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Stable centres of wreath products

Christopher Ryba

Abstract A result of Farahat and Higman shows that there is a “universal” algebra, FH,
interpolating the centres of symmetric group algebras, Z(ZSn). We explain that this algebra is
isomorphic to R ⊗ Λ, where R is the ring of integer-valued polynomials and Λ is the ring of
symmetric functions. Moreover, the isomorphism is via “evaluation at Jucys–Murphy elements”,
which leads to character formulae for symmetric groups. Then, we generalise this result to
wreath products Γ ≀ Sn of a fixed finite group Γ. This involves constructing wreath-product
versions RΓ and Λ(Γ∗) of R and Λ, respectively, which are interesting in their own right (for
example, both are Hopf algebras). We show that the universal algebra for wreath products,
FHΓ, is isomorphic to RΓ ⊗ Λ(Γ∗) and use this to compute the p-blocks of wreath products.

1. Introduction
Let Sn be the n-th symmetric group, and Z(ZSn) the centre of its group ring over
the integers. The centre has a basis consisting of conjugacy class sums. Farahat and
Higman [6] showed that the structure constants of the multiplication with respect to
this basis are integer-valued polynomials in n. For example, multiplying two transpo-
sition can give either an element with two cycles of size 2, a 3-cycle, or the identity.
If X ′

µ is the sum of all elements of cycle type µ in Sn, so that X ′
(2,1n−2) is the sum of

all transpositions, we have

(1) (X ′
(2,1n−2))

2 = 2X ′
(22,1n−4) + 3X ′

(3,1n−3) +
(
n

2

)
X ′

(1n).

Here, we emphasise that
(
n
2
)

is an integer-valued polynomial. This property of struc-
ture constants allowed Farahat and Higman to define an “interpolating” algebra,
which we denote FH, with coefficients in the ring of integer-valued polynomials, R.
See Section 3 for a precise explanation. By construction, there are surjective “spe-
cialisation” homomorphisms FH → Z(ZSn) for any n. The original motivation for
defining the algebra FH was to give a new proof of Nakayama’s Conjecture about
p-blocks of symmetric groups.

We begin by reviewing the construction of the algebra FH, in particular we ex-
plain that it is isomorphic to R⊗Λ, where Λ is the ring of symmetric functions. The
Jucys–Murphy elements are key in describing this isomorphism, which leads to char-
acter formulae for Sn. We then fix a finite group Γ, and generalise the theory to the
wreath products Γ ≀Sn. An algebra analogous to FH was defined by Wang in [24], and
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we denote it FHΓ. (Wang mostly worked with an associated graded version of FHΓ
which he used to study Hilbert schemes of points on crepant resolutions of certain
plane singularities.) The main result of this paper (Theorem 6.19) determines the al-
gebra structure of FHΓ via a “Jucys–Murphy evaluation” map that implies character
formulae for wreath products of the same nature as those for the symmetric group.

We define two rings, RΓ and Λ(Γ∗), which are, respectively, versions of R and Λ
weighted by the conjugacy classes of Γ. Then we show that FHΓ = RΓ ⊗ Λ(Γ∗), and
mimic the approach of Farahat and Higman to classify the p-blocks of Γ ≀ Sn.

In the appendix, we discuss some properties of RΓ and Λ(Γ∗) that are not needed
for the main theory, but may be of independent interest. In particular, both RΓ
and Λ(Γ∗) are Hopf algebras. The Hopf algebra structure on RΓ is a consequence
of the fact that RΓ is a certain distribution algebra. We describe homomorphisms
from RΓ to a field; similarly to the case of R, such maps are parametrised by several
p-adic numbers.

The paper is organised as follows. In Section 2, we review basic facts about sym-
metric groups, wreath products, and symmetric functions. We also briefly summarise
the modular representation theory that is necessary for our applications. In Section 3,
we review the theory of the Farahat–Higman algebra FH, Jucys–Murphy elements,
and explain how FH is used to prove Nakayama’s Conjecture. In Section 4, we define
Λ(Γ∗), which we call the ring of Γ∗-weighted symmetric functions. We discuss the
wreath-product Farahat–Higman algebra FHΓ and introduce RΓ in Section 5. Then
we prove the isomorphism FHΓ = RΓ ⊗ Λ(Γ∗) in Section 6, and use it to study p-
blocks of wreath products in Section 7. In Appendix A we study maps from RΓ to a
field, and show that both RΓ and Λ(Γ∗) are Hopf algebras.

2. Background
2.1. Symmetric Groups and Wreath Products. We now introduce the notation
and basic properties of symmetric groups and wreath products. Details may be found
in [14, Chapter 1] (wreath products are discussed in Appendix B).

A partition, λ = (λ1, . . . , λr), is a finite non-increasing sequence of positive integers.
The entries λi are called the parts of λ. It is also common to write λ = (1m12m2 · · · )
to mean that λ has mi parts of size i (this information uniquely determines λ). We
will write mi(λ) for the number of parts of λ of size i. The size of a partition is the
sum of its parts: |λ| = λ1 + · · ·+ λr. If |λ| = n it is common to say λ is a partition of
n, and to write λ ⊢ n. The length of a partition is the number of parts: l(λ) = r. We
write P for the set of partitions of any size.

We depict partitions with Young diagrams. The Young diagram of λ consists of l(λ)
rows, where the i-th row consists of λi boxes, left-justified. For example, the Young
diagram of the partition (5, 2, 1) is:

The content of the box in the i-th row from the top and j-th column from the
left is defined to be j − i ∈ Z. If the boxes of a Young diagram are labelled (usually
with positive integers), we call it a Young tableau. If λ is a partition of n, and a
Young diagram is labelled using the numbers 1, . . . , n (each number used once) such
that numbers increase in each row from top to bottom, and increase in each column
from left to right, then the corresponding Young tableau is called a standard Young

Algebraic Combinatorics, Vol. 6 #2 (2023) 414



Stable centres of wreath products

tableau. Suppose that λ ⊢ n. For a standard Young tableau T of shape λ, an element
r ∈ {1, . . . , n} labels a unique box of T ; we write cT (r) for the content of the box in
T labelled r. For example, if T is the standard Young tableau of shape (3, 3, 1) below,

1 3 4
2 6 7
5

then cT (5) = 1− 3 = −2, cT (6) = 2− 2 = 0, and cT (7) = 3− 2 = 1.
A border strip R of λ is a subset of the boxes of the Young diagram of λ satisfying

the following conditions. Firstly, λ\R (i.e. the diagram of λ with the border strip R
removed) should be the Young diagram of a partition. Secondly, the subset R should
be contiguous (boxes sharing an edge are considered adjacent, but those sharing only
a vertex are not). Finally, R should not contain any 2× 2 square of boxes. Below are
some examples of border strips R for the partition (4, 2, 2), where in each case R is
indicated by the shaded squares:

If p is a prime number, the p-core of λ is the partition obtained by successively
removing border strips of size p from the diagram of λ until it is no longer possible
to do so. It turns out that the resulting partition is independent of the choice of how
to remove border strips of size p.

Example 2.1. The 2-cores of the partitions (3), (2, 1), and (1, 1, 1) are (1), (2, 1), and
(1) respectively. The diagrams below illustrate this (grey boxes indicate a border strip
of size 2 to be removed):

Consider a border strip R of size p, viewed as a sequence of adjacent boxes, starting
at the bottom-left-most square, with each subsequent box either above or to the right
of the previous one. Then the content of each subsequent box is 1 larger than the
content of the preceding box as either the column index j increases or the row index i
decreases. This means that the content of the boxes in R attain each congruence class
in Z/pZ exactly once. It follows that two partitions of the same size with the same
p-core have the same multiset of content modulo p. In fact, two partitions of the same
size have the same multiset of content modulo p if and only if the two partitions have
the same p-core (e.g. in Example 2.1 above). Details can be found in [14, Examples 8
and 11, Section 1.1].

The n-th symmetric group, Sn, is the set of bijections from the set {1, . . . , n} to
itself, which is a group with the operation of function composition. The cycle type of
an element σ ∈ Sn is a partition λ such that mi(λ) is the number of cycles of size i
in σ. Two elements of Sn are conjugate if and only if they have the same cycle type,
so the conjugacy classes of Sn are in bijection with partitions of size n.
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Let Γ be a finite group. We let Γ∗ = {c1, . . . , cl} be the set of conjugacy classes
of Γ. Sometimes we will write 1 to denote the identity conjugacy class. We will need
to consider the set Γ∗ of irreducible representations of Γ over C (we could work with
any characteristic-zero splitting field of Γ, but we stick to the complex numbers for
concreteness). By abuse of notation, we write χ ∈ Γ∗ to mean both the irreducible
representation and its character, for example we may write χ(1) = dim(χ). The centre
of the group algebra ZΓ is a free Z-module with a basis consisting of conjugacy-class
sums. By further abuse of notation, we use the same symbol to denote a conjugacy
class and the sum of its elements. This allows us to write Z(ZΓ) = ZΓ∗. In addition,
we define the structure constants Aki,j ∈ Z via the following equations in ZΓ∗:

(2) cicj =
∑
k

Aki,jck.

By the Artin–Wedderburn theorem, CΓ is a product of matrix algebras indexed by
Γ∗. Since the centre of a matrix algebra is one dimensional, we have an isomorphism of
algebras CΓ∗ = CΓ∗ , where the implied basis of the latter space consists of orthogonal
central idempotents in CΓ∗.

The n-fold product of Γ with itself has an action of the symmetric group by per-
mutation of factors. Concretely, if (g1, . . . , gn) ∈ Γn and σ ∈ Sn, then
(3) σ(g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)).
This defines an automorphism of Γn, and in fact we obtain a homomorphism Sn →
Aut(Γn). The corresponding semidirect product Γn ⋊ Sn is called the wreath product
of Γ with Sn, and is denoted Γ ≀ Sn. As a set, Γ ≀ Sn is equal to Γn × Sn. We write an
element (g1, . . . , gn, σ) as (g, σ) where g ∈ Γn. Then the group operation is

(g, σ)(h, ρ) = (gσ(h), σρ),
where σ(h) has the meaning in Equation (3). Both Γn and Sn are subgroups of Γ ≀Sn
in the obvious way. If g ∈ Γ, we write g(i) ∈ Γn for the element whose i-th component
is g, and all other components are the identity. This notation extends linearly to give
us an embedding of ZΓ into ZΓn, so for example we may write c(i) =

∑
g∈c g

(i) for
the conjugacy-class sum c embedded in the i-th component of ZΓn. We also let gi be
the i-th entry in g ∈ Γn, so we have the tautological equality

g =
n∏
i=1

g(i)
i .

This also makes it simpler to write the Sn action:

σ(g) =
n∏
i=1

g(σ(i))
i .

Example 2.2. An important special case is Γ = C2, the cyclic group of order 2. In
that case, C2 ≀Sn is called the n-th hyperoctahedral group. It arises in Lie theory as the
Weyl group of types Bn and Cn. We will use the case Γ = C2 for examples throughout
the paper.

We now describe the conjugacy classes in Γ ≀ Sn. Suppose that (g, σ) ∈ Γ ≀ Sn, and
that (i1, . . . , ir) is a cycle of σ ∈ Sn. We also say that it is a cycle of (g, σ), and we
define its type to be the conjugacy class of gir · · · gi1 . Note that gi1(gir · · · gi1)g−1

i1
=

gi1gir · · · gi2 , so that gir · · · gi1 and gi1gir · · · gi2 are conjugate. This means that the
two (equal) cycles (i1, . . . , ir) and (i2, . . . , ir, i1) have the same type, and iterating
though all cyclic permutations we see that the type of a cycle is well defined. We
record the sizes and types of an element of Γ ≀ Sn in a multipartition.
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Definition 2.3. If D is a set, we say that a multipartition indexed by D is a function
from D to the set of partitions. We denote the set of multipartitions indexed by D by
P(D). If D is not specified, we take D = Γ∗. The size of a multipartition λ is the
sum of the sizes of its constituent partitions:

|λ| =
∑
x∈D
|λ(x)|.

Similarly, the length of a multipartition is the sum of the lengths of its consituent
partitions:

l(λ) =
∑
x∈D

l(λ(x)).

To express a multipartition we write the juxtaposition of its constituent partitions with
the corresponding element of D as a subscript (omitting empty partitions for brevity).
If λ(y) is the empty partition for y ̸= x, we say that λ is concentrated in type x.

For example, (2, 1)c1(1, 1, 1)c2 is the multipartition in P(Γ∗) taking the value (2, 1)
at c1 ∈ Γ∗ and taking the value (1, 1, 1) at c2 ∈ Γ∗, while (3, 1)c3 is concentrated in
type c3.

Definition 2.4. The cycle type of an element (g, σ) of Γ ≀ Sn is the Γ∗-indexed mul-
tipartition µ such that for each i ∈ Z>0 and c ∈ Γ∗, mi(µ(c)) is equal to the number
of cycles of type c and size i in (g, σ).

By construction, the size of the cycle type of an element of Γ ≀Sn is n. Two elements
of Γ ≀Sn are conjugate if and only if they have the same cycle type. So the conjugacy
classes of Γ ≀ Sn correspond to Γ∗-indexed multipartitions of n.

Lemma 2.5. Let σ = (i1, . . . , ir) be an r-cycle in Sn. Let Xσ(c) ∈ ZΓ ≀ Sn be the sum
of all elements of the form (g, σ) ∈ Γ ≀Sn where the type of the cycle σ is c ∈ Γ∗, and
gi = 1 for all i not in the cycle. Then for any ij in the cycle, we have

Xσ(c) = c(ij)Xσ(1) = Xσ(1)c(ij),

where c(i) =
∑
g∈c g

(i) is the conjugacy class sum c embedded in the i-th component
of ZΓn.

Proof. The second equality follows from the first because

(g, σ)c(ij) = (gc(ij+1), σ) = c(ij+1)(g, σ),

where ir+1 is taken to mean i1 when j = r. In the second step we use the fact that c
is a central element of ZΓn. We write

Xσ(c) =
∑

gir ···gi1 ∈c
(g, σ)

where gi = 1 for i ̸= i1, . . . , ir. The condition gir · · ·gi1 ∈ c may be written as

gij ∈ g−1
ij+1
· · ·g−1

ir
cg−1
i1
· · ·g−1

ij−1
= c(g−1

ij+1
· · ·g−1

ir
g−1
i1
· · ·g−1

ij−1
),

where we have used the fact that c is conjugation invariant to move it to the front
of the product. In the case where c = 1, choosing all the elements other than gij
arbitrarily uniquely determines gij . In the case of general c, we again may choose the
elements other than gij arbitrarily, and then gij may be any element of c multiplied
by the value of gij from the c = 1 case. □
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Lemma 2.6. Let r < s be positive integers and let σ = (i1, . . . , ir) and ρ = (ir, . . . , is)
be cycles in Sn of lengths r and s−r+1 respectively that intersect at a single element
ir. Let Xσ(ci) and Xρ(cj) be as in Lemma 2.5. Then

Xσ(ci)Xρ(cj) =
∑
k

Aki,jXσρ(ck),

where Aki,j are the structure constants of ZΓ∗ appearing in Equation (2), and σρ is
the permutation obtained by first applying ρ and then applying σ.

Proof. We may assume ci = cj = 1 because

Xσ(ci)Xρ(cj) = c
(ir)
i Xσ(1)c(ir)

j Xρ(1) = c
(ir)
i c

(ir)
j Xσ(1)Xρ(1),

and ∑
k

Aki,jXσρ(ck) =
∑
k

Aki,jc
(ir)
k Xσρ(1) = c

(ir)
i c

(ir)
j Xσρ(1).

Now we suppose that (g, σ) has all cycles of type 1, so in particular
gir · · ·gi1 = 1.

Similarly we consider (h, ρ) with
his · · ·hir = 1.

