects to Bj := {ϖ ⊢ |µ̂| − j |
cµ̂ϖ,(1j)}; the map is given by removal of the first column, ω 7→ ω̂, and this is seen to
be a bijection by Theorem 2.3. By a similar application of Theorem 2.3,

(9)
∑
ϖ∈Bj

χϖ = χµ̂/(1j).

Now observe that

a
ν/(1k)
λ′,(m) =

∑
ω∈A

aωλ′,(m) = aµλ′,(m) +
k∑
j=1

∑
ω∈Aj

aωλ′,(m).

The idea here is that in our partition of A, the j = 0 term contributes precisely
aµλ′,(m). Let us set X := −

∑k
j=1

∑
ω∈Aj

aωλ′,(m). Assuming Theorem 5.7, it suffices to
show that X equals the

∑k−1
i=0 (. . . ) part of the summation on the right hand side of

(6). For 0 < j ⩽ k, we have that∑
ω∈Aj

aωλ′,(m)
(inductive hypothesis)=

∑
ω∈Aj

k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
β⊢i

a
γ/(k−j−i)
β′,(m) · aω̂/γλ/β,(m−1)

(bijection Aj → Bj )
=

∑
ϖ∈Bj

k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
β⊢i

a
γ/(k−j−i)
β′,(m) · aϖ/γλ/β,(m−1)
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(3)=
∑
ϖ∈Bj

k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
β⊢i

a
γ/(k−j−i)
β′,(m) ·

〈
χϖ, ρ

λ/β
m−1 ⊠ χγ

〉

(9)=
k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
β⊢i

a
γ/(k−j−i)
β′,(m) ·

〈
χµ̂/(1j), ρ

λ/β
m−1 ⊠ χγ

〉

=
k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
β⊢i

a
γ/(k−j−i)
β′,(m) ·

〈
χµ̂, ρ

λ/β
m−1 ⊠ χγ ⊠ χ(1j)

〉

=
k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
α⊢k+(m−1)i

β⊢i

cαγ,(1j) · a
γ/(k−j−i)
β′,(m) ·

〈
χµ̂, ρ

λ/β
m−1 ⊠ χα

〉

(3)=
k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
α⊢k+(m−1)i

β⊢i

cαγ,(1j) · a
γ/(k−j−i)
β′,(m) · aµ̂/αλ/β,(m−1).

It follows that

X = −
k∑
j=1

k−j∑
i=0

(−1)k−j+i
∑

γ⊢k−j+(m−1)i
α⊢k+(m−1)i

β⊢i

cαγ,(1j) · a
γ/(k−j−i)
β′,(m) · aµ̂/αλ/β,(m−1)

=
k−1∑
i=0

k−i∑
j=1

(−1)k+i · (−1)j+1
∑

γ⊢k−j+(m−1)i
α⊢k+(m−1)i

β⊢i

cαγ,(1j) · a
γ/(k−j−i)
β′,(m) · aµ̂/αλ/β,(m−1)

=
k−1∑
i=0

(−1)k+i
k−i∑
j=1

∑
β⊢i

(−1)j+1 · Y βi,j ,

where we set

Y βi,j :=
∑

γ⊢k−j+(m−1)i
α⊢k+(m−1)i

cαγ,(1j) · a
γ/(k−j−i)
β′,(m) · aµ̂/αλ/β,(m−1).

Next, we will simplify Y βi,j , for any fixed β, i and j. To ease notation, in the rest of this
proof we will abbreviate sums over all partitions of a given size. That is, we shorten∑
ω⊢t to

∑
ω (the size t will always be clear from context). We use (4) to obtain

Y βi,j =
∑
γ

∑
α

cαγ,(1j) · a
µ̂/α
λ/β,(m−1) ·

∑
ε

cγε,(k−j−i) · a
ε
β′,(m).

By [22, (2.1)], we have that
∑
γ c

α
γ,(1j) · c

γ
ε,(k−j−i) = cαε,(k−j−i),(1j) = ⟨χα/ε, χk−j−i ⊠

χ(1j)⟩. By Theorem 2.3, χk−j−i⊠χ(1j) = χH(j) +χH(j−1) where H(j) := (k−i−j, 1j),
except if j = k− i then χ∅ ⊠χ(1k−i) = χH(k−i−1) only, i.e. we treat the χH(k−i) term
as the zero character. Hence

Y βi,j =
∑
α

∑
ε

⟨χα/ε, χH(j) + χH(j−1)⟩ · aεβ′,(m) · a
µ̂/α
λ/β,(m−1)
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=
∑
α

∑
ε

(cαε,H(j) + cαε,H(j−1)) · aεβ′,(m) · a
µ̂/α
λ/β,(m−1)

(where we omit the cαε,H(k−i) term). Since H(0) = (k − i), we obtain
k−i∑
j=1

(−1)j+1 · Y βi,j =
∑
α

∑
ε

cαε,(k−i) · a
ε
β′,(m) · a

µ̂/α
λ/β,(m−1) =

∑
α

a
α/(k−i)
β′,(m) · a

µ̂/α
λ/β,(m−1).

Thus, we finally obtain

X =
k−1∑
i=0

(−1)k+i ·
∑
β⊢i

k−i∑
j=1

(−1)j+1 · Y βi,j

=
k−1∑
i=0

(−1)k+i ·
∑
β⊢i

∑
α⊢k+(m−1)i

a
α/(k−i)
β′,(m) · a

µ̂/α
λ/β,(m−1),

as desired. □

To prove Theorem 5.7, we first deal with the case of m = 1. In this case, aν/(1k)
λ′,(1) =

cνλ′,(1k), which takes value 1 if ν − λ′ is a sequence of 0s and 1s containing exactly k
many 1s, and takes value 0 otherwise. On the other hand,

∑
α,β⊢k

(
aαβ′,(1) · a

ν̂/α
λ/β,∅

)
=

cλ
′

ν̂,(1n−k), which takes value 1 if λ′ − ν̂ is a sequence of 0s and 1s containing exactly
n−k many 1s, and takes value 0 otherwise. We see that these two quantities are equal
since ν = ν̂ + (1n), and hence Theorem 5.7 holds when m = 1.

Next, we introduce some lemmas in preparation for proving Theorem 5.7 when
m ⩾ 2.

Lemma 5.8. Let r ∈ N and n1, . . . , nr ∈ N0. Let γ be a partition and for each i ∈
{1, 2, . . . , r}, let ψi be a virtual character of Sni

. Then

(ψ1 ⊠ · · ·⊠ ψr)/χγ =
∑

γ1,...,γr

cγγ1,...,γr
· (ψ1/χ

γ1) ⊠ · · ·⊠ (ψr/χγr ),

summed over all sequences of partitions γ1, . . . , γr such that |γ1|+ · · ·+ |γr| = |γ|.

Proof. The case r = 1 is trivial. For ease of notation we prove the statement for r = 2;
the case of general r follows by an analogous argument. Define n := n1 + n2, k := |γ|
and let δ ⊢ n− k. Then

⟨(ψ1 ⊠ ψ2)/χγ , χδ⟩ = ⟨(ψ1 × ψ2)
xSn

Sn1 ×Sn2
, (χδ × χγ)

xSn

Sn−k×Sk
⟩

= ⟨(ψ1 × ψ2)
xSn

Sn1 ×Sn2

y
Sn−k×Sk

, χδ × χγ⟩,

and applying Mackey’s Theorem,
=

∑
0⩽t1,t2⩽k
t1+t2=k

⟨(ψ1 × ψ2)
ySn1 ×Sn2

Sn1−t1 ×St1 ×Sn2−t2 ×St2

xSn−k×Sk
, χδ × χγ⟩

=
∑

t1+t2=k

∑
i=1,2
γi⊢ti

δi⊢ni−ti

cγ
γ1,γ2 · cδ

δ1,δ2
· ⟨ψ1

y
Sn1−t1 ×St1

× ψ2
y

Sn2−t2 ×St2
, χδ1 × χγ1 × χδ2 × χγ2 ⟩

=
∑

t1+t2=k

∑
i

γi⊢ti
δi⊢ni−ti

cγ
γ1,γ2 · cδ

δ1,δ2
· ⟨ψ1/χ

γ1 , χδ1 ⟩ · ⟨ψ2/χ
γ2 , χδ2 ⟩

=
∑

t1+t2=k

∑
i

γi⊢ti

cγ
γ1,γ2 · ⟨(ψ1/χ

γ1 ) ⊠ (ψ2/χ
γ2 ), χδ⟩,
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as claimed. □

Corollary 5.9. Let m,n ∈ N and λ = (λ1, . . . , λr) ⊢ n. Let k ∈ {0, 1, . . . , n− 1} and
β ⊢ k. Then

(i)
(
⊠ri=1 ρ

(λi)
m

)
/χ(1n−k) =

∑
t⊠

r
i=1
(
ρ

(λi)
m /χ(1λi−ti )), and

(ii)
(
⊠ri=1 χ

(1λi ))/χβ′ =
∑
t c
β
(t1),...,(tr) ·⊠

r
i=1 χ

(1λi−ti ),
summed over all compositions t = (t1, . . . , tr) of k into r parts. That is, ti ∈ N0 for
all i and t1 + · · ·+ tr = k (and we may further assume ti ⩽ λi for all i).

Proof. (i) Applying Lemma 5.8 with γ = (1n−k), observe that cγγ1,...,γr
∈ {0, 1} and

is non-zero only if each γi = (1si) for some si ∈ N0. By Lemma 2.12, ρ(λi)
m only has

irreducible constituents χµ where l(µ) ⩽ λi, so we may further assume that si ⩽ λi.
Writing ti = λi − si gives the result.
(ii) Applying Lemma 5.8 with ψi = χ(1λi ), observe that ψi/χγi ̸= 0 only if γi = (1ti)
for some 0 ⩽ ti ⩽ λi. Moreover, cβ

′

(1t1 ),...,(1tr ) = cβ(t1),...,(tr) ∈ {0, 1}. □

Lemma 5.10. Let n ∈ N and k ∈ {0, 1, . . . , n}. Let ν be a partition with l(ν) = n and
set ν̂ := ν − (1n). Let δ ⊢ |ν| − k with l(δ) ⩽ n. Then

⟨χδ, χν/(1k)⟩ = ⟨χδ/(1n−k), χν̂⟩.

Proof. The determinantal form of skew characters of symmetric groups (see e.g. [19,
2.3.13]) gives χα/β = det

(
χ(αi−i−βj+j)) whenever α and β are partitions, where the

multiplication of characters in expanding the determinant is given by the operation
⊠. Applying this to α = ν′ and β = ∅ and expanding the determinant with respect
to the first row gives

χν
′

=
∑
j⩾1

(−1)j−1 · χ(n+j−1) ⊠ χν̂
′/(1j−1) =

∑
j⩾0

(−1)j · χ(n+j) ⊠ χν̂
′/(1j).

Multiplying both sides by the sign representation then gives

χν =
∑
j⩾0

(−1)j · χ(1n+j) ⊠ χν̂/(j).

Then

⟨χδ, χν/(1k)⟩ = ⟨χδ ⊠ χ(1k), χν⟩

=
∑
j⩾0

(−1)j · ⟨(χδ ⊠ χ(1k))/χ(1n+j), χν̂/(j)⟩

(Lemma 5.8)=
k∑
j=0

(−1)j ·
〈
k−j∑
s=0

(χδ/χ(1n−s)) ⊠ (χ(1k)/χ(1s+j)), χν̂/(j)

〉

=
k∑
j=0

k−j∑
s=0

(−1)j⟨(χδ/χ(1n−s)) ⊠ χ(1k−j−s), χν̂/(j)⟩

=
k∑
s=0

〈
(χδ/χ(1n−s)) ⊠

k−s∑
j=0

(−1)j · χ(1k−s−j) ⊠ χ(j)

 , χν̂

〉

= ⟨χδ/χ(1n−k), χν̂⟩,

where the final equality follows since χ(1k−s−j) ⊠ χ(j) = χ(j+1,1k−s−j−1) + χ(j,1k−s−j),
and so

∑k−s
j=0(−1)j · χ(1k−s−j) ⊠ χ(j) equals zero if k ̸= s, and equals χ∅ if k = s. □
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Lemma 5.11. Let m, u and t be integers with m ⩾ 2 and u ⩾ t ⩾ 0. Then

ρ(u)
m /χ(1u−t) = ρ(t)

m ⊠ ρ
(1u−t)
m−1 .

Proof. Let δ ⊢ mu − (u − t) be arbitrary. We show that ⟨ρ(u)
m /χ(1u−t), χδ⟩ = ⟨ρ(t)

m ⊠

ρ
(1u−t)
m−1 , χδ⟩. Letting H := Sm ≀ Su and K := S|δ| × Su−t, and substituting in the

definition ρ
(u)
m from Notation 5.6, we have by Mackey’s theorem that

⟨ρ(u)
m /χ(1u−t), χδ⟩ = ⟨ρ(u)

m , χδ ⊠ χ(1u−t)⟩ = ⟨1H
xSmu

, (χδ × χ(1u−t))
xSmu

K
⟩

=
∑

σ∈K∖Smu/H

⟨1Hσ

y
K∩Hσ

xK , χδ × χ(1u−t)⟩

=
∑

σ∈K∖Smu/H

⟨1K∩Hσ , (χδ × χ(1u−t))
yK
K∩Hσ ⟩,(10)

where the final equality follows from Frobenius reciprocity. Here σ runs over a set of
representatives of double (K,H)-cosets in Smu. Since K∩Hσ are the point stabilisers
of the action of K on the set of partitions of {1, 2, . . . ,mu} into u subsets of size m,
the representatives σ are parametrised by partitions of u − t into exactly u parts,
including parts of size zero. Fix one such partition σ of u − t and suppose that γi is
the number of parts of size i, for each i ∈ N0. Then K ∩Hσ ∼=

∏
i∈N0

(Sm−i×Si) ≀Sγi ,
and

⟨(χδ × χ(1u−t))
yK
K∩Hσ ,1⟩ ⩽ ⟨(χδ × χ(1u−t))

y∏
i
(Sm−i×Si)×γi

,1⟩

= ⟨χδ
y∏

i
S

×γi
m−i

,1⟩ · ⟨χ(1u−t)y∏
i
S

×γi
i

,1⟩.