Then (g, σ)(h, ρ) = (gσ(h), σρ), and we have

(gσ(h))ip =

gi1hir p = 1
gip 1 < p ⩽ r
hip r < p ⩽ s

The type of this cycle is the conjugacy class of
his · · ·hir+1gir · · ·gi1hir .

But now, gir · · ·gi1 = 1, leaving his · · ·hir which equals 1. Moreover the elements
gi2 , . . . ,gir and hir+1 , . . . ,his may be chosen arbitrarily, and then gi1 and hir are
determined by the condition that the type of the cycle should be 1. As a result we
get every term in the sum Xσρ(1) exactly once. □

We now turn our attention to describing the irreducible representations of Γ ≀ Sn
over C in terms of those of Γ and Sn. Recall that the irreducible representations Sλ
of the symmetric group Sn in characteristic zero are called Specht modules and are
labelled by partitions λ of size n. Analogously, the irreducible representations V λ of
Γ ≀ Sn over C are in bijection with Γ∗-indexed multipartitions λ of size n. We explain
how they can be constructed.

If τ = (τ1, . . . , τl) is a sequence of non-negative integers adding to n, then the
product of the symmetric groups Sτi is a subgroup of Sn, called a Young subgroup,
and denoted Sτ . Here the factors Sτi are viewed as a subgroups of Sn by permuting
disjoint contiguous blocks of τi elements of {1, . . . , n}. We refer to the Sτi

as the factor
groups of the Young subgroup Sτ . The product∏

i

(Γ ≀ Sτi
) = Γn ⋊ Sτ

is a subgroup of Γ ≀Sn which we denote Γ ≀Sτ . Secondly, if χ ∈ Γ∗ and λ is a partition
of τi, then

χ⊗τi ⊗ Sλ

is a representation of Γ ≀Sτi
where Γτi acts on the first factor in the natural way, while

Sτi acts by permuting the tensor factors in the first term, and in the usual way on
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the second term. Finally, the irreducible representation of Γ ≀ Sn indexed by λ is the
following induced representation:

V λ = IndΓ≀Sn

Γ≀Sτ

( ⊗
χ∈Γ∗

χ⊗τχ ⊗ Sλ(χ)

)
,

where τ is the composition of n whose parts are τχ = |λ(χ)|, indexed by χ ∈ Γ∗ in
some order.

2.2. Symmetric Functions. We recall the construction of the ring of symmetric
functions, Λ. Macdonald’s book [14] is the authoritative reference on this topic. In
Section 4, we will mimic this construction to define a related ring, Λ(Γ∗).

The n-th tensor power of Z[x] may be viewed as the polynomial ring Z[x1, . . . , xn].
The action of the symmetric group Sn by permutation of tensor factors may be
understood as permutation of the variables. The Sn-action preserves the grading where
each variable has degree 1, so the ring of Sn-invariants inherits the same grading. An
important family of invariant elements are the monomial symmetric polynomials, mλ,
indexed by partitions λ. By definition, mλ(x1, . . . , xn) is the sum of all monomials
xa1

1 xa2
2 · · ·xan

n such that the number of exponents equal to i ∈ Z>0 is mi(λ).
Let Λn be the Sn-invariants of Z[x1, . . . , xn], and Λkn be the degree k component

of Λn. For m > n we have a map ρm,n : Λkm → Λkn defined by setting the variables
xn+1, . . . , xm to zero. For m > k > n, we have ρm,k ◦ ρk,n = ρm,n, and so these ρm,n
define an inverse system on the Z-modules Λkn (for fixed k and n ∈ Z⩾0), and we take

Λk = lim←−Λkn.

In explicit terms, Λk consists of sequences (q1, q2, . . .), where qn ∈ Λkn, that satisfy
the condition ρm,n(qm) = qn. It is well known that ρm,n is an isomorphism when
m > n ⩾ k, and in that case Λkn has a basis of monomial symmetric functions mλ

indexed by partitions λ of size k. Moreover, the monomial symmetric functions with
different numbers of variables are stable with respect to the maps ρm,n, i.e.

mλ(x1, . . . , xn) = ρm,n(mλ(x1, . . . , xm)) = mλ(x1, . . . , xn, 0, . . . , 0).

Therefore the monomial symmetric polynomials define elements of the inverse limit
Λk, which are called monomial symmetric functions and denoted mλ. From this it
follows that Λk is a free Z-module with basis mλ indexed by partitions λ of size k.
Finally, the ring of symmetric functions is

Λ =
∞⊕
k=0

Λk,

which is free as a Z-module with basis consisting of the monomial symmetric functions.
In fact, Λ is a graded ring because the operation of setting a variable xm to zero
respects degree and multiplication. By general properties of inverse limits, we have a
canonical ring homomorphism Λ→ Λn by sending (q1, q2, . . .) to qn.

The elementary symmetric functions er are elements of Λ given by er = m(1r).
When evaluated in n variables they are

er(x1, . . . , xn) =
∑

i1<i2<···<ir

xi1xi2 · · ·xir ,

namely, the sum of all products of r distinct variables. Often it is convenient to work
with generating functions, in which case we have∑

r⩾0
er(x1, . . . , xn)tr =

n∏
i=1

(1 + xit).
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A key fact is that the elementary symmetric functions generate Λ as a free polynomial
algebra: Λ = Z[e1, e2, . . .].

2.3. Central Characters and Blocks. In this subsection, we review the modu-
lar representation theory needed for our applications and for the appendix.

The notion of central character is a slight variation of a character.

Definition 2.7. Suppose that Γ is a finite group. The central character ωχc of a con-
jugacy class c ∈ Γ∗ on an irreducible representation χ ∈ Γ∗ is the scalar by which
c ∈ ZΓ acts on χ (central elements always act by scalar multiplication on irreducible
representations).

There is a formula for the central characters in terms of the usual characters:

ωχc =
∑
g∈c χ(g)
χ(1) .

This formula is obtained by taking the trace of c, viewed as a linear operator on the
irreducible representation, and dividing by the dimension (which is the trace of the
identity). Since characters are constant on conjugacy classes,

ωχc = |c|χ(g)
χ(1) ,

where |c| is the size of the conjugacy class c, and g is any element of c.
Central characters satisfy a variety of properties, for example they are always

algebraic integers (see [5, Proposition 5.3.2]). We will use the fact that the central
characters control the blocks of the modular representations of Γ. We briefly review
some of the key definitions and properties of blocks.

For the rest of this section, F is an algebraically closed field of any characteristic.
We still have Z(FΓ) = FΓ∗. Recall that the centre FΓ∗ acts on a simple FΓ-module
M by multiplication by scalars; multiplication by an element of the centre commutes
with the module action, and hence defines an element of End(M), which equals F by
Schur’s Lemma. This gives a homomorphism FΓ∗ → F, which is also called a central
character. When F = C and M = χ ∈ Γ∗, ωχc is the value of this homomorphism on
the conjugacy-class sum c.

Definition 2.8. The blocks of the group algebra FΓ are the minimal indecomposable
two-sided ideals Bi of FΓ.

It is well known that FΓ is the direct sum of its constituent blocks:
(4) FΓ =

⊕
i

Bi.

In particular, the intersection of distinct blocks is zero. Because the blocks are ideals,
BiBj ⊆ Bi ∩ Bj = 0 for i ̸= j. This means that Equation (4) is a decomposition of
F-algebras. So if we express the identity element of FΓ as 1 =

∑
i ei with ei ∈ Bi, it

follows that ei is the identity element of Bi, and moreover Bi = eiFΓei. The upshot
of this is that if M is any FΓ-module, then

M =
⊕
i

eiM.

So if M is indecomposable, eiM is nonzero for exactly one value of i, and for that
particular i, eiM = M . This makes M into a module for some Bi. It is common to
say that M belongs to the block Bi. As a result, we have a decomposition of module
categories

FΓ−mod =
⊕
i

(Bi −mod) ,
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because any module M splits as a direct sum of modules eiM belonging to each block
Bi. We can determine when two simple modules belong to the same block in terms
of central characters.

Proposition 2.9. Two simple modules for FΓ belong to the same block if and only
if every element Z(FΓ) acts on each of them by the same scalar (i.e. they have the
same central character).

Proof. Suppose thatBi is a block of FΓ. [19, Lemma 4.1] shows that Z(Bi)/J(Z(Bi)) =
F, where J is the Jacobson radical. According to [19], a central character of a block
Bi is defined as the composite homomorphism

Z(FΓ)→ Z(Bi)→ Z(Bi)/J(Z(Bi)) = F.

By definition, the Jacobson radical acts by zero on any simple module, so the action
of Z(FΓ) on a simple module factors through the above homomorphism. This shows
that this definition of central character is consistent with ours. Moreover, two simple
modules in the same block have the same central character. Simple modules in different
blocks must have different central characters, because the central idempotents ei act
differently (ei acts by the identity or zero depending on whether the module belongs
to Bi or not). □

There is a procedure for taking a representation of Γ in characteristic zero, and
producing a representation in positive characteristic. The details are technical, so we
only sketch the main idea, directing the interested reader to [19]. We begin with a
p-modular system (here p is a prime), which is a triple (K,O, k) defined as follows.
Firstly, O is a complete discrete valuation ring. Secondly, k is the residue field of O
which is required to be of characteristic p. Thirdly, K is the fraction field of O, which
is required to be of characteristic zero. We recall several facts:

• We may find a p-modular system such that every simple representation of Γ
over either K or k is absolutely irreducible. For example, we may take this K
to be a finite extension of the p-adic numbers, Qp, in which the polynomial
x|Γ|− 1 splits. Then we may also take O to be the integral closure of Z in K,
which makes k a finite field. (See [19, Section 3.3].)

• The representation theory of Γ over C and K is essentially the same. In either
case, irreducible representations are defined over Q[ζ], where ζ is a primitive
|Γ|-th root of unity. Then an identification of Q[ζ] as a subring of C with Q[ζ]
as a subring of K gives a correspondence of irreducible representations that
respects central characters. (This follows from [19, Theorem 2.7A].)

• Given a KΓ-module M , we may find a Γ-stable free O-submodule MO such
that KMO = M (i.e. MO spans M over K). Taking the quotient by the
maximal ideal of O gives a kΓ-module, Mk = MO ⊗O k. While the isomor-
phism class of Mk depends on the choice of integral form MO, the composition
factors (with multiplicity) of Mk do not. (This is [19, Theorem 3.6].)

As a result, the operation M → Mk is well-defined on the level of Grothendieck
groups:

d : K0(KΓ−mod)→ K0(kΓ−mod).
The map d is called the decomposition matrix, and its entries (with respect to the
bases coming from simple modules) are called decomposition numbers. These defini-
tions turn out to be independent of the choice of p-modular system. Decomposition
numbers are poorly understood outside of a few special cases, and are an active area
of research (one recent breakthrough was the disproof of the James conjecture [26]
about decomposition numbers for the symmetric groups).
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An easy observation from the form of the map d, is that since the centre KΓ∗ acts
by scalars on a simple KΓ-module M , any conjugacy class sum c acts by scalars on
MO and also Mk. This implies that every composition factor of Mk has the same
central character. So if M is a simple KΓ-module, Mk belongs to a single block Bi.
The (necessarily disjoint) subsets of the simple (characteristic zero) modules mapping
to a given (characteristic p) block are called p-blocks. The p-blocks determine a block-
diagonal structure of the decomposition matrix. We will determine the p-blocks of
Γ ≀ Sn in terms of the p-blocks of Γ in Theorem 7.9. This will use the following tool.

Proposition 2.10 ([19, Theorem 4.2B]). Two irreducible representations χ1, χ2 of
KΓ are in the same p-block if and only if

ωχ1
c ≡ ωχ2

c (mod π),

for all c ∈ Γ∗, where π is a uniformiser for O.

Proof. The p-block of an irreducible representation χ is determined by the central
character of any composition factor of (χ)k by Proposition 2.9. But the central char-
acter can be computed by taking the central character of χ and passing to k = O/(π).
Since Γ∗ is a basis for the group algebra of Γ, the equality of central characters is
equivalent to the stated equations. □

Our classification will use the following well-known result.

Proposition 2.11. Suppose that |Γ| = prm, where p ∤ m and M is a simple KΓ-
module. Then the block Bi to which Mk belongs is semisimple (as a k-algebra) if and
only if pr|dimK(M), in which case Mk is simple.

Proof. The “if” direction is known as the Brauer–Nesbitt theorem (although there are
also other results with that name). On the other hand, if Bi is semisimple, then the
Bi-module Mk is projective for Bi and therefore for kΓ. If P is a p-Sylow subgroup of
Γ, then Mk is a projective kP -module. But since p-groups only have one irreducible
representation in characteristic p (the trivial representation), kP is a (not necessarily
commutative) basic local algebra. This implies that a projective kP -module is free.
In particular, dimk(Mk) is a multiple of dimk(kP ) = pr. □

3. The Farahat–Higman algebra
Let X ′

µ be the sum of all elements of cycle type µ in Sn. These conjugacy-class sums
define a Z-basis of Z(ZSn) indexed by partitions of n. For example

X ′
(2,1n−2) =

∑
i<j

(i, j)

which is the sum of all elements of cycle type (2, 1n−2) (i.e. transpositions) in Sn.
Of course Z(ZSn) is a ring, so the product of two conjugacy-class sums should be a
linear combination of such sums. Taking the example from the introduction,

(5) (X ′
(2,1n−2))

2 = 2X ′
(22,1n−4) + 3X ′

(3,1n−3) +
(
n

2

)
X ′

(1n),

which we now verify. Just as the structure constants Aki,j (from Equation (2)) count
the number of ways a fixed element of the conjugacy class ck may be written as
the product of an element of ci and an element of cj , we consider products of two
transpositions, (i, j) and (k, l). If i, j, k, l are distinct, we have

(i, j)(k, l) = (k, l)(i, j),
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so each element of cycle type (22, 1n−4) appears twice. If {i, j} and {k, l} have one
element in common, (i, j)(k, l) is a 3-cycle. Since

(i, j, k) = (i, j)(j, k) = (k, i)(i, j) = (j, k)(k, i),
X ′

(3,1n−3) appears with multiplicity 3. Finally, if (i, j) and (k, l) move two elements in
common, they are equal. Their product is therefore the identity element of Sn, and
we obtain it once for each of the

(
n
2
)

transpositions in Sn. The most important feature
of Equation (5) is that the coefficients depend polynomially on n, the parameter of
the symmetric group Sn.

Definition 3.1. The reduced cycle type of an element of a symmetric group is the
partition obtained by subtracting 1 from each part of the cycle type, and ignoring any
resulting parts of size zero.

For example, the reduced cycle type of the identity is the empty partition, which
we denote ∅. The reduced cycle type of a transposition is (1). Note that the cycle
type of an element of Sn can be recovered from the reduced cycle type, provided
that n is known. The condition for Sn to have an element of reduced cycle type µ is
n ⩾ |µ| + l(µ). The upshot of working with reduced cycle types is that if we let Xµ

be the sum of all elements of reduced cycle type µ, Equation (5) becomes

(6) X2
(1) = 2X(1,1) + 3X(2) +

(
n

2

)
X∅.

This equation is valid in Z(ZSn) for any n ∈ Z⩾0, provided Xµ is interpreted as
zero if there are no elements of reduced cycle type µ in Sn (in that case Xµ as we
have defined it would be an empty sum). It turns out that any product of the Xµ

decomposes as a linear combination with coefficients that are polynomial in n.

Definition 3.2. The ring of integer-valued polynomials, R, is the subring of Q[t]
consisting of elements p(t) such that p(m) ∈ Z for all m ∈ Z.

It is well known that R is free as a Z-module, with basis
(
t
r

)
for r ∈ Z⩾0.