However, χ(1u−t) is the sign representation, so ⟨χ(1u−t)
y∏

i
S

×γi
i

,1⟩ ̸= 0 if and only
if γi = 0 for all i ⩾ 2. Hence there is at most one σ giving a non-zero contribution
to the sum in (10), namely σ = (1u−t, 0t), and in this case K ∩ Hσ ∼= (Sm ≀ St) ×(
(Sm−1 × S1) ≀ Su−t

)
. Substituting into (10),

⟨ρ(u)
m /χ(1u−t), χδ⟩ = ⟨(χδ × χ(1u−t))

yK
Sm≀St×(Sm−1×S1)≀Su−t

, 1⟩,

which by Frobenius reciprocity equals

⟨(χδ × χ(1u−t))
yS|δ|×Su−t

Sm≀St×Sm−1≀Su−t×S1≀Su−t
, 1
xSm≀St×Sm−1≀Su−t×S1≀Su−t

Sm≀St×(Sm−1×S1)≀Su−t
⟩.

Noting that |δ| = mu− (u− t) = mt+ (m−1)(u− t) and X (1S1 ;χω) = χω, and using
Lemma 2.9 in the second equality below, we have

⟨ρ(u)
m /χ(1u−t), χδ⟩ =

〈
χδ
yS|δ|

Sm≀St×Sm−1≀Su−t
× χ(1u−t), 1Sm≀St

× 1
xSm−1≀Su−t×S1≀Su−t

(Sm−1×S1)≀Su−t

〉
,

which in turn equals〈
χδ
yS|δ|

Sm≀St×Sm−1≀Su−t
× χ(1u−t), 1Sm≀St

×
∑
ω⊢u−t

X (1Sm−1 ;χω) · X (1S1 ;χω)
〉
.

This last expression simplifies to∑
ω⊢u−t

⟨χδ
y
Sm≀St×Sm−1≀Su−t

, 1Sm≀St
×X (1Sm−1 ;χω)⟩ · ⟨χ(1u−t), χω⟩.

Now ⟨χ(1u−t), χω⟩ = 1 precisely when ω = (1u−t) and is 0 otherwise, so

⟨ρ(u)
m /χ(1u−t), χδ⟩ = ⟨χδ

y
Sm≀St×Sm−1≀Su−t

, 1Sm≀St
×X (1Sm−1 ;χ(1u−t))⟩

= ⟨χδ, ρ(t)
m ⊠ ρ(1u−t)

m ⟩
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by Frobenius reciprocity, recalling Notation 5.6(ii) and (iii). Since δ was arbitrary,
then ρ

(u)
m /χ(1u−t) = ρ

(t)
m ⊠ ρ

(1u−t)
m−1 as desired. □

Remark 5.12. When m = 2, we can see from Proposition 2.13 that ρ(u)
2 /χ(1u−t) =∑

δ χ
δ = ρ

(t)
2 ⊠ χ(1u−t) where the sum is over all δ ⊢ u + t with exactly u − t many

odd parts.

Next, we generalise Lemma 5.11 from the trivial partition (u) to arbitrary parti-
tions, giving Theorem B, after which it will be straightforward to deduce Theorem 5.7.

Theorem 5.13 (Theorem B). Let m,n ∈ N with m ⩾ 2. Let λ ⊢ n and k ∈
{0, 1, . . . , n− 1}. Then

ρλm/χ
(1n−k) =

∑
β⊢k

ρβm ⊠ ρ
λ′/β′

m−1 .

Proof. Following the notation for t in Corollary 5.9 and letting r = l(λ), observe that∑
γ⊢n

Kγ,λ ·
(
ργm/χ

(1n−k)) =
(∑
γ⊢n

Kγ,λ · ργm
)
/χ(1n−k) (8)=

( r
⊠
i=1

ρ(λi)
m

)
/χ(1n−k)

(Corollary 5.9(i))=
∑
t

r

⊠
i=1

(
ρ(λi)
m /χ(1λi−ti ))

Lemma 5.11=
∑
t

r

⊠
i=1

(
ρ(ti)
m ⊠ ρ

(1λi−ti )
m−1

)
(8)=
∑
t

∑
β⊢k

cβ(t1),...,(tr) · ρ
β
m ⊠

( r

⊠
i=1

ρ
(1λi−ti )
m−1

)
Lemma 5.14=

∑
β⊢k

ρβm ⊠ X
(
1Sm−1 ;

∑
t

cβ(t1),...,(tr) ·
r

⊠
i=1

χ(1λi−ti )
)xS(m−1)(n−k)

Sm−1≀Sn−k

Corollary 5.9(ii)=
∑
β⊢k

ρβm ⊠ X
(
1Sm−1 ;

( r

⊠
i=1

χ(1λi ))/χβ′
)xS(m−1)(n−k)

Sm−1≀Sn−k

(1)=
∑
β⊢k

ρβm ⊠ X
(
1Sm−1 ;

(
ζλ · sgnSn

)
/χβ

′
)xS(m−1)(n−k)

Sm−1≀Sn−k

(1) and (7)=
∑
β⊢k

ρβm ⊠ X
(
1Sm−1 ;

(∑
γ⊢n

Kγ,λ · χγ
′)
/χβ

′
)xS(m−1)(n−k)

Sm−1≀Sn−k

=
∑
γ⊢n

Kγ,λ ·
(∑
β⊢k

ρβm ⊠ ρ
γ′/β′

m−1

)
since χγ

′
/χβ

′
= χγ

′/β′
by Notation 5.6(i).

Since the matrix (Kγ,λ)γ,λ⊢n is invertible (in fact unitriangular if the partitions are
ordered lexicographically, see e.g. [19, Chapter 2]), we deduce that ργm/χ(1n−k) =∑
β⊢k ρ

β
m ⊠ ρ

γ′/β′

m−1 for each γ ⊢ n. □

Lemma 5.14. Let m, r, a1, . . . , ar ∈ N, and let n =
∑r
i=1 ai. For each i ∈ {1, . . . , r},

let νi ⊢ ai. Then ⊠ri=1ρ
νi
m = X (1Sm

;⊠ri=1χ
νi)
xSmn

Sm≀Sn
.

Proof. The case r = 1 follows from Notation 5.6(ii). For each of notation we prove
the statement for r = 2; the case of general r follows by an analogous argument. In
fact, we can prove more generally that if a, b ∈ N and ϕ1 ∈ Char(Sa), ϕ2 ∈ Char(Sb),
then Xleft = Xright where

Xleft :=
[
X (1Sm ;ϕ1)

xSma

Sm≀Sa
×X (1Sm ;ϕ2)

xSmb

Sm≀Sb

]xSm(a+b)

Sma×Smb
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and

Xright := X
(
1Sm

; (ϕ1 × ϕ2)
xSa+b

Sa×Sb

)xSm(a+b)

Sm≀Sa+b
,

from which we recover the case of r = 2 by setting ϕi = χνi .
To prove that Xleft = Xright, we first observe that Sm ≀(Sa×Sb) = Sm ≀Sa×Sm ≀Sb

(viewing Sa × Sb as a subgroup of Sa+b). Calling this group U , it is a subgroup of
both Td := Sma × Smb and Tw := Sm ≀ Sa+b, and both Td and Tw are subgroups of
S := Sm(a+b). Now, by Lemma 2.4 and the definition of X (−;−),

X (1Sm ; (ϕ1 × ϕ2)
xSa+b

Sa×Sb
) = X (1Sm ;ϕ1 × ϕ2)

xTw

U
=
(

InflTw

Sa×Sb
(ϕ1 × ϕ2)

)xTw

U

=
(

InflSm≀Sa

Sa
(ϕ1)× InflSm≀Sb

Sb
(ϕ2)

)xTw

U
=
(
X (1Sm ;ϕ1)×X (1Sm ;ϕ2)

)xTw

U
.

Therefore

Xright =
(
X (1Sm ;ϕ1)×X (1Sm ;ϕ2)

)xTw

U

xS
Tw

=
(
X (1Sm ;ϕ1)×X (1Sm ;ϕ2)

)xTd

U

xS
Td

= Xleft,

where the second equality follows from the transitivity of induction. □

Proof of Theorem 5.7 when m ⩾ 2. Take ⟨−, χν̂⟩ in Theorem 5.13 to obtain

⟨ρλm/χ(1n−k), χν̂⟩ =
〈∑
β⊢k

ρβm ⊠ ρ
λ′/β′

m−1 , χ
ν̂

〉
.

By Lemma 5.10, ⟨ρλm/χ(1n−k), χν̂⟩ = ⟨ρλm, χν/(1k)⟩ = a
ν/(1k)
λ,(m) . On the other hand,〈∑

β⊢k

ρβm ⊠ ρ
λ′/β′

m−1 , χ
ν̂

〉
=
∑
β⊢k

∑
α⊢mk

⟨ρβm, χα⟩ ·⟨ρ
λ′/β′

m−1 , χ
ν̂/α⟩ =

∑
α⊢mk
β⊢k

aαβ,(m) ·a
ν̂/α
λ′/β′,(m−1),

which concludes the proof. □

We conclude this section with a conjecture based on computational data in small
cases, and which is motivated by Foulkes’ Conjecture as described below.

Conjecture 5.15. Let 1 ⩽ a ⩽ b be integers. Then

(i) ρ
(a)
b−1 ⊠ χ(a−1) − ρ(a−1)

b ⊠ χ(b−1) ∈ Char(Sab−1), and
(ii) (ρ(b)

a − ρ(a)
b )/χ(1) ∈ Char(Sab−1).

In other words, we conjecture that the two virtual characters in (i) and (ii) are
in fact genuine characters of Sab−1, i.e. the integer linear combinations of irreducible
characters only have non-negative coefficients.

Conjecture 5.15 is motivated by Foulkes’ Conjecture, which in the present notation
predicts that ρ(b)

a − ρ(a)
b ∈ Char(Sab). We also write this as ρ(b)

a ⩾ ρ
(a)
b , viewed in the

representation ring of Sab. Indeed, suppose a < b. Then part (ii) follows from part (i)
assuming only smaller cases of Foulkes’ Conjecture: assuming ρ(b−1)

a ⩾ ρ
(a)
b−1, substi-

tuting into (ρ(b)
a − ρ(a)

b )/χ(1) = ρ
(b−1)
a ⊠ χ(a−1) − ρ(a−1)

b ⊠ χ(b−1) (from Lemma 5.11)
then gives (ρ(b)

a − ρ(a)
b )/χ(1) ⩾ ρ

(a)
b−1 ⊠ χ(a−1) − ρ(a−1)

b ⊠ χ(b−1).
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6. Applications to Sylow branching coefficients
For the remainder of this article, we fix p = 2 and again consider Sylow branching
coefficients Zλ for the prime 2. In this section, we present several applications of the
results on plethysms from Section 4 as well as our main theorems in Section 5 to
the computation of Sylow branching coefficients. In particular, we make use of the
connection between plethysms and Sylow branching coefficients via various wreath
product groups: plethysms can be used to describe character restrictions from Smn to
Sm ≀ Sn, while the Sylow 2-subgroup Pmn of Smn is isomorphic to Pm ≀ Pn whenever
m is a power of 2. (Again, we recall Notation 2.7 and Remark 2.8 regarding wreath
products involving Pn.)

We first record a simplification of Theorem A when m = 2. By observing that
aϕθ,(1) = δϕ,θ when ϕ and θ are partitions, substituting m = 2 into Theorem A gives

(11) aµλ′,(2) =
k∑
i=0

(−1)k+i
∑
α⊢k+i
β⊢i

(∑
σ⊢2i

cασ,(k−i) · a
σ
β′,(2)

)
·

( ∑
τ⊢n−i

cµ̂τ,α · cλτ,β

)
.

In particular,
• When k = 0, (11) simplifies to aµλ′,(2) = cµ̂λ,∅ = δµ̂,λ (cf. Corollary 6.2(i)

below).
• When k = 1, (11) simplifies to

aµ
λ′,(2) =

∑
τ⊢n−1

cµ̂
τ,(2) · cλ

τ,(1) − cµ̂
λ,(1).

• When k = 2, (11) simplifies to

aµλ′,(2) =
∑
τ⊢n−2

(
cµ̂τ,(4) · c

λ
τ,(12) + cµ̂τ,(3,1) · c

λ
τ,(2) + cµ̂τ,(2,2) · c

λ
τ,(12)

)
−
∑
τ⊢n−1

(
cµ̂τ,(3) · c

λ
τ,(1) + cµ̂τ,(2,1) · c

λ
τ,(1)

)
+ cµ̂λ,(2).

6.1. Isotypical deflations. Understanding isotypical deflations allows us to di-
rectly express certain Sylow branching coefficients in terms of those corresponding to
smaller partitions.

Lemma 6.1. Fix n ∈ N and let µ ⊢ 2n. Then
(i) Zµ =

∑
γ⊢n a

µ
γ,(2) · Z

γ .
(ii) Suppose δµ is isotypical, i.e. δµ = a · χλ for some a ∈ N and λ ⊢ n. Then

a = aµλ,(2) and Zµ = aZλ. In particular, if Zλ = 0 then Zµ = 0.

Proof. (i) Let H := P2 = S2 and note that 1P2n

y
H×n = (1H)n and Irr(S2 ≀ Sn |

(1H)n) = {X (1H ;χγ) | γ ⊢ n}. Hence

Zµ = ⟨χµ
yS2n

S2≀Sn

y
P2≀Pn

,1P2n⟩

=
∑
γ⊢n

aµγ,(2) · ⟨X (1H ;χγ
ySn

Pn
),X (1H ;1Pn)⟩

=
∑
γ⊢n

aµγ,(2) · Z
γ .

(ii) If δµ is isotypical then aµγ,(2) = 0 whenever γ ̸= λ, and the assertions follow
immediately from (i). □
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Corollary 6.2. Fix n ∈ N. For the following partitions µ ⊢ 2n, the deflation δµ

(with respect to Sn) is irreducible and given as follows:

(i) l(µ) = n : δµ = χλ where λ = (µ− (1n))′;
(ii) µ = (2n− ℓ, 1ℓ), 0 ⩽ ℓ ⩽ n− 1 : δµ = χ(n−ℓ,1ℓ);
(iii) µ ⊆ (3n) : δµ = χλ

′ where λ = □3,n(µ).