Theorem 3.3 ([6, Theorem 2.2]). For any partitions λ, µ, ν, there exists a unique
integer-valued polynomial ϕλµ,ν(t) such that the equation

XµXν =
∑
λ

ϕλµ,ν(n)Xλ

holds in Z(ZSn) for all n ∈ Z⩾0.

Using this theorem we can depart from the setting of Z(ZSn) for a specific n, and
work with all n at once. This comes at the price of working over R.

Definition 3.4 ([6, Section 2]). Let FH be the free R-module with basis Kµ indexed
by all partitions µ. Define a bilinear multiplication on FH by

KµKν =
∑
λ

ϕλµ,ν(t)Kλ

where ϕλµ,ν(t) are the polynomials from Theorem 3.3, viewed as elements of the base
ring R. We call FH the Farahat–Higman algebra.

Because the equations in Theorem 3.3 hold in Z(ZSn) for any n, we can return
from FH to Z(ZSn) via an appropriate specialisation homomorphism that sends Kµ

to Xµ and evaluates the polynomial coefficients at n. It is then routine to verify that
FH is a commutative, associative, unital R-algebra; this reduces to considering the
respective properties in Z(ZSn) for sufficiently large n.
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Theorem 3.5 ([6, Theorem 2.4]). For each n ∈ Z⩾0 there is a surjective ring homo-
morphism Φn : FH→ Z(ZSn) defined by

Φn

(∑
µ

aµ(t)Kµ

)
=
∑
µ

aµ(n)Xµ,

where aµ(t) ∈ R, and Xµ is the sum of all elements of Sn of reduced cycle type µ (or
zero, if there are no such elements).

Remark 3.6. Although we do not discuss it in this paper, there is a different con-
struction and perspective of the algebra FH provided by Ivanov and Kerov [9]. Their
approach transparently explains the above properties of FH. It was pointed out in
[25] that this construction can be extended to wreath products, and details of this
generalisation appear in [22].

The original motivation of Farahat and Higman for constructing FH was to provide
a simple proof of Nakayama’s Conjecture (a theorem which describes the p-blocks of
symmetric groups, originally proved by Brauer and Robinson [1]). In the remainder
of this section, we show that FH = R ⊗ Λ, explain Jucys–Murphy elements, and
discuss the theory of content evaluation character formulae for Sn. This will allow us
to succinctly describe Farahat–Higman’s proof of Nakayama’s Conjecture.

3.1. Isomorphism with Symmetric Functions. The main result of Farahat and
Higman’s paper is that FH is generated by a particular set of elements. With some
care, we can infer that FH is isomorphic to the ring of symmetric functions with
coefficients in R (Theorem 3.8).

Theorem 3.7 ([6, Theorem 2.5]). As an R-algebra, FH is generated by the elements

gn =
∑
µ⊢n

Kµ

where n ∈ Z>0.

Recall that Λ = Z[e1, e2, . . .]. It is graded:

Λ =
⊕
k⩾0

Λk

where er has degree r. In particular, if ν = (ν1, ν2, . . . , νl) is a partition, then eν =
eν1eν2 · · · eνl

is in degree |ν|, and a basis of Λn as a Z-module is given by the set of
eν as ν varies across partitions of n. The grading on Λ induces a filtration

Λ =
⋃
i⩾0

Λ⩽i,

where
Λ⩽i =

⊕
k⩽i

Λk,

and Λ⩽i has Z-basis consisting of eν where |ν| ⩽ i.
In fact FH is also a filtered R-algebra,

FH =
⋃
i⩾0
F i

where F i is the R-submodule of FH spanned by Kµ with |µ| ⩽ i (see [6, Lemma 3.9]).
This filtration may be interpreted as follows. A k-cycle in a symmetric group may be
written as a product of k − 1 transpositions (and no fewer), for example:

(i1, i2, i3, . . . , ik) = (i1, i2)(i2, i3) · · · (ik−1, ik).
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For an arbitrary permutation of cycle type ν = (ν1, ν2, . . . , νl), the number of trans-
positions needed is ∑

i

(νi − 1),

which is precisely the size of the corresponding reduced cycle type (ν1 − 1, ν2 −
1, . . . , νk − 1). So F i may be seen as filtering permutations according to how many
transpositions are needed to construct them.

Theorem 3.8. There is an isomorphism Ψ : R ⊗Z Λ → FH of filtered R-algebras
defined by

Ψ(en) = gn =
∑
µ⊢n

Kµ.

We give two proofs. The first proof is intended to be in the spirit of the original
work of Farahat and Higman. The second proof relies on the later work of Jucys, and
it is this second proof that will generalise to the wreath-product setting.

First Proof of Theorem 3.8. The homomorphism Ψ is well defined because Λ is a
free polynomial algebra, so there are no relations that need to be checked. Since
Ψ(ei) = gi ∈ F i, it is immediate that Ψ respects the filtrations on both spaces.
Additionally, Theorem 3.7 shows Ψ is surjective. However, the proof in [6] proceeds
by showing that

F i = Rgi +
∑
j+k=i
j,k⩾1

F j · Fk.

From this, it follows by induction on i that the restriction of Ψ to a map from the
i-th filtered component of Λ to the i-th filtered component of FH is a surjection:

F i = Rgi +
∑
j+k=i
j,k⩾1

F j · Fk

= RΨ(ei) +
∑
j+k=i
j,k⩾1

Ψ(Λ⩽j) ·Ψ(Λ⩽k)

⊆ Ψ(Λ⩽i).

We may pass to the fraction field of R, namely the field of rational functions Q(t).
Now Ψ restricts to a surjection of vector spaces:

Ψ|Λ⩽i : Q(t)⊗Z Λ⩽i → Q(t)⊗R F i.

Since both spaces have the same dimension (each has a basis indexed by partitions
of size at most i), standard linear algebra shows that since the linear map Ψ|Λ⩽i is
surjective, it must also be injective. This in turn implies that Ψ is injective. □

Theorem 3.8 is essentially a strengthening of [3, Theorem 3.1], the difference being
that they work rationally (i.e. over Q ⊗Z R = Q[t]), while we work integrally (i.e.
over R). This will be essential when we consider modular representation theory in
Section 7.

At this point it may be unclear why we choose to work with the ring of symmet-
ric functions when the only property we have used is that it is a free polynomial
algebra with one generator in each positive degree. In the next subsection, we will
summarise the theory of Jucys–Murphy elements, which will allow us to interpret the
isomorphism Ψ as “Jucys–Murphy evaluation” of symmetric functions. This will give
us formulae for central characters. To that end, we will need the following definition.
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Definition 3.9. For a partition µ, the character symmetric function is fµ = Ψ−1(Kµ)
(it is an element of R⊗Z Λ).

Example 3.10. By the definition of Ψ, Ψ(e1) = K(1) and Ψ(e2) = K(1,1) + K(2).
Additionally, Equation (6) shows that

Ψ(e2
1) = 2K(1,1) + 3K(2) +

(
n

2

)
.

From this we conclude that f(1) = e1, f(2) = e2
1−2e2−

(
n
2
)
, and f(1,1) = 3e2−e2

1 +
(
n
2
)
.

One may consult [2, Section 5.4] for an alternative exposition of character symmet-
ric functions. Note however, that our indexing variable µ is a partition corresponding
to a reduced cycle type, while some of the literature uses partitions corresponding to
cycle types, but with parts of size 1 removed.

3.2. Jucys–Murphy Elements. The Jucys–Murphy (“JM”) elements are a key
part of what has come to be known as the Okounkov–Vershik approach to the repre-
sentations of symmetric groups ([17] and [12] are both excellent references), some parts
of which we briefly review before explaining the connection to the Farahat–Higman
algebra.

The JM elements L1, . . . , Ln ∈ ZSn are sums of certain transpositions:

Lm =
∑

1⩽i<m
(i,m).

For example L1 = 0, L2 = (1, 2), and L3 = (1, 3) + (2, 3). It is well known that the
JM elements pairwise commute, so if P (x1, . . . , xn) ∈ Z[x1, . . . , xn], the expression
P (L1, . . . , Ln) ∈ ZSn is unambiguous. Furthermore, if P (x1, . . . , xn) is symmetric in
the xi, then P (L1, . . . , Ln) is known to be a central element of ZSn.

Proposition 3.11 ([16, Theorem 1.9]). If mµ is the monomial symmetric function,
then mµ(L1, . . . , Ln) is equal to Xµ plus a linear combination of Xν such that either
|ν| < |µ| or |ν| = |µ| and l(ν) < l(µ).

Proof. Suppose that g ∈ Sn has reduced cycle type µ. Then multiplying g by (i, j)
either merges two (possibly trivial) cycles if i and j are in distinct cycles of g, or splits
an individual cycle into two cycles if i and j are in the same cycle of g. The merging
of two cycles has the effect of increasing the size of the reduced cycle type by 1, while
splitting subtracts 1 from the size. Since each JM element is a sum of transpositions,
mµ(L1, . . . , Ln) is a sum of products of |µ| transpositions. So to compute the leading
order term, we only consider products that merge cycles at each step.

We consider Lrj . This is a sum of products
(i1, j) · · · (ir, j)

of r transpositions (ik, j) where the ik (k = 1, . . . , r) may be any numbers less than j.
In order for the cycle to grow with each multiplication, it is necessary and sufficient
that values of ik must be distinct. The result of such a product will be the (r+1)-cycle

(ir, ir−1, . . . , i1, j).
So we get every (r+1) cycle with largest element j exactly once because the elements
of the cycle determine the transpositions involved in the product, and their order in
the cycle determines the order of the transpositions in the product.

Finally, we note that mµ(L1, . . . , Ln) is a sum of products of Lrj where the expo-
nents r are the parts of µ in some order. By the previous paragraph, up to leading
order, we get a product of (r + 1)-cycles, and the length of the reduced cycle type
is maximised when they do not intersect. In that case we get an element of reduced

Algebraic Combinatorics, Vol. 6 #2 (2023) 426



Stable centres of wreath products

cycle type µ, and moreover each such element arises exactly once because the length
of the cycle whose largest element is j must have been the exponent of Lj in the
monomial that gave rise to the cycle in consideration. □

In the case where µ = (1r) so that mµ = er, the above argument simplifies; it never
happens that a transposition splits a cycle. This makes it possible to keep track of all
the resulting permutations; we get the sum of all elements in Sn with n− r cycles.

Theorem 3.12 ([11, Section 3]). If er is the r-th elementary symmetric function, then

er(L1, . . . , Ln) = Φn(gr) =
∑
µ⊢r

Xµ,

where Xµ is the sum of elements of reduced cycle type µ in Sn.

Remark 3.13. The formulation of Theorem 3.12 appearing in [11, Section 3] states
that

er(L1, . . . , Ln) =
∑
µ⊢n,

l(µ)=n−r

X ′
µ.

The partitions µ correspond to reduced cycle types ν of size r and length at most
n− r. So while the sum in Theorem 3.12,∑

ν⊢r

Xν ,

features more summands than the first sum, the summands with l(ν) > n − r have
|ν| + l(ν) > n and therefore do not correspond to any permutations in Sn (so the
corresponding terms Xν are zero).

Now we can give the other proof of Theorem 3.8.

Second Proof of Theorem 3.8. By Theorem 3.12, Φn(Ψ(er)) ∈ Z(ZSn) may be inter-
preted as the evaluation of the elementary symmetric function er at the Jucys–Murphy
elements L1, . . . , Ln. By Proposition 3.11, applying the same operation to the mono-
mial symmetric functions mµ, we get Xµ plus terms lower in a certain partial order.
Since Φn(Ψ(mµ)) is equal to Xµ plus lower-order terms, Ψ(mµ) is equal to Kµ plus
lower-order terms. Since the mµ and Kµ are R-bases of the respective spaces, this
shows that Ψ is an isomorphism. □

In view of Theorems 3.5 and 3.8, we have the following commutative diagram for
each n,

(7)
R⊗Z Λ FH

Z(ZSn)

Ψ

evn Φn

where evn : R⊗ZΛ→ Z(ZSn) evaluates an integer-valued polynomial at n and evalu-
ates a symmetric function at L1, . . . , Ln. To see that the diagram commutes, it suffices
to check the generating elements er of Λ, which is the statement of Theorem 3.12.
This suggests that FH can be thought of as being “the ring of symmetric functions
evaluated at JM elements”.

Recall that the irreducible representations of CSn are the Specht modules Sλ,
indexed by partitions λ of size n. The Specht module Sλ possesses a Gelfand-Zetlin
(“GZ”) basis vT indexed by standard Young tableaux T of shape λ. A very special
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property of the GZ basis is that it is diagonal for the action of the JM elements, and
the eigenvalues are given by the content of boxes in T :

LivT = cT (i)vT .
Now suppose that P (x1, . . . , xn) is a symmetric polynomial. Evaluating at the JM

elements and applying it to vT , we obtain
P (L1, . . . , Ln)vT = P (cT (1), . . . , cT (n))vT .

Since P is symmetric, P (cT (1), . . . , cT (n)) does not depend on the order of the content
of T . But for any T of shape λ, the multiset of cT (i) is precisely the content of the
boxes in λ, in particular, it is the same for every T of shape λ. This implies that
P (L1, . . . , Ln) acts by the same scalar on any vT of fixed shape λ. This implies that
P (L1, . . . , Ln) ∈ ZSn acts by scalar multiplication on each irreducible representation
of the symmetric group, and is therefore a central element of ZSn as stated earlier.

Theorem 3.14. The central character for Sn, ωλµ (µ defines a conjugacy class via
reduced cycle type), is equal to the character symmetric function fµ evaluated at the
content of the partition λ, with the integer-valued polynomial variable t evaluated at n.

Proof. By definition ωλµ is the scalar by which Xµ acts on Sλ. To calculate the scalar,
we may choose an arbitrary GZ basis vector vT and act on it by evn(fµ) = Xµ. But
evn evaluates elements of R at t = n and evaluates the symmetric function variables
at JM elements, which act on vT by the contents of λ. □

Example 3.15. We know from Example 3.10 that f(1) = e1. As (1) is the reduced
cycle type of a transposition, we get that sum of all transpositions acts on the Specht
module Sλ as multiplication by the sum of the contents of the boxes in the Young
diagram λ. For a box □ in the diagram of λ, let row(□) and col(□) be the number of
the row and column containing □ respectively. Then the sum of the contents of λ is∑
□∈λ

col(□)− row(□) =
∑
□∈λ

col(□)−
∑
□∈λ

row(□) =
∑
i

(
λi + 1

2

)
−
∑
j

(
λ′
j + 1
2

)
,

where λ′
j are the lengths of the columns in the diagram of λ (equivalently, the parts

of the partition dual to λ). Here we have used the identity 1 + 2 + · · ·+m =
(
m+1

2
)

to
sum each row/column. We have recovered the celebrated Frobenius formula [7], see
also [14, Example 7, Section 1.7].

We are now able to give a proof of Nakayama’s Conjecture, which is a character-
isation of the p-blocks of Sn. Although it was first proved by Brauer and Robinson
[1], we take the simpler approach of Farahat and Higman.

Theorem 3.16 ([6]). Two irreducible representations of CSn are in the same p-block
if and only if they are labelled by partitions with the same p-core.

Proof. The definition of p-block makes reference to a p-modular system (K,O, k).
Proposition 2.10 provides a way to determine the blocks in terms of central characters.
Note that since O/(π) = k has characteristic p, p ∈ O is contained in the ideal (π).
Suppose that a, b ∈ Z ⊆ O are integers viewed as elements of O. Then if p|a − b,
certainly π|a− b. However, if π|a− b, then a− b is an integer divisible by π. But if π
divides an integer m coprime to p, then by Bézout’s identity, π divides gcd(m, p) = 1,
which is a contradiction as π is not a unit. Thus π|a − b implies p|a − b, and we
conclude that the a and b are congruent modulo π if and only if the are congruent
modulo p.