Proof. (i) This is precisely the case of m = 1 in Theorem 4.4.
(ii) Let H(j) := (2n − j, 1j) for 0 ⩽ j ⩽ 2n − 1 and let h(j) := (n − j, 1j) for
0 ⩽ j ⩽ n−1. We use Theorem 5.7 with m = 2 and ν = (2n− ℓ, 1n−1) ⊢ 2n+k where
k := n− ℓ− 1, giving ν̂ = (n+ k). When 1 ⩽ k ⩽ n− 1, this gives for all λ ⊢ n that

a
ν/(1k)
λ′,(2) =

∑
σ⊢2n

cνσ,(1k) · a
σ
λ′,(2) = ⟨χλ, sgnSn

· (δH(n−k) + δH(n−k−1))⟩

is equal to ∑
α⊢2k
β⊢k

aαβ′,(2) · a
ν̂/α
λ/β,(1) = cλ(n−k),(1k) = ⟨χλ, χh(k) + χh(k−1)⟩.

Using (1), we hence deduce

δH(n−k) + δH(n−k−1) = χh(n−k) + χh(n−k−1).

When k = 0, we similarly obtain δH(n−1) = χh(n−1), so inductively we deduce that
δH(ℓ) = χh(ℓ) for all 0 ⩽ ℓ ⩽ n− 1.
(iii) By Proposition 4.3 with m1 = 1 and m2 = 2, we have that δλ = sgnSn

· δµ where
λ := □3,n(µ). Hence δµ = sgnSn

· δλ = sgnSn
· χλ = χλ

′ . □

Remark 6.3. • Corollary 6.2(ii) describes a special case of plethysms for hook
shapes, which were computed more generally in [21]. For hooks µ = (2n−ℓ, 1ℓ)
where ℓ ⩾ n, we have that δµ = 0 by Lemma 2.12.
• Lemma 6.1 and Corollary 6.2 allow us to determine Zµ for µ ⊢ 2n such that
l(µ) = n or µ ⊆ (3n) via observing that Zµ = Zλ for some λ ⊢ n. We also
recover Zµ when µ is a hook of 2n, which agrees with Proposition 3.5.
• Lemmas 2.12 and 6.1(i) together also allow us to recover Lemma 3.2 in the

even case.

In addition to those described in Corollary 6.2, the deflation δ(5,5) (with respect to
S5) is also irreducible. It would be interesting to classify all of the partitions µ ⊢ 2n
such that the deflation δµ is irreducible, and more generally to investigate whether
isotypical deflations are always irreducible (as is the case for all |µ| ⩽ 32).

6.2. Inside partitions. In this section, we consider statistics Ni(µ) of partitions µ
involving the removal of its rows and columns, and give sufficient conditions for Zµ
to be zero in terms of these statistics. First, we describe the special cases of N1(µ)
(which will turn out to equal l(µ)) and N2(µ), before introducing Ni(µ) in full in
Definition 6.9.

Definition 6.4. Let µ = (µ1, µ2, . . . , µl(µ)) be a partition.
(i) Define I(µ) := (µ2 − 1, µ3 − 1, . . . , µl(µ) − 1), where we remove any trailing

zeros. In other words, I(µ) is obtained from µ by removing its first row and
column, leaving only the ‘inside partition’.

(ii) Define µ̃ := (µ − (1l(µ)))′. In other words, µ̃ is obtained from µ by removing
its first column and then taking its conjugate.
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Remark 6.5. (i) The partition I(µ) equals µ/H1,1(µ), where H1,1(µ) denotes
the largest hook of µ. See [19, 27] for further background on hooks and the
combinatorics of partitions.

(ii) Using Definition 6.4, the deflation in Corollary 6.2(i) may be written as δµ =
χµ̃.

Let n ∈ N and µ ⊢ 2n. In Lemma 3.2, we showed that if the statistic l(µ) was
sufficiently large (namely l(µ) > n) then Zµ = 0. The next statistic we consider is
l(µ) − |I(µ)|: if this is sufficiently large, meaning l(µ) − |I(µ)| > n

2 , then we again
show that Zµ = 0 (Corollary 6.6). If n is even and l(µ) − |I(µ)| = n

2 , then we use
Theorem A to compute Zµ recursively (Corollary 6.8).

Corollary 6.6. Fix n ∈ N and let µ ⊢ 2n.
(i) For each λ ⊢ n such that aµλ,(2) > 0, we have that l(λ) ⩾ l(µ)− |I(µ)|.
(ii) Let ε ∈ {0, 1} such that ε ≡ n (mod 2). If l(µ)− |I(µ)| > n+ε

2 , then Zµ = 0.

Proof. (i) By Lemma 2.12, if l(µ) > n then aµλ,(2) = 0 for all λ ⊢ n, so we may assume
that l(µ) = n− k for some k ⩾ 0. Let µ̂ := µ− (1n−k) ⊢ n+ k. We show that if λ ⊢ n
satisfies aµλ′,(2) > 0, then λ1 ⩾ l(µ)− |I(µ)|.

First note µ̂1 = |µ̂| − |I(µ)| = n + k − |I(µ)| = l(µ) − |I(µ)| + 2k. From (11),
aµλ′,(2) > 0 implies that there exist i ∈ {0, . . . , k} and τ ⊢ n− i such that cµ̂τ,α · cλτ,β > 0
for some α ⊢ k + i and β ⊢ i. That is, [λ] can be obtained by removing from [µ̂]
a skew shape with a Littlewood–Richardson filling of type α (to produce [τ ]), then
adding on a skew shape with a Littlewood–Richardson filling of type β. In particular,
λ1 ⩾ µ̂1 − |α| = l(µ)− |I(µ)|+ 2k − k − i ⩾ l(µ)− |I(µ)|.

(ii) This follows from part (i) of the present corollary, Lemma 3.2 and Lemma 6.1(i).
□

Proposition 6.7. Let n ∈ N be even and µ ⊢ 2n. Suppose l(µ) − |I(µ)| = n
2 and

l(µ) = n− k for some k ∈ N0. Then for each λ ⊢ n such that l(λ) = n
2 ,

aµλ,(2) = c
λ−(1n/2)
I(µ)′,(k) .

Proof. Let µ̂ := µ− (1n−k) = (n2 + 2k, I(µ)). By Theorem A,

aµλ,(2) =
k∑
i=0

(−1)k+i ·
∑
α⊢k+i
β⊢i

a
α/(k−i)
β′,(2) · aµ̂/αλ′/β,(1)

=
k∑
i=0

(−1)k+i ·
∑
α⊢k+i
β⊢i

a
α/(k−i)
β′,(2) ·

∑
ε⊢n−i

cλ
′

ε,β · cµ̂ε,α.

Now if cλ′

ε,β > 0, then ε1 ⩽ λ′
1 = n

2 . On the other hand, cµ̂ε,α > 0 implies n
2 + 2k =

µ̂1 ⩽ ε1 + α1. Since α ⊢ k + i ⩽ 2k, then cλ
′

ε,β · cµ̂ε,α > 0 only if ε1 = n
2 and α1 = 2k,

i.e. i = k and α = (2k). Thus

aµλ,(2) =
∑
β⊢k

a
(2k)
β′,(2) · a

µ̂/(2k)
λ′/β,(1) = a

µ̂/(2k)
λ′/(1k),(1) =

∑
ε⊢n−k

cλ
′

ε,(1k) · c
µ̂
ε,(2k) = cλ

′

( n
2 ,I(µ)),(1k),

where the final equality holds since we must have ε1 = n
2 and µ̂ − (2k) = (n2 , I(µ)).