Theorem 3.14 shows that the central characters of Sn are integers because the
value of an element of R at n is by definition an integer, and evaluating symmetric
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polynomials with integer coefficients at integers (contents of λ) will give integers. So
we are left to determine them modulo π, or equivalently, modulo p. The centre of
the group algebra of Sn is evn(R ⊗ Λ). Because R ⊗ Λ is generated by R and the
elementary symmetric functions ei, it is enough to consider the action of evn(R) and
evn(ei) on Specht modules Sλ. The action of evn(R) is independent of the partition
λ. To understand the action of the elementary symmetric polynomials, we assemble
them into a generating function:∑

i

evn(ei)ti =
∑
i

ei(L1, . . . , Ln)ti =
n∏
i=1

(1 + Lit),

which acts on a GZ basis vector vT (T is a standard Young tableau of shape λ) by
the scalar

n∏
i=1

(1 + cT (i)t).

By the unique factorisation of polynomials in k[t], this generating function determines,
and is determined by, the content of λ viewed as elements of k, i.e. taken modulo
char(k) = p. Two irreducibles are in the same p-block if and only if they have the
same central characters, which holds if and only if they are labelled by partitions
with the same content modulo p, which holds if and only if the partitions have the
same p-core. □

Remark 3.17. Some authors (e.g. [24] and [14, Example 25, Section 1.7]) consider
the associated graded algebra of FH (with respect to the filtration defined imme-
diately before Theorem 3.8). One advantage of this is that the structure constants
in the associated graded algebra are integers, rather than arbitrary elements of R,
so one may avoid working over R altogether. One disadvantage is that the maps
evn : FH → Z(ZSn) become maps to an associated graded version of the centre of
the group algebra (where Xµ is in degree |µ|). Although this obstructs applications to
modular representation theory, it turns out to be the right thing to do in the setting
of Hilbert schemes. In fact, this associated graded version of Z(ZSn) is isomorphic to
H∗(Hilbn(A2

C),Z), the cohomology ring (with Z coefficients) of the Hilbert scheme of
n points in the plane. This was shown in [13]. We will not discuss Hilbert schemes
any further in this paper.

4. Γ∗-Weighted Symmetric Functions
We now generalise the construction of the ring of symmetric functions in a way that
incorporates Γ∗, which will define a ring Λ(Γ∗) that will play a central role in this
paper. Let Q be the subring of ZΓ∗[x] consisting of polynomials whose constant term
is a multiple of the identity (rather than an arbitrary element of ZΓ∗). Consider the
n-th tensor power (over Z) of Q, which has an action of Sn by permutation of tensor
factors. As shorthand, for c ∈ ZΓ∗ we write

xri (c) = 1⊗(i−1) ⊗ cxr ⊗ 1⊗(n−i).

This means that xri (c)xsi (c′) = xr+s
i (cc′), and that xri (c)+xri (c′) = xri (c+ c′). Since Q

has a grading (inherited from ZΓ∗[x]), there is a grading on the ring of Sn invariants
of Q⊗n. We write Λn(Γ∗) for the Sn-invariants of Q⊗n, and Λkn(Γ∗) for the degree
k component of Λn(Γ∗). As before, for m > n there are homomorphisms ρm,n :
Λkm(Γ∗) → Λkn(Γ∗) which evaluate the polynomial variables of all tensor factors past
the n-th at zero. These define an inverse system, and we write

Λk(Γ∗) = lim←−Λkn(Γ∗).
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Remark 4.1. It may seem unnatural to work with the ring Q rather than the full
polynomial ring ZΓ∗[x]. The reason we do this is that evaluating elements of Q at
zero yields an element of Z rather than ZΓ∗, so the codomain of ρm,n is

Λkn(Γ∗)⊗ Z⊗(m−n) = Λkn(Γ∗),

rather than
Λkn(Γ∗)⊗ (ZΓ∗)⊗(m−n),

which, being different from Λkn(Γ∗), would not allow us to construct an inverse system.
Later we will account for these “missing” constant terms (see Theorem 5.18), using
the ring RΓ which is defined in Section 5.

The ring Q has a basis consisting of elements of the form cxj where c ∈ Γ∗ and
j ∈ Z⩾0 (we require c = 1 if j = 0). Thus the ring Q⊗n has a basis consisting
of pure tensors in this basis of Q. We refer to such a pure tensor as a Γ∗-weighted
monomial and note that the Sn action sends Γ∗-weighted monomials to other Γ∗-
weighted monomials.

Definition 4.2. Let λ be a multipartition indexed by Γ∗. The Γ∗-weighted monomial
symmetric polynomial, mλ(x1, . . . , xn) ∈ Q⊗n is the sum of all Γ∗-weighted mono-
mials in Q⊗n that contain cxj with j ⩾ 1 as a tensor factor exactly mj(λ(c)) times.
There is no restriction on the number of times 1 may appear as a tensor factor.

It is immediate that the degree of mλ(x1, . . . , xn) is |λ|. Since the Γ∗-weighted
monomial symmetric polynomials are orbit sums for the Sn action on our basis of
Q⊗n, it follows that mλ(x1, . . . , xn) with |λ| = k span Λkn(Γ∗), and the nonzero ones
form a basis of this space. Moreover mλ(x1, . . . , xn) is nonzero as soon as there are
enough tensor factors to accommodate all the basis vectors prescribed by λ, i.e. as
soon as n ⩾ l(λ). Finally, we observe that

ρm,n(mλ(x1, . . . , xm)) = mλ(x1, . . . , xn),

so these elements define an element of the inverse limit Λk(Γ∗).

Definition 4.3. The Γ∗-weighted monomial symmetric function mλ is the element of
Λk(Γ∗) defined by the sequence of elements mλ(x1, . . . , xn) as n varies (here k = |λ|).

It now follows that Λk(Γ∗) is free as a Z-module with basis mλ indexed by all
multipartitions λ of size k.

Definition 4.4. The ring of Γ∗-weighted symmetric functions is

Λ(Γ∗) =
∞⊕
k=0

Λk(Γ∗).

Similarly to the case of ordinary symmetric functions, the fact that evaluating a
polynomial variable at zero is a ring homomorphism implies that Λ(Γ∗) inherits the
structure of a graded ring. In fact, if Γ is the trivial group, then Λ(Γ∗) = Λ. Just as
for Λ, formal properties of inverse limits automatically give us ring homomorphisms

Λ(Γ∗)→ Λn(Γ∗).

Example 4.5. We demonstrate how to multiply two degree 1 elements of Λ(Γ∗). Sup-
pose that cr ∈ Γ∗ is a conjugacy class. Then m(1)cr

is the element of Λ1(Γ) defined by
the sequence of elements

∑n
i=1 xi(cr) ∈ Λ1

n(Γ∗). So we must express products of such
elements in terms of Γ∗-weighted monomial symmetric polynomials mλ(x1, . . . , xn).
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Recall that we place subscripts on partitions to indicate multipartitions. For any
number of variables, we have

m2
(1)cr

=
(∑

i

xi(cr)
)2

=
∑
i

x2
i (c2

r) +
∑
i ̸=j

xi(cr)xj(cr)

=
∑
i

∑
cs∈Γ∗

Asr,rx
2
i (cs) + 2

∑
i<j

xi(cr)xj(cr)

=
∑
cs∈Γ∗

Asr,rm(2)cs
+ 2m(1,1)cr

(where Aki,j are the structure constants of ZΓ∗), and therefore the equality between
the first and last quantities may be interpreted as holding in Λ2(Γ∗). Similarly, if
cr, cs ∈ Γ∗ are distinct conjugacy classes, then

m(1)cr
m(1)cs

=
(∑

i

xi(cr)
)∑

j

xj(cs)


=
∑
i

x2
i (crcs) +

∑
i ̸=j

xi(cr)xj(cs)

=
∑
ct∈Γ∗

Atr,sm(2)ct
+m(1)cr (1)cs

.

Analogously to how Z-linear combinations of conjugacy-class sums and Z-linear
combinations of central idempotents in CΓ define different integral forms of CΓ∗, the
ring Λ(Γ∗) is a different integral form of the |Γ∗|-th tensor power of Λ.

Proposition 4.6. We have

C⊗ Λ(Γ∗) = C⊗ Λ⊗|Γ∗|.

Proof. We use the fact that C ⊗ ZΓ∗ = CΓ∗ = CΓ∗ , where standard basis vectors in
CΓ∗ are the orthogonal central idempotents eχ in the group algebra CΓ associated to
irreducible representations χ ∈ Γ∗. Then eχeψ = δχ,ψeχ (where δχ,ψ is the Kronecker
delta). Working over C allows us to define elements mirr

λ ∈ Λ(Γ∗) similar to the Γ∗-
weighted monomial symmetric functions, but instead of taking sums of pure tensors
in the basis Γ∗ of CΓ∗, we use the basis eχ. So xri (eχ) form a basis of (the positive
degree part of) C ⊗ Q, and mirr

λ is constructed by taking a sum of a Sn-orbit of a
pure tensor of elements of this basis. Hence λ ∈ P(Γ∗) is indexed by Γ∗ rather than
Γ∗. The upshot of this is that since

xri (eχ)xsi (eψ) = δχ,ψx
r+s
i (eχ),

terms corresponding to different χ ∈ Γ∗ do not interact. More precisely, suppose that
λ is a multipartition and let λχ = λ(χ)χ be the multipartition concentrated in type
χ taking the value λ(χ). Then we have

mirr
λ =

∏
χ∈Γ∗

mirr
λχ
.

This is because each monomial in mirr
λ arises uniquely as a product of monomials from

each mirr
λχ

, each involving distinct variables. Conversely, any product of monomials
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from mirr
λχ

involving the same variable for different χ is zero because xri (eχ)xsi (eψ) =
δχ,ψx

r+s
i (eχ). This immediately shows that

C⊗ Λ(Γ∗) =
⊗
χ∈Γ∗

Λ(χ),

where Λ(χ) has C-basis mirr
λ , where λ is concentrated in type χ. Finally, it remains

to observe that Λ(χ) is a ring isomorphic to C⊗ Λ via the C-linear map taking mirr
λ

to mλ(χ). This is clearly a bijection. To see that it respects multiplication note that
the multiplication in Λ(χ) is determined by the following rule for products in C⊗Q:
xri (eχ)xsi (eχ) = xr+s

i (eχ). In Λ the corresponding relation reads xri · xsi = xr+s
i . □

Example 4.7. Suppose that Γ = C2 = {1, γ} is the cyclic group of order two (so γ2 =
1). We show that Λ(C2∗) is not isomorphic to Λ⊗ Λ as a graded ring by considering
the module of indecomposables. Suppose that A =

⊕∞
i=0 Ai is a graded algebra and

I =
⊕∞

i=1 Ai is the corresponding augmentation ideal. The module of indecomposables
is defined to be I/I2, which is a (graded) module for A/I. We compute the degree
two component of I/I2 when A is either Λ(C2∗) or Λ⊗ Λ.

Recall that Λ = Z[e1, e2, . . .]. If A = Λ⊗Λ, then the degree 1 component of A has
basis e1 ⊗ 1, 1⊗ e1, while the degree 2 component has basis e2 ⊗ 1, e2

1 ⊗ 1, e1 ⊗ e1, 1⊗
e2, 1 ⊗ e2

1. Then the degree 2 component of I2 has basis e2
1 ⊗ 1, e1 ⊗ e1, 1 ⊗ e2

1. We
conclude that the degree 2 component of the module of indecomposables of A is Z2

(spanned by the classes of e2 ⊗ 1 and 1⊗ e2).
Analogously, for A = Λ(C2∗), the degree 1 component has basis m(1)1 ,m(1)γ

, while
the degree 2 component has basis m(1,1)1 ,m(2)1 ,m(1)1(1)γ

,m(1,1)γ
,m(2)γ

. The degree
2 component of I2 is spanned by

m2
(1)1

= m(2)1 + 2m(1,1)1

m(1)1m(1)γ
= m(2)γ

+m(1)1(1)γ

m2
(1)γ

= m(2)1 + 2m(1,1)γ
,

which we computed in Example 4.5. From this we see that the degree 2 component
of I/I2 is isomorphic to Z2 ⊕Z/2Z. We conclude that Λ(C2∗) ̸= Λ⊗2. We discuss the
algebraic structure of Λ(Γ∗) further in the appendix.

5. Wreath-Product Farahat–Higman Algebras
We now extend the results of Section 3 from the symmetric group Sn to the wreath
products Γ≀Sn = Γn⋊Sn, where Γ is a finite group. There is a wreath-product version
of the Farahat–Higman algebra, which is also related to the ring of symmetric func-
tions. The homomorphisms Φn, evn, Ψ all generalise to the wreath-product setting.
We use the same notation for the wreath-product versions of these maps because
taking Γ to be the trivial group (so that Γ ≀ Sn = Sn), we recover the maps from
Section 3.

Recall that the conjugacy classes of Γ≀Sn correspond to multipartitions of total size
n indexed by Γ∗. We use the boldface Greek letters λ,µ,ν to indicate multipartitions.
Thus µ(c) means the partition in µ indexed by c ∈ Γ∗. Similarly to symmetric groups,
we have a notion of reduced cycle type.

Definition 5.1 ([24, Subsection 2.3]). The partially-reduced cycle type of an element
of Γ ≀Sn of cycle type µ is the multipartition obtained by subtracting 1 from each part
of µ(1), and ignoring any resulting parts of size zero.

This is the same as the case of symmetric groups, but applied only to the partition
labelled by the identity conjugacy class. The group Γ ≀ Sn contains an element of
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partially-reduced cycle type µ if and only if n ⩾ |µ| + l(µ(1)). Later in this section
we will need to introduce the notion of fully-reduced cycle type which will involve
reducing each partition in µ (this is why we do not use the terminology of “modified
type” from [24]).

The centre of the integral group ring of Γ ≀Sn has a Z-basis consisting of conjugacy
class sums. We let Xµ be the sum of all elements of partially-reduced cycle type
µ (which if zero if there are no such elements). Then we have a direct analogue of
Theorem 3.3.

Theorem 5.2 ([24, Theorem 2.13]). For any multipartitions λ,µ,ν, there exists a
unique integer-valued polynomial ϕλ

µ,ν(t) such that the equation

XµXν =
∑

λ

ϕλ
µ,ν(n)Xλ

holds in Z(ZΓ ≀ Sn) for all n ∈ Z⩾0.

This allows us to define an algebra analogous to FH, but for wreath products.

Definition 5.3. Let FHΓ be the free R-module with basis Kµ indexed by all multi-
partitions µ ∈ P(Γ∗). Define a bilinear multiplication on FHΓ by

KµKν =
∑
λ

ϕλ
µ,ν(t)Kλ

where ϕλ
µ,ν(t) are the polynomials from Theorem 5.2, viewed as elements of the base

ring R.

As in the case of FH, FHΓ is a commutative, associative, unital R-algebra, and has
specialisation homomorphisms.

Theorem 5.4 ([24, Section 2.5]). For each n ∈ Z⩾0 there is a surjective ring homo-
morphism Φn : FHΓ → Z(ZΓ ≀ Sn) defined by

Φn

(∑
µ

aµ(t)Kµ

)
=
∑

µ

aµ(n)Xµ,

where aµ(t) ∈ R, and Xµ is the sum of all elements of Γ ≀Sn of partially-reduced cycle
type µ (or zero, if there are no such elements).

As we now show, the family of homomorphisms Φn separates elements of FHΓ. So
to prove an identity in FHΓ, it is enough to pass to Z(ZΓ ≀ Sn) by applying Φn.

Proposition 5.5. Suppose x, y ∈ FHΓ satisfy Φn(x) = Φn(y) for all sufficiently large
positive integers n. Then x = y.

Proof. Consider an element
z =

∑
µ

aµ(t)Kµ.

Then
Φn (z) =

∑
µ

aµ(n)Xµ,

where Xµ is nonzero provided n ⩾ |µ| + l(µ(1)), and such nonzero elements form
a basis of Z(ZΓ ≀ Sn). This means that Φn(z) determines aµ(n) for all n sufficiently
large, which is a Zariski-dense subset of Z. Hence Φn(z) determines each coefficient
aµ(t) ∈ R, and so Φn(z) determines z itself. □
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We have introduced FHΓ as a R-algebra. However, it will turn out that it is better
to view it as an algebra over a Γ∗-weighted version of R, which we now work towards
defining.

Definition 5.6. Consider formal power series in variables xc indexed by c ∈ Γ∗. We
encode monomials in the xc using functions N : Γ∗ → Z⩾0 that record the exponent
of each variable:

xN =
∏
c∈Γ∗

xN(c)
c .

Additionally, let |N| =
∑
c N(c), so that deg(xN) = |N|.

Note that the set of such functions N is ZΓ∗
⩾0.

Definition 5.7. Let g = QΓ∗ = Z(QΓ), viewed as a Lie algebra via the associative
multiplication (it is abelian). There is a canonical map ι : g → U(g) from g to its
universal enveloping algebra, which we extend to formal power series coefficientwise.
We define

T : g[[xc1 , . . . , xcl
]]→ U(g)[[xc1 , . . . , xcl

]]
via

T

 ∑
N∈ZΓ∗

⩾0

uNx
N

 =
∑

N∈ZΓ∗
⩾0

ι(uN)xN.

where uN ∈ g.

Remark 5.8. The map T allows us to distinguish between the associative multipli-
cation in g, and the multiplication in the universal enveloping algebra. For example,
if u, v ∈ g, then uv ∈ g, while T (u)T (v) is an element of U(g) that lies in degree
two with respect to the Poincaré-Birkhoff-Witt (PBW) filtration. It may seem pecu-
liar to consider the universal enveloping algebra of an abelian Lie algebra when the
result is simply the symmetric algebra of the Lie algebra. The ring we are about to
define, RΓ, is actually a distribution algebra, and so the universal enveloping algebra
is actually the natural place to construct it. This is discussed further in the appen-
dix. There is also similar situation when interpolating Grothendieck rings of wreath
products (rather than centres of group algebras of wreath products) where g is the
Grothendieck ring of a tensor category. In that case, g is not necessarily abelian and
the universal enveloping algebra is the correct construction. The interested reader is
directed to [20] and [21].

Definition 5.9. Let Ω ∈ U(g)[[xc1 , . . . , xcl
]] be the generating function defined as

follows,

Ω(xc1 , . . . , xcl
) = exp

(
T

(
log
(

1 +
∑
c∈Γ∗

cxc

)))
.

Here log
(
1 +

∑
c∈Γ∗

cxc
)

is viewed as an element of g[[xc1 , xc2 , . . . , xcl
]] (note that

expanding the power series involves the associative algebra structure of g, not just the
Lie algebra structure). Writing Ω in terms of monomials, we let BN ∈ U(g) be the
coefficients:

Ω(xc1 , . . . , xcl
) =

∑
N∈ZΓ∗

⩾0

BNx
N.

We let RΓ be the Z-submodule of U(g) spanned by all the BN, and we call RΓ the
ring of Γ∗-weighted integer-valued polynomials.
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We will shortly show that RΓ is indeed a ring, but first, the following example
justifies the analogy to integer-valued polynomials.

Example 5.10. Suppose that Γ is the trivial group, so that there is only one conjugacy
class c, and it obeys c2 = c. Then,

log
(

1 +
∑
c∈Γ∗

cxc

)
=
∑
i⩾1

(−1)i−1

i
cixic

= c
∑
i⩾1

(−1)i−1

i
xic

= c log(1 + xc).

Hence Ω becomes

Ω(xc) = exp(T (c log(1 + xc)))
= exp(log(1 + xc)T (c))
= (1 + xc)T (c)

=
∑
N⩾0

(
T (c)
N

)
xNc .

So the BN are simply binomial coefficients (with parameter T (c)) and RΓ = R.

Proposition 5.11. We have the following relation:

Ω(xc1 , . . . , xcl
)Ω(yc1 , . . . , ycl

) = Ω(zc1 , . . . , zcl
),

where
zci

= xci
+ yci

+
∑
j,k

Aij,kxcj
yck

.

Proof. Let S(x) = 1 +
∑
c∈Γ∗

cxc, and similarly define S(y) and S(z). Then

S(x)S(y) =
(

1 +
∑
c∈Γ∗

cxc

)(
1 +

∑
c∈Γ∗

cyc

)
= 1 +

∑
cj∈Γ∗

cjxcj +
∑
ck∈Γ∗

ckyck
+
∑
ci

Aij,kcixcjyck

= S(z).

Because we are working with commutative algebras, we may compute as follows:

Ω(xc1 , . . . , xcl
)Ω(yc1 , . . . , ycl

) = exp (T (log (S(x)))) exp (T (log (S(y))))
= exp (T (log (S(x))) + T (log (S(y))))
= exp (T (log (S(x)) + log (S(y))))
= exp (T (log (S(x)S(y))))
= exp (T (log (S(z))))
= Ω(zc1 , . . . , zcl

). □

Lemma 5.12. As an element of U(g), BN lies in PBW filtration degree |N| and has
leading order term ∏

c∈Γ∗

T (c)N(c)

N(c)! .
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Proof. The BN are defined by the equation

Ω(xc1 , . . . , xcl
) = exp

(
T

(
log
(

1 +
∑
c∈Γ∗

cxc

)))
=

∑
N∈ZΓ∗

⩾0

BNx
N.

The expression

T

(
log
(

1 +
∑
c∈Γ∗

cxc

))
is in PBW degree 1. When the logarithm is expanded as a power series in the xc
variables, the lowest order term is ∑

c∈Γ∗

T (c)xc.

In particular, there is no constant term. This means that Ω(xc1 , . . . , xcl
) is a sum of

products of terms whose PBW degree is less than or equal to their degree in the xc
variables. Since BN is the coefficient of xN, it is contained in PBW filtration degree
|N|. Moreover, to compute the leading term of the BN , we neglect all but the lowest
degree monomials in xc; to leading order, Ω is approximated by

exp
(∑
c∈Γ∗

T (c)xc

)
=
∏
c∈Γ∗

exp (T (c)xc) .

The leading term of BN is found by taking the coefficient of xN. □

Proposition 5.13. The BN are a Z-basis of RΓ. Additionally, the multiplication in
U(g) induces a multiplication on RΓ, making it into a unital commutative ring.

Proof. The BN span RΓ by definition. It follows from Lemma 5.12 and the PBW
theorem that the BN form a Q-basis of U(g), so they are also linearly independent.

We note that when N is zero, BN is the constant term of Ω, namely the identity
in U(g), so RΓ has an identity element. To show that RΓ is a commutative ring, we
must show that the product of two basis elements is a linear combination of basis
elements. This amounts to showing that the coefficient of any monomial xNyM in

Ω(xc1 , . . . , xcl
)Ω(yc1 , . . . , ycl

)

is contained in RΓ. We invoke Proposition 5.11, which expresses this product as

Ω(zc1 , . . . , zcl
) =

∑
K∈ZΓ∗

⩾0

BKz
K,

where zci = xci +yci +
∑
j,k A

i
j,kxcjyck

, which is a Z-linear combination of monomials
in the x and y variables. Thus the expansion in terms of xNyM will have Z-linear
combinations of the BK as coefficients. □

Proposition 5.14. The set of BN in RΓ indexed by N with N(c) = 0 for c ̸= 1 forms
a subring of RΓ isomorphic to R. As a module over R, RΓ is free with basis BM
indexed by M with M(1) = 0.

Proof. The BN with N(c) = 0 for c ̸= 1 can be found by considering the generating
function Ω and setting all xc to zero other than x1. Then the calculation in Example
5.10 shows BN =

(
T (1)
N(1)

)
, and binomial coefficients are a Z-basis of R.
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To show that RΓ is free over R with the stated basis, we pass to the associated
graded algebra with respect to the PBW filtration. Lemma 5.12 showed the leading
order term of BN is ∏

c∈Γ∗

T (c)N(c)

N(c)! = T (1)N(1)

N(1)!
∏
c̸=1

T (c)N(c)

N(c)! ,

which we recognise as the leading term of
(
T (1)
N(1)

)
∈ R multiplied by the leading term

of BM, where M(c) = N(c) for c ̸= 1 and M(1) = 0. This shows that RΓ is spanned
by the BM over R, and also shows the R-linear independence of the BM. □

Definition 5.15. For any N ∈ ZΓ∗
⩾0 with |N| ⩽ n, we define bN ∈ QΓ ≀ Sn as follows

bN = 1
(n− |N|)!

∏
c∈Γ∗

N(c)!
∑
σ∈Sn

σ

(
1⊗(n−|N|) ⊗

⊗
c∈Γ∗

c⊗N(c)

)
σ−1.

The parenthesised tensor product is an element of (QΓ)⊗n = QΓn ⊆ QΓ ≀Sn (because
of the averaging over Sn, the choice of order of the tensor factors does not matter).

Lemma 5.16. The element bN is actually contained in Z(ZΓ ≀ Sn).

Proof. Since bN is defined by averaging over Sn, it commutes with Sn ⊆ Γ ≀ Sn. As
the element being averaged is a tensor product of central elements of ZΓ, bN will
commute with Γn ⊆ Γ ≀ Sn. This shows that bN is central. To see that bN has integer
coefficients, note that the conjugation action of the subgroup

Sn−|N| ×
∏
c∈Γ∗

SN(c) ⊆ Sn

is trivial. Any element of a fixed coset of this subgroup acts the same way, and the
size of this coset cancels out the denominator. □

Lemma 5.17. We have the following expression for the generating function for the
elements bN: ∑

|N|⩽n

bNx
N = (1 +

∑
c

cxc)⊗n.

Proof. We observe that bN is the sum of pure tensors with N(c) tensor factors set
equal to c and all remaining tensor factors equal to 1. Here we distinguish tensor
factors assigned c = 1 from unassigned tensor factors which also take the value 1. But
the coefficient of xN on the right hand side will be the sum of all pure tensors with
N(c) factors equal to c. □

Theorem 5.18. There is a homomorphism evR
n : RΓ → Z(ZΓ ≀ Sn) defined by

evR
n (BN) = bN if |N| ⩽ n, and evR

n (bN) = 0 otherwise.

Proof. We apply evR
n to Ω coefficientwise. Using the generating function from Lemma

5.17,

evR
n (Ω(xc1 , . . . , xcl

))evR
n (Ω(yc1 , . . . , ycl

)) = (1 +
∑
c

cxc)⊗n(1 +
∑
c

cyc)⊗n

= ((1 +
∑
c

cxc)(1 +
∑
c

cyc))⊗n

= (1 +
∑
c

czc)⊗n

= evR
n (Ω(zc1 , . . . , zcl

))
= evR

n (Ω(xc1 , . . . , xcl
)Ω(yc1 , . . . , ycl

))
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where zci
= xci

+ yci
+
∑
j,k A

i
j,kxcj

yck
as in Proposition 5.13. Considering the coef-

ficients of monomials xNyM shows evR
n (BN)evR

n (BM) = evR
n (BNBM), i.e. that evR

n

is a homomorphism. □

The elements BN can be thought of as interpolating the bN. To make this precise,
we show that evR

n factors through FHΓ.

Corollary 5.19. We obtain a canonical homomorphism Ψ : RΓ → FHΓ via

Ψ(BN) =
(
t− |N|+ N(1)

N(1)

)
Kµ,

where t is the polynomial variable of R, µ(c) = (1N(c)) for c ̸= 1, and µ(1) is the
empty partition. This homomorphism obeys Φn ◦Ψ = evR

n .

Proof. We first show that Φn ◦Ψ = evR
n . This amounts to checking that

bN =
(
n− |N|+ N(1)

N(1)

)
Xµ.

Each pure tensor in bN is an element of generalised cycle type µ. However, such a
pure tensor has N(1) assigned factors equal to 1 and n−|N| unassigned factors equal
to 1. So each such pure tensor arises in

(
n−|N|+N(1)

N(1)
)

ways according to how the N(1)
assigned factors are chosen. This accounts for the multiplicative factor. To check that
Ψ respects multiplication, let x, y ∈ RΓ. Because evR

n and Φn are homomorphisms,
Φn(Ψ(x)Ψ(y)) = Φn(Ψ(x))Φn(Ψ(y))

= evR
n (x)evR

n (y)
= evR

n (xy)
= Φn(Ψ(xy)).

We now use Proposition 5.5 to conclude that Ψ(x)Ψ(y) = Ψ(xy). □

The upshot is that we may now view FHΓ as an RΓ-algebra, not merely an R-
algebra. But the fact that our ground ring now incorporates all conjugacy classes of
Γ means that rather than considering partially reduced cycle types, we will have to
reduce all parts of a multipartition.

Definition 5.20. If an element of Γ ≀Sn has cycle type µ, we say it has fully-reduced
cycle type ν, where for each c ∈ Γ∗, ν(c) is obtained from µ(c) by subtracting 1 from
each part, and ignoring any resulting parts of size zero. We let µ̂ be the multipartition
obtained from µ by adding 1 to each nonzero part of µ(c) for each c ̸= 1, and leaving
µ(1) unchanged.

For an element of Γ ≀Sn, passing from the cycle type to the fully-reduced cycle type
is generally not reversible, even if n is known. While we may recover the number of
1-cycles, their types may be arbitrary conjugacy classes. The notation has been set
up so that Xµ̂ is the sum of all elements of Γ ≀ Sn with all 1-cycles labelled by the
trivial conjugacy class and having fully-reduced cycle type µ.

Theorem 5.21. As RΓ-module, FHΓ is free with basis Kµ̂ where µ ∈ P(Γ∗).

Proof. By Proposition 5.14, RΓ is free over R with basis BM indexed by M with
M(1) = 0. So it is enough to show that Kµ̂BM is a R-basis of FHΓ. To accomplish
this, we introduce a filtration of FHΓ by R-modules by placing Kµ in filtration degree
|µ|+ l(µ(1)). We now show that this respects multiplication, by passing to Z(ZΓ ≀Sn).

Let us say that (g, σ) ∈ Γ ≀Sn affects i ∈ {1, . . . , n} if either σ(i) ̸= i, or gi ̸= 1. The
number of elements of {1, . . . , n} that are affected by an element of partially-reduced
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cycle type µ is precisely |µ| + l(µ(1)). Consider two elements (g, σ), (h, ρ) ∈ Γ ≀ Sn,
and suppose that their product (gσ(h), σρ) affects i. Then either ρ(σ(i)) ̸= i, or
giσ(h)i ̸= 1. If ρ(σ(i)) ̸= i, then either σ(i) ̸= i, or ρ(i) ̸= i, which implies that one of
(g, σ), (h, ρ) affects i. If instead giσ(h)i ̸= 1, either gi ̸= 1 or σ(h)i ̸= 1. In the first
of these cases, (g, σ) affects i. In the second case, either σ(i) ̸= i, or hi ̸= 1. Hence
we conclude that if (gσ(h), σρ) affects i, then one of (g, σ) and (h, ρ) affects i. This
implies that the set of elements in {1, . . . , n} affected by the product of two group
elements is a subset of the union of the elements affected by each factor. This proves
that we have a filtration, and shows that only products of elements affecting disjoint
subsets of {1, . . . , n} contribute to the leading term in the associated graded ring.