Finally, since λ′
1 = n

2 ,

aµλ,(2) = cλ
′

( n
2 ,I(µ)),(1k) = c

(λ′
2,λ

′
3,... )

I(µ),(1k) = c
λ−(1n/2)
I(µ)′,(k)

as desired. □
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Corollary 6.8. Let n, µ, and k be as defined in Proposition 6.7. Then

Zµ =
∑
ν⊢ n

2

cνI(µ),(1k) · Z
ν .

In particular, if k > ⌈n4 ⌉, then Zµ = 0. Moreover,
(i) Suppose I(µ) = (1 n

2 −k). Then

Zµ =
{

1 if k ∈ {⌈n4 ⌉, ⌊
n
4 ⌋},

0 otherwise.

(ii) Suppose I(µ) = (n2 −k). Then Zµ =
(
b
k

)
, where b is the number of digits in the

binary expansion of n
2 (i.e. n

2 = 2n1 + · · ·+ 2nb for some n1 > · · · > nb ⩾ 0).

Proof. By Lemma 6.1(i), Lemma 3.2 and Corollary 6.6,

Zµ =
∑
λ⊢n

l(λ)= n
2

aµλ,(2) · Z
λ.

Writing λ ⊢ n with l(λ) = n
2 as λ = (1

n
2 ) + ν′ for some ν ⊢ n

2 , we find by Proposi-
tion 6.7 that

Zµ =
∑
ν⊢n2

cν
′

I(µ)′,(k) · Z
(1

n
2 )+ν′

.

But δλ = χν by Corollary 6.2(i), and so Zλ = Zν by Lemma 6.1(ii). Combining
with the well known property cγ

′

α′,β′ = cγα,β of Littlewood–Richardson coefficients, we
therefore obtain

Zµ =
∑
ν⊢n2

cνI(µ),(1k) · Z
ν .

We note that Zν = 0 if l(ν) > ⌈n4 ⌉ by Lemma 3.2, while cνI(µ),(1k) > 0 implies l(ν) > k.
It follows that Zµ = 0 if k > ⌈n4 ⌉.
(i) If I(µ)1 = 1 then cνI(µ),(1k) > 0 only if ν1 ⩽ 2. The assertion then follows from
Lemma 3.4.
(ii) If I(µ)2 = 0 then cνI(µ),(1k) > 0 only if ν is a hook. The assertion then follows
from Proposition 3.5. □

In fact, we can generalise from l(µ) and l(µ) − |I(µ)| to a collection of statistics
Ni(µ) as follows.

Definition 6.9. (i) For each i ∈ N, define mi := 4i+8
6 .

(ii) Let µ be an arbitrary partition.
◦ Define k(µ) := |µ|

2 − l(µ).
◦ Let

(
Ni(µ)

)
i∈N be recursively defined by N0(µ) = |µ|

2 and Ni(µ) =
2Ni−1(µ̃)−mik(µ) for all i ∈ N, where µ̃ is as in Definition 6.4.

For example, we note that N1(µ) = l(µ) since |µ̃| = |µ| − l(µ), and N2(µ) =
2
(
l(µ)− |I(µ)|

)
since |µ| = l(µ) + l(µ̃) + |I(µ)|. The statistics Ni(µ) can be calculated

as a weighted sum of the sizes of successive columns, rows and inside partitions as
illustrated in Figure 5.

Proposition 6.10. Let µ be a partition. Suppose i ∈ N is such that 2i | |µ|. If Ni(µ) >
|µ|
2 , then Zµ = 0.
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µ : 2k(µ) : −1
1

Ni(µ) = Ni−1(µ̃) − mi

2 · 2k(µ)

N1(µ) = 0
1

−1 · −1
1

= 1
0

N2(µ) = 2 · 0

1

0 −2 · −1
1

= 2

0

−2

N3(µ) = 2 · 0

2

0 −2 −6 · −1
1

= 6

−2

−6 −10

...

Figure 5. Visualising Ni(µ) as a weighted sum of sizes of various portions of the
partition µ; in the diagrams, the weights are illustrated inside the corresponding
portions. For example, 2k(µ) := |µ| − 2l(µ) is illustrated in the top right diagram
with −1 in the first column, and 1 in the remaining part of the partition, corre-
sponding to −1 · l(µ) + (|µ| − l(µ)).

Remark 6.11. Since N1(µ) = l(µ), the i = 1 case of Proposition 6.10 recovers
Lemma 3.2 when the partition has even size. Since N2(µ) = 2

(
l(µ) − |I(µ)|

)
, the

i = 2 case of Proposition 6.10 recovers Corollary 6.6 when 4 | |µ|.

To prove Proposition 6.10, we first describe the weighting of columns and rows
illustrated in Figure 5.

Definition 6.12. We define a collection of sequences (a(1)
i , a

(2)
i , a

(3)
i , . . . ) indexed by

i ∈ N as follows:

(a(j)
1 )j := (1, 0, 0, . . . ); a

(1)
i := mi

2 ∀ i ∈ N; and

a
(j)
i := 2a(j−1)

i−1 − mi

2 ∀ i ∈ N, j ∈ N⩾2.

For each i ∈ N, since mi ∈ 2Z then clearly (a(j)
i )j is an integer sequence. We also

define wi : N2 → Z by

wi(x, y) =
{
a

(2j−1)
i ∀ (x, j) with x ⩾ j,

a
(2j)
i ∀ (j, y) with y ⩾ j + 1,

for all j ∈ N.

We may view wi(x, y) as a weight on the box (x, y) of a Young diagram, that is, the
box in row x and column y. As illustrated in Figure 6, a(2j−1)

i is the weight of a box
in column j which is in a sufficiently low row, while a(2j)

i is the weight of a box in
row j in a column sufficiently far to the right.

The following lemma shows that we may compute Ni(µ) using the weights wi(x, y),
whose values are independent of µ (see Figure 5 for examples when i ∈ {1, 2, 3}).
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a
(1)
i

a
(2)
i

a
(3)
i

a
(4)
i

a
(5)
i

a
(6)
i

. . .

Figure 6. The value wi(x, y) is filled into (x, y) ∈ N2, viewed as the box in row
x and column y of a Young diagram. Each vertical (resp. horizontal) rectangular
strip depicted is one box wide (resp. tall).

Lemma 6.13. For all i ∈ N and partitions µ, we have Ni(µ) =
∑

(x,y)∈[µ] wi(x, y).

Proof. We proceed by induction on i. Fix an arbitrary partition µ. First, we have that
N1(µ) = l(µ) =

∑
(x,1)∈[µ] 1 +

∑
y⩾2

∑
(x,y)∈[µ] 0. The assertion for i = 1 then follows

since w1(x, y) = δy,1. Next, suppose i ⩾ 2 and Ni−1(ν) =
∑

(x,y)∈[ν] wi−1(x, y) for all
partitions ν. Recalling Definitions 6.4 and 6.9, then

Ni(µ) = 2Ni−1(µ̃)−mik(µ) = 2
∑

(x,y)∈[µ̃]

wi−1(x, y)− mi

2 · 2k(µ)

= 2

 ∑
(x,1)∈[µ]

0 +
∑
y⩾2

∑
(x,y)∈[µ]

wi−1(y − 1, x)


− mi

2

 ∑
(x,1)∈[µ]

(−1) +
∑
y⩾2

∑
(x,y)∈[µ]

1


=

∑
(x,1)∈[µ]

mi

2 +
∑
y⩾2

∑
(x,y)∈[µ]

(
2wi−1(y − 1, x)− mi

2

)
.