To compute Kµ̂BM, we again pass to ZΓ ≀Sn. This gives Xµ̂bM. The leading order
term arises from Xµ̂ and bM affecting disjoint subsets of {1, . . . , n}. In that case,
we obtain Xν , where ν(c) = µ̂(c) ∪ (1M(c)) for c ∈ Γ∗. Any multipartition ν arises
from exactly one pair (µ̂,M) in this way. In particular µ is the fully-reduced cycle
type corresponding to the partially-reduced cycle type ν, while M records how many
parts of ν of size 1 have a given label in Γ∗\{1}. We conclude that Kµ̂BM equals
Kν plus lower order terms. In particular the Kµ̂BM form an R-basis of FHΓ and the
theorem follows. □

6. Isomorphism with Γ∗-Weighted Symmetric Functions
This section is dedicated to proving that FHΓ is isomorphic to RΓ⊗Λ(Γ∗) via Jucys–
Murphy evaluation, analogously to Theorem 3.8.

We introduce two filtrations. Let us say that σ ∈ Sn moves an element m ∈
{1, . . . , n} if σ(m) ̸= m (i.e. m is not a fixed point of σ). The first filtration is obtained
by placing an element (g, σ) ∈ Γ ≀ Sn in degree i, where i is the number of elements
of {1, . . . , n} which are moved by σ.

Definition 6.1. The moving filtration, F imov, is the family of RΓ-submodules of FHΓ
spanned by Kµ̂ with |µ|+ l(µ) ⩽ i.

Proposition 6.2. The moving filtration is an algebra filtration. In the associated
graded algebra, we have the following equation:

Kµ̂Kν̂ =

∏
c∈Γ∗

∏
i⩾1

mi(λ(c))!
mi(µ(c))!mi(ν(c))!

Kλ̂,

where mi(λ(c)) = mi(µ(c)) +mi(ν(c)).

Proof. If σ ∈ Sn has reduced cycle type µ, the number of elements moved by σ is
|µ|+ l(µ). Similarly if (g, σ) ∈ Γ ≀Sn has fully-reduced cycle type µ, then the number
of elements moved by σ is |µ|+ l(µ). Note that this corresponds to the condition for
membership in F imov, where i = |µ|+ l(µ).

Fix µ and ν with |µ|+ l(µ) = i and |ν|+ l(ν) = j. Consider Kµ̂Kν̂ . To compute
this product, we pass to Z(ZΓ ≀ Sn) for large n. A term in Xµ̂ is of the form (g, σ),
where σ moves i elements. Similarly a term in Xν̂ is of the form (h, ρ), where ρ moves
j elements. Now, (g, σ) · (h, ρ) = (gσ(h), σρ). The permutation σρ is obtained by
moving j elements, and then moving i elements. This means that σρ moves at most
i+j elements, with equality if and only if the elements moved by σ and ρ are disjoint.
This proves the assertion that F imov defines a filtration.

If σ and ρ move disjoint elements, then σ(h) = h because the m-th factor in h is
equal to 1 if m is not moved by ρ (so in particular if m is moved by σ). Hence the
cycles (of size larger than 1) of (g, σ) · (h, ρ) are the constituent cycles of (g, σ) and
(h, ρ). This shows that in the associated graded algebra, Kµ̂Kν̂ is equal to a multiple
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of Kλ̂. The multiple is equal to the number of ways to split the cycles of λ among µ
and ν. □

The second filtration is obtained by placing an element (g, σ) ∈ Γ ≀ Sn in degree
i, where i is the smallest number of factors required to express σ as a product of
transpositions.

Definition 6.3. The transposition filtration, F itsp, is the family of RΓ-submodules of
FHΓ spanned by Kµ̂ with |µ| ⩽ i.

Proposition 6.4. The transposition filtration is an algebra filtration.

Proof. Similarly to the other filtration, we pass to Z(ZΓ ≀ Sn) for n sufficiently large.
Fix µ and ν with |µ| = i and |ν| = j. A term in Xµ̂ is of the form (g, σ), where σ may
be written as the product of i transpositions. Similarly a term in Xν̂ is of the form
(h, ρ), where ρ is a product of j transpositions. Then, (g, σ) · (h, ρ) = (gσ(h), σρ).
The permutation σρ may be written as a product of i + j transpositions (although
possibly fewer). We conclude that F itsp defines a filtration. □

Remark 6.5. Using [6, Lemma 3.2] and [24, Proposition 2.9], one can show that the
structure constants of the Kµ̂ elements in the associated graded algebra are integers
rather than arbitrary elements of RΓ. We will not need this fact.

6.1. Jucys–Murphy Elements. Analogously to the JM elements associated to
symmetric groups, Pushkarev [18] and Wang [25] independently introduced the fol-
lowing elements of ZΓ ≀ Sn:

Lj =
∑
i<j

∑
g∈Γ

g(i)(g−1)(j)(i, j).

In the case where Γ is the trivial group, we recover the JM elements for symmetric
groups. However, these elements are not sufficient for our purposes, and we must
introduce further generalisations.

Definition 6.6. For c ∈ Γ∗ and j ⩽ n, the wreath-product Jucys–Murphy elements
are

Lj(c) =
∑
i<j

∑
g1,g2∈Γ
g2g1∈c

g
(i)
1 g

(j)
2 (i, j),

which are elements of ZΓ ≀Sn. We extend this notation by linearity in c: if c =
∑
i nici

for some ni ∈ Z, we let

Lj(c) =
l∑
i=1

niLj(ci).

In the case where c = 1, the condition g2g1 ∈ c becomes g2 = g−1
1 , so Lj(1) recovers

the definition of Pushkarev and Wang.

Proposition 6.7. Let c ∈ ZΓ∗. We have

Lj(c) = c(j)Lj(1) = Lj(1)c(j).

Proof. By linearity, it suffices to consider c ∈ Γ∗. To show the first equality, it suffices
that for i < j,

c(j)
∑

g1,g2∈Γ
g2g1=1

g
(i)
1 g

(j)
2 =

∑
h1,h2∈Γ
h2h1∈c

h
(i)
1 h

(j)
2 ,
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as we may right-multiply by (i, j) and sum over i less than j. We may set g2 = g−1
1

and use the fact that c(j) commutes with g
(i)
1 and g

(j)
2 . The left hand side becomes∑

g1∈Γ
g

(i)
1 (g−1

1 )(j)c(j) =
∑

g1∈Γ,k∈c

g
(i)
1 (g−1

1 k)(j),

which agrees with the right hand side upon identifying h1 = g1 and h2 = g−1
1 k. The

second equality is similar, except that moving c(j) past the transposition (i, j) turns
it into c(i), which means that the manipulations take place in the i-index, rather than
the j-index. □

Definition 6.8. For c ∈ Γ∗, let

M (i,i+1)
c =

∑
g,h∈Γ
hg∈c

g(i)h(i+1).

The following lemmas have routine proofs, so we omit them.

Lemma 6.9. We have M (i,i+1)
c = c(i)M

(i,i+1)
1 = c(i+1)M

(i,i+1)
1 , and M (i,i+1)

c commutes
with the transposition si = (i, i+ 1).

Lemma 6.10 ([18, Proposition 5]). We have that the Lj(1) (j = 1, . . . , n) commute
with each other. The Lj(1) commute with with Γn. Furthermore

siLi(1)si +M
(i,i+1)
1 si = Li+1(1).

The following lemma is easily proven by induction.

Lemma 6.11. We have the two identities

siLi(1)r = Li+1(1)rsi −
r−1∑
p=0

Li+1(1)pM (i,i+1)
1 Li(1)r−1−p

and

siLi+1(1)r = Li(1)rsi +
r−1∑
p=0

Li(1)pM (i,i+1)
1 Li+1(1)r−1−p.

Proposition 6.12. Suppose ca, cb ∈ Γ∗. The following elements both commute with si:

Li(1)rc(i)
a c

(i+1)
b + Li+1(1)rc(i)

b c(i+1)
a and Li(1)rLi+1(1)r.

Proof. For the first part, we add the first equation in Lemma 6.11 right-multiplied
by c(i)

a c
(i+1)
b to the second equation right-multiplied by c(i)

b c
(i+1)
a . Because Li(1) and

Li+1(1) commute with Γn, they commute with M (i,i+1)
1 . So since M (i,i+1)

1 c
(i)
a c

(i+1)
b =

M
(i,i+1)
1 c

(i)
b c

(i+1)
a , the sums over the variable p cancel out, leaving the required identity.

For the second part it suffices to consider the case r = 1 as the general case is recovered
by raising Li(1)Li+1(1) to a suitable power. Then applying Lemma 6.11 (specifically,
the second equation, with r = 1), we have

siLi(1)Li+1(1) = (Li+1(1)si −M (i,i+1)
1 )Li+1(1)

= Li+1(1)(Li(1)si +M
(i,i+1)
1 )−M (i,i+1)

1 Li+1(1)
= Li+1(1)Li(1)si.

Since Li(1) and Li+1(1) commute, siLi(1)Li+1(1) = Li(1)Li+1(1)si and we are done.
□

Proposition 6.13. The wreath-product JM elements commute with each other:
Lj1(c1)Lj2(c2) = Lj2(c2)Lj1(c1) for any c1, c2 ∈ Γ∗ and j1, j2 ∈ {1, . . . , n}.
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Proof. We have that the elements Lj1(c1) = Lj1(1)c(j1)
1 and Lj2(c2) = Lj2(1)c(j2)

2 and
Lj1(1), c(j1)

1 , Lj2(1), c(j2)
2 commute pairwise. □

Because the wreath-product JM elements commute, it makes sense to evaluate a
polynomial in them.

Proposition 6.14. There is a ring homomorphism
evQn : Q⊗n → ZΓ ≀ Sn,

defined by
evQn (xrd(c)) = Ld(1)rc(d).

Moreover, the image of Λn(Γ∗) (the Sn-invariants of Q⊗n) is contained in the centre
of ZΓ ≀ Sn.

Proof. Since the wreath-product JM elements commute pairwise, it suffices to show
that evQn is well-defined on each tensor factor of Q⊗n. The d-th factor of Q has a
basis xrd(c) for r ⩾ 0 and c ∈ Γ∗ (where we require c = 1 if r = 0). This basis obeys
the multiplication rule mentioned at the start of Section 4 (where we expand the
multiplication in ZΓ∗ in terms of the structure tensor Aki,j)

xrd(ci)xsd(cj) = xr+s
d (cicj) =

∑
k

Aki,jx
r+s
d (ck).

Correspondingly, using Proposition 6.13,

evQn (xrd(ci))evQn (xsd(cj)) = Ld(1)rc(d)
i Ld(1)sc(d)

j

= Ld(1)r+s(cicj)(d)

= Ld(1)r+s
∑
k

Aki,jc
(d)
k

=
∑
k

Aki,jev
Q
n (xr+s

d (ck)).

We conclude that evQn is well defined.
Now suppose that P (x1, . . . , xn) ∈ (Q⊗n)Sn . To show evQn (P ) is central, it suffices

to show that it commutes with a generating set of Γ ≀ Sn. In particular, we may take
Γn together with the adjacent transpositions si = (i, i + 1) for i ∈ {1, . . . , n − 1}.
Since Lj(1) commutes with Γn, the same is true for Lj(c) = c(j)Lj(1), from which it
follows that the entire image of evQn commutes with Γn. Now we show that evQn (P )
commutes with si. Since P ∈ (Q⊗n)Sn , P is in particular an element of

Q⊗(i−1) ⊗ (Q⊗Q)S2 ⊗Q⊗(n−i−1),

and (Q⊗Q)S2 is spanned by elements of the form xri (c)xri+1(c) and xri (ca)xsi+1(cb) +
xsi (cb)xri+1(ca). So it is enough that applying evn to these elements gives something
that commutes with si. In the first case,

evQn (xri (c)xri+1(c)) = Li(1)rc(i)Li+1(1)rc(i+1),

which commutes with si because Li(1)Li+1(1) and c(i)c(i+1) do. For the second case,
without loss of generality, we assume s ⩽ r. Now,
ev

Q
n (xr

i (ca)xs
i+1(cb) + x

s
i (cb)xr

i+1(ca)) = Li(1)r
c

(i)
a Li+1(1)s

c
(i+1)
b

+ Li(1)r
c

(i)
b
Li+1(1)s

c
(i+1)
a

= Li(1)s
Li+1(1)s

(
Li(1)r−s

c
(i)
a c

(i+1)
b

+ Li+1(1)r−s
c

(i)
b
c

(i+1)
a

)
is a product of elements that commute with si from Proposition 6.12. □

Definition 6.15. Let evΛ
n : Λ(Γ∗) → Z(ZΓ ≀ Sn) be the composition of the canonical

map Λ(Γ∗)→ Λn(Γ∗) ⊆ Q⊗n with evQn : Q⊗n → Z(ZΓ ≀ Sn).
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Finally, we combine our evaluation maps into a single map.

Definition 6.16. For each n ∈ Z⩾0 there is a ring homomorphism
evn : RΓ ⊗ Λ(Γ∗)→ Z(ZΓ ≀ Sn)

defined as
evn(a⊗ f) = evR

n (a)evΛ
n (f),

using the maps evR
n and evΛ

n from Theorem 5.18 and Definition 6.15, respectively.

Theorem 6.17. There is a unique homomorphism Ψ : RΓ ⊗ Λ(Γ∗)→ FHΓ extending
the map in Corollary 5.19 such that the following diagram commutes.

RΓ ⊗Z Λ(Γ∗) FHΓ

Z(ZSn)

Ψ

evn Φn

Proof. Corollary 5.19 constructs Ψ on RΓ, so it remains to construct Ψ on Λ(Γ∗).
To do this, we pass to complex coefficients, and then show that the map is defined
integrally. Proposition 4.6 shows

C⊗ Λ(Γ∗) = C⊗ Λ⊗|Γ∗|

by changing basis in CΓ∗ from conjugacy-class sums to primitive central idempotents
eχ. To compute evn on the tensor factor of Λ corresponding to χ ∈ Γ∗, we must
evaluate symmetric functions in the variables

Lj(eχ) = Lj(1)e(j)
χ .

Since Λ is freely generated by the elementary symmetric functions er, it suffices to
consider the evaluation of er at the Lj(eχ). Momentarily ignoring the Γn parts in
Lj(eχ), we see that the transpositions involved in Lj(eχ) are the same as in the JM
elements Lj for the symmetric group. So the Sn parts are the same as in Theorem
3.12. Lemma 2.6 tells us that the labels of intersecting cycles multiply. But each label
is the idempotent eχ. So we get a sum of elements whose reduced cycle type has size
r, and all of whose cycles are labelled by eχ (which is a linear combination of the
usual labels in Γ∗). We could write this

er(L1(eχ), . . . , Ln(eχ)) =
∑

|µ|=r

Xirr
µχ
,

where the meaning of Xirr
µχ

is analogous to mλχ
from Proposition 4.6. Changing bases

of CΓ∗ back from eχ to conjugacy-class sums changes the labels back to conjugacy
classes. This is a linear operation that is independent of n. Hence we obtain some
element

er(L1(eχ), . . . , Ln(eχ)) =
∑

|ν|=r

Rχr,νXν̂ ,

where Rχr,ν is independent of n, and the multipartition ν is indexed by Γ∗ (the sizes
of the cycles of the elements are unchanged by changing the type so we still sum over
multipartitions of size r). Thus for er ∈ Λ(χ), we may take

Ψ(er) =
∑

|ν|=r

Rχr,νKν̂ ,

which guarantees that evn = Φn ◦Ψ.
To see that the image of Ψ on Λ(Γ∗) is contained in FHΓ rather than C⊗FHΓ, note

that we can tell whether an element f ∈ C ⊗ FHΓ is contained in FHΓ by applying
Φn for sufficiently large n and checking whether the coefficients of the conjugacy class
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sums Xµ are integers. This would imply that the coefficient of Kµ in f , which is
an element of C ⊗R, is integer-valued, i.e. an element of R. On the other hand, we
already know the image of evn on Λ(Γ∗) is contained in Z(ZΓ ≀Sn) and hence integral.

□

Proposition 6.18. Recall that FHΓ is equipped with two filtrations (the moving and
transposition filtrations). If we take the leading order term of Ψ(mµ) with respect to
the transposition filtration, and then the leading order term with respect to the moving
filtration, we get Xµ̂.

Proof. Consider evn(mµ). In the notation of Lemmas 2.5 and 2.6,

Lj(c) =
∑
i<j

X(i,j)(c).

Analogously to the proof of Proposition 3.11, suppose that σ is a cycle containing the
index j. Multiplying Xσ(1) by X(i,j)(c) inserts i into the cycle if i is not already in
σ, or removes if it is. The size with respect to the transposition filtration is increased
by 1 in the first case, and reduced by 1 in the second case. To find the leading order
term of Lj(1)r, we view it as a sum of products of X(ik,j)(1) (k = 1, . . . , r) where each
ik is less than j. The maximal degree with respect to the transposition filtration is
achieved when the ik are distinct. In that case, Lemmas 2.5 and 2.6 imply that the
product of the X(ik,j)(1) is Xσ(1), where σ = (ir, ir−1, . . . , i1, j) is an (r + 1)-cycle,
and furthermore the leading term of Lj(1)rc(j) in the transposition filtration is the
sum of Xσ(c) across all (r + 1)-cycles σ whose largest element is j. Now, evn(mµ) is
a sum of products of Lj(1)rc(j) where the pair of parameters (r, c) occurs mr(µ(c))
times. Each such term gives us an (r + 1)-cycle of type c.

We maximise the degree in the moving filtration when all these cycles are disjoint.
In that case, the result is an element of fully-reduced cycle type µ. Every such element
arises exactly once, because we may reconstruct the monomial which gave rise to it:
an (r + 1) cycle whose largest element is j and has type c must have come from
evn(xrj(c)). □

Theorem 6.19. The map Ψ from Theorem 6.17 is an isomorphism and in particular
FHΓ = RΓ ⊗ Λ(Γ∗).

Proof. We see that up to lower order terms, Ψ sends a RΓ-basis of RΓ ⊗ Λ(Γ∗),
namely mλ, to a RΓ-basis of FHΓ, namely Kλ̂. This shows that the homomorphism
Ψ is a bijection. □

7. Applications and Further Directions
We prove a wreath-product version of Nakayama’s Conjecture. The first step is to
understand the action of the wreath-product JM elements on the irreducible (charac-
teristic zero) representations V λ of Γ ≀ Sn.

Analogously to the GZ basis for irreducible representations of symmetric groups,
there is a similar construction for Γ ≀Sn. It is not a basis, but rather a decomposition
into subspaces. What is important for us is that the wreath-product JM elements act
by scalars on the GZ subspaces of an irreducible representation of Γ ≀ Sn.

Definition 7.1 ([15, Section 1]). Let λ be a Γ∗-indexed multipartition of size n. A
Young Γ-tableau T of shape λ is a labelling of the boxes of all partitions in λ with
numbers. Suppose that the labelling uses the numbers {1, . . . , n} (with each being used
exactly once), such that for each partition on λ, the labels increase from top to bot-
tom in a column and increase from left to right in a row; in this case we say T is
standard. If T is a standard Young Γ-tableau, then we write χT (i) for the irreducible
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representation χ ∈ Γ∗ such that T (χ) contains the box with label i, and cT (i) for the
content of the box containing i in the partition corresponding to χT (i).

Example 7.2. If Γ = C2, the following pair of partitions, corresponding to the trivial
and sign representations of C2, define a standard Young C2-tableau.

1 3 6
7

2 5
4

In particular, the constituent tableaux of a standard Young Γ-tableau need not be
standard Young tableaux because the labels of the tableau corresponding to χ ∈ Γ∗ are
allowed to come from the set {1, . . . , |λ|}, which may be larger than {1, . . . , |λ(χ)|}.

Definition 7.3. For m ⩽ n, let Hm,n be the subgroup of Γ ≀Sn consisting of elements
of the form (g, σ) where g ∈ Γn is arbitrary and σ ∈ Sm, where Sm is viewed as the
subgroup of Sn fixing all numbers larger than m. Equivalently, Hm,n = Γn ⋊ Sm with
the same embedding of Sm into Sn.

Proposition 7.4 ([15, Section 4]). The restriction of an irreducible representation of
Hm,n to Hm−1,n is multiplicity free (i.e. has no repeated irreducible summands).

The significance of this multiplicity-free statement is that the decomposition of the
restricted representation into irreducibles is unique (since the irreducible summands
coincide with isotypic components).

Definition 7.5 ([15, Section 3]). The GZ subspaces of an irreducible representation
V of Hn,n = Γ ≀ Sn are defined inductively as follows. An irreducible representation
of Hm,n splits uniquely as a sum of irreducible representations of Hm−1,n, each of
which may be again restricted. Iterating this for m = n, n− 1, . . . , 0, we are left with
a canonical decomposition of V into irreducible representations VT of H0,n = Γn.

Proposition 7.6 ([15, Section 4]). The GZ subspaces VT of the irreducible represen-
tation V λ are indexed by standard Young Γ-tableaux T of shape λ. We have

V λ =
⊕
T

VT ,

where the sum is across standard Young Γ-tableaux of shape λ. As a representation
of Γn,

VT = χT (1) ⊗ · · · ⊗ χT (n).

Example 7.7. For the standard Young C2-tableau T in Example 7.2, the correspond-
ing GZ subspace is isomorphic to

C+ ⊗ C− ⊗ C+ ⊗ C− ⊗ C− ⊗ C+ ⊗ C+,

where C+ is the trivial representation and C− is the sign representation.

Proposition 7.8. The wreath-product JM element Lj(c) acts on the GZ subspace VT
via scalar multiplication by

|Γ|
dim(χT (j))

cT (i)ωχT (j)
c .

Proof. Theorem 6.5 of [15] asserts that Lj(1) acts by the scalar |Γ|
dim(χT (j))cT (i). But

Lj(c) = Lj(1)c(j), and c(j) acts on χT (1)⊗· · ·⊗χT (n) as multiplication by ωχT (j)
c . □
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Theorem 7.9. Suppose that p is a prime number, and suppose that Bi are the p-blocks
of Γ (the subsets of Γ∗ with a given central character in characteristic p). Let λ and
µ be two Γ∗-indexed multipartitions of size n. Then the irreducible representations
V λ, V µ of Γ ≀Sn are in the same p-block if and only if both of the following conditions
hold:

(1) For all p-blocks Bi of Γ,∑
χ∈Bi

|λ(χ)| =
∑
χ∈Bi

|µ(χ)|.

(2) For each Bi containing only one irreducible χ, the partitions λ(χ) and µ(χ)
have the same p-core.

Proof. Analogously to the proof of Nakayama’s conjecture (Theorem 3.16), we fix a
p-modular system (K,O, k), and let π be a uniformiser of O. We determine when
two central characters are equal modulo (π), where we use the surjection evn : RΓ ⊗
Λ(Γ∗) → Z(ZΓ ≀ Sn) to compute the action of the centre. The action of RΓ ⊗ Λ(Γ∗)
is determined by the individual actions of RΓ and Λ(Γ∗).

First we consider the action of RΓ, whose image in Z(ZΓ ≀ Sn) is contained in
Z(ZΓn) (see Theorem 5.18). So to compute the action by scalars, we may restrict the
representation V λ from Γ ≀Sn to Γn. This gives the sum of the GZ subspaces VT , each
of which is of the form

χT (1) ⊗ · · · ⊗ χT (n),

where the number times a given irreducible χ ∈ Γ∗ appears is |λ(χ)|. We compute
the action of RΓ on a GZ subspace VT . By Lemma 5.17,∑

N

evn(BN)xN = (1 +
∑
c

cxc)⊗n.

Now, the action of (1 +
∑
c cxc) on χ is by multiplication by

(1 +
∑
c

ωχc xc),

where ωχc is the central character of Γ corresponding to the action of c on χ. Hence
the action of

∑
N evn(BN)xN is∏

χ∈Γ∗

(1 +
∑
c

ωχc xc)|λ(χ)|.

This result remains true after modular reduction (i.e. passing to k = O/(π)), although
this has the effect of making central characters within a single p-block coincide. Since
the BN are a basis of RΓ, the action of RΓ is determined by this generating function
which is actually a polynomial. Polynomials over a field form a unique factorisation
domain, so two such polynomials agree if and only if they have the same factors
(note that all our factors are normalised to have constant term 1, so two factors are
associates if and only if they are equal). But two factors for χ1 and χ2, coincide
precisely when

(1 +
∑
c

ωχ1
c xc) = (1 +

∑
c

ωχ2
c xc),

i.e. when ωχ1
c = ωχ2

c , which is to say that the central characters of χ1 and χ2 agree.
This in turn happens when χ1 and χ2 are in the same p-block. By factoring the
generating function we determine the multiplicity of the χ from each p-block of Γ.
We conclude that the RΓ acts by the same scalars (in k) on V λ and V µ if and only
if condition (1) holds.
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To understand the action of Λ(Γ∗), we again consider a GZ subspace VT . By Propo-
sition 7.8, the wreath-product JM element Lj(c) acts on VT by the scalar

|Γ|
dim(χT (j))

cT (j)ωχT (j)
c .

If |Γ|
dim(χT (j)) is a multiple of p, then this scalar is zero in k. Now suppose that con-

ditions (1) and (2) are both satisfied for λ and µ. For each χ ∈ Γ∗ and c ∈ Γ∗, the
multiset of scalars

|Γ|
dim(χ)cT (j)ωχc

for j such that χT (j) = χ coincides for T of shape λ and µ. To check this, we consider
whether |Γ|

dim(χ) is a multiple of p. If it is a multiple of p, then all these scalars are zero.
If |Γ|

dim(χ) is not a multiple of p, then the contents cT (j) coincide because λ(χ) and
µ(χ) have the same p-core. As a result, any element of Λ(Γ∗) acts by the same scalar
modulo (π) on V λ and V µ. We conclude that the “if” implication of the theorem
holds.

For χ such that |G|/ dim(χ) is not divisible by p, the idempotent

eχ = dim(χ)
|G|

∑
g∈Γ

χ(g)g−1

is well defined in k. We may therefore consider the elements Lj(eχ) in kΓ ≀ Sn. By
Proposition 7.8, the action of Lj(eχ) on VT is

|Γ|
dim(χ)cT (j)

if χT (j) = χ, and zero otherwise. This is because χ is in a p-block by itself (see
Proposition 2.11), and eχ acts by zero on irreducibles in other p-blocks, i.e. on all
other irreducibles.

Just as in the proof of Theorem 6.17, the elementary symmetric functions er eval-
uated in Lj(eχ),

er(L1(eχ), . . . , Ln(eχ)),
are well defined elements of k ⊗ Λ(Γ∗). So the action of Λ(Γ∗) on VT determines the
action of the generating function∑

r⩾0
trer(L1(eχ), . . . , Ln(eχ)) =

n∏
j=1

(1 + tLj(eχ)).

But we have determined the action of Lj(eχ), so we know that this generating function
acts by ∏

j

(1 + t
|Γ|

dim(χ)cT (j))

where the product is only over those j such that χT (j) = χ. Appealing to the unique
factorisation of polynomials over k, the action of Λ(Γ∗) determines the multiset of
scalars |Γ|

dim(χ)cT (j) (viewed as elements of k). Now, |Γ|
dim(χ) it is invertible in k, so we

have determined the multiset cT (j) for j such that χT (j) = χ, i.e. the contents of
λ(χ), viewed as elements of k. Together with |λ(χ)|, which was determined by the
action of RΓ, this determines the p-core of λ(χ), which completes the proof of the
“only if” direction. □
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Remark 7.10. [14, Appendix B, Chapter 1] computes the characters of Γ ≀Sn in terms
of the characters of Γ and Sn. This can be used to give an expression for the central
characters, and in turn to prove Theorem 7.9.

Example 7.11. As pointed out on [4, Page 1], over a field of characteristic 2, every
irreducible representation of C2 ≀ Sn can be obtained by pulling back an irreducible
representation of Sn via the quotient map C2 ≀Sn → Sn. This does not, however, mean
that the representation categories of C2 ≀ Sn and Sn are equivalent. Note that there
is only one 2-block Bi of C2, and this block is not semisimple. So in Theorem 7.9,
condition (2) is vacuous, and condition (1) holds automatically since

∑
χ∈Bi

|λ(χ)| =
n as there is only one block. As a result C2 ≀ Sn has only one 2-block for any n. By
comparison, Example 2.1 shows S3 has two 2-blocks. In general, this argument shows
that when Γ is a non-trivial p-group, Γ ≀ Sn will have only one p-block.

Remark 7.12. It is straightforward to generalise the character symmetric function
from Definition 3.9 to the case of wreath products. For a partially-reduced conjugacy
class µ, we have an element of RΓ⊗Λ(Γ∗) given by ψ−1(Kµ). Its “content evaluation”
as in the proof of Theorem 7.9 will yield central characters of wreath products Γ ≀Sn.

Appendix A. Properties of RΓ and Λ(Γ∗)
In this appendix we show that both RΓ and Λ(Γ∗) are Hopf algebras. We also ex-
plain that RΓ is the algebra of distributions on ZΓ∗ (viewed as an affine monoid
scheme). Furthering the analogy with integer-valued polynomials, we classify homo-
morphisms from RΓ to a field; in positive characteristic, they are indexed by several
p-adic parameters, one for each p-block of Γ.

First we show that Λ(Γ∗) is a Hopf algebra.

Theorem A.1. There is a Hopf algebra structure on Λ(Γ∗) with comultiplication

∆(mλ) =
∑
µ,ν

mµ ⊗mν ,

where the sum is over all pairs of multipartitions µ,ν such that mi(µ(c))+mi(ν(c)) =
mi(λ(c)) for all i ∈ Z>0 and c ∈ Γ∗. The counit ε obeys ε(mµ) = 0 when |µ| > 0
(and ε(1) = 1).

Proof. We have that (∆⊗ 1) ◦∆(mλ) = (1⊗∆) ◦∆(mλ), both being equal to∑
µ,ν,ρ

mµ ⊗mν ⊗mρ,

where the sum is over all multipartitions obeying mi(µ(c)) +mi(ν(c)) +mi(ρ(c)) =
mi(λ(c)). This verifies that ∆ is coassociative. To see that the ε defines the counit of
a bialgebra, we note that

(ε⊗ 1) ◦∆(mλ) =
∑
µ,ν

ε(mµ)⊗mν ,

and ε(mµ) is nonzero only if mi(µ(c)) = 0 for all i and c, in which case mν = mλ.
The case of (1⊗ ε) ◦∆ is identical. Finally, we must show there is an antipode S. We
do not give an explicit formula, but we prove it exists by induction on |λ|. We take
S(1) = 1, which serves as the base case |λ| = 0. For |λ| ⩾ 1, we write

∆(mλ) = mλ ⊗ 1 +
∑
µ,ν

mµ ⊗mν ,
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where we have written the term where ν is the empty partition (and µ = λ) separately.
The antipode axiom becomes

S(mλ) +
∑
µ,ν

S(mµ)mν = 0.

But every term in the sum has |µ| < |λ|, so this serves to define S(mλ) inductively.
By construction, the resulting map S obeys the antipode axiom. □

Remark A.2. The Hopf algebra structure on Λ(Γ∗) agrees with the usual Hopf algebra
structure on Λ (see [14, Section 1.5, Example 25]) when we set Γ to be the trivial
group. In fact, it can be shown that the isomorphism

C⊗ Λ(Γ∗) = C⊗ Λ⊗|Γ∗|

from Proposition 4.6 is an isomorphism of Hopf algebras, where Λ⊗|Γ∗| is a tensor
product of Hopf algebras, and is therefore a Hopf algebra.

Remark A.3. One of the most important tools in the theory of symmetric functions
is the Cauchy identity: ∏

i,j

1
1− xiyj

=
∑
λ

sλ(x)sλ(y).