• For (x, 1) ∈ N2: notice mi

2 = a
(1)
i = wi(x, 1).

• For j ∈ N and (j, y) ∈ N2 where y ⩾ j + 1, we have 2wi−1(y − 1, j) − mi

2 =
2a(2j−1)
i−1 − mi

2 = a
(2j)
i .

• For j ∈ N⩾2 and (x, j) ∈ N2 where x ⩾ j, we have 2wi−1(j − 1, x) − mi

2 =
2a(2j−2)
i−1 − mi

2 = a
(2j−1)
i .

Hence we conclude Ni(µ) =
∑

(x,y)∈[µ] wi(x, y), as desired. □

Lemma 6.14. For all i ∈ N, the integer sequence (a(j)
i )j∈N is weakly decreasing and

eventually constant, with limit a(∞)
i = −mi + 2.

Proof. It is clear from Definition 6.12 and induction on i that (a(j)
i )j is eventually

constant. To see that (a(j)
i )j is weakly decreasing, it suffices to show that a(1)

h ⩾ a
(2)
h

for all h ∈ N, since (a(j)
1 )j is already weakly decreasing by definition. But this follows

since mh

2 ⩾ 2 · mh−1
2 − mh

2 . Finally, we observe that a(∞)
1 = 0 and a

(∞)
i = 2a(∞)

i−1 −
mi

2
for all i ⩾ 2, which gives a(∞)

i = −mi + 2 by induction on i. □

We are now ready to prove Proposition 6.10: the ideas used in the proof extend
those in the proof of Corollary 6.6 (which can be viewed as the case of i = 2).

Proof of Proposition 6.10. We proceed by induction on i, with base case i = 1 given
by Lemma 3.2. Now suppose i ⩾ 2 and 2i | |µ|. If l(µ) > |µ|

2 then Zµ = 0 by
Lemma 3.2, so we may assume that k := k(µ) ⩾ 0.
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Suppose λ ⊢ |µ|
2 is such that aµλ,(2) > 0. By Theorem A (see also (11)), there exist

j ∈ {0, 1, . . . , k} and τ ⊢ |µ|
2 − j such that cµ̂τ,α · cλ

′

τ,β > 0 for some α ⊢ k + j and
β ⊢ i. In other words, [λ] can be obtained by removing from [µ̃] (recalling that µ̃ is
the conjugate of µ̂) a skew shape with a Littlewood–Richardson filling of type α (to
produce [τ ]), then adding on a skew shape with a Littlewood–Richardson filling of
type β. Hence

|Ni−1(λ)− Ni−1(µ̃)| ⩽ (k + j) · a(1)
i−1 − j · a

(∞)
i−1

since (a(t)
i−1)t is weakly decreasing by Lemma 6.14. Moreover, since a

(1)
i−1 ⩾ 0 and

a
(∞)
i−1 ⩽ 0, we obtain

Ni−1(λ) ⩾ Ni−1(µ̃)− k(2a(1)
i−1 − a

(∞)
i−1 ) = Ni−1(µ̃)− mi

2 · k = Ni(µ)
2 .

From the assumption that Ni(µ) > |µ|
2 , we obtain Ni−1(λ) > |λ|

2 . Since 2i−1 | |λ|, by
the inductive hypothesis we deduce that Zλ = 0.

Finally, using Lemma 6.1(i) we conclude that Zµ =
∑
λ⊢n a

µ
λ,(2) · Z

λ = 0. □

6.3. Near hook deflations. In Example 6.16 below, we use Theorem 5.7 to com-
pute deflations of partitions of the form (a, 2, 1b). First we introduce a useful piece of
notation.

Definition 6.15. For n, l ∈ N such that n ⩾ 4 and 2 ⩽ l ⩽ n − 2, define λn,l :=
(n− l, 2, 1l−2) ⊢ n.

Example 6.16. Fix n ∈ N⩾2 and suppose µ := λ2n,l where 2 ⩽ l ⩽ 2n−2. We wish to
compute the deflation δµ; we may assume n ⩾ 5 since δµ may be calculated directly
for small n. By Lemma 2.12, δµ = 0 if l(µ) > n, so we may further assume that l ⩽ n.
Let ν := µ ⊔ (1n−l) = (2n− l, 2, 1n−2) and ν̂ = (2n− l− 1, 1). Applying Theorem 5.7
with k = n− l and m = 2,

(12) a
ν/(1k)
λ′,(2) =

∑
α⊢2k
β⊢k

aαβ′,(2) · a
ν̂/α
λ/β,(1),

for all λ ⊢ n. Recall the relationship between (skew) plethysm coefficients and defla-
tions from (5). First, we deduce from (12) that

• if k = 0 then sgnSn
· δλ2n,n = χν̂ = χ(n−1,1); and

• if k = 1 then sgnSn
·(δλ2n,n−1 + δλ2n,n + δ(n+1,1n−1)) = χ(n) + 2χ(n−1,1) +

χ(n−2,12)+χ(n−2,2), which using Corollary 6.2(ii) simplifies to sgnSn
· δλ2n,n−1 =

χ(n−1,1) + χ(n−2,12) + χ(n−2,2).

Now assume k ⩾ 2. We have that a
ν/(1k)
λ′,(2) = ⟨δλ2n,l + δλ2n,l+1 + δ(2n−l,1l) +

δ(2n−l−1,1l+1), χλ
′⟩ and∑

α⊢2k
β⊢k

aαβ′,(2) · a
ν̂/α
λ/β,(1) =

∑
β⊢k

(
a

(2k)
β′,(2) · ⟨χ

λ/β , χ(l) + χ(l−1,1)⟩+ a
(2k−1,1)
β′,(2) · ⟨χλ/β , χ(l)⟩

)
=
∑
β⊢k

(
a

(2k)
β′,(2) · ⟨χ

λ, (χ(l) + χ(l−1,1)) ⊠ χβ⟩

+
∑
β⊢k

a
(2k−1,1)
β′,(2) · ⟨χλ, χ(l) ⊠ χβ⟩

)
since α ⊆ ν̂ only if α = (2k) or (2k − 1, 1). Furthermore, δ(2k) = χ(k) and δ(2k−1,1) =
χ(k−1,1) by Corollary 6.2(ii) (the latter is what requires k ⩾ 2). Thus we obtain
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sgnSn
·(δλ2n,l + δλ2n,l+1 + δ(2n−l,1l) + δ(2n−l−1,1l+1)) = (χ(l) + χ(l−1,1)) ⊠ χ(1k) + χ(l) ⊠ χ(2,1k−2)

= χ(l+2,1k−2) + 2χ(l+1,1k−1) + 2χ(l,1k) + χ(l−1,1k+1)

+ χ(l+1,2,1k−3) + 2χ(l,2,1k−2) + χ(l−1,2,1k−1)(13)

(we omit the χ(l+1,2,1k−3) term if k = 2, and the χ(l−1,2,1k−1) term if l = 2), giving

sgnSn
· δλ2n,l = χ(l,1k) + χ(l−1,1k+1) + χ(l,2,1k−2) + χ(l−1,2,1k−1) ∀ 3 ⩽ l ⩽ n− 2,

and sgnSn
· δλ2n,2 = χ(1n) + χ(2,1n−2) + χ(2,2,1n−4). Hence

δλ2n,l =


χ(2,1n−2) if l = n,

χ(2,1n−2) + χ(3,1n−3) + χ(2,2,1n−4) if l = n− 1,
χ(n−l+1,1l−1) + χ(n−l+2,1l−2) + χ(n−l,2,1l−2) + χ(n−l+1,2,1l−3) if 3 ⩽ l ⩽ n− 2,
χ(n) + χ(n−1,1) + χ(n−2,2) if l = 2.

Using Theorem 5.7 and Example 6.16 we are able to give an alternative method
for calculating Sylow branching coefficients for the partitions λ2r,l = (2r − l, 2, 1l−2)
(cf. Lemma 3.6).

Corollary 6.17. Let r, l ⩾ 2 be natural numbers with l ⩽ 2r−2. Then Z(2r−l,2,1l−2) =(
r−1
l−1
)
.

Proof. The assertion holds for small r by direct computation, so now assume r ⩾ 3 and
consider µ = λ2r+1,l for some 2 ⩽ l ⩽ 2r+1−2. By Lemma 6.1(i), Zµ =

∑
γ⊢n⟨δµ, χγ⟩·

Zγ . Therefore from Example 6.16 and Proposition 3.5,

Zµ =


0 if l ⩾ 2r,
Zλ2r,2r−2 if l = 2r − 1,
Zλ2r,l + Zλ2r,l−1 if 3 ⩽ l ⩽ 2r − 2,
1 + Zλ2r,2 if l = 2.

By the inductive hypothesis, we obtain Zλ2r+1,l =
(
r
l−1
)

in all cases (noting that(
r
l−1
)

= 0 if l − 1 > r). □

Remark 6.18. We generalise some of the ideas from the case of n = 2r in Corol-
lary 6.17 to arbitrary n ∈ N.

Let n ∈ N with n ⩾ 4, and suppose n has t digits in its binary expansion (i.e. n =
2n1 +· · ·+2nt for some n1 > · · · > nt ⩾ 0). Let 2 ⩽ l ⩽ 2n−2 and set µ = λ2n,l. If l > n
then Zµ = 0 from Lemma 3.2. By Example 6.16, Proposition 3.5 and Lemma 6.1(i),

Zµ =


(
t−1
n−2
)

if l = n,(
t−1
n−2
)

+
(
t−1
n−3
)

+ Zλn,n−2 if l = n− 1,(
t−1
l−1
)

+
(
t−1
l−2
)

+ Zλn,l + Zλn,l−1 if 3 ⩽ l ⩽ n− 2,(
t−1

1
)

+
(
t−1

0
)

+ Zλn,2 if l = 2.

Notice
(
t−1
n−2
)

=
(

t
n−1
)

= 0 since n ⩾ 20 + 21 + · · ·+ 2t−1 = 2t − 1, and t ⩽ 2t − 2 for
all t ⩾ 2 with equality only at t = 2 (but n ⩾ 4 by assumption). Hence

Zλ2n,l =
(

t

l − 1

)
+ Zλn,l + Zλn,l−1

for all 2 ⩽ l ⩽ 2n− 2, where we set Zλn,l := 0 if l > n− 2.
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Example 6.19. Using the results in Section 6, we extend the description of those
partitions µ ⊢ 32 such that Zµ = 0 begun in Example 3.13. Recall that |{µ ⊢ 32 |
Zµ = 0}| = 879.

Property # of such µ ⊢ 32 Zµ = 0
l(µ) = 16 77 µ = (16, λ)′ s.t. Zλ = 0 from Cor 6.2(i)
µ ⊆ (316) 2 µ = (3, 3, 213), (3, 214, 1) from Cor 6.2(iii)
N2(µ) = 16 and k(µ) ⩾ 0:
k > 4 7 from Cor 6.8
I(µ) = (18−k) 8 µ = (25 − 2a, 2a, 17), 0 ⩽ a ⩽ 8, a ̸= 4 from Cor 6.8(i)
I(µ) = (8 − k) 6 µ = (27 − 2a, a, 1a+5), 2 ⩽ a ⩽ 7 from Cor 6.8(ii)

Ni(µ) > 16: i = 1, 2, 3, 4, 5 684, 640, 702, 724, 734 from Prop 6.10

In Example 3.13, we had identified 710 out of the 879 partitions using results from
Section 3. Together with the results from Section 6 listed in the above table, in total
we are able to identify 868 out of the 879 partitions µ ⊢ 32 such that Zµ equals zero.(1)

Example 6.20. The proportion of Sylow branching coefficients of S2k for the prime
2 which have value zero is tabulated for small k below.

n |P(n)| |{µ ⊢ n | Zµ = 0}| |{µ⊢n|Zµ=0}|
|P(n)|

4 5 3 0.6
8 22 15 0.682
16 231 77 0.333
32 8349 879 0.105
64 1741630 38531 0.022

For comparison, we also investigate µ ⊢ 64 such that Zµ = 0. In particular,
|P(64)| = 1741630 but |{µ ⊢ 64 | Zµ = 0}| = 38531, and we are able to explain
38386 of these (leaving 145) using our results as follows.

Property # of such µ ⊢ 64 Zµ = 0
l(µ) = 32 879 from Corollary 6.2(i)
µ ⊆ (332) 2 from Corollary 6.2(iii)
µ is a non-trivial hook 63 from Proposition 3.5
µ = (64 − i, 2, 1i−2), 7 ⩽ i ⩽ 62 56
N2(µ) = 32 and k(µ) ⩾ 0: from Corollary 6.8

k(µ) > 8 45
I(µ) = (1|I(µ)|) 16
I(µ) = (|I(µ)|) 14

Ni(µ) > 32: i = 1, 2, 3, 4, 5, 6 35471, 21751, 22216, from Proposition 6.10
22937, 23513, 23722

Finally, we conclude with a conjecture.

Conjecture 6.21. Let k ∈ N and suppose λ ⊢ 2k. If λl(λ) ⩾ 2, then Zλ > 0 unless
λ = (5, 3), or k ⩾ 3 and λ = (3, 3, 22k−1−3).

Indeed, we saw in Example 6.19 that when k = 5 then Z(3,3,213) = 0. More generally,
suppose k ⩾ 3 and let n = 2k−1 and µ = (3, 3, 22k−1−3) ⊢ 2n. By Corollary 6.2(iii),
δµ = χλ where λ = (3, 1n−3) and the deflation of µ is with respect to Sn. Hence
Zµ = 0 by Lemma 6.1 and Proposition 3.5, explaining the exceptions in the statement
of Conjecture 6.21.

(1)The eleven remaining partitions are (23, 2, 2, 15), (22, 3, 17), (22, 2, 2, 16), (20, 4, 18),
(17, 4, 2, 19), (17, 3, 2, 2, 18), (13, 4, 23, 19), (13, 33, 110), (11, 28, 15), (10, 9, 113) and (8, 210, 14).
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