It would be desirable to have a similar identity for Λ(Γ∗). However, the most natural
formulation of the Cauchy identity is as a formula for the series∑

i

bi ⊗ b∗
i ,

where bi is a basis of Λ and bi is the dual basis with respect to the Hall inner product
on Λ. The equation above takes both bi and b∗

i to be the Schur functions sλ, which
are self dual. For this notion to make sense in Λ(Γ∗), we need an inner product on
Λ(Γ∗). The natural choice, ⟨−,−⟩, comes from the isomorphism

C⊗ Λ(Γ∗) = C⊗ Λ⊗|Γ∗|,

where each tensor factor of Λ is given the Hall inner product. The reason for this
choice is that the Hall inner product defines a Hopf pairing on Λ, and since the Hopf
algebra structure on Λ(Γ∗) comes from the tensor product of Hopf algebra strutures
on Λ, the tensor product of Hall inner products defines a Hopf pairing on C⊗Λ(Γ∗).
Now we encounter a problem: Λ(Γ∗) is not self dual with respect to this inner product:
if bi is a basis of Λ(Γ∗), then b∗

i will be contained in

Λ(Γ∗)∗ = {f ∈ C⊗ ΛΓ∗ | ⟨f, g⟩ ∈ Z for all g ∈ Λ(Γ∗)},
which is not a subset of Λ(Γ∗); roughly speaking it is the “dual” of Λ(Γ∗), so Λ(Γ∗)∗

inherits the structure of a Hopf algebra. It would be interesting to give an independent
description of Λ(Γ∗)∗.

It would also be interesting to have a presentation of Λ(Γ∗) by generators and
relations. The argument from [23, Corollary 2.3] (filtration/induction on l(λ)) shows
that Λ(Γ∗) is generated by m(rn)c

for r, n ∈ Z>0 and c ∈ Γ∗. However the argument
from [23, Proposition 2.5] can be adapted to show that there are redundancies; the
generator m(rn)c

may be omitted if c is an n-th power in the ring ZΓ∗.
Now we turn our attention to RΓ. Let R be an arbitrary commutative ring, and let

us view RΓ∗ = homalg(A,R) as the affine scheme represented by A = Z[tc1 , . . . , tcl
],

where the polynomial variables are indexed by elements of Γ∗. Now, RΓ∗ is a ring
whose addition and multiplication maps are algebraic, i.e. the corresponding maps

RΓ∗ ×RΓ∗ → RΓ∗
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are morphisms of affine schemes. This amounts to saying that RΓ∗ is a (commutative)
ring object in the category of affine schemes. On the level of coordinate rings, we get
homomorphisms ∆(+), ∆(×) from A to A⊗A. Explicitly, they are defined by

∆(+)(tc) = tc ⊗ 1 + 1⊗ tc
and

∆(×)(tc) =
∑
d,e∈Γ∗

Acd,etd ⊗ te.

We call these two maps the coaddition and comultiplication, respectively. They satisfy
relations coming from the associative and distributive laws in a ring. Because of these
two maps, a commutative ring object in the category of affine schemes is sometimes
called a biring, although this is not the same thing as a bialgebra.

Now we let I be the ideal of A vanishing at the multiplicative identity; I is generated
by t1 − 1 and tc for c ̸= 1. We have ∆(×)(I) ⊆ I ⊗ A + A ⊗ I (this follows from the
fact that I is the ideal corresponding to the identity element of RΓ∗, but can also be
checked directly). We use I to define the distribution algebra of RΓ∗ (see [10, Chapter
7 of Part I]).

Definition A.4. The distribution algebra of RΓ∗ is

D(RΓ∗) =
⋃
n⩾0

(A/In)∗,

where (A/In)∗ is viewed as a subspace of A∗ = homZ(A,Z).

So D(RΓ∗) is the set of linear functionals on A that vanish on some power of I.
We obtain a multiplication on D(RΓ∗) by dualising ∆(×). If f1, f2 ∈ D(RΓ∗), then
we take

(f1f2)(a) = (f1 ⊗ f2)(∆(×)(a))
for a ∈ A. The product f1f2 vanishes on some power of I because we have

∆(×)(In) ⊆
n∑

m=0
Im ⊗ In−m,

and taking n sufficiently large we guarantee that each summand is annihilated by
f1 ⊗ f2. Finally, we see that the coassociativity of ∆(×) implies the associativity of
the multiplication, and the canonical map A→ A/I = Z is the multiplicative identity.
Thus D(RΓ∗) is an associative ring.

Theorem A.5. We have that D(RΓ∗) = RΓ.

Proof. Define the variables z1 = t1−1 and zc = tc for c ̸= 1. The coordinate ring A has
a basis consisting of monomials

∏
c∈Γ∗

z
N(c)
c , indexed by N ∈ ZΓ∗

⩾0. Such a monomial
is contained in I |N|. Hence D(RΓ∗) has Z-basis consisting of the dual basis, which we
denote βN. The structure constants of the multiplication with respect to the basis βN
are precisely the structure constants of ∆(×) with respect to the monomials

∏
c z

Nc
c .

To compute the multiplication, note that for any c ∈ Γ∗,

∆(×)(zc) = zc ⊗ 1 + 1⊗ zc +
∑
d,e

Acd,ezd ⊗ ze.

We recognise this as the change of variables appearing in Proposition 5.13 (subject
to the relabelling zi ⊗ 1 = xi and 1⊗ zi = yi) that describes the structure constants
of the multiplication in RΓ. This implies that the linear map RΓ → D(RΓ∗) given by
BN 7→ βN is a ring isomorphism. □
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It is well known that over a field of characteristic zero, the distribution algebra of
an algebraic group G coincides with the universal enveloping algebra of the Lie algebra
of G. Proposition 5.13 witnesses this fact; the proof explains that Q⊗RΓ = U(QΓ∗).
Although RΓ∗ is a monoid rather than a group, we may consider the group of units,
which has same distribution algebra. Since distribution algebras of algebraic groups
are Hopf algebras, the same is true of RΓ.
Proposition A.6. We have that RΓ ⊆ U(QΓ∗) is a Hopf subalgebra.

Now we turn our attention to classifying maps into a field. For context and back-
ground, we direct the reader to [8]. We write Zp for the set of p-adic integers. The
motivating example is the following.
Example A.7 ([8, Section 8]). Homomorphisms from the ring R of integer-valued
polynomials to a field F are given by the following. If F has characteristic zero, they
are given by evaluating the polynomial variable t at an arbitrary element of F. If F has
characteristic p > 0, then they are given by evaluating the polynomial variable t at a
p-adic integer. Evaluation of an integer-valued polynomial at a p-adic integer yields
another p-adic integer, which may be viewed as an element of F via the canonical map

Zp → Zp/(p) = Z/pZ ⊆ F.

In fact, if t ∈ Zp,
(
t
pr

)
is the r-th p-adic digit of t (viewed as an element of F).

First we get the characteristic-zero case out of the way.
Proposition A.8. Suppose that F is a field of characteristic zero. Homomorphisms
RΓ → F are given by evaluating each T (c) at an arbitrary element of F (and are hence
parametrised by FΓ∗ = FΓ∗).
Proof. We have Q ⊆ F, and Q ⊗ RΓ = U(QΓ∗) is the free polynomial algebra in
variables T (c) for c ∈ Γ∗. Homomorphisms from a polynomial algebra to F amount
to evaluating each variable at an element of F. □

Now we move on to the positive characteristic case. Fix a prime p, and let F be
a field of characteristic p. Since any field embeds in its algebraic closure, we may as
well take F to be algebraically closed.
Definition A.9. Let q ∈ FΓ∗ be q =

∑
c∈Γ∗

mcc. We define

Bq,r =
∑

|M|=pr

∏
c∈Γ∗

mM(c)
c BM.

For example, if q = c ∈ Γ∗, we have
Bc,r = BM

where M(c) = pr and M(c′) = 0 for c′ ̸= c. Also, B0,r = 0 for all r.
Lemma A.10. The algebra F ⊗RΓ is generated by the elements Bq,r, where q varies
across a basis of FΓ∗ and r ∈ Z⩾0,
Proof. Lemma 5.12 asserts that BM has leading order term∏

c∈Γ∗

T (c)M(c)

M(c)! .

Writing q =
∑
c∈Γ∗

mcc and using the multinomial theorem, we see that the leading
order term of Bq,r is ∑

|M|=pr

∏
c∈Γ∗

mM(c)
c

T (c)M(c)

M(c)! = T (q)pr

pr! .
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If the p-adic decomposition of n is
∑
r nrp

r, then over F we have∏
r

(
T (q)pr

pr!

)nr

= n!∏
r(pr!)nr

· T (q)n

n! .

Here, the multinomial coefficient
n!∏

r(pr!)nr

is invertible in F. This implies that the leading order term of any BM is a (scalar
multiple of a) product of leading order terms of the Bc,r, where we are using the
particular basis of conjugacy class sums, proving the lemma for that particular basis.
To prove the lemma for an arbitrary basis qi, we express Bc,r in terms of the Bqi,r.
Let c =

∑
i kiqi, and observe that to leading order, Bc,r may be written

T (
∑
i kiqi)p

r

pr! =
∑

|W|=pr

∏
i

k
W(qi)
i

T (qi)W(qi)

W(qi)!
,

where the sum is over functions W from the basis qi to Z⩾0, such that
∑
i W(qi) = pr.

We observe that this is equal to ∑
i

kp
r

i

T (qi)p
r

pr!

plus “mixed” terms whose exponents (values of W(q)) are less than pr and may
therefore be written in terms of Bq,s for s < r. By induction on r, the generating set
Bc,r is contained in the subring generated by all elements of the form Bq,r, and this
completes the proof. □

Lemma A.11. View the map evR
n from Theorem 5.18 as having domain F ⊗RΓ and

codomain (FΓ∗)⊗n. We have that evR
n (Bq,r) is equal to the sum of all pure tensors

with pr entries set to q, and the remainder set to 1.

Proof. Expanding in terms of the basis Γ∗,

q⊗pr

= (
∑
c

mcc)⊗pr

,

we get each tensor monomial with M(c) factors equal to c with multiplicity in the
conjugacy class sums c with multiplicity

∏
c∈Γ∗

m
M(c)
c . Inserting n−pr tensor factors

of 1 in all possible ways completes the proof. □

Lemma A.12. For any q ∈ FΓ∗, we have the following equation in F⊗RΓ;

Bpq,r = Bqp,r,

where qp is viewed as an element of FΓ∗.

Proof. We use Theorem 5.18 and the fact that the bN are linearly independent. So it
is enough to show that

evR
n (Bq,r)p = evR

n (Bqp,r)
over F for all n. We note that evR

n (Bq,pr ) is the sum of all pure tensors (with respect
to the basis Γ∗) with pr factors set to q, and the remainder set to 1 (see Lemma 5.17).
Raising this sum to the p-th power is the same as raising each pure tensor to the p-th
power because the binomial coefficients from the cross-terms vanish in characteristic
p. So we have the sum of pure tensors with pr factors set to qp, which agrees with
evR
n (Bqp,r). □
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Proposition A.13. Let φ : F ⊗ RΓ → F be a ring homomorphism. If q ∈ J(FΓ∗),
then φ(Bq,r) = 0, where J is the Jacobson radical. If e ∈ FΓ∗ is idempotent, then
φ(Be,r) is an element of the prime subfield of F (isomorphic to Z/pZ).

Proof. Because FΓ∗ is a finite-dimensional algebra, its Jacobson radical is nilpotent.
This means that J(FΓ∗)pk = 0 for some k. Hence for q in the Jacobson radical,

φ(Bq,r)p
k

= φ(Bp
k

q,r)
= φ(B

qpk ,r
)

= φ(B0,r)
= 0.

Since the only nilpotent element of a field is zero, φ(Bq,r) = 0. If e is idempotent,

φ(Be,r)p = φ(Bep,r) = φ(Be,r).

This means φ(Bq,r) solves the equation xp = x (i.e. is Frobenius-fixed), but such
solutions are precisely elements of the prime subfield of F. □

To avoid conflicts of notation, instead of writing Bi for the blocks of FΓ, we instead
write Cu. Correspondingly, we write ωuc ∈ F for the central character of the block Cu
evaluated at the conjugacy class sum c.

Theorem A.14. Homomorphisms φ : RΓ → F are given by evaluating

T (c) 7→
∑
u

ωuc tu,

where the sum is over the blocks Cu of FΓ, and tu ∈ Zp are arbitrary p-adic integers
(one for each block Cu).

Proof. For each block idempotent eu ∈ Cu (eu is the identity element of Cu, viewed
as an element of FΓ∗), φ(Beu,r) is an element of Z/pZ. Thus

tu =
∑
r

φ(Beu,r)pr

are well-defined p-adic integers. First of all, we show that the tu determine φ. It is
enough to show that the tu determine φ on the generating set from Lemma A.10. As
discussed in the proof of Proposition 2.9, Z(Cu)/J(Z(Cu)) = F, and since J(FΓ∗) =⊕

u J(Z(Cu)), any basis of J(FΓ∗) together with the identity elements eu of the blocks
Cu form a basis of FΓ∗. Let q be an element of this basis of FΓ∗. Lemma A.10 implies
that Bq,r generates F ⊗ RΓ, but Proposition A.13 implies that φ(Bq,r) = 0 for q
in J(FΓ∗). So φ is determined by the values on Beu,r, and this is precisely what is
encoded in the tu.

Now we show that any choice of the tu gives rise to a homomorphism φ. We describe
it via an equality of generating functions:∑

N

φ(BN)xN =
∏
u

(1 +
∑
c

ωuc xc)tu .

Here we are using the series expansion

(1 + x)t =
∑
r

xr
(
t

r

)
.

Because an integer-valued polynomial (e.g.
(
t
r

)
) evaluated at a p-adic integer is again a

p-adic integer, φ(BN) is a well-defined element of F. It remains to check that φ defines
a homomorphism, and that it actually corresponds to the parameters tu. To check φ
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is a homomorphism, we first observe that because central characters are themselves
homomorphisms FΓ∗ → F,∑

i

ωuci
xci

∑
j

ωucj
ycj =

∑
k

∑
i,j

Aki,jω
u
ck
xciycj .

Now we compute∑
N

φ(BN)xN
∑
M

φ(BM)yM =
∏
i

(1 +
∑
i

ωuci
xci)tu

∏
i

(1 +
∑
j

ωucj
ycj )tu

=
∏
u

(1 +
∑
i

ωuci
xci

+
∑
j

ωucj
xcj

+
∑
k

∑
i,j

Aki,jω
u
ck
xci
ycj

)tu

=
∏
u

(1 +
∑
i

ωuci
(xci

+ yci
+
∑
j,k

Aij,kxjyk))tu

=
∏
u

(1 +
∑
i

ωuci
zci

)tu

=
∑
K

φ(BK)zK,

where zci
= xci

+ yci
+
∑
j,k A

i
j,kxjyk, as in Section 5. Proposition 5.11 now implies

that φ is a homomorphism. It remains to verify that φ(Beu,r) is equal to the r-th
p-adic digit of tu. We fix a block Cv and write ev =

∑
mcc. Now, to compute

ev(Bev,r) =
∑

|M|=pr

∏
c∈Γ∗

mM(c)
c ev(BM),

we take the generating function we used to define φ and evaluate at xc = ϵmc, where
ϵ is a formal variable. This gives∑

N

φ(BN)
∏
c

mN(c)
c ϵ|N| =

∏
u

(1 +
∑
c

ωucmcϵ)tu .

We observe that
∑
c ω

u
cmc is the central character of Cu evaluated at ev, and therefore

this sum is equal to one if u = v, and zero otherwise. This shows that φ(Bev,r) is
equal to the coefficient of ϵpr in

(1 + ϵ)tv .
But this is precisely the r-th p-adic digit of tv by Example A.7. □
